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Abstract
This paper presents a study of the morphological slope transform in the complete lattice
framework. It discusses in detail the interrelationships between the slope transform at one
hand and the (Young-Fenchel) conjugate and Legendre transform, two well-known concepts
from convex analysis, at the other. The operators and transforms of importance here (hull
operations, slope transform, support function, polar, gauge, etc.) are complete lattice operators
with interesting properties also known from theoretical morphology. For example, the slope
transform and its ‘inverse’ form an adjunction. It is shown that the slope transform for sets
(binary signals) coincides with the notion of support function, known from the theory of convex
sets. Two applications are considered: the first application concerns an alternative approach to
the distance transform. The second application deals with evolution equations for multiscale

morphology using the theory of Hamilton-Jacobi equations.
AMS Subject Classification (1991): 52Axx, 68U10, 70H20

Keywords & Phrases: morphological signal analysis, complete lattices, adjunctions, convex
sets, morphological systems, supremal and infimal convolution, upper and lower slope trans-
form, slope-limited functions, Lipschitz continuous functions, Lipschitz regularization, upper
semi-continuous (u.s.c.) functions, lower semi-continuous (l.s.c.) functions, hypograph (or
umbra), epigraph, convex functions, concave functions, Legendre transform, conjugation, sub-
linear functions, gauge function, support function, polar set, distance transform, morphological

evolution equation, multiscale morphology, Hamilton-Jacobi equation, viscosity solution.

1. Introduction

Morphological signal analysis is becoming an important area of nonlinear functional analysis
that has found many applications in image processing and nonlinear filtering. The morphological
signal operators are parallel or serial interconnections of morphological dilations and erosions,
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respectively defined as

(fogE) =\ fe-v+9), (1.1)
yER4

(fog) = N\ fl@+y) —g), (1.2)
yERE

where \/ denotes supremum and A denotes infimum. The theory of deterministic morphological
operators is quite rich and has been based on set and lattice theory [11, 19, 25, 26]. In spite of
their wide applicability, so far their analysis has been done only in the time (or spatial) domain
because of lack of transforms which enable us to also describe them in a transform domain.
However, recently some nonlinear signal transformations have been introduced in [7, 17, 18],
called ‘slope transforms’, which endow morphological systems with eigenfunctions and a related
transfer function in a slope domain. It turns out that the morphological slope transforms, re-
stricted on the class of concave or convex functions, are closely related to the conjugate functions
of convex analysis [8, 13, 14, 21, 22].

Therefore, there are many interesting ideas in the overlapping among the areas of morpho-
logical systems, slope transforms, and convex analysis. In this paper, we show that an efficient
methodology and mathematically elegant framework to study and further advance these inter-
relationships is lattice theory as applied to mathematical morphology. Thus, although the slope
transforms are intended for analysis of morphological systems, they can benefit from the already
developed theory of conjugate functions in convex analysis. Thus one of the contributions of this
paper is to use convex analysis to enrich the understanding of slope transforms. Further, both ar-
eas can benefit from using the framework of complete lattices for studying the signal classes and
operations involved. Thus another contribution of the paper is to study slope transforms in the
context of complete lattices. Further, a rich class of signals used in morphological image analysis
is that of binary signals, which are viewed as indicator functions of sets. A goal of this paper
is to study the slope transforms of binary signals, which turn out to be the support functions
of the corresponding sets, a concept very frequently used in convex analysis. Finally, in convex
analysis, the use of conjugate functions for both multilevel and binary signals is constrained to
the cases of convex or concave signals. In this paper we apply slope transforms to arbitrary
signals, even if the information in the original signal is not always completely recoverable from
its slope transform.

We begin in Section 2 with some basic notions from the theory of morphological signal
processing. First, we briefly describe the complete lattice framework of mathematical morphol-
ogy. Next, we remind the reader of the classical linear theory of signal processing and the
corresponding Fourier approach. We show that there exist several analogies between the linear
and the morphological approach. The emphasis is laid upon the slope transform which may be
considered as the morphological counterpart of the Fourier transform. In Section 3 we study the
morphological slope transform within the framework of complete lattices. Since the slope trans-
form is closely related to conjugation, we can use concepts from convex analysis here. Section 4
focuses on the slope transform of the indicator function of a set and its relationships to the
set’s support function, again viewed in the context of complete lattices. In Section 5 we discuss
some applications of the ideas in this paper. Our first example concerns the distance transform,
the second example discusses nonlinear partial differential equations that describe multiscale
morphological operations [6, 20, 28]. We show that the resulting PDE’s can be reformulated as
Hamilton-Jacobi equations which have been thoroughly studied in the literature. We end with
some conclusions in Section 6.



2. Morphological Signal Processing

2.1. Morphology on complete lattices with applications to convex sets

A set £ with a partial ordering < is called a complete lattice if every subset H C L has a
supremum (least upper bound) \/ H and infimum (greatest lower bound) A H; refer e.g. to [4].
The opposite of L, denoted by L', is the complete lattice with partial ordering X <' Y iff X > Y.
A comprehensive discussion of the theory of morphological operators on complete lattices can
be found in [11].
Let £, M be complete lattices. A pair of operators (e,6), wheree : L - Mand § : M — L,
which obeys
(Y)<X << Y <eX), XeL, YeM, (2.1)

is called an adjunction between £ and M. In that case, ¢ and ¢ distribute over infima and
suprema, respectively:

e(N\ Xi) = \ e(x2), (2:2)

i€l i€l
s(\ vy) =V 6y, (2.3)
JEJ jEJ

for arbitrary collections {X; | < € I} C £ and {Y} | j € J} C M. An operator ¢ which satisfies
(2.2) is called an erosion. An operator § which satisfies (2.3) is called a dilation. Erosions and
dilations are increasing mappings: a mapping ¥ : £ — M is called increasing if X; < X5 implies
that ’l/)(Xl) S ’l/)(XQ), for Xl,XQ e L.

With every erosion € : £ — M there corresponds a unique dilation 6 : M — £ such that
(€,6) constitutes an adjunction. Vice versa, with every dilation § : M — L there corresponds
a unique erosion ¢ : £ — M such that (e,6) constitutes an adjunction. We say that ¢ is the
adjoint dilation of €, and also that € is the adjoint erosion of 4.

If (,6) is an adjunction between £ and M, then

ebe = ¢ and 6eb = 6.

Also
€6 > idyy and de <idg;

here id.,id ¢ represent the identity mappings on £ and M, respectively.

