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Abstract

Active databases are databases extended with production rules or triggers. Triggers have
different uses in databases. Originally they were devised as a more flexible method of con-
straint enforcement. Triggers have found a much wider use however, because it is possible
to code all dynamics of an information system in database triggers. Such use results in the
presence of large sets of triggers in an active database. The mutual interaction of triggers
in a set can lead to undesired results such as non-termination of trigger execution. To
enable us to analyse a trigger set in advance for such behaviour we need a design theory
for database triggers. In this report we consider a number of predicates on trigger sets.
Most important are termination and confluence. We examine the decidability of these
predicates in a number of simple trigger languages. We show that these predicates are
decidable for very simple triggers that consists of local conditions and replacement of at-
tribute values. We also show that a very small extension of the trigger language, viz. with
non-local conditions, makes these predicates undecidable. The extension of the initial lan-
guage with arithmetic in the form of the successor function preserves the decidability of
termination and confluence.
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1 Introduction

The original role of rules, or triggers, in databases was the enforcement of integrity constraints.
These constraints may either be static or dynamic. Static constraints describe the acceptable
database states. Dynamic constraints specify the acceptable transitions between database
states. Constraint specification is declarative, which means that the corrective action to be
taken in case of a violation is decided by the underlying constraint enforcement system. In
most cases this action will be the abort or roll-back of the transaction involved.

In a lot of cases we can take a better corrective action than aborting the transaction. In
VLSI design, for example, we encounter a constraint specifying a minimum distance between
two wires in order to avoid interference or manufacturing difficulties. If this constraint is
only specified declaratively, enforcement of the constraint will involve aborting transactions
violating the constraint. A better approach to correct this action would be to rearrange the
wires in order to satisfy the constraint. In addition we may want to avoid the computational
burden of continuously checking the design.

Rules allow us to specify how and when an integrity constraint must be enforced. A means to
offer rules are active objects. An active object is an object with its own autonomous internal
activity. The activity is specified by a condition-action pairs. The condition may be a predicate
on the database state, a sequence of events or a combination of these. The action is usually
defined in some kind of programming language. The semantics is roughly that whenever the
condition is satisfied, the action is executed. In order to enforce an integrity constraint we
specify the violating state or state transition by the condition and define a corrective action
to be taken.

Of course much wider uses have been found for active objects than just constraint enforcement.
Functionality of an information system that is reactive in nature can be implemented by active
objects. An example is that we check for backorders each time a new load of an item is added
to the inventory. Computerised traders in financial markets are also a form of active objects.

The additional functionality offered by active objects comes at a price. A designer who defines
active objects needs also be concerned with the interactions of a set of active objects. For
example, members of the set may mutually activate or deactivate each other. Because the
autonomous nature of active objects, their behaviour is controlled through their definition
only. A design theory defines properties on sets of active objects and provides algorithms to
detect such properties.

Properties studied in the literature are termination and confluence. A set of triggers terminates
if, starting with any initial database state, the conditions of all the triggers become false in a
finite number of steps. That is, the database converges to a final state. A terminating set of
triggers is called confluent if the final state is determined completely by the initial state and
the trigger set.

The properties of a set of triggers depend, of course, on the run-time semantics of the triggers.
There are two pre-dominant run-time models in the literature, viz., set-oriented and instance-
oriented semantics. Under the former, a trigger executes simultaneously on all objects that
satisfy its condition. Under the latter, the trigger executes, non-deterministically, on one



object that satisfies this condition. In this paper we shall refer to these two semantics as set
semantics and instance semantics.

These two types of semantics suggest a third property, which we call indifference, that relates
the two semantics. A trigger set which is confluent under both semantics is indifferent if the
unique final state under the two semantics is identical.

The development of a design theory for triggers has been advanced by targeting on either
sufficient conditions or on decidability. Examples of the former approach are [5, 2]. In the con-
text of the RDL rule system, Simon and deMaindreville [5] formulate a condition under which
set and instance based rule execution coincide. Widom et al [9, 8], defined a production rule
language for the Starburst database system. In [2] sufficient conditions for both termination
and confluence of these production rules are formulated.

A property is called decidable if there exists an algorithm which given a set of triggers as
input, decides in finite time whether this set satisfies the property or not. Examples of this
approach are [1] and this paper. In this paper we start with a basic language that features
conditions local to the active object and actions that replace values of attributes. After that we
will consider extensions to both the condition and the action part separately. This paper and
[1] are complementary, since Abiteboul and Simon concentrate on a language with deletions,
while we only consider modifications.

Roadmap

The structure of the paper is as follows: First we give our data and rule model. Second we
will define the predicates on rule sets that we consider. Then we will examine the decidability
of these predicates for the simplest model. After that we will consider extension to non-local
conditions and actions with simple arithmetic, both separately and combined. Concluding
remarks and the direction future research should take round off the paper.

2 Model

In this section we define the models used in this report. First we define the full model, then
we give the restricted models. The latter are interesting, because they have several decidable
properties.

2.1 The Full Model

The data model is a simple object-oriented model. An object has attributes and methods.
An attribute has a name and a type. The only types are integers and classes. Methods assign
new values to attributes. A method consists of a heading and a body. The heading specifies
the name and the parameters of the method. The body specifies the assignments to be made
by the method. Some arithmetic can be done by a method, viz. addition and multiplication.
An example of a class is the following class definition:

Class cell
Attributes
no: Integer



neighbour : cell
Methods

multiply no(factor:Integer) =
self except no:=no*factor

EndClass

This class has two attributes and one method. The keywords self except indicate that the
object the method yields is the same one as before the method call, except for the changes

specified.

The syntactical definitions of classes, queries and rules are given in BNF form. In these
definition all terminals ending in (... Id) are identifiers taken from a universe of identifiers,
defined in the usual way. The definition of a class is:
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When a method is called the parameters need to be assigned values. An example of this is
the method call multiply no(factor=3). The formal definition in BNF is:

(MethodCall)
(ActParamList)
(ActParamList)

(ActParam)

—

—

—

—

(MethodId) ( (ActParamList) )
(ActParam) , (ActParamList)
(ActParam)

(Parameterld) = (Expr)



Although this defines syntactically correct objects, more is needed to define a meaningful
hierarchy. The two sets of constraints that take care of this are uniqueness constraints and
referential constraints.

Uniqueness Constraints The uniqueness constraints state that there must be unique
names for classes, attributes and methods.

Referential Constraints The referential constraints are concerned with the correctness of
the references made to other entities in the method and attribute declarations.

1. All methods must be well-typed. Well-typedness means that all assignments are to the
correct types.

2. All classes referred to in attribute or parameter declaration must exist in the class
hierarchy.

A correct method call has the same number of actual parameters as the number of parameters
specified in the method declaration. The criterion of well-typedness must also be satisfied by
a method call.

The class definition above only describes a database schema, not an actual instance of a
database. An instance of a database is determined by an extension and an interpretation.
The extension assigns objects to each class in the database. The interpretation assigns values
to the attributes.

The extension of a database assigns to each class a set of objects. An object is identified by
a unique object identifier. Therefore we suppose the existence of a set of object identifiers
Oid. The extension function then assigns a subset of Oid to each class, such that all object
identifiers are assigned to one class only.

Definition 1 Let H be a hierarchy. An extension Ext : H — POid assigns to each class of
H a set of objects such that if C1,Cy € H and Cy # Cy, then Ext(Cy) # Ext(Cs). POid
denotes the power set of Oid.

