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Abstract 

Projected dynamical systems have been introduced by Dupuis and Nagumey as dynamic extensions of variational inequal
ities. In the systems and control literature, complementarity systems have been studied as input/output dynamical systems 
whose inputs and outputs are connected through complementarity conditions. We show here that, under mild conditions, 
projected dynamical systems can be written as complementarity systems. © 2000 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this paper, we connect two classes of discontin
uous dynamical systems. One is the class of projected 
dynamical systems introduced by Dupuis and Nagur
ney [ 6) and further developed by Nagurney and Zhang 
[ 18). These systems are described by differential equa
tions of the form 

i(t) = flK(x(t),-F(x(t))), (1) 
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where F is a vector field, K is a closed convex set, 
and fl K is a projection operator that prevents the so
lution from moving outside the constraint set K ( cf. 
Section 2 for a precise definition). These systems are 
used for studying the behaviour of oligopolistic mar
kets, urban transportation networks, traffic networks, 
international trade, and agricultural and energy mar
kets (spatial price equilibria). Their stationary points 
can be characterized by means of variational inequal
ities; one may therefore say that projected dynamical 
systems provide a dynamic extension of variational 
inequalities. 

We shall compare projected dynamical systems 
with complementarity systems, which may be con
sidered as dynamical extensions of complementarity 
problems ( cf. Section 3). Although particular forms 
of complementarity systems have been used for a 
long time in the context of specific applications such 
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as electrical networks with ideal diodes (see, e.g. 
[2]) and mechanical objects subject to unilateral con
straints [15], the idea of coupling complementarity 
conditions to a general input/output dynamical sys
tem has first been proposed in 1996 by van der Schaft 
and Schumacher [24]. Within the general class of dy
namical systems that is obtained in this way, there is 
a natural subdivision corresponding to classifications 
that are used for input/output dynamical systems. In 
this paper we shall have occasion to use in particular 
the so-called gradient-type complementarity systems. 
To our knowledge this specific class of dynamical sys
tems has not been introduced before in the literature. 
We note, though, that the class of nonsmooth dynam
ical systems recently studied by Seeger [27] contains 
systems that may be considered as reversed-time ver
sions of gradient-type complementarity systems with 
linear dynamics. 

Complementarity systems are nonsmooth dynami
cal systems; they switch between several dynamical 
regimes and may show impulsive motions resulting in 
discontinuities of some system variables. Since com
plementarity systems are subjected to both continuous 
dynamics and discrete switching, one may also con
sider them as a subclass of hybrid dynamical systems 
[ 1,20,26]. Because of the nonsmoothness of trajecto
ries, the formulation of a solution concept for com
plementarity systems is nontrivial (see [9,13,24,25]). 
Questions of (local) existence and uniqueness of so
lutions have been studied under various assumptions 
in [ 10, 12-14,24,25]. Analysis of numerical simulation 
methods based on time-stepping can be found in [3,9]. 

The study of complementarity systems is moti
vated by a broad range of applications (see [11] for 
an overview): electrical networks with diodes, me
chanical systems subject to unilateral constraints or 
Coulomb friction, control systems with relays, satu
ration characteristics or deadzones, variable structure 
systems, dynamical systems with static piecewise lin
ear relations, hydraulic systems with one-way valves 
and optimal control problems with state or control 
constraints. 

It is well known that variational inequalities and 
complementarity problems are closely related (see, 
for instance, Harker and Pang [8] ). Therefore, it is 
reasonable to expect that projected dynamical sys
tems and complementarity systems are also related. 
In this paper we show that there is indeed a natural 

relationship. Specializing to the stationary points, we 
obtain as a corollary the classical result which states 
that, under mild conditions, variational inequalities 
may be rewritten as mixed nonlinear complementarity 
problems [8, Proposition 2.2]. Moreover, we obtain 
a proof of existence and uniqueness of solutions of 
projected dynamical systems that is independent of 
the original proof by Dupuis and Nagurney [6] and in 
particular does not use the Skorokhod problem (see 
[28]). Complementarity systems have already been 
used extensively in the engineering literature (see, for 
instance, [15,19,25]) and the establishment of a 
relation between the domains of projected dynamical 
systems and of complementarity systems makes it pos
sible to compare and transfer analytic and computa
tional techniques between the two. It also follows that 
the interpretation of projected dynamical systems as 
tatonnement or adjustment processes carries over to a 
class of complementarity systems. 