An operator v : L — L is called an opening if it is increasing, idempotent (i.e., 1? = 1), and
anti-extensive (i.e., ¥ < id). It is called a closing if it is increasing, idempotent, and extensive
(i.e., ¥ > id). If (¢, 6) is an adjunction between £ and M, then e is an opening on £ and €6 is
a closing on M. Openings will be denoted by a and closings by 3.

The following result will be used later on in this paper.

2.1. Proposition. Let (¢,6) be an adjunction between L and M.
(a) If X; € Ran(6) fori € I, then
e(\/ Xi) = eb(\/ e(X2)).
iel i€l
(b) IfY; € Ran(e) for j € J, then
s(\ Y;) = 82( )\ 6(Y5)).

Jj€J j€J
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PROOF. We prove only (a), for then (b) follows by duality. Let X; = §(Y;), then, using that
oed = 6, we get

e6(\/ e(X:)) = e6(\/ eb6(Y7)) = e(\/ 6e6(Y3))

i€l iel iel
= e(\/ 80r) = e(\/ Xa).
i€l iel
This concludes the proof. |

2.2. Remark. Thisresult can be restated as follows. The subset £’ = Ran(6) of £ is a complete
lattice with the same supremum as £ but with infimum 6e(A;¢; X;). The subset M’ = Ran(e)
of M is also a complete lattice with the same infimum as M but with supremum e6(V/ ;¢ ; Y;).
The pair (g,6) yields an adjunction between £ and M’, and for this restriction, € and é are
each other’s inverses.

The invariance domain of an operator ¥ : £ — L is defined by

Inv(y) = {X € £ | ¥(X) = X}. (2.4)

The invariance domain of an opening (resp. closing) is closed under the formation of suprema
(resp. infima), that is, if X; € Inv(¢) for i € I, then \/,.; X; (resp. A,;c; X;) lies in Inv(v) as
well. Conversely, if H C L is closed under suprema, then there is a unique opening « on £ with
Inv(a) = H. Dually, if H C L is closed under infima, then there exists a unique closing 3 on £
with Inv(8) = H. Refer to [11] for a proof of these results.

2.3. Proposition.

(a) Let o, be openings on L such that o/ ad/ = ad/, then aa’ is an opening with invariance
domain Inv(a) N Inv(a').

(b) Let 3,83 be closings on L such that 5’83 = Bf', then BB’ is a closing with invariance
domain Inv(8) UInv(G').

PROOF. To see that a’ is an opening, we only have to show that ac’ is idempotent. But this
is obvious since ad/aa’ = aaa’ = aa’. Furthermore, one sees immediately that aa’ = o’ad’
maps into Inv(a)NInv(a’). On the other hand, if X € Inv(a)NInv(e/), then X = a(Y) = o/(Y”)
for some Y, Y’ € L. Thus ad/(X) = ad'd/(Y') = ad/(Y') = a(X) = aa(Y) = a(Y) = X. This
proves the result. ]

We illustrate these abstract concepts by means of some concrete examples. Denote by P(]Rd)
the set of all subsets of IR%; the empty set will be denoted by @. Then P(IR?) is a complete
lattice if we take set inclusion as partial ordering. Supremum and infimum are given by set
union and intersection, respectively.

Recall that Minkowski sum and difference of two sets X, A C IR? are defined as

XPpA={z+a|lzeX, ac A} = UX,,,
a€EA

XoA= ﬂ X_,.
a€A

The pair (€4,84), where 64(X) = X ® A and £4(X) = X © A, defines an adjunction on P(IR%).
The set A is called structuring element.

The mapping X — int(X) which maps a set X to its interior is an opening. Dually the
mapping 3. given by 3.(X) = X, where X is the closure of X, is a closing.
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Fig. 1. From left to right: a convex set, a cone, and a convex cone.

Recall that a set X C R? is convez if rz + (1-ryeXforz,ye Xand 0<r <1. A set
X is called a cone if rz € X for x € X and r > 0. A cone which is convex is called a convez
cone. See Figure 1 for some illustrations.

The collection of convex sets in R* is denoted by P.(IR%). This is a complete lattice
under the inclusion relation with set intersection as infimum, but with a different supremum, an
expression for which is given below. If X, Y C R? then X @Y is convex, too. The conver hull
co(X) of a set X is the intersection of all convex sets which contain X. Since an intersection
of convex sets is convex, co(X) is a convex set, the smallest convex set which contains X. Now
the supremum of the collection {X; | i € I} in P,(IR?) is given by co(U,;er Xi). The map 3, on
P(IRY) given by B.(X) = co(X) is a closing with invariance domain P, (IR%).

It is a well-known fact [27] that the closure of a convex set is convex. In operator notation:

ﬂ/\ﬂcﬂ/\ = ﬂcﬂ/\- (2'5)

Now Proposition 2.3(b) gives that 5.3, is a closing with invariance domain Inv(5,) N Inv(3.),
the closed convex sets. The set 3.0.(X) = co(X) is called the closed convez hull of X, also
sometimes denoted by co(X).

The example in Figure 2 shows that the convex hull of a closed set needs not be closed, i.e.,

BebBnBe # BaBe- (2.6)

X co(X)
Fig. 2. A closed set X for which co(X) is not closed.
The mapping 6 : P(R*) — P(IR?) given by

s(v)y=Jry

r>0
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is a dilation. The corresponding erosion is given by

2, 0¢ X
e(X) = {ﬂDOrX, 0€X.

Both £(X) and §(X) are cones, for every X C IR?. The set e(X) is called asymptotic cone or
recession cone if X is convex [13, §I11.2.2]. Note that 6 is also a closing, and, dually, that ¢ is
an opening.

2.2. Linear signal processing and Fourier analysis

A signal operator ¥ : f — U(f), defined on the space of complex-valued signals with domain
R, is called a linear shift-invariant (LSI) system if U obeys the linear superposition principle,

N W(ZQL‘) = ZCi‘I’(fi),

%

where {f;} is a finite signal collection and ¢; are constants, and if ¥ is horizontally shift-invariant:

\I’(fy) = [\Ij(f)]ya
where f, denotes the horizontal translate of the function f over the vector y, i.e.,
fy(z) == flz—y).