In addition to the classes we also have the type Integer that needs an extension.
Definition 2 The extension of the type Integer is the set of natural numbers.

With the extension we have sets of objects for each class. Relations between these sets are not
yet defined however. The interpretation assigns values to all the attributes in the database.
The simplest way to view the interpretation is that a table is maintained for every attribute
in the database schema. This table has two columns, the first containing object identifiers.
In the second column the value of the attribute in that object is given. An example is the
following interpretation for the attribute “no” of the class “cell” defined above.

Oid | Value
345 3
874 25
902 16




In this example we have three objects. The value of the attribute no for object 874 is 25. The
interpretation of an attribute is a function from the extension of the class it belongs to, to
the extension of the type of the attribute. The extension of the type itself is either a class
extension or the extension of the type Integer.

Definition 3 Let Ext be an extension of a hierarchy H. An interpretation I for Ext and H
assigns to each type declaration a: 7 a function I(a: 1) : Ext(C) — Ezt(T).

A database for a hierarchy is a pair of an extension and an interpretation.

Definition 4 A database for a hierarchy H is a pair (Ext,I) where Ext is an extension for
H and I an interpretation for Ext and H. The universe of all databases is denoted by DBy .
Individual database states are denoted by db, dbi,dbs, . ...

If we look at the semantics of method execution, we need to relate two interpretation to
each other. To be precise we need to describe the interpretation of the database after the
method execution in terms of the interpretation before the method execution. For that we
need the notion of a variant of an interpretation. A variant of an interpretation I is denoted
by I{v/(a : 7)(0)}. The variant is the same as I, except when I(a : 7) is applied to the object
o, where it yields v. A property of variants that we state without proof is the independence
of variants on different objects:

Yo1,09 € Ext :
01 # 09

—

Hovy/(a:7)(01) H{vz/(a : T)(02)} = I{va/(a : 7)(02) Huv1/(a : T)(01)}

The function M that defines the semantics of method execution gives us a new interpretation
of the database that is variant on the attributes modified.

Definition 5 Let m(ly : 71,...,l, : 7,) = self except{a; := [;, succ(b;)},i = 1...n,j =
1...m be a method of class C € H withVi € {1,...,n} :"a; : 7,7 € Attr(C),Vj € {1,...,m} :
"bj 07 € Attr(C) and {"a1 : 71", a0 IO {70 1007, bm t o} = 0. 0 is an
object in Ext(C) and m(ly = vi,...,l, = v,) is a correct method call. The function M is
defined for the ezecution of m by o in the database (Ext,I) as:

M(m(ly =vi,...,l, = vy,)(0)(Ext, 1)) =
(Bxt,I{v1 /(a1 : 11)(0)}, ..., {vn/(an : Tn)(0)},
{(I(by:01)+1)/(b1:01)(0)}, -, {T (b : o) + 1)/ (b = 01m)(0)})

In the object oriented setting a query is defined as a subclass of the class it queries. An
example of a query is

Qclass Ten isa cell
Where

no = 10
Endqclass



The formal definition in BNF of a query is:
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The obvious typing rules [7] should be applied in order to obtain well-typed selection expres-
sions. The same constraints that apply to classes of course also apply to query classes. Since
we do not consider inheritance, a query defines a simple subset of a class. The extension of a
query class is formed by all objects of its superclass that satisfy the selection condition.

Rules are pairs of queries and actions. The query selects the objects on which the method call
specified in the action part is executed. An example is the following rule, that selects cells
with a value of no smaller than ten and multiplies it by two.

Rule Ten_by_Two = (Ten , multiply no(factor=2))
The BNF definition of a rule is:

(Rule) — Raule (Ruleld)’ = (' (Queryld), (MethodCall)') ' (31)

2.2 Model Mk 1

This is the simplest model. We restrict the selection condition of a query to considering local
attributes only. The methods are restricted to replacement of attributes by constant values
only. This means that of the definition of classes and queries above, productions 17 and 30
are omitted.

An example of a class definition in this model is:

Class cell

Attributes
no: Integer
neighbour : cell

Methods
new_value(number:Integer) =

self except no:=number
EndClass



A query selecting all objects with a value smaller than 10 is in this model:

Qclass Ten isa cell
Where

no = 10
Endqclass

This query is used in the following example of a rule in this model:

Rule Make_Ten Five = (Ten, new_value(number=5))

2.3 Model Mk II

In this model we relax the restriction on the selection condition. It is allowed to look at
attributes of other objects in the condition. The methods are still restricted to replacement
by constant values. Thus the production 17 is omitted from the definition of the model.

Class definitions are not different from the Mk I model. Given the class definition of the
previous section, a possible query is:

Qclass Neighbour_Ten isa cell
Where

nooneighbour = 10
Endqclass

An example of a rule using this query is:

Rule Neighbour_Make_Ten_Five = (Neighbour_Ten, new_value(number=5))

2.4 Model Mk III

This model maintains the restriction on the selection condition to local attributes, but the
actions allowed in the methods are modified. Limited arithmetic is allowed in the methods,
viz. taking the successor of an attribute. Production 30 and 18 are omitted from the definition
of the model.

In this model the class definitions are extended with some extra functionality in the methods,
viz. arithmetic. An example of a class in this model is:

Class cell
Attributes

no: Integer

neighbour : cell
Methods

add_two =

self except no:=Succ(Succ(no))

EndClass

Queries in this model are still restricted to local attributes only, so the query Ten can also
serve as an example for this model.



Qclass Ten isa cell
Where

no = 10
Endqclass

An example rule in this model is the following rule that adds two to the attribute no in all
objects where this attribute’s value is ten:

Rule Add_two_to_ten = (Ten, add_two)

2.5 Model Mk IV

This is the least restricted model considered in this report, although it is still much too
restricted to be of any practical use. The selection condition is allowed to look at attributes
in other objects. Applying the successor function to an attribute is allowed in the method.
This is the full model defined above.

Since the class definition is the same as in the Mk IIT model, the same class definition serves
as an example:

Class cell
Attributes

no: Integer

neighbour : cell
Methods

add_two =

self except no:=Succ(Succ(no))

EndClass

The selection condition is defined in the same way as in the Mk II model. Therefore the same
query is an example of a Mk IV query.

Qclass Neighbour_Ten isa cell
Where

nooneighbour = 10
Endqclass

The rules in this model are the least restricted ones in this paper. An example is the following
rule that adds two to the value of the attribute no for those objects with a neighbour that
has a value less than ten for that attribute.

Rule Neighbour_add_two =( Neighbour_Ten, add_two)

2.6 Trigger Semantics

Triggers can be applied to a database in two different ways [5]. This results in two different
semantics for trigger execution. With set semantics the action is executed on all objects in
the selected set simultaneously. Instance semantics means that the action is executed one at
the time on the objects in the selected set. In the following definition the result of a trigger



T applied to a database db under set semantics is denoted by M (T, db). Under instance
semantics this is denoted by M;(T', db). The execution of a trigger, like a method execution,
changes the interpretation of the database. Therefore we can define the resulting interpretation
in terms of the variants induced by the trigger.