The following notational conventions and terminol
ogy will be used. If k is a positive integer, k denotes 
the set { 1,. . ., k }. For an index set/~ k, we denote its 
complement with respect to k by 1c:={i E k Ii ~I}. 
The cardinality of a set I will be denoted by IJI. A 
vector u E [Rk is said to be nonnegative (nonpositive) 
if u; ~O (u;::::;; 0) for all i E k, and in this case we write 
u~O (u::;;O). Given a matrix ME [Rkxl and subsets 
I~ k and J ~ T, we denote the submatrix (M;1 h1.;EJ 
by MJJ. In case I= k we write M.J rather than M0, 
and similarly if J = T we use M1 •• The transpose of a 
matrix M is denoted by MT. In the Euclidean space [Rk 

the standard inner product is denoted by (., ·) and for 
u, v E [Rk we write u J_ v if (u, v) =uTv=O. We denote 
the restriction of a function f : [O, T] -+ IR to an inter
val (a, b) ~ [O, T] by flca.h)- A function f: !Rn -+ !RP 
will be said to be real-analytic and convex if its com
ponent functions /; : IR" -+ IR are real-analytic and 
convex. 

2. Projected dynamical systems 

In this section we recall the definition of projected 
dynamical systems (PDS) [6,18]. The defining ingre
dients are a closed convex set K, which usually cor
responds to the constraint set of a particular applica
tion, and a vector field F whose domain contains K. 
The projected dynamics is described by the equation 
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x(t)= -F(x(t)) on the interior of K, but on the bound
ary a modification is applied to prevent the solution 
from leaving the constraint set. 

To be more precise, let a closed and convex set 
K ~ !Rn be given. The cone of inward normals at x E 

K is defined by 

n(x) = {y I (y,x - k) :::;o for all k EK}. (2) 

Note that n(x )={ 0}, whenx is contained in the interior 
of K. Given x E K and v E IR", define the projection 
of the vector v at x with respect to K by 

Ih(x, v) = v - (v,n*(x))n*(x), 

where 

(3a) 

n*(x) E arg max (v, -n). (3b) 
nEn(x). llnll <::I 

Note that llK(x, v) is well-defined even though n*(x) 

may not be uniquely specified by (3b ). The pro
jected dynamical system PDS(F, K) corresponding 
to a closed convex set K and a vector field F on K is 
defined by 

i(t) = llK(x(t), -F(x(t))). (4) 

The ordinary differential equation ( 4) has a discontin
uous right-hand side and is therefore not covered by 
the standard theory of differential equations. The fol
lowing notion of solution is proposed in [ 18]. 

Definition 2.1 (Nagumey and Zhang [ 18] ). An ab
solutely continuous function x : [O, T] -+ K is a solu

tion to PDS(F,K) on [O, T] with initial state xo E Kif 
x(O) = x0 and ( 4) holds almost everywhere in [O, T]. 

Definition (3) of the projection operator nK is con
venient for the development below. An alternative def
inition is the following one. For x E K and v E IR" 

define 
. PK(x+bu)-x 

flK(X,V)=hm ~ , 
s~o u 

(5) 

where PK is the projection operator that assigns to each 
vector x in 1R11 the vector in K that is closest to x in the 

Euclidean norm II· II (i.e. PKx=argminkEKllx-kll). 
It has been proven by Dupuis [5] that the formula
tions in (3) and (5) are equivalent when K is convex 
and compact with nonempty interior. In [6] the same 
result is stated under the assumption that K is a con
vex polyhedron (i.e. an intersection of finitely many 
closed half-spaces). 