The output from ¥ can be found via the linear convolution
V(e) = (+Wa) = [ f@)he =)y

of the input signal f(z) and the impulse response h(z), which is the system’s output due to a
Dirac delta input. The exponential signals exp(j(x,w)) are eigenfunctions of ¥, because

¥ (exp(i(a, ) ) = H(w) exp(i(z, )

where (z,w) denotes the inner product of the vectors z = (z1,...,24) and w = (wy,...,wy) in

R*:
) d
(r,w) = Z TiW;.
=1

Note that we use the ‘loose notation’ W(exp(j(z,w))) instead of ¥(exp(j(-,w))).
The eigenvalue H(w), called the system’s frequency response, is the Fourier transform of
h(z):

H(w) :/Rd h(z) exp(—j(z,w))dz.

The frequency response provides a simple way to find the system’s output when the input is
a weighted sum of sinusoids, because the output will also be a weighted sum of sinusoids with
same frequencies and with amplitudes and phase offsets determined by H(w). In addition, the
frequency response may often be a simpler description of the system, especially in the case
of a frequency-selective (e.g., lowpass or bandpass) filter, because signal convolution becomes
multiplication of their Fourier transforms; thus,

g=f*h & G=FH,

where F, G are the Fourier transforms of f, g.



2.3. Morphological systems and supremal/infimal convolution

In convex analysis and optimization [2, 13, 14, 21, 22, 29] the nonlinear signal operation @
given by (1.1) is usually called supremal convolution. A dual operation is the so-called infimal
convolution given by

(fOg)z) = A\ fl@—v)+9)

yeR4

Note that O is closely related to the morphological erosion &, given by (1.2), because

where ¢ is the reflection of g given by

Henceforth, we shall refer to @ and O as the supremal and infimal convolution, respectively, to
distinguish them from the concept of a dilation and erosion operator on a lattice.

A mapping A which sends a signal f to a transformed signal A(f) is called a dilation
translation-invariant (DTI) system if it is a dilation, ie., A(V,; fi) = V, A(f:), and if it is
translation-invariant, i.e., A(f, + ¢) = A(f)y + ¢ for any shift y and any real constant c. It
is easy to verify that that a system is DTI if it is horizontally shift-invariant and obeys the
morphological supremum superposition principle

i€l

= \/ [A(fi)(z) + ] s

i€l

where {f;} is any signal collection and ¢; € RR.
Many important aspects of a DTI system can be determined in the time or spatial domain
solely from knowledge of its output signal due to an elementary input signal, the morphological

], z =0,
gn(@) = { —00, z # 0.
The corresponding output of the DTI system A when the input is the lower impulse is henceforth
defined as its lower impulse response

lower impulse q, given by

g = A(g,)-

This uniquely characterizes a DTI system in the time domain, because any DTI system is
equivalent to a supremal convolution (also called ‘morphological dilation’) by its lower impulse
response:

Af)=rF@y. (2.7)

Similarly, a signal operator £ : f — E(f) is called an erosion translation invariant (ETI)
system if it is horizontally shift-invariant and obeys the morphological infimum superposition

principle

€1

= N\ E(fi) (@) + e,

1€l

where ¢; € IR. If we define the upper impulse response h of an ETI systems £ as its response

h = &(qv)
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to the upper impulse
0, z =0,
gv(z) = 400 x#0
then it follows that
E(f)=fOh. (2.8)

When the ETI and DTI systems are related via an adjunction, then there is also a close
relationship between their impulse responses. Namely, let £ be an ETI system, and let A be its
adjoint dilation. It is easy to show that A is a DTI system ([11]), and therefore A(f) = f @ g,
where g is the lower impulse response. Now

E(f)=rfoy. (2.9)

Note that (2.9) and (2.8) become identical if one puts h = —g.

2.4. Remark. Since we are dealing with functions mapping into the extended reals, we have
to provide some rules for addition and multiplication of such numbers; see also [13, Appendix 2].
Such rules have to be in correspondence with certain properties of dilations and erosions on the
complete lattice IR. From the fact that a dilation d : R — IR satisfies d(—00) = —oco (see [11,
Chapter 11]) we get that —oo+ (400) = —oo if it occurs in an expression like f @ g. However, in
f © g we have to put —oo — (—o0) = +00. In many cases, however, g will be finite everywhere.
Finally we will put 0 - —co =0+ +00 = 0.

2.4. Upper and lower slope transform

To analyze morphological systems in a transform domain, the following two signal transforms
were introduced in [17, 18]. Given a signal f, its upper slope transform is defined as

S(Nw) =\ fl@)~(z,v), veR,

z€R?

and its lower slope transform is

Si(N)w) = N fl@)—(z,0), veR"

zeRY

These slope transforms provide information about the slope content of signals and a description
of morphological systems in a ‘slope domain’, with functionality similar to the use of Fourier
or Laplace transforms in linear systems. Specifically, the hyperplanes z — (z,v) + b (or lines
x +— vz + b for one-dimensional systems) are eigenfunctions of any DTI system A because

A({(z,v) +b) = (x,v) + b+ ¢g"(v), (2.10)

if A is given by (2.7) and g¥ = S,(g). We call gv the upper slope response of the DTI system
A. It measures the amount of shift in the intercept of the input lines with slope v. It is
also conceptually similar to the frequency response of LTI systems which is their multiplicative
eigenvalue for input exponentials, whereas ¢g¥(v) is the additive eigenvalue of DTI systems for
input lines with slope v. Further, as the frequency response of an LTI system is equal to the
Fourier transform of the system’s impulse response, in a similar way the slope response of a DTI
system is the upper slope transform of the system’s lower impulse response.
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Perhaps the most important property of Fourier transforms in analyzing LTI systems is
their ability to map a linear convolution of signals in the time/spatial domain to multiplication
of their Fourier transforms. Similarly, supremal convolution of two signals becomes addition of
their upper slope transforms:

S.(feg)=rf"+g". (2.11)

Similar ideas apply to ETI systems. Specifically, the above hyperplanes are also eigenfunc-
tions of any ETI system given by (2.8):

E((z,v) +b) = (z,v) + b+ h"(v), (2.12)

where h* = §,(h). In the special case where the ETI system £ and the DTI system A form an
adjunction, their slope responses are closely related since

h*(v) = —g¢Y(v). (2.13)

In general we note that
Su(f)(w) = =Sr(=f)(—v). (2.14)

From (2.10)—(2.13) one observes that the closing A and the opening AE leave the hyperplanes
x +— (x,v) + b invariant. For further properties as well as graphical illustrations, the reader may
refer to Section 3.

2.5. Slope-limited functions, Lipschitz regularization, and slope filtering

Define, for every a > 0, the concave conical function
Ka(z) = —allz].