Definition 6 Let T = (Q,M(ly = b1,...,l, = by)) be a trigger in a hierarchy with M H
defined as M(ly : 71,...,l, : 7,) = self except{a; := l1;...;a, = l,}. db = (Ezt,I) is a
database for H. Pick : POid — Oid is a function that arbitrarily selects an object from a set
of objects. var denotes the set of variants induced by trigger T.

The execution of T under set semantics is defined by:

(Ext, I{vdr(o1).. vaT(om)}

M(T, (Ext, I)) = (Ex;f f;xt( )={o1,...,0m}
if Ext(Q) =0

The ezxecution of T under instance semantics is defined by:

) (Bgzt, I{var(Pick(Ezt(Q)))}) if Ext(Q) # 0
Mi(T, (Eat, 1)) = { (Bxt, I) if Bxt(Q) = 0

The above definition defines the result of a single trigger application. If a set of triggers is
present on the database, we have an execution cycle. This cycle executes as long as there are
triggers applicable to the database. During the cycle one of the set of applicable triggers is
randomly chosen for execution and executed. After that the next iteration starts.

Definition 7 Let TR be a set of triggers of the form T = (Qr, M) with an initial database
db. Then the behaviour of TR under semantics sem is defined by:

Execute(TR,db,sem) {
While 3T € TR : Extg,(Qr) # 0 do
T := choose({T|T € TR A Extg,(Qr) # 0)
db := Mem (T, db)
od
return db

The process Execute(TR,db,sem) induces a set of execution sequences. An execution sequence
gives a trace of the trigger execution. In the case of set semantics it is a sequence of triggers.
In the case of instance semantics we also need to include the information which object the
trigger was executed on. A sequence is defined as a function from the set of natural numbers
to the set of triggers. The function assigns a trigger to each position in the sequence. If the
function is total, i.e. it assigns a trigger to each position, then it is a sequence.

Definition 8 TR is a set of triggers for a hierarchy H. If Sq : NT — TR is a partial function
whose support is a contiguous set starting at 1, then Sq € Seq®, length(Sq) = |Support(Sq)|.

10



The ith element of a sequence Sq is denoted by Sg;. It is a trigger T; = (Q;(S;), M;).

Under instance semantics a sequence should also state to which object a trigger is applied at
each place in the sequence.

Definition 9 TR is a set of triggers for a hierarchy H. If Sq : N™ — TR x Oid is a partial
function whose support is a contiguous set starting at 1, then Sq € Seq®, length(Sq) =
|Support(Sq)|.

Here Sgq; is a pair of a trigger and an object (T; = (Qi(S;), M;), 0;).

A sequence Sq from either Seq® or Seq® is also written as a list of elements:
[Sq(1);...;Sq(n)]. Sequences may be concatenated in the usual way.

The execution of a trigger sequence is defined inductively in the following way:

Definition 10 TR is a set of triggers for a hierarchy H. The execution of a sequence Sq €
Seq®*USeq’, where Seq® and Seq® are the set of sequences over TR, on a database db is defined
as:

1. 4f Sq =1[Sq(1);...;Sq(n)
then Mgem(Sq,db) = Msem(

2. if  Sq=[Sq(1);5q(2);.. ]
then Mgem(Sq,db) = Msem([Sq(2);...], Msem (Sq(1), db))

]
[Sq(2);...;Sq(n)], Msem(Sq(1),db))

Not every sequence is a valid execution sequence. A sequence [Sq(1);...;Sq(n)] is an execution
sequence, if each trigger Sq(i + 1) is activated after the execution of [S¢(1);...;Sq(i)]. After
the last trigger of a sequence there are no more activated triggers, if the sequence is finite.

Definition 11 Let TR be a set of triggers for a hierarchy H, db € DBy a database, and
Seq® and Seq' the sets of sequences over TR. The set Seq®*(TR,db) of execution sequences
over TR is db under set semantics is defined as follows:

if Sq € Seq® A
length(Sq) =n A
Extgp(Q1) # 0 A
Vi € {2,...,n} 1 Extar,(sq(1);..55q—1))( Qi) 7# O A
VI €¢TR: E-TtMs(Sq,db)(Q) =0
then Sq € Seq*(TR,db)

The set of execution sequences under instance semantics Seq'(TR, db) is defined analogously
as follows:
if  Sq € Seq¢' A
lenght(Sq) =n A
0; € E:Etdb(Ql) A
Vi€ {2,...,n}: 0; € Extpg(sq(1);...;8q(-1))(Qi) A
VT € TR.: Eth,—(Sq,db)(Q) =0
then Sq € Seq' (TR, db)

11



3 Predicates

In the previous section we have defined the data and rule model and the semantics of trigger
execution. Since we study the behaviour of trigger sets, we first need to define the predicates
of trigger sets we are interested in.

3.1 Termination

Termination means that all executions of a trigger set on all possible database states termi-
nate. In terms of execution sequences this means that all execution sequences on all databases
must be finite.

Definition 12 (Termination) Let TR be a set of triggers for a hierarchy H. Let sem denote
either set or instance semantics.

Terminate(TR, sem) =
Vdb € DBy ,VSq € Seq**™ (TR, db),3In € Nt : length(Sq) = n

3.2 Confluence

Confluence means that all possible executions of a trigger set yield the same final database
state. Because a non-terminating execution does not yield a final database state, a prelimi-
nary requirement for confluence is that the trigger set is terminating. In terms of sequences
confluence means that the results of all possible execution sequences of a trigger set must be
equal to each other.

Definition 13 (Confluence) Let TR be a set of triggers for a hierarchy H. Let sem denote
either set or instance semantics.

Confluent(TR, sem) =

Vdb € DBy, VSq € Seq**™ (TR, db) : Myen(Sqr,db) = Myer(Sgs, db)
A

Terminate(TR, sem)

3.3 Termination in n steps

In most rule and data models termination is an undecidable property. Therefore we are
sometimes interested in a stronger predicate, termination in a certain number of steps. This
predicate is stronger than termination, because a trigger set not terminating in n steps might
terminate in n + 33 steps.

It is important to define a step first. Under set semantics, we simply take one execution of one
trigger as one step. We cannot do this under instance semantics, since a trigger application
only executes on one object at the time. Because we do not wish to make our choice of
n dependent of the size of the database, we count the number of trigger applications to
one object. Thus n denotes the maximum number of times a trigger may execute under set
semantics and the maximum number of times a trigger may execute on one object under
instance semantics.

12



Definition 14 If TR is a set of triggers for a hierarchy H and n a natural number, then

Terminate(n, TR, set) =

Vdb € DBy,VSq € Seq® (TR, db),YT € TR : [{i|Sq(i) =T} <n
Terminate(n, TR, instance) =

Vdb € DBy ,VYo € Extg,¥Sq € Seq®*(TR,db),VT € TR :

{zlSq(i) = (T, 0)}| < m

The execution sequences are finite, because all trigger sets and all databases are finite. Thus
the definition implies termination of the trigger sets.

Proposition 1 If TR is a set of triggers for a hierarchy H and sem denotes either set or
instance semantics, then

Terminate(n, TR, sem) — Terminate(T R.sem)
Proof Obvious. a

3.4 Independence

Like we defined termination in n steps as a stronger alternative for termination, we can
define a stronger alternative for confluence. This stronger predicate is independence. Instead
of looking at a complete trigger set we examine a pair of triggers at the time. A pair is said to
be independent, if the two triggers commute. This means that the result of their execution is
the same for both possible orders of execution. A set of triggers is independent, if all possible
pairs of triggers commute.