3. Complementarity systems 

A complementarity system may be specified (in 
"semi-explicit affine form", see [24]) by functions 
f : IR" -+ IR", g; : IR" -+ IR" and h : lR" -+ IR.1'. The 
defining equations for the complementarity system 
corresponding to f, g; and h are 

p 

~i(t) = f(x(t)) + L gi(.-r(t) )u;(t), (6a) 
;~ 1 

y( t) = h(x(t )), (6b) 

0:::;; y( t) J_ u(t);:?; 0. (6c) 

Relation (6c) implies that for all i at least one of the 
equalities u;(t) = 0 and y;(t) = 0 must be satisfied. 
Hence, for all times t there exists an index set J such 
that u;(t) = 0, i ~ J and y;(t) = 0, i E J. In the en
gineering literature this index set is sometimes called 
the active index set, mode or discrete state of the sys
tem at time t. The mode may change during the time 
evolution of the system. The times at which this hap
pens are called event times. 

In general, a complementarity system may not have 
a continuous solution, even when the defining func
tions f, g and h are smooth, and so one needs to in
troduce larger function spaces to define solutions ( cf. 
[12,13,24,25]). Although the solution concept below 
is not the most general one, it suffices for the purpose 
of the paper. We need the notion of right-isolated sets. 
A subset <ff of IR is said to be right-isolated if for each 
t E <ff there exists an s > 0 such that (t, t + c:) n <ff= 0. 

Definition 3.1. A continuous function x : [O, T] -+ 

IR" is called a solution to ( 6) with initial state xo 

on the interval [O, T], if x(O) = x0 and there exist 
a right-isolated set <ff c [O, T] and two functions u : 

[O, T] -+ ~P, y : [O, T] -+ ~P such that for any .in
terval (a, b) c;;; [O, T] with (a, b) n tff = 0 the followmg 
conditions hold: 

1. the restriction (u,x,y)l(a.b) is real-analytic and sat
isfies (6a) and (6b) for all t E (a,b); 

2. there exists an index set J ~ p such that u;, (t) = 0, 
y;(t)=O, u;(t);:?;O and y1<(t);:?;O for all t E (a,b). 

This definition allows solutions that exhibit accu
mulations of event times ("Zeno solutions"). Since <ff 
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is right-isolated, such accumulations only take place 
forward in time. Note that a similar restriction is not 
present in Definition 2.1. 

By considering several types of dynamics in ( 6a) 
and ( 6b ), one may define several classes of com
plementarity systems such as linear complementar
ity systems [13,24] and Hamiltonian complementarity 
systems [24]. For the purpose of this paper we shall be 
particularly interested in gradient-type complemen
tarity systems; these systems are related to the gradi
ent systems that have been studied by van der Schaft 
[23]. To specify a gradient-type complementarity sys
tem, take functions F: !R" -+ !R" and h: IR" -+ [RP. 

Let the gradients of the component functions h;(x) of 
h(x) be denoted by V"h;(x) (taken to be row-vectors) 
and let H (x) denote the matrix whose ith row is equal 
to V"h;(x) (i.e. the Jacobian matrix of hat x). The 
gradient-type complementarity system GTCS(F, h) is 
given by the equations 

p 

x(t) = -F(x(t)) + L [V"h;(x(t))]T u;(t), (7a) 

y(t) = h(x(t)), 

O~y(t) J_ u(t) ~O, 

(7b) 

(7c) 

which is a special case of(6). Eq. (7a) can compactly 
be written in terms of the Jacobian H of h as 

x(t) = -F(x(t)) + [H(x(t))]Tu(t). (8) 

The above definition makes implicit use of the stan
dard inner product of IR", but it would also be possible 
to use a coordinate-free treatment as in [23]. There is 
a closer analogy with the gradient systems studied by 
van der Schaft when in (7) the function Fis defined 
as the gradient of some potential function. In that case 
(7) is referred to as a gradient complementarity sys
tem. 

4. Projected dynamical systems as complementarity 
systems 

In this section we consider projected dynamical sys
tems specified by a vector field F and a convex set K, 
and we provide conditions under which these systems 
can be rewritten as gradient-type complementarity sys
tems. It will be assumed that the convex set K can be 
represented by means of finitely many inequalities. 

Assumption 4.1. The set K allows a representation in 

the form 

K = {x E IR" I h(x)~O}, (9) 

where h: !R" _,. [RP is real-analytic and convex. 

If h represents K as in (9), we define for x EK the 
active index set l(x) as 

J(x) := {i E p I h;(x) = O}. (10) 

To prevent technical complications that would ob
scure the main line of reasoning, we shall use the 
following constraint qualification in conjunction with 
Assumption 4.1. 