Here ||z|| denotes the length (or Euclidean norm) of the vector z, i.e., |z = (21|24 - -4]|z4|?)=.
Define, for a function f : R? - R the mapping

\Ifa(f) :f@Kaa

depending on the slope parameter a. See Figure 3 for an illustration of a one-dimensional signal
f and its transformation ¥, (f).
The family {U, | a > 0} has the semigroup property

U U, =V, Uy =Typp, a,b>0.

This follows easily from K, ® K, = K,ap. This latter identity becomes obvious by using (2.11)
and the expression for K} given below.

Every ¥, is a dilation and a closing at the same time. Since the slope transform of the
conical function assumes only 0 and +oco values,

viy )0, [v] <a
Kq(v) = {—i—oo, |v| > a,

and supremal convolution becomes addition in the slope domain,

SV(\IJa(f)) = fv +K(\z/)
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Fig. 3. Slope-limiting (i.e., Lipschitz regularization) of a function via its
supremal convolution with a cone. The dashed line shows the original signal
f(z) = [140.5 cos(2nz)] cos(107z), = € [0,1]. The solid line is the supremal

convolution of f with Kq(z) = —a|z| where a = —5.

it follows that ¥,(f)¥(v) = +oo for |v| > a. Hence it is “upper slope-limited”, where we call
a function f : R — IR upper slope-limited if there exists some a > 0 such that f¥(v) = +o00
for |v|] > a. The constant ¢ may then be called the upper slope bandwith of f. The above
discussion implies that a function f becomes upper slope-limited with bandwidth a after its
supremal convolution with the cone K,.

Slope-limited functions are related to Lipschitz continuous functions. Consider functions
f:R* — R. Recall that f is Lipschitz if there exists a constant ¢ > 0 such that |f(z) — f(y)| <
cllz —yl|, for z,y € R®. If a function f is Lipschitz continuous with constant a, then ¥,(f) = f,
hence f is an upper slope-limited function with bandwidth a. The converse is not true in general.
For example, the quadratic function f(z) = ||z||? has upper slope transform which is identically
+00, but f is obviously not Lipschitz continuous. However, as shown in [22, p.116], a proper
concave function f is Lipschitz with constant a if and only if it is upper slope-limited with
bandwith a. Note the similarity with Fourier analysis where a real-valued function f(z) is band-
limited (i.e., frequency-limited) with bandwidth wy if its Fourier transform is zero for frequencies
|w| > wp. If a function is not originally band-limited, it can become so by linearly convolving it
with the sinc-function h(z) = sin(wpz)/7z. Band-limiting causes a regularization to the original
function because it eliminates higher frequencies in the input. Thus, slope-limiting can be seen
as a ‘Lipschitz regularization’; see also [14, Ex.3.4.4].

Frequency band-limiting can be seen as frequency-selective filtering in the frequency do-
main, where the input signal components whose frequencies are within the filter’s passband pass
unchanged, whereas other frequency components are rejected. Similarly, slope transforms have
been used for designing and analyzing DTI or ETT systems that act as slope-selective filters [17,



18]. For example, the above supremal convolutions with the conical functions K, can be seen as
symmetric lowpass slope-selective filtering because if the input signal f contains any segments
with slopes absolutely greater than a, they will be rejected, whereas slopes absolutely smaller
than a will pass unchanged. For a more general (asymmetric bandpass) slope filter, imagine
a one-dimensional DTI system that passes all line components with slopes in the band [v1, v9]
unchanged, and rejects all the rest. Then its slope response would be

V()_ 0, v1 < v < vy
9= 400, else.

This is a general ideal-cutoff slope bandpass filter. In the spatial domain it acts as a supremal
convolution by the impulse response

vz, x>0
oo ={ e 220

The points on and below the graph of this function g, the so-called umbra (see §3.1), form a
concave cone. Such a dilation by an infinite cone produces upper envelopes of the input signal,
as shown in Figure 3 for the symmetric case v9 = —v; = a > 0.

Readers who are interested in an abstract treatment of Lipschitz functions in the complete
lattice framework for morphology should refer to [23].

3. The Slope Transform

3.1. Complete lattice theory for functions

We denote by Fun(IR?) the functions mapping IR? into the extended reals R = RU {—o0, +-00}.
It is evident that this defines a complete lattice under the partial ordering given by pointwise
inequality: f1 < fo if fi(x) < fy(z) for every z € R%. By f = ¢, where ¢ € R, we mean that

)

f(z) = ¢, for every z € R®. The function which equals ¢ everywhere is denoted by ‘= ¢’
The upper and lower domain of a function f are defined as

dom, (f) = {z € R*| f(z) > —oc}, (3.1)
dom,(f) = {z € R*| f(z) < 400}, (3.2)

respectively. It is easy to show that

domv(v fi) = U dom, (f),

1€l el
dom, (A fi) = (") dom,(f3),
1€l el

for an arbitrary collection {f; | i € I} in Fun(IR?). In other words, dom,(-) (resp. dom,(-)) is
a dilation (resp. erosion) from Fun(R?) into P(IR?). Furthermore, we define the epigraph and
hypograph of a function as

U(f) ={(z,t) e R* x R | t 2 f(2)},
UA(f) ={(z,t) e R x R | t < f(2)}.
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Fig. 4. (a) Upper domain and epigraph of a function; (b) lower domain and hypograph (or

umbra) of a function.

In mathematical morphology, the set U, (f) is usually called the umbra of f. Note that U, (resp.
U,) defines a dilation (resp. erosion) from Fun(IR?) into P(IR* x IR). For an illustration of these
concepts we refer to Figure 4.

A function of the form = +— (z,v) + b, where v € R? and b € R is called an affine function.
If b = 00 then this function is identically oo, and it is called a degenerate affine function.

3.1. Definition. Let f be an element of Fun(IR?).

(a) The function f is u.s.c. (upper semi-continuous) if, for every t € R and z € R?, f(z) <
implies that f(y) < t, for every y in some neighbourhood of z.

(b) The function f is Ls.c. (lower semi-continuous) if, for every t € IR and z € R?, f(z) > ¢
implies that f(y) > t, for every y in some neighbourhood of z.

The collections of u.s.c. and Ls.c. functions are denoted by Fun, (IR%) and Fun;(IR?), respec-
tively. The following result is well-known; see e.g. [22, Sect.7].