Definition 15 If TR is a set of triggers for a hierarchy H, then:

Independent(TR, set) =

VT;, Tj € TR,¥db € DBy :
M (T, My (T}, db)) = M(Tj, My(T5, db))

Independent(T R, instance) =
VTZ,T] € TR,VYdb € DBy,Voy,0, € Exty, :
M;(Ti(ox), Mi(Tj(01), db)) = M;(Tj(or), Mi(Ti(ox), db))

A very useful property of an independent trigger set is that execution sequences can be rear-
ranged. This comes in handy in a number of proofs. An example is the proof that independence
implies confluence for terminating trigger sets [2].

Proposition 2 If TR is a set of triggers and sem denotes either instance or set semantics,
then:

Terminate(n, TR,sem) A Independent(TR,sem) — Confluent(TR, sem)

13



Proof Let us first remark that Terminate(n, TR, sem) implies Terminate(T R, sem). Thus
we have to prove that:

Vdb € DBy,VSq1, Sqs € Seq*™ (TR, db)
Miem(Sq1, db) = Miyem(Sqo, db)

Since both Sq; and Sqy are execution sequences, no trigger is activated after their execution.
Thus for all database state Mgem(Sq1;5¢2,db) = Mgem(Sq1,db) and likewise
Mem(Sqa; Sq1,db) = Mgem(Sqa,db). Since all triggers are pairwise independent, Sqs; Sqq
can be rearranged into Sq1; Sqa. Thus Men (Sqa; Sq1,db) = Msem(Sq1; Sqo, db) and therefore
Msem(Sq1,db) = Mger(Sqa, db). a

3.5 Decidability

The last definition needed in this report is that of decidability. For this we use the standard
notion of the existence of a decision procedure.

Definition 16 A predicate is decidable, iff there exists an algorithm that on all possible input:
1. terminates

2. on termination gives the correct answer with regard to the truth of the predicate relative
to the input.

4 Decidability Results for the Model Mk I

In this section we look into the decidability issues of the most restricted model as described
in Section 2.2. As can be expected in such a simple model, both termination and confluence
are decidable properties of trigger sets in this language.

We will first look at termination of a single trigger. In this simple language it is not much of
a problem, because the effect of the trigger on an object it executes on is idempotent.

Theorem 1 In the model Mk I, given a singleton trigger set TR = {T}, T = (Qr, Mr) and
semantics sem, Terminate(T R, sem) and Confluent(TR, sem) are decidable predicates.

Proof To prove the decidability of termination and confluence, we show that we can con-
struct a finite database state to represent all possible database states. This database state
is called the typical database state. The typical database state is constructed relative to a
trigger definition. From the attributes of the class hierarchy and the constants in the queries
and the methods we construct a finite set of partition conditions. Every object in all of the
possible database states satisfies one of these conditions. In addition method execution gives
a uniform transition between these conditions. Based on this knowledge we construct a graph
that enables us to decide termination and confluence.

We start by defining a set EC of elementary conditions on the attributes. Let A be the set of
all attributes in the class on which 7 is defined. Cr is the set of all constants appearing in Qr
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and Mr. The set of elementary conditions EC with regard to 7" is defined by the following
grammar:

(Econd) — (Attr) (EqualOrNot) (BasicExpr)
(EqualOrNot) — =|#
(BasicExpr) — (Attr) | (Const)

where the non-terminal (Attr) yields all elements of A and (Const) yields all elements of Cr.

Obviously EC does not take the types of attributes and constants into account. Therefore we
restrict EC to the set of well-typed elementary conditions W EC as follows:

Ve:7,y:7,0 € {=,#}: 20y € EC — 26y € WEC

The elementary conditions only express equalities of one or two attributes at a time. To be
able to express arbitrary conditions on object we obtain all composite conditions in the set

Cond.
If ce WEC then ¢ € Cond

If ¢1,c9 € Cond then ¢y A ¢y € Cond
This definition yields a set that also contains inconsistent conditions. However we are able to

decide what conditions are consistent.

Claim 1.1 Determining the consistency of a condition ¢ € Cond is decidable. If ¢ is consis-
tent we can construct a database state that contains an object satisfying ¢.

Knowing that the consistency of a condition is decidable we can restrict our conditions to the
set C'Cond of consistent conditions.

CCond = {c € Cond|c is consistent }

Multiple conditions are satisfied by an object, because most conditions do not take all at-
tributes of an object into account. To characterise an object we want those conditions that
specify equalities of all attributes. To that end we define a relation on CCond:

Vo, € CCond,p =1 N... ANdp, b =U1 AN... Ny :
Vie (1. kK}3je{l...1}: ¢ =

v>¢

This relation is a partial order. In this order the maxima are those conditions that incorporate
all attribute-attribute and attribute-constant relations. Therefore we use these conditions as
partitioning conditions.

PCond = {c € CCond|c is maximal}

The partition conditions characterise all possible objects in all possible databases relative to
this trigger. Uniform transitions exist between partition conditions to represent the effect of
method execution. These two properties are expressed in the following claim:
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Claim 1.2 Partition conditions satisfy the following properties:
1. Vdb € DB,Yo € db: 'pc € PCond : pc(o.db)

2. Vdby,dby € DB, Yo, € dby, Yo, € dby
pc(o1,dby) A pe(og, dby)
R

dpc’ € PCond : pc (01, Execute(T,dby, set)) A pc(og, Execute(T, dbs, set))
under set semantics and

Vdby,dby € DB,Yo, € dby,Voy € dby
pc(o1,dby) A pe(og, dby)

N
Ipd € PCond :
pc (01, Execute(T(01), dby,instance))A
pcog, Execute(T(0q), dby, instance))

under instance semantics.

Claim 1.1 said that we can for each consistent condition construct a database state satisfying
that condition. Because we may assume without loss of generality that object identifiers are
unique over all dby, we can construct a database state db = Uycpcona @bg that is typical
i.e. Ve € PCond,30 € db: c(o,db).

We have shown that partition conditions represent all possible object states and that the
effects of method application is uniformly represented by a transition from one partition
condition to another. We now proceed by constructing a graph that represents these tran-
sitions for all partitions. The graphs SG and IG are defined for set and instance semantics
respectively as follows:

Nodes(SG) = Nodes(IG) = PCond

Vei1,c9 € PCond :
Jdo € Qr(db) A c1(o,db) A ca(0, Execute(T, db, set))
N

(c1,c2) € Edges(SG)

Jdo € Qr(db) A ¢1(0,db) A ca(o, Execute(T (o), db, instance))
H

(c1,¢9) € Edges(IQ)

Using this graph we can reduce the problem of termination to the problem of cycle detection,
which is a decidable problem. Confluence reduces to finding a unique sink from each node in
the graph, which is also a decidable problem.

Left to be proven are the claims we made with regard to the decidability of consistency of a
condition and the properties of partition conditions.
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Proof of Claim 1.1 We give an algorithm that checks a condition ¢ = A, ¢; for con-
sistency. Without loss of generality we may assume that the ¢; are ordered according to the
following criteria:

1.

2.

3.

4.

Equalities before inequalities.
Attribute-constant equalities before attribute-attribute equalities.
The attribute-constant equalities are sorted by attribute.

The attribute equalities are put in the form a; = a; such that i < j and then sorted
lexicographically by the pairs (a;, a;).