Assumption 4.2. For has in (9) and H the Jacobian of 
h, the matrix H1(x)•(x) has full row rank for all x EK. 

Concerning the vector field F, we shall use the fol
lowing assumptions. 

Assumption 4.3. The vector field F is real-analytic. 

Assumption 4.4. There exists a constant B E !R such 
that F satisfies the linear growth condition 

llF(x)ll ~B(l + llxll) for all x EK. ( 11) 

Assumption 4.5. There exists a constant C E !R such 
that 

(-F(x) + F(y),x - y} ~Cllx - Yll 2 

for all x,y EK. (12) 

Remark 4.6. Assumption 4.1 implies that K is con
vex and closed. A characterization of K as in (9) is 
possible in all applications of projected dynamical sys
tems mentioned in [18]. In [6] it is even assumed that 
K is a convex polyhedron. Assumptions 4.4 and 4.5 
are used in [18] to prove existence and uniqueness of 
solutions to the projected dynamical system specified 
by F andK. 

The following theorem is the main result of this 
paper. The theorem will be proved in the next section. 

Theorem 4.7. Let a set K ~ IR", a vector field 
F: !R11 -+ IR" and a function h: IR11 -+ !RP be given 
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such that Assumptions 4.1-4.5 are satisfied. For all 
initial states xo E K, both the projected dynamical 
system PDS(F,K) and the gradient-type complemen
tarity system GTCS(F, h) have a unique solution de
fined on [O, oo ). Moreover, these solutions coincide. 

Remark 4.8. It will follow from the proof given be
low that without Assumption 4.4 the theorem still 
holds, except that the solutions are not guaranteed to 
exist on [O, oo ). To be specific, suppose that [O, T1) is 
the maximal interval on which a solution can be de
fined for PDS(F,K). Similarly, let [O, T2) be the max
imal interval for which GTCS(F, h) admits a solution. 
Then T := T1 = T2 > 0, both solutions are unique on 
[O, T), and the solutions are equal to each other. 

Remark 4.9. The constraint qualification Assumption 
4.2 is introduced here for simplicity. In the litera
ture on complementarity systems, weaker assumptions 
have been used. Specifically, Lotstedt [15] uses the 
condition that the Jacobian matrix H(x) should have 
locally constant row rank to prove the existence and 
uniqueness of solutions to equations representing uni
laterally constrained mechanical systems. 

Remark 4.10. Theorem 4.7 provides some additional 
information about the solutions to PDS(F,K). Under 
the assumptions of the theorem, solutions to projected 
dynamical system are real-analytic on the open inter
vals belonging to a set of the form [O, oo) \ @". More
over, the exceptional set (the set of event times)$ is 
a right-isolated set. 

Remark 4.11. It follows in particular that, under the 
conditions of Theorem 4.7, the stationary points of 
the projected dynamical system PDS(F, K) coincide 
with those of the gradient-type complementarity sys
tem GTCS(F,h). When K is a convex polyhedron, 
the stationary points i of PDS(F,K) are given by the 
variational inequality [18, Lemma l] 

(F(i),x - i) ~O 'ix EK. (13) 

The stationary points i of GTCS(F, h) are given by 
the mixed nonlinear complementarity problem 

p 

0 = -F(i) + L [Vh;(i)]T U;, (14a) 

i=l 

y = h(i), ( 14b) 

O::;;;y _l_ u~O. ( 14c) 

In this way, we recover the well-known result (see 
for instance [8, Proposition 2.2]) that, under a suit
able constraint qualification, variational inequalities 
may be rewritten as mixed nonlinear complementarity 
problems. 

5. Proof of the main result 

We start with a characterization of the projection 
nK in terms of a minimization problem. The proof 
will be given below on the basis of a duality argument. 

Theorem 5.1. Let KC IR" be of the form (9) for a 
real-analytic and convex function h : IR11 ......, [RP. For 
all x EK and v E IR", we have 

llK(x, v) = arg min \lw - vii, 
wEW(x) 

( 15) 

where W(x) is the "cone of admissible velocities" 
given by 

W(x) = {w E IR" I V'h;(x)w~O for all i E /(x)} 

( 16) 

with l(x) specified by (10). 