3.2. Proposition.
(a) A function f is w.s.c. iff its hypograph U,(f) is closed.
(b) A function f is Ls.c. iff its epigraph U, (f) is closed.

The infimum of an arbitrary collection of u.s.c. functions is u.s.c. One can use a direct argument
to prove this, but one can also exploit the fact that U, is an erosion. Assume that f; is u.s.c.
for every 4 in some index set I, then UL(A,;¢; fi) = ;c; Ua(fi), which, being an intersection of
closed sets, is closed. Now Proposition 3.2(a) yields that A,.; f; is u.s.c. Dually, it follows that
the supremum of a given collection of lL.s.c. functions is Ls.c.

Let f be an arbitrary function. Define the upper closed hull ,Bu( f) = f of f as the infimum
of all u.s.c. functions which lie above f. Then f is u.s.c.; it is the smallest u.s.c. function above
f. One can easily show that f(z) = lim sup,_,, f(y), and that

Un(f) = Un(f)-

Dually, we define the lower closed hull 0;(f) = f of f as the supremum of all Ls.c. functions
below f. The function f is the largest L.s.c. function below f, f(z) = liminf, ., f(y), and



Now the following result is obvious.

3.3. Proposition.
(a) The mapping 3, defines a closing on Fun(IR?) with invariance domain Fun, (IR?).
(b) The mapping o defines an opening on Fun(R?) with invariance domain Fun;(IR?).

The next result is a straightforward consequence of the previous observations.

3.4. Proposition.
(a) The set Fun, (IR?) is a complete lattice under the pointwise partial ordering with the pointwise

infimum \;c; fi, and with supremum given by ﬁu(viel fi)-
(b) The set Fun;(IRY) is a complete lattice under the pointwise partial ordering with the pointwise

supremum \/;c; fs, and with infimum given by o4 (N;¢; fi)-

3.2. Convex and concave functions

A function f is concave if its hypograph U,(f) is convex, i.e.,

flra+ A —r)y) Zrf(z)+ (1 —7)f(y),

for z,y € R* such that f(z), f(y) > —oo, and 0 < r < 1. The function f is convez if its
epigraph U, (f) is convex, i.e.,

flra+ (@ =r)y) <rf(z)+ (1 —-7)f(y),

for 2,y € R? such that f(z), f(y) < 400, and 0 < r < 1. See Figure 5 for an illustration.

concave function convex function

Fig. 5. A concave and a convex function.

The concave and convex functions are denoted by Fun,(IR?) and Fun, (IR?), respectively.
Note that the subscript ‘A’ characterizes the shape of a concave function. The next two results
are easy to prove.

3.5. Proposition.
(a) If f is concave, then dom,(f) is a convez set.
(b) If f is convez, then dom,(f) is a convez set.

3.6. Proposition.
(a) f is concave iff Ur(f) is a convez set in R? x IR.
(b) f is convez iff U,(f) is a convez set in R® x IR.



Concavity and convexity are dual notions in the sense that f is concave iff — f is convex. There is
a huge literature on convex functions; we refer in particular to the monographs of Rockafellar [22]
and van Tiel [29], and the two recent volumes by Hiriart-Urruty and Lemaréchal [13, 14].

As grey-scale morphology is usually based on the notion of the hypograph (or umbra; this is
convex if the underlying function is concave) we choose to consider concave rather than convex
functions. From the duality principle [11] it follows that both approaches are equivalent.

The infimum of an arbitrary collection of concave functions is concave. This does not hold
for the supremum. Define the concave hull 3 (f) of an arbitrary function f as the infimum of all
concave functions which lie above f. This is a concave function, the smallest concave function
above f. Dually, we define the convez hull o, (f) as the supremum of all convex functions below
f- In Figure 6 we give an illustration of the concave hull.

@ (b)

Fig. 6. (a) A function, and (b) its concave hull.

The next two results are very similar to Propositions 3.3-3.4.

3.7. Proposition.
(a) The mapping /6/\ defines a closing on Fun(IR?) with invariance domain Fun,(IR?).
(b) The mapping ., defines an opening on Fun(R?) with invariance domain Fun, (IR?).

3.8. Proposition.

(a) The set Fun,(IR%) is a complete lattice under the pointwise ordering, with the pointwise
infimum A, ; fi ;md with supremum /BA(ViEI fi)-

(b) The set Fun,(IR") is a complete lattice under the pointwise ordering, with the pointwise
supremum \/;c; fi and with infimum o, (N\;c; fi)-

The lower closed hull of a convex function is convex [22]. This means that
a0, = 0;0,.

Now Proposition 2.3(a) gives that Q;Q, is an opening with invariance domain Fun;(IR%) N
Funv(le), the l.s.c. convex functions. A dual result holds for the upper closed hull of concave

functions, i.e.
IBA/BU/B/\ ZIB’U.IB/\'

3.9. Proposition.

(a) The operator QuQL, is an opening on Fun(R?) with invariance domain the lLs.c. convez
functions.

(b) The operator B 3, is a closing on Fun(IR?) with invariance domain the w.s.c. concave
functions.



One can find examples which show that oy, @ # @, and that 3,8, 0, # B,0,; cf. (2.6).

3.10. Remark. In Figure 2 we have given an example of a closed set X for which co(X) is
not closed. Similarly we find that f w.s.c. does not necessarily imply that 3, (f) is u.s.c. One
can show that, for every function f,

o (UA(f)) = UA(B,B.(1))-

Refer to [13, §IV.2.5] for similar results.

In the previous section we have introduced some operations on functions such as supremal
and infimal convolution. For these operations, one has to take into account the arithmetical
conventions for extended reals as explained in Remark 2.4. This means in particular that ‘@’
and ‘[0’ are not commutative in all cases.

It is evident that, for every function g,
(i) f @ g is convex, if f is convex;
(ii) f © g is concave, if f is concave;
(iii) fOg is concave, if f is concave.
But, more interestingly, one can also prove the following result.