The algorithm proceeds by constructing an object o with attributes a1, ..., a,, that satisfies
the condition ¢. For the construction we need a set of dummy variables Dummy with the
following properties:

Dummy = {D1,...,Dy,}
such that (1)i# j — D; # D,
(2)a;:T7—Dj:T

The algorithm is as follows:

Algorithm consistency-check
Begin
Check Va,; € A:

Case dci,c0 € Cr 2 a; = c1 A a; = co:
Exit(Unsuccessfully)

Case dlc; € Cr : a; = ¢1:
0.a1 ‘= C1

Otherwise:
o.a; :=D;

Endcheck

Check V¢, of the form a; = a;:

Case q; = aj No.a; =crNo.a; =ca A cy # ¢y:

Exit(Unsuccessfully)
Case a; = aj No.a; =ciNo.a; =cy N\cp = ca:
Next

Case a; = a; No.a; = ¢ No.a; = D;:
a; :=ci

Case a; = a; No.a; = D; No.aj = c1:
a; == ¢
ReplaceAll(D;, ¢1)

Case a; = a; No.a; = D; A o.a; = Dj:
a; = Di

Endcheck

Check V¢, of the form a; # v
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Case a; # a; N o.a; = o.a;:
Exit(Unsuccessfully)
Case a; # cNo.a; =c:
Exit(Unsuccessfully)
Otherwise:
Next
Endcheck

Exit(Successfully)

End.

Successful termination of this algorithm means that it was able to construct an object satis-
fying the given condition ¢, implying that it is consistent. If the algorithm terminates unsuc-
cessfully, then the condition is inconsistent. If the condition is consistent, we can construct a
database state from the object and the set of dummy values.

Proof of Claim 1.2 The first part of this claim was
VYdb € DB,Vo € db: Alpc € PCond : pc(o.db)

The existence of a pc € PCond is obvious from the fact that all possible equalities between
attributes and constants are included in W EC from which the partition conditions are con-
structed. The existence of a unique pc € PCond follows from the maximality of the partition
conditions.

The second part of the claim was that

Vdby, dby € DB, Yo, € dby, Yo, € dbs
pc(o1,dby) A pc(og, dby)

=
dpcd’ € PCond : pcd (01, Execute(T, dby, set)) A pc(oz, Execute(T, dbs, set))

under set semantics and

Vdby,dby € DB,Yo; € dby,Yos € dby
pc(o1,dby) A pc(og, dbs)

—

Ipc’ € PCond :
pc' (01, Execute(T(01), dby, instance))
Apc(oa, Execute(T(02), dby, instance))

under instance semantics.

This lemma follows from the maximality of the partition conditions and the fact that the
changes made by My are identical to both objects. O

The method used for deciding termination of a singleton trigger set can be extended to a
trigger set with more than one trigger. The method used is the same except that we must
construct a graph using more than one trigger.

Theorem 2 Given a trigger set 7 and semantics sem, the predicates Terminate(T,sem)
and Con fluence(T,sem) are decidable in the model Mk I.
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Proof Since the conditions and actions of the triggers are local to an object, we can treat this
problem for each class separately. For each class C we construct a set of partition conditions
PCondc using exactly the same method as used in the proof of Theorem 1. We then merge
these sets into one set of partition conditions PCond = |J; PCondc. Clearly, since each
PCondc induces a typical database state tdbc, their union PCond also induces a typical
database state tdb = o tdbc.

We then proceed with the construction of a graph. The presence of more than one trigger
has some effect on the drawing of the graph. The graphs SG for set semantics and IG for
instance semantics are defined as:

Nodes(SG) = Nodes(IG) = PCond

Ve, c9 € PCond :
3T € 7,30 € Qr(db) A c1(o,db) A ca(0, Execute(T, db))
N

(c1,c2) € Edges(SQG)

Vei,c9 € PCond :
3T € 7,30 € Qr(db) A c1(o,db) A ca(0, Execute(T(0), db))
—

(c1,¢9) € Edges(IG)

Again deciding termination reduces to cycle detection and deciding confluence to finding a
unique sink for each node. O

5 Decidability Results for the Model Mk II

In this section we look into decidability of the predicates in the model Mk II. The only
difference between the model in this section and the Mk I model is that we now allow attributes
of other object in the selection condition of a query. This is enough to make termination an
undecidable property. Some stronger properties are decidable however, such as termination
in n steps and independence.

First we look at termination of a singleton trigger set. This is a decidable predicate in this
model.

Theorem 3 In the Mk II model, given a singleton irigger set T and semantics sem the
predicate Terminate(T,sem) is decidable.

Proof We show that we can construct a typical database state in this model. A complication
is that the number of possible conditions is infinite.

Since path expressions are allowed in the condition of a rule, the set of elementary conditions
EC is generated by the following grammar:

(Econd) — (AttrExpr) (EqualOrNot) (BasicExpr)
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(EqualOrNot) — =]|#
(BasicExpr) — (AttrExpr) | (Const)
(AttrExpr) — (Attr) | (Attr) . (AttrExpr)

where the non-terminal (Attr) yields all attributes in the hierarchy and (Const) yields all

constants used in the trigger set. We use the obvious typing rules to restrict £C to the set of
well-typed elementary conditions W EC. We collect all possible conditions with conjunction
and disjunction into the set Cond.

Because of the complexity of conditions with path expressions, we introduce the length of
a condition. Intuitively this is a measure of the distance of the attributes of interest to the
condition from the local object. The length of a condition is recursively defined as:

1. length(e) = 1, where e is an attribute identifier or a constant.
2. length(a.e) = length(e) + 1, where a is an attribute and e a path expression.

3. length(\; V;(ewf)ij) = maz({maxz(length(e), length(f))}i;), where e is a path expres-
sion and f a path expression or a constant.

The set of conditions restricted to a maximum length n is denoted by Cond,.

Consistency can be checked by a slight modification of the algorithm in the proof of Theorem 1.
The difference in the conditions is in the possibility of referring to other objects. This means
that in order to show that a database satisfying the condition exists, we need to construct
more than one object. In fact we construct all objects referred to in the condition. Using this
consistency check and a partial order defined as previously, we arrive at the set of partition
condition of length n:

PCond,, = {c € Condy,|c is consistent A ¢ is maximal wrt >}

As before this set induces a typical database state tdb,, that can be constructed using the
consistency checking algorithm.

Now we can again construct a graph to encode the execution of a trigger. A complication
is that an object can move from one partition condition to another, because of a change
in another object. Therefore we label the transition to indicate whether it is a direct or an
indirect transition. A direct transition, labelled da, is caused by the direct application of a
trigger on the object. An indirect transition, labelled in, is caused by the execution of a trigger
on another object.

We construct a graph for instance semantics /G, 7 and set semantics SG,, 7 separately.
1. Yn € N : Nodes(SGy 1) = Nodes(IGy 1) = PCond,

2. Vn e N,Ver,c3 € PCond, :
Jdo € Qr(tdby) : c1(0,tdby) A ca(0, Execute(T, tdby, set))
— (c1,¢2,da) € Edges(SGn 1)
Jdo € Qr(tdby,) : c1(o,tdby,) A ca(0, Execute(T(0),tdb,,,instance))
— (c1,¢2,da) € Edges(IGy, 1)
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3. VneWN,VYe,co € PCond, :
Jdo & Qr(tdby,) : c1(o,tdby,) A ca(0, Execute(T, tdby,, set))
— (c1,¢2,1n) € Edges(SGy,1)
doq € QT(tdbn) 1 (0, tdbn) A (302 € tdb,, : 09 € QT(tdbn)/\
01 # 03 A ca(01, Execute(T(02),tdb,, instance))
— (c1,c9,in) € Edges(IGr, 1)

This graph encodes the life cycle of an object under the execution of the singleton trigger set
T = {T}, if we take n = length(Cr). This graph has the useful property, that:

Claim 3.1 In the graphs SG, 1 and IG, 1 there are no cycles of a length greater than 1.