The duality result that we will use to prove Theorem 
5.1 is stated in Proposition 5.2. The notation c0 is 
used to denote the polar cone (see e.g. [21, p. 121]) 
of a set C ~ IR11 : 

c0 = {x E IR11 I (x,y) ::::;o for ally EC}. (17) 

Proposition 5.2. Let W ~ IR" be a closed convex cone 
with nonempty interior and let v E IR" be given. De
fine w* by 

w* = arg min llw - vii (18) 
wEW 

and let z* be such that 

z* E arg max (v,z). 
zE wo .11=11 ~ 1 

Then 

w* = v - (v,z*)z*. 

( 19) 

(20) 
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Proof. We apply the Fenchel duality theorem [16, p. 
201) to the convex function f(w) := llw-vll defined 
on C := IR" and the concave function g(w) := 0 
defined on D := W. One easily computes (cf. for 
instance [21, Section 12]) that the conjugate sets of C 
and Dare C* = {z E IR" I llzll ~l} and D* = -W0, 

and that the conjugate functions off and g are given 
by f*(z) = (v,z) for z E C* and g*(z) = 0 for z ED*. 
From the Fenchel duality theorem, we therefore have 

min llw - vii = max (v,z). (21) 
wEW =EW0 .iizll~l 

Now, suppose first that minwEW llw - vii > O; then 
llz* 11=1. In this case, there exists a real number cx~O 
such that w* - v = -cxz* [16, p. 136). We have -a= 
-llctz*ll = -llw* -vii =-(v,z*) by (21); this proves 
(20). Next, suppose that minwEW llw-vll =0. Then v E 
Wand hence w*=v. We have maxzEwo.11=11~ 1 (v,z)=O, 
so that (v,z*) = 0 and consequently Eq. (20) is also 
correct in this case. D 

Remark 5.3. The proof implies that (w* ,z*) = 0. To
gether with the conditions w* E W, z* E w0 , and 
v = w* + (v,z*)z*, this shows that (v,z*)z* is actually 
the projectionPwov of v onto the cone w0 [17, p. 238). 

Proof of Theorem 5.1. Fix an arbitrary x EK. From 
[21, Corollaries 23.7.1 and 23.8.1) it follows that the 
cone of inward normals of K at x, denoted by n(x), 
and the cone of inward normals of W(x) at 0, denoted 
by nwcx)(O) satisfy 

n(x) = nwcxJ(O) 

= {r E ~,,I y = L [Vh;(x)]T A.; 
iEl(x) 

for cemin l;;,O}. (22) 

By definition of the cone of inward normals and the 
polar cone (see (2) and (17)), nw(x)(O) is equal to 
-W(x)0. Hence, n(x) = -W(x)0 • The claim of the 
theorem now follows by applying Proposition 5.2 to 
W = W(x) and using that w0 = -n(x). D 

Next, we establish a connection to a linear com
plementarity problem (LCP). See [4] for an extensive 
treatment of LCPs. 

Theorem 5.4. Let a subset K of ~n be of the form 
(9)for a real-analytic and convex function h: IR" _, 
~P. Fix x E K. Let H be the Jacobian matrix of h 
at x, and let I:= J(x) = {i I h;(x) = O} be the active 
index set. Then we have 

flK(x, v) = v + Hl.u 

where the vector u E [Rl11 solves the LCP 

O~u .1H1.v + H1.[H1.f u~O. 

(23a) 

(23b) 

Proof. By Theorem 5.1, the vector flx(x, v) is the 
projection of v onto the cone W(x) defined in (16). 
In terms of the notation introduced in the statement of 
the theorem, we have 

W(x) = {w E IR" I H1.w~O}. (24) 

The fact that the projection onto this cone can be found 
from (23) is well known; one may for instance use 
the Kuhn-Tucker conditions. An alternative approach 
is to use the result by Moreau [ 17] which states that 
in order to compute the projection of a vector v in a 
Hilbert space on a closed cone W, it is enough to find 
w and w0 such that v = w + w0 ' w E w' w0 E w0' 

and w .1 w0; the projection Pwv is then given by w. 
In our case W(x) is given by (24) so that the polar 
cone w0(x) can be written as (see e.g. the proof of 
Theorem 5.1) 

w0(x) = { w0 E IR" I w0 = -[H1.]T u 

for some u~O}. (25) 

Therefore, the three conditions of the LCP (23b) are 
exactly the conditions that ensure, by Moreau's theo
rem, that flx(x, v) is given by (23 ). Note in particular 
that the condition [H1.]T u .1 v + [H1.]T u is equivalent 
to u.1H1.v+H1.[H1.]Tu. D 

The discussion so far may be summarized as fol
lows. 