3.11. Proposition.
(a) If f,g are concave, then f @ g is concave.
(b) If f,g are convez, then fOg is conver.

PROOF. We prove (a); then (b) follows from a duality argument. We use the umbra transform
discussed in [10] and [11, §11.6]. Recall that a set U C R* x IR is called an umbra if (z,t) €
U <= (z,s) € U for s < t; here 2 € R%. The set U is called a pre-umbra if (z,t) € U implies
that (z,s) € U for s < t. For a set V C IR? x R we denote by U,(V) the smallest umbra which
contains V. If V' is a pre-umbra, then U,(V) = (1,5, V™. Here V™ = {(z,t + 1) | (z,t) € V}. It
is easy to show (see also [11, §11.6]) that

U/\(f @g) = US(U/\(f) D U/\(g))

If f, g are concave, then U,(f),U,(g) are convex sets. Therefore (see §2.1) their Minkowski sum
Un(f) ®UL(g) is convex, too. But now U,(U,(f) @ U,(g)), being an intersection of convex sets,
is convex. This implies that U,(f @ g) is convex, in other words, that f @ g is concave. ]

3.3. Legendre transform and conjugation

Consider a convex function f : R* — IR which is sufficiently smooth; in fact we do not bother
here about the most general conditions under which the results below are valid. Readers who
are interested in such details may refer to [22].

Given a vector v € R?, we look for a point zo € IR? such that the hyperplane in R? x R
given by = +— (z — ¢, v) + f(xo) is tangent to the graph of f at the point x = zy. This amounts
to solving the equation V f(z) = v, where V f is the gradient of f. If this gradient mapping has
an inverse (Vf)™!, then the solution is given by z = z(v) := (Vf)~!(v). It turns out that z(-)
is a gradient mapping itself: z(v) = VF(v), where F is given by

(z(v),v) — f(x(v))
= (V) (v),0) = F(V ) (v)).

F(v)

(3.3)



The function F' is called the Legendre transform of f. It is well-defined if f is convex and
differentiable, and if Vf is invertible. For a function f and its Legendre transform F', the
following inverse relations hold:

Vf(z)=v and VF(v)=z. (3.4)

Note in particular that these relations imply that f is the Legendre transform of F'. If z,v are
related by (3.4), then
f(@) + F(v) = (z,0). (3.5)

As shown in Figure 7 for a one-dimensional differentiable signal f, the quantity vz — f(x) is the
negative of the intercept of a line that passes from the point (z, f(z)) on the graph of f and
has slope v. This intercept becomes maximum (and equal to —F(v)) when the line with slope
v becomes tangent to the graph of f. In Figure 8 we depict an example.

-F(v)

f(x) - vx

|
|
|
0 X

Fig. 7. Concave signal f, its tangent with slope=v, and a line

parallel to the tangent.

SIGNAL LEGENDRE TRANSFORM
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Fig. 8. (a) Signal f(z) = —cos(woz), |z| < 7/(2wp). (b) Its Legendre
transform F(v) = 1/1 — (v/wg)?2 + (v/wp) arcsin(v/wy).



If f does not have an invertible gradient, its Legendre transform cannot be defined as above.
To treat such and other more general cases of non-differentiable functions, we now define F' as

F)== N f@)—(z0) =\ (&v) - f().

z€R? z€R?

The conjugate f* of a function f is defined by

)=\ (&)~ f(2). (3.6)

z€RY

We write A(f) = f*. The operator A is known under different names, e.g. ‘Fenchel conjugate’,
“Young-Fenchel conjugate’, or ‘Legendre-Fenchel transform’; see e.g. [22] and [13, 14].

The definition in (3.6) is not restricted to convex functions but applies to all functions
f: R* = R. Note that f* is identically +oo if f(z) = —oo for some = € R%. From (3.6) it
follows readily that

() z (z,0) = f(=), (3.7)

for every z € R? and v € R?. This inequality is known as Fenchel’s inequality, and is usually
written as f(z)+ f*(v) > (z,v). However, this latter inequality may differ from (3.7) if f(z) or
f*(v) equal too.

3.12. Proposition. For every f € Fun(IR?), the conjugate f* is l.s.c. and convex.

PROOF. Formula (3.6) shows that f* is the supremum of affine functions z — (x,v) — f(x).
From Proposition 3.4(b) we find that f* is l.s.c., and from Proposition 3.8(b) we conclude that
f* is convex. |

At this point we might give a list of properties of the conjugation. However, this operation is
closely related to the slope transforms discussed later. As we are primarily concerned with the
slope transforms, we rather discuss properties of the latter. We mention only the property that
conjugation transforms an infimal convolution into an addition:

(f8g9)* =rf"+g", (3.8)
for f,g € Fun(R?).

3.4. Upper slope transform
Recall the following definition of the upper slope transform from §2.4:

) =8 =\ f@) - (z0), (3.9)

z€eR4

for f € Fun(lR?). See Figure 9 for examples of slope transforms of differentiable and non-
differentiable signals.

There exists a simple relationship between this transform and the Young-Fenchel conjugate,
namely:

() = (=) (—v). (3.10)
This relation, in combination with Proposition 3.12 yields the following result.

3.13. Proposition. For every f € Fun(]Rd), its upper slope transform fY is l.s.c. and convexz.
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Fig. 9. (a) Original parabola signal f(z) = —$2/2 (in dashed line) and
its morphological opening (in solid line) by a flat structuring element [—5, 5].
(b) Upper slope transform of the parabola (in dashed line) and of its opening

(in solid line).

We list a number of properties of the upper slope transform. Define for f € Fun(R?) and
w € RY,
Jtwi(z) = f(z) + (z,w).

The notation f(r-), where r € IR, stands for the function z — f(rz).

3.14. Proposition. (Properties of S,)

For f,g € Fun(R?), y € RY, w € R?, r >0, and c € R:
(a) (fy)" = (f)-y

(b) (frw ) = (f")w

If f V(v) = b, then the function f is majorized by the affine function x — (z,v) + b. Therefore,
if we compute the infimum of all affine functions = — (z,v) + f¥(v), we obtain a function which
majorizes the original function f. This motivates us to define

S7(9)@) = N\ 9) +(z,0), (3.11)

vERE

for a function g : R — R.

The upper slope transform maps the affine function x — (x,v9) + b onto an upper impulse
which equals b for v = vy and +oo elsewhere. If we apply S to this upper impulse, we retrieve
the original input function z — (z,vg) + b.

We call S; the adjoint upper slope transform. This nomenclature is justified by our next
result.

3.15. Proposition. (S;,S,) is an adjunction on Fun(RY).

PRrROOF. We must show that
S (f)<g = f<S7(9)-



We prove ¢ = ’; the other implication is proved similarly. Assume that S, (f) < g¢; this means
that

f(z) = {z,v) < g(v), z € R, v € R".
Therefore, f(z) < g(v)+ (z,v) for z € R? v € R?. This yields that f(z) < Noera 9(v) +(z,v)
for z € R?, i.e., f < S5 (9g). |
Analogous to Proposition 3.13 we can prove that the function S (g) is u.s.c. and concave for

an arbitrary function g. In fact, we can prove a much stronger result.