Thus, deciding termination amounts to the detection of da-cycles of length 1. This is a de-
cidable problem. Confluence of a trigger set can be decided by checking whether each object
has a unique sink.

Proof of Claim 3.1 The first thing to be noted, is that we have taken the value of n,
such that any change that is seen by an object through the trigger condition is included
in the partition condition. The use of disjunction in the partition conditions in addition
means that other objects’ states that are indifferent to the local object are included in the
partition condition. We should also keep in mind that application of the trigger to an object
is idempotent.

There are three possible configurations for cycles of length greater than 1:
1. Cycle consisting of da-edges only
2. Cycle consisting of in-edges only
3. Cycle consisting of at least one da-edge with the other edges in-edges.

Because of the idempotence of trigger application cycles consisting only of da-edges must be
of length 1. A cycle consisting of more than one da-edge would mean that the local state of
the object changes after the first application of the trigger to that object. That would be in
contradiction to the idempotence of trigger application in this model.

The value of n is chosen in such a way that all variables of importance to the object are
incorporated in the partition conditions. Since there is no change in the local state during
an in-transition, there must be another object that changes. However, the local state of any
object changes at most once during any execution of a trigger. Therefore it is not possible
that an object’s state returns to its initial state after the first trigger application to it. This
also means that it is not possible that all objects that refer to a partition condition return
to their initial states. This is exactly what would happen if an in-cycle were present in the
graph. Therefore a cycle of more than one in-edge cannot exist.

For the next case, we first show that we need only consider mixed da-in-cycles with one da-
edge. Suppose a mixed cycle contains more than one da-edge, one from ¢; to ¢y and the second
from ¢; to ¢;41. The local state of the object does not change with the second application of
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the trigger. Therefore there must be a da-edge from c¢; to ¢;+1. This means that there always
is a shorter cycle, if there are more than one da-edges.

Now we consider a cycle consisting of one da-edge from ¢; to ¢ and for the rest of in-edges.
The argument for the non-existence of such a cycle is the same as for the non-existence of a
cycle of only in-edges. It is even more obvious, because the existence of such a mixed cycle
requires that the object itself reverts to its initial state.

Thus, every cycle in the graph must be of length 1. As a result of this we can construct a
database for each path through the graph. It is obvious that a database can be constructed
for a single transition in the graph. The method used is the consistency checking algorithm
mentioned earlier. This can be extended in a straightforward way for an acyclic graph. It is
also obvious that we can construct a database that follows a cycle of length 1. O

Although termination is decidable for a singleton trigger set, this is not the case for a set of
more than one trigger. The reason is that the language in this model is powerful enough to
simulate a Turing Machine. In a Turing Machine all replacements of values on the tape is by
constant symbols. Only in moving between cells we need communication between cells, which
can be done by reading a status attribute at the neighbouring cell. We will first show how a
Turing Machine is emulated using triggers.

We will give the implementation of a Turing Machine in this trigger language. The tape is
represented by the database state, while the transition function is represented by the trigger
set. The following class definition implements a cell on the tape.

Class Cell
Attributes
left-neighbour : Cell
right-neighbour : Cell
value : Symbol
state : State
next : { left, right, neutral }
current : { yes, no }
from : Cell
Methods
execute(z1:Symbol, zq:{left,right}, z3:State) = self except
value:=x1, next:=x, state:=x3
become-current-left() = self except
from := right-neighbour, current:=yes
become-current-right() = self except
from := left-neighbour, current:=yes
not-current-anymore() = self except

current:=no, next:=neutral
Endclass

In this definition the types Symbol, State and all finite sets can be considered subsets of
Integer, with the constants denoting a certain number. No extra functionality is added by
using these types.
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The transition table is recorded in the triggers that each record one entry of the transition
table. These triggers are activated when a cell becomes the current cell. To make sure the
right cell is designated as the current cell we need a number of bookkeeping triggers, two each
for moving the head to the left and the right.

The execution of a transition is triggered on a cell is triggered when the cell is current and
the previous cell is finished. The query is:

Qclass do-i-execute(s,v) Isa Cell
Where
current=yes A
from.next=neutral A
from.state=s A
value=v
Endqclass

The execution rule for the transition determined by the state s and value v thus becomes:
Rule Execute(s,v)=(do-i-execute(s,v),execute(x; = ¢1, 29 = 3,23 = ¢3))

where ¢; denotes the new symbol for the cell, ¢ the direction the head moves to and c3 the
new state of the Turing Machine.

After the transition is executed, the head must be moved to the next cell. If the head moves
to the left, the cell that is next, must change its status to current. It knows it may do this if
its right neighbour has recorded that the head moves left. The query thus becomes:

Qclass am-i-next-left Isa Cell
Where
right-neighbour.next=left A
right-neighbour.current=yes
Endqclass

The action to be taken is given in the method become-current-left. The rule thus becomes:
Rule to-be-current-left=(am-i-next-left,become-current-left())

When the cell the head moves to has registered that it is the current cell, the previous cell
must set its current attribute to no and erase the movement data in next.

Qclass am-i-done-left Isa Cell
Where

next=left A

current=yes A

left-neighbour.current=yes
Endqclass

The action of this rule is given by the method not-current-anymore. The rule definition
therefore is:

Rule was-current-left=(am-i-done-left, not-current-anymore())
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The latter two rules are also defined for a head movement to the right. Their definition is
analogous to the rules for the left movement with the appropriate substitutions of left and
right.

To give a better insight in how these triggers implement a Turing machine, we will show how
these triggers achieve the movement of the head to the left. The two objects of interest are
shown with their contents. We start right after the application of an Execute rule on the right
cell. The objects’ attribute are then as follows:

Oid=Newcell Oid=0ldcell
current=no current=yes
next=neutral next=left

from="7? from="7?

state="? state=s

value=v1 value=vy
right-neighbour==0Idcell | right-neighbour="?
left-neighbour="? left-neighbour=Newcell

Object Newcell satisfies the query am-i-next-left, so the rule to-be-current-left is executed on
this object resulting in the following attribute valuations:

Oid=Newcell Oid=0ldcell
current=yes current=yes
next=neutral next=left

from=Oldcell from=7?

state="7 state=s

value=v; value=wvy
right-neighbour=_0Idcell | right-neighbour="?
left-neighbour="? left-neighbour=Newcell

Now that the current status has been set for Newcell, Oldcell must lose its current status.
This is done by the rule was-current-left, that is now executed on Oldcell. The result is:

Oid=Newcell Oid=0ldcell
current=yes current=no
next=neutral next=neutral
from=Oldcell from=7?

state="? state=s

value=v value=vy
right-neighbour=0Oldcell | right-neighbour="?
left-neighbour="? left-neighbour=Newcell

Now the condition for the rule Execute(s,v1) is satisfied and its action is executed. After that
the head is again moved by the bookkeeping triggers.