Corollary 5.5. A function x : [O, T] -+ IR" is a so
lution to the projected dynamical system ( 4) if and 
only if there exists a locally integrable function u : 
[O, T] -+ [RP such that, with J(x) the active index set 
as in (10) and H(x) the Jacobian matrix of hat x E 
K, one has for almost all t E [O, T]: 

i(t) = -F(x(t)) + [H1(x(t))•(x(t))]T UJ(x(l)J(t), (26a) 



WP.M.H. Heemels et al. I Operations Research Letters 27 (2000) 83-91 89 

UJ(x(t))0 (t) = 0, (26b) 

0::::; UJ(x(t)J(t) ..l. - H1(x(t))•(x(t))F(x(t)) 

+H1(x(t))• (x(t) )[HJ(x{t)J•(x(t) )]T UJ(x(l)J(t) 

;:::: 0. (26c) 

In the proof of the main theorem we shall use the 
following result, which can easily be derived from 
Theorem 3 .2 in [25]. The quoted theorem gives a local 
existence and uniqueness result for complementarity 
systems of the form ( 6 ). 

Theorem 5.6. Let real-analytic functions F : !Rn _, 
IR" and h : 1R_n --t !RP be given. Take x0 E IR" such that 
h(xo);:::: 0. If Assumption 4.2 is satisfied, then there 
exists an e > 0 such that GTCS(F, h) has a solution 
x on [O, e) with initial condition x0 . Moreover, this 
solution is unique. 

Proof. Define I = I (x0 ) as in ( 10) and apply Theo
rem 3.2 in [25] to the system GTCS(F,h1 ), i.e. :i(t) = 
-F(x(t)) + [H1.(x(t) )]T u1(t) and 0 ~h1(x(t)) ..l. u1(t) 
;::::o with I= l(x0 ). Since h;(x0 ) > 0 for i <I. l(x0 ), it 
is clear that continuous solutions to GTCS(F, h1) with 
initial state x0 are solutions to GTCS(F, h) for suffi
ciently small t, and vice versa. 

Note that H1.(xo)[H1.(xo)f is positive definite due 
to Assumption 4.2 and hence, is also a P-matrix (i.e. 
has only positive principal minors) [4, Theorems 3.1.6 
and 3.3.7]. Consequently, Theorem 3.2 in [25] applies 
to GTCS(F, h1 ) and the result follows. 0 

Now we are in a position to prove the main result 
of this paper. 

Proof of Theorem 4.7. Take x0 E K. According to 
Theorem 5.6 there exists a real-analytic triple (u,x,y) 
that satisfies (7) on [O, e).In particular, there exists an 
index set J ~ p such that yJ(t) = 0 and u1<(t) = 0 for 
all t E [0,e). 

We now want to show that the trajectory x that has 
been defined in this way on [O, e) is also a solution to 
PDS(F,K) on [O, e).It is immediately clear that (26a) 
is satisfied because it is just another way of writing (8). 
For x EK, define /(x) as in (10). From the fact that 
YJ(t) = 0 on [0,e) it follows thatJ~J(x(t)) fort E 
[O,e). Therefore, l(x(t))C ~Jc and so UJ(x(lll'(t) = 0 

fort E (O,e). Hence, (26b) is satisfied. It remains to 
show that UJ(x(l))(t) satisfies the LCP (26c) on (0.c:). 
It is clear from (7c) that the inequality u11 x11 n(t)~O 
is satisfied on ( 0, e ). For t E ( 0, e ), we have 

0=y1(t) = -H1.(x(t))F(x(t)) 

+H1.(x(t))[H:1.(x(t ))]T uJ(t). (27) 