3.16. Proposition.
(a) Ran(S,) consists of the l.s.c. convex functions.
(b) Ran(Sy) consists of the u.s.c. concave functions.

PROOF. We prove (b); the proof of (a) follows by similar arguments. Assume that f is u.s.c.
and concave; we show that f € Ran(Sy). Define ¢ = S,(f); we show that S;(¢9) = f. Put
f'=8:(g). Since 8,8, is a closing we get that f' =SS, (f) > f. Therefore it remains to be
shown that f > f’. Since f is u.s.c. and concave, it follows that f is the infimum of all affine
functions z +— (z,v) + b majorizing f; cf. [13, Prop. IV.1.2.8]. If £ is such an affine function,
then £ = S8, (£) > S S, (f) = f'. But this implies immediately that f > f'. ]

Combining the latter two propositions we arrive at the following result.

3.17. Corollary.
(a) Sy 8, is a closing on Fun(IR®) with invariance domain the w.s.c. concave functions, i.e.,

oSy =B.B,

(b) 8,8y is an opening on Fun(IRY) with invariance domain the l.s.c. convezx functions, i.e.,
SVS\‘/_ = Q.

If we apply Proposition 2.1(b) to the adjunction (S, S, ), we find that
V(/\ fj) = QZQV(A SV(fj))
j€T jET
if f; is u.s.c. and concave for every j € J.
We now list a number of properties of S .

3.18. Proposition. (Properties of S;)
For f,g € Fun(Rd) (/S Rd, w E Rd, r>0, and c€ R:

(@) 8¢ (fw) = (ST (f))w)

(b) Sy (fw) = (S g s () =y

(c) Sq(f+e)=8,(f)+e¢

(d) Sy (rf) =78 (f)(/r)

(e) Sy (f(r) =85 (f)/r)

() Sy (f(=) =87 () (=)

(g) Sy (fOg) =8, (f) +8y(9)

Further, it is easy to verify that
S5 (=f) ==8.(/f); (3.12)

in other words, Sy is the negative operator of S,. However, we point out that (3.12) is, in a
sense, meaningless. For, the upper slope transform acts on functions of the spatial variable z,
whereas the adjoint upper slope transform acts on functions of the slope variable v.



3.5. Lower slope transform

If we replace the supremum in (3.9) by an infimum we get the lower slope transform. It goes
without saying that all results for the upper slope transform stated in the previous section have
a counterpart for the lower slope transform. For the sake of completeness we will state them
briefly.

Let f € Fun(IR%), the lower slope transform of f is

fr0) =8u(Nw) = N f(z)—(2,0). (3.13)

rz€R?

There exists the following relationship with the upper slope transform and the Young-Fenchel
conjugate:

fr0) = =f(v) = =(=f)"(-v). (3.14)
3.19. Proposition. For every f € Fun(IR?), its lower slope transform f* is u.s.c. and concave.

We list a number of properties of the lower slope transform.

3.20. Proposition. (Properties of S,)
For f,g € Fun(R?%), y € R%, w € R%, r > 0, and c € R:

(@) (f)" = (")
b; (frw)” = (f)w

(g) (fOg)" =f"+g"

Analogous to (3.11) we define

So(9)(@) =\ g9) +(z,0), (3.15)

vERY

which we call the adjoint lower slope transform. We now state without proof the analogues of
Propositions 3.15-3.16 and Corollary 3.17.

3.21. Proposition. (S,,S:) is an adjunction on Fun(IR%).

3.22. Proposition.
(a) Ran(S,) consists of the u.s.c. concave functions.
(b) Ran(S7) consists of the l.s.c. convez functions.

3.23. Corollary.
(a) S8, is an opening on Fun(IR?) with invariance domain the Ls.c. convez functions, i.e.,

S;\_S,\ = ;.
(b) 8,8 is a closing on Fun(IR?) with invariance domain the u.s.c. concave functions, i.e.,

S/\Sr = /Bu/B/\

We state some properties of S;.



3.24. Proposition. (Properties of §)
For f,g € Fun(Rd) yeR weR? r>0, and c € R:

(a) S (fuw) = (87 (F))w)

(b) ST (fw) = (S () -y

(c) 5?(f+0) Sy(f)+e

(d) s7(rf )—TST(f)(/T)

(e) ST(f(r)) =ST(f)/r)

(f) ST(f(=)) =ST(H)(=)

(8) ST(f@g) =ST(f)+S5(9)

4. Slope Transform for Sets

4.1. Preparations

In §2.1 we have summarized some basic facts about convex sets. In this preparatory section we
present some additional notations.
We can embed the convex sets into the lattice of concave (resp. convex) functions. Thereto
we need the following definitions. The upper and lower indicator function corresponding to a
set X are defined as
W = {0, oY mawow-{% . I

respectively. It is evident that

X closed <= 1, (X) ls.c. <= 1,(X) us.c.
X convex <= 1, (X) convex <= 1,(X) concave.

We introduce some further notation; see [24]. We denote, for a € R? and r € IR, by H(a,r) the

hyperplane
H(a,r) = {z € R*| (a,z) = 7}.

Note that H(a,r) = @ if r = 200. Furthermore, H™ (a,r) and H* (a,r) are the closed halfspaces

H (a,r) ={z € R? | (a,z) <7}
H*(a,r) = {z € R?| (a,z) >}

If r = —oo then H (a,7) = @ and H'(a,r) = R% dually, if 7 = 400 then H (a,r) = R?
and H'(a,7) = @. We say that the hyperplane H(a,r) supports the set X C IRR? at h if
h € X NH(a,r) and X C H (a,r) or X C H'(a,r).

4.2. Sublinear functions
We start with a definition.

4.1. Definition. A function f : R — IR is said to be positively homogeneous if f(rz) = rf(z)
for 7 > 0 and z € R%. Tt is sublinear if it is both convex and positively homogeneous.

For a comprehensive discussion on sublinear functions the reader may refer to [13, Chapter V].
It is easy to see that any sublinear function satisfies f(0) = 0, —oo or +o00. Note that f = —o0
if f(0) = —oo. Furthermore, the epigraph U, (f) is a convex cone. Every sublinear function
satisfies the inequality

flz+y) < f(2)+ f(y);

a function with this property is called subadditive. We give some examples.