A final note on the emulation of a Turing Machine by a trigger set and a database is on
starting the Turing Machine. The Execute(s,v) rules are triggered by the neutral state of the
previous cell in the execution. However, there is no previous cell at the start. Therefore we
need an extra cell that is not part of the tape and has its next attribute set to neutral. The
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from attribute of the cell where the head is positioned at the start of the execution is set to
this extra cell.

It is obvious that the head movement is done correctly by the bookkeeping triggers given.
For each entry in the transition table of the Turing Machine we can define an execute rule.
A transition consists of a tape symbol and a state of the machine resulting in writing a new
value on the tape, moving the head left or right and a new state. These can be translated to
triggers by filling in these values for s, v, ¢1, ¢3 and c3.

In order to show that this emulation of a Turing Machine is the same under instance and set
semantics, we have to show that there is no trigger that is invoked on more than one object
at the same time. When we look at the conditions of the rules, we see that the attributes of
governing the trigger application are current and next. If we start with a correct input state
only one cell object will have current set to yes and all next attributes will be set to neutral.
It is obvious that as long as there is only one current object any rule is only executed on one
object. The only time two objects have their current attribute set to yes is in the movement
of the head. This however immediately triggers the was-current-{left,right} rule that sets the
current attribute of the previous cell to no. No other rule is triggered in this situation.

Lemma 1 For each Turing Machine T M there exists a pair (T,db) with T a trigger set and
db a database state, such that (T, db) implements T M under both instance and set semantics.

The fact that we can emulate a Turing Machine in this trigger model, gives a clear indication
of the decidability of termination of a trigger set. The halting problem for Turing Machines
is known to be undecidable. Therefore termination of a set of triggers is also an undecidable
problem.

Theorem 4 Let T be a trigger set in model Mk II and let sem denote either instance or set
semantics. Then Terminate(7T,sem) and Confluent(T,sem) are undecidable predicates.

Proof According to Lemma 1 everything that can be computed on a Turing machine, can
be computed by using triggers of this model. Suppose we could decide termination of a set
of triggers in the Mk IT model. Then we could solve the problem whether a Turing Machines
terminates on every input by translating the Turing Machine to a trigger set. However this
problem is undecidable for Turing Machines [3]. Therefore termination of a set of triggers in
this model must be undecidable.

As we have shown with the Turing Machine simulation, this trigger language codes the class
of unary partially computable functions. Clearly the set of confluent trigger sets is a non-
empty, proper subset of the set of all possible trigger sets. Rice’s theorem [4] thus implies that
confluence is undecidable. O

The possibility of simulating a Turing Machine points us to a stronger predicate that is
decidable for Turing Machines, viz. termination of a set of triggers in n steps. The restriction
to a limited number of steps imposes an upper bound on the time a decision procedure can
take. We can simply run the trigger set on a typical database state of sufficient length until we
reach the maximum number of steps. We then check whether trigger execution has terminated
or not.
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A similar strategy is applied to solve a stronger predicate than confluence, pairwise indepen-
dence of triggers. This means that the application of two triggers is commutative. In both
possible execution sequences for two triggers the resulting database state is the same. If all
triggers are pairwise independent and the trigger set is terminating, then the trigger set is
confluent. We can test this on the typical database state by running both possible executions
of each pair and then comparing the result. Thus we have the following theorem:

Theorem 5 For a trigger set T, semantics sem and an integer number n > 0 the predicates
Terminate(n,T,sem) and Independent(T,sem) are decidable in the model Mk II.

A consequence of this is that for independent trigger sets termination and confluence are
decidable.

Corollary 1 For an independent trigger set T and semantics sem, Terminate(T,sem) and
Confluent(T, sem) are decidable predicates.

Proof If all triggers in 7 are independent, we can rearrange an execution sequence of 7
at will. Let 7 = {T1,...,T,}. Then any execution sequence of 7 can be rearranged into
the form T4;...;t1;T%,;...;T;...; ;.- . ;Tn}. For each T; € T individually we can decide
termination. If each T; € 7 terminates individually, then it is obvious that 7 terminates.

Because we can rearrange an execution sequence of an independent trigger set 7 at will, it is
obvious 7 is confluent. O

6 Decidability Results for the Model Mk III

In this section we examine an extension of the actions relative to model Mk I. The ex5tension
is that we allow arithmetic in the action of the rules. We show that for very simple arithmetic
termination and confluence remain decidable predicates.

We start with the Mk III model that incorporates the simplest arithmetic function we can
think of, viz. the successor function. If we allow the successor function in the action, we can
decide termination of a singleton trigger set.

Theorem 6 Given a singleton trigger set T and semantics sem, Terminate(T,sem) is a

decidable predicate in the Mk III model.

Proof We show that T is a simple vector operation, that is within the decidable part of
arithmetic. If we have only a successor function, the action can be written as follows:

a:=d+7¢
Thus the result of m applications of the trigger is:

Gm = Go +mcC
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Suppose that the condition is a set of conditions of the form a; = a;, a; # a;, a; = k and
a; # k, where a; and a; are attributes and k is a constant. Then deciding termination amounts
to deciding the corresponding expressions:

Va3am : [d + mé; # [c'i—f—mé]j

vadm : [@ + md]; = [d@ + me);
Vaam : [@+md), # k
Vadm : [@+md); =k
These are clearly in the decidable part of arithmetic [6]. O

Because of the strict locality of condition and action and the commutation of the action,
confluence is guaranteed in this situation.

Before we look at the decidability of predicates on multiple trigger sets, we first explain
the method used in the following proofs to check the validity of an execution sequence. The
essence of the method is that we derive constraints on the initial values of the attributes from
the conditions of the applied triggers. If contradicting constraints are derived, the sequence
is not possible.

We check the existence of a starting point, i.e. an initial valuation of the attributes, for
a trigger sequence seq. If such a starting point exists, the trigger sequence seq is a valid
execution sequence. The initial valuation of the attributes a; to a,, is i1 to i,,. 11 is the
first trigger in seq. The condition of T} is a; = aj. Therefore we have the constraint i; = iy,
on the initial valuation of the attributes. We then execute the action of the trigger on the
valuation vector and check the condition of the next trigger 75 in the sequence. Suppose that
its condition is ay = aj and the values of these attributes are i + 2 and 45, + 4, respectively.
Thus we derive the constraint on the initial valuation i = ip + 2.

It is obvious that the derivation of a constraint that contradicts previous constraints during
the execution of seq, means that there is no initial valuation of the attributes for seq. Therefore
seq is not a valid execution sequence.

We now apply this method in order to prove decidability of termination for multiple trigger
sets in the Mk III model.

Theorem 7 Let T be a trigger set in the Mk III model. Let the semantics sem be either
Instance or Set. Then, Terminate(T,sem) is decidable.

Proof In order to decide the predicate we view the actions of the triggers as vector addi-
tions. The goal of the decision procedure is to find a combination of triggers, that makes the
conditions of the triggers true.

Since conditions and actions of the triggers are strictly local, we need only consider the
termination of a set of triggers defined on the same object o.
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To start with we note that if a trigger in 7 is individually non-terminating, 7 is non-
terminating. Termination is decidable for an individual trigger. Therefore in the following
decision procedure we may assume that each trigger is terminating individually.