Dropping all arguments now to lighten the notation, 
we have from UJ' = 0 and J ~ I that 

(H1.[H1.]TuJ)1 =H1.[H1.]Tu1. (28) 

Since obviously (H1.F)1 = H1.F. it follows from 
(27) and from UJ' = 0 that the orthogonality condi
tion in (26c) holds. The final inequality in (26c) fol
lows by expressing y ;Ct) similarly to (27), and noting 
that Y;(t)~O whenever y;(t) = 0 (i.e. whenever i E 
I(x(t ))), because otherwise the inequality yi(t) ~ 0 on 
(0, e) would be violated. 

If the limit limrr,x(t) =: x(e) exists, the existence 
of a solution to (7) starting from x(e) on [e,e + 81) 

for some 81 > 0 follows from Theorem 5.6. Hence, 
we have a solution x to (7) on (O,e + e1) in the sense 
of Definition 3.1. In the same way as above, it can be 
shown that x is a solution of PDS(F,K) on (0, e + e1 ). 

We now have to show that actually a solution to 
GTCS(F, h) can be constructed on all of (0, oo ). In 
principle it might happen that the above construction 
only leads to a solution on some interval [O, T) with 
T < oo. To proceed by contradiction, assume that we 
are in such a situation. The following estimates hold 
forO~t~T: 

llx(t)ll ~ llxoll + l lllh(x(r),-F(x(r)))lldr 

~ llxoll + l llF(x(r))li dr 

~ llxoll +BT +B 11 
llx(r)ll dr. 

The second step follows easily from the definition 
of Ih (see [I8, Eq. (2.19)] or use the orthogonal
ity mentioned in Remark 5.3) and the third inequality 
is a consequence of (I I). Using Gronwall's lemma 
we see from this that x( ·) is bounded on [O, T); say 
llx(t)ll ~M fort E (0, T) for some constant M ?" 0. 
It follows in particular that no "finite-escape time" 
can occur. Moreover, it follows that the solution x is 
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Lipschitz continuous and hence uniformly continuous 
on [O, T). Indeed, for 0::::; t < s < T we have 

llx(t)-x(s)il::::; l' llllK(x(r),-F(x(t)))lldt 

::::; /
1
• llF(x(!))ll dt 

::::; B /'o + llx(r)ll)dr 

::::; B(l +M)(s - t). 

By a standard result in analysis (see for instance 
[22, Excercise 4.13]) this implies that the limit 
x(T) := limnrx(t) exists. Since by continuity argu
ments h(x(T)) ';;::: 0, continuation is possible beyond 
T according to Theorem 5.6, and we have reached 
a contradiction. Therefore, it follows that there is a 
unique solution of the gradient-type complementarity 
system GTCS(F, h) on [O, oo) which is also a solution 
of the projected dynamical system PDS(F,K). The 
uniqueness of solutions to PDS(F,K) follows from 
Assumption 4.5 as in [18, p. 33]. D 

Remark 5.7. The existence of solutions to PDS(F, K) 
on [O, oo) is shown in [28] by a method based on the 
Skorokhod Problem [28]. The proof above provides an 
alternative argument. In fact the proof shows that As
sumptions 4.1-4.3 are sufficient for local existence of 
solutions to PDS(F,K). With the additional Assump
tion 4.4, one can prove existence on [O, oo ). The ar
gument to prove uniqueness uses Assumption 4.5 and 
is essentially due to Filippov [7]. 

6. Conclusions 

We have shown that, under mild conditions, 
projected dynamical systems can be rewritten as 
gradient-type complementarity systems. This re
sult may be looked at as a dynamic version of 
the well-known fact that, under suitable conditions, 
variational inequalities may be rewritten as mixed 
nonlinear complementarity problems. The class of 
gradient-type complementarity systems is a subclass 
of the class of complementarity systems which has 
received a considerable amount of attention in the 
engineering and applied physics literature. The es
tablishment of a connection between the domains of 

projected dynamical systems and complementarity 
systems facilitates the transfer of techniques from one 
domain to the other. As an interesting bonus, we have 
obtained a new, and in the authors' opinion more di
rect, proof for the existence of solutions to projected 
dynamical systems. 
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