4.2. Examples.
(a) If K C IR? is a convex cone, then the upper indicator function ., (K) is sublinear.
(b) A function || - || : R* — R, = [0,400] is called a norm if

(i) [zl = 0 iff = = 0;

(ii) [[rell = |r| - |zll, r € R, « € RY

(i) llo + gl < lloll + yll, 2,y € R

Note that ||z|| is allowed to be +00. Every norm is a (nonnegative) sublinear function.
(c) Let X C R? be a convex set containing the origin. The function v(X) defined by

y(X)(z) =inf{r >0 |z € rX} (4.1)

is called the gauge (function) of X. It is a sublinear function.
We prove the following lemma.

4.3. Lemma. If f is positively homogeneous then its convex hull o, (f) is positively homoge-
neous as well.

PROOF. Define, for a function f and a real number r > 0, f.(z) = rf(z/r). Thus f is positively
homogeneous iff f,. = f for every r > 0. The convex hull of a function f is given by

a(f)=\ g

g€eC

where C consists of all convex functions g < f. It follows immediately that ¢ € C = g, € C for
every r > 0. But this implies that o, (f) is positively homogeneous, too. |

We denote the family of all sublinear functions by Fun,(RR?). It is easy to verify that the
pointwise supremum of an arbitrary collection f;, ¢ € I, of sublinear functions is sublinear.
Thus there exists an opening Q5 on Fun(]Rd) with invariance domain Funsl(IRd).

The pointwise infimum of a collection of sublinear functions is positively homogeneous but
not subadditive in general. Let f € Fungy (IR%) such that f < f; for i € I. Now v, (f) = f since
f is convex, and we find that f < &, (A,¢; fi)- Lemma 4.3 says that &, (A, fi) is positively
homogeneous, and hence it is sublinear. We conclude that ., (A;c; fi) is the infimum in the
complete lattice Fung; (IR?).

4.4. Proposition. The set Funsl(IRd) with the pointwise partial ordering is a complete lattice
with the usual pointwise supremum and with infimum o, (\;c; fi)-

4.5. Remark. If f, ¢ are sublinear and not identically +oo, then

a.(fAg)=f0Og. (4.2)

To prove <, observe that (fOg)(z) < f(z)+ ¢g(0) = f(z). Hence fO¢g < f and similarly
fOg < g. This yields that fO0g < f Ag. Since fg is convex, we get fg < ., (f A g).

To show that f g > h := &, (f Ag), observe that h is the infimum of f and ¢ in Fun,; (R?),
hence h < f and h < g. This implies that hOh < fOg. As h is subadditive, we find that
h(z —y) + h(y) > h(x), and therefore h O h > h. This proves relation (4.2).

Refer to [13, p.206] for a different proof.



Fig. 10. Support function.

4.3. Slope transform for sets: the support function
For a set X C IR? its support function o(X) is defined by

o(X)(v) = \/ (z,v), ve R (4.3)

Note that o(X) = —oo if X = &. Refer to Figure 10 for an illustration.
From the observation that the support function is the pointwise supremum of the affine
functions v — (z,v), x € X, and Propositions 3.4(b) and 4.4, the following result is clear.

4.6. Proposition. The support function o(X) of a set X C R? is Ls.c. and sublinear.

We call the operator o : P(IRY) — Fun(IR?), which maps a set X to the corresponding support
function, the slope transform for sets.

There is a simple correspondence between the slope transform for functions and that for
sets, namely:

S(ta(X)) (W) = \/ tn(X)(2) = (z,0) = \/ ~(z,0),

whence we derive
S (ta(X))(v) = o(X)(—v) = o(-X)(v). (4.4)
We also have
Sa(w(X))(v) = o(X)(—v) = o(=X)(v), (4.5)
and
(v (X)) = o(X). (4.6)

4.7. Remark. Strictly speaking, we should refer to o as the ‘upper’ slope transform. The
lower slope transform should then be defined as follows:

oA(X)(w) = N (z,0).

z€X



Such a definition would only make sense if we would introduce the concept of ‘concave sets’, i.e.,
complements of convex sets. In order to keep new notation and terminology limited, we will not
do so.

If o(X)(v) = b, then (z,v) < b for z € X, that is, X C H (v,b). We define the operator
o~ : Fun(RR?) — P(R?) by
o= ()= [ B (v, f(v)). (4.7)
vER?
It is obvious that o= (f) is a closed convex set for every function f.

4.8. Lemma. Let X CR% v e R?, and b € R, then
X CH (v,b) iff o(X)(v) <b.

PROOF. “only if”: assume X C H™ (v,b). Then o(X)(v) = sup{(z,v) |z € X} <b.
“if”: assume o(X)(v) <b. If z € X, then (z,v) < b, hence x € H (v, b). [ |

4.9. Proposition. The pair (6=,0) constitutes an adjunction between Fun(R?) and P(IR?).

PROOF. We must show that
oX)<f < X Co (f).

First we prove “ = ”. Assume that o(X) < f and that z € X. We must show that z €
H™ (v, f(v)) for v € R?. This follows from

re H(v, f(v)). Thus X C H(v, f(v)) for v € R
<f. |

4.10. Proposition.
(a) Ran(o—) consists of the closed convez sets in IR%.
(b) Ran(o) consists of the l.s.c. sublinear functions on R%.

PROOF.

(a): It is evident that every set in Ran(oc~) is closed and convex. On the other hand, if X is
closed and convex, then X can be represented as the intersection of all closed halfspaces which
contain it.

(b): We have seen that every support function is l.s.c. and sublinear. Assume, on the other
hand, that f is Ls.c. and sublinear. Let X = o~ (f), we show that o(X) = f. Note first that
o(X) = o0~ (f) < f, since oo~ is an opening. Thus it remains to be shown that o(X) > f.
The following proof is taken from Schneider [24, 2nd proof of Thm. 1.7.1]. Since f is sublinear
and Ls.c. its epigraph U, (f) is a closed convex cone in IR? x IR. Let v # 0, then (v, f(v)) lies on
the boundary of U, (f). There exists a support plane H((y,a),r), where y € R* ™ and a € R
to U, (f) through (v, f(v)) such that U, (f) C H™((y,a),r). This yields that for ¢t € R, w € R*:

t> fw) = (y,w)+at <.

Since U, (f) is a cone, the support plane must contain (0,0), hence » = 0. Suppose that a > 0,
then (y,w) < 0 for all w; this is impossible, hence a < 0