For the procedure to decide termination of a trigger set, we only need to consider those
triggers that have conditions of the form a; = a;. It is obvious that triggers with conditions
of the form a; = k or a; # k either never terminate individually or terminate in a finite
number of steps. Thus, we need not consider them if we are looking for a finite pattern of
trigger applications that can be repeated infinitely. Likewise, a trigger with a condition of the
form a; # a; will never be individually terminating in this model. For the same reasons, only
conditions of the form a; = a; are of importance in conjunctions, since we can always find
valuations where the part of the form a; # a; will always be true.

The values of all attributes ai,...,a, of an object o can be represented by a vector @ =
(a1 ag---ay) The action of a trigger T' € 7 may apply the successor function zero or more
times to the attributes of the object 0. We define the action of T' as being the vector § =
(s1 82+ 5p,) where s; indicates the number of times T" applies the successor function to a;.

Applying the successor function n times to an attribute a; has the same result as adding n
to it. Therefore the action of a trigger 7" can be represented by:

i:=a+ 75
The extension of this to the effect of multiple trigger applications is obvious.

The effect of the application of a trigger T is always the same. Therefore non-termination
of a finite trigger set means that the execution sequence of the set has some finite repeating
pattern in it. The repetition of a certain pattern means that the truth of the condition of a
trigger T; is preserved by the complete execution of the repeating pattern. Because conditions
are of the form a; = a;, this means that the numbers added to a; and a; should be equal. This
leads to the following necessary condition for non-termination of a trigger set {T1,...,T}:

miS1+ ...+ mpSp =¢C (32)

where m; is the number of applications of T; in the repeating pattern and §; is the action
of T;. ¢ is a vector that codes the conditions of the triggers. If a trigger T has the condition
a; = aj, this is reflected in ¢ by putting the same constant 7 at ¢; and c;.

The condition above is necessary for non-termination, but not sufficient. For example it might
be satisfied by taking 5 times 77 and T5 and T3 once each. Clearly this cannot be translated to
a valid execution sequence if each trigger terminates individually, because it requires successive
applications of 717.

We can use Condition 32 to generate trigger combinations that are candidates for non-
termination. We test a candidate to see if it is indeed a non-terminating trigger set. This
is done by considering all possible execution sequences of the candidate.

Definition 11 defines a valid execution sequence. It is obvious that we can test whether a
sequence is a valid execution sequence in this model.
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Let C be a bag of triggers containing m; times 71, ... and my, times Ty with {T%,...,Tx} C7T
such that Condition 32 is satisfied by T1,..., T} with the associated mq,...,mg. In order to
decide whether C gives rise to a non-terminating execution sequence, we test each possible
sequence of the elements of C for being a valid execution sequence.

Those sequences of C that are valid execution sequences can be tested for non-termination by
checking whether they can be repeated. Suppose a sequence seq is a valid execution sequence
that starts with 7;;T}; ... ; T;. In order to check for non-termination we need to check whether
seq can be executed for a second time. In other words, we check whether seq; seq is a valid
execution sequence.

If seq; seq is also a valid execution sequence of 7, each trigger-place combination in seq can
be repeated. Since the effect of all trigger applications in seq is the same each time seq is
executed, this means that seq can be repeated infinitely.

In worst case we need to check all possible subsets of 7 for Condition 32. The number of
subsets of 7 is finite. Checking Condition 32 amounts to solving a system of linear equa-
tions, which is decidable. The number of possible sequences of the elements of C is at most
(Zle m;)!. Since all subproblems to be solved in sequence are decidable, the problem of
termination of 7 is decidable. O

7 Decidability in Extended Models

In the previous two sections we have examined two extensions of the original Mk I model.
Introducing limited arithmetic preserves decidability of termination and confluence. The abil-
ity to inspect other objects’ attributes in the condition already makes it impossible to decide
termination and confluence. The stronger predicates termination in n steps and independence
are decidable in the Mk II model however. Combining both extensions of the original model
gives us the Mk IV model.

The decidability of various predicates is at best the same as in the separate extensions,
the Mk IT and Mk IIT models. Therefore it is obvious that termination and confluence of a
trigger set are undecidable. The same proof as used in the Mk II model is applicable to the
Mk IV model, since its trigger language is a subset of the language of the Mk IV model.

The decidability of the predicates independence and termination in n steps in the Mk IV model
is less obvious. The key to the decidability of these predicates is the construction of a typical
database state. For this we need to be able to determine in advance what attribute valuations
are possible as a result of the execution of a set of triggers. The problem in determining this
in the Mk IV model is in the interaction between applications of the successor functions and
the assignment of an attribute value to another assignment.

Other extensions to consider are extensions of the arithmetic allowed in the Mk III model.
The expressions we must decide in the Mk III model are in the decidable part of arithmetic.
As soon as we have a combination of addition and multiplication in these expressions, they
are no longer decidable [6]. It is an open question whether we can avoid this combination in
deciding termination and confluence of a trigger set.
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Another open issue is the construction of a typical database state for models that combine
arithmetic and constant assignment. A necessary condition to this construction is that the
attributes vary over a finite set. This condition cannot be satisfied if we wish to decide
termination. Termination in n steps limits the number of times each trigger may execute,
however. Thus, it should be possible to determine what finite set the attributes can vary over.

8 Conclusions

In this report we have explored some borders of the decidability of database triggers. In the
simplest model for condition-action rules termination and confluence are decidable. Next we
considered two separate extensions of the model. The first of these extensions concerned the
reference to attributes of other objects in the condition. The second considered extension
of the action language with arithmetic. We saw that only very limited arithmetic in the
form of the successor function is allowed in order to preserve decidability of termination and
confluence. The combination of these two extensions does not change the decidability results.
A possible further extension is the addition of an event specification to the condition-action
rules to form event-condition-action rules as used in many practical systems. Because the
event stream is separate from the rest of the data model, this will most probably not affect
the decidability results in this report.

The results of this report make clear that properties of sets of database triggers are decidable
only for a very simple rule language. Most practically useful active facilities in database
systems will have to incorporate a more complex rule language. Therefore we will have to find
other ways to obtain the desired properties of trigger sets.

One of the approaches to guarantee termination and confluence are sufficient conditions. It
is possible to formulate conditions on trigger sets such that sets satisfying these conditions
are guaranteed to be terminating and confluent. Not all terminating trigger sets will satisfy a
sufficient condition for termination. A number of terminating trigger sets will thus be rejected
for use. We can also take a purely empirical path and monitor the system in use. If the number
of successive trigger applications exceeds a preset limit, we cancel the trigger execution. This
prevents a system getting stuck in a trigger execution, but does nothing to prevent the re-
occurrence of the endless trigger application. Another problem of monitoring is that we cannot
monitor for a property like confluence. We would have to repeat a trigger execution twice in
exactly the same database state in order to determine whether a set of triggers is confluent.

If we want to overcome the drawbacks of both mentioned approaches, we need a more sophis-
ticated method. We propose to build a learning capability into the active objects such that
it is able to learn to avoid the situation where it gets into, for example, a non-terminating
trigger application. In order to avoid such situations an active object will be able to change
its triggers. An open question is the complexity of the learning method involved. Pragmatic
strategies might work very well in most cases. The development of more complicated tech-
niques will draw from game theory. However, at present there have been little results, viz. on
non-cooperating players with conflicting interests, that can be applied in this setting.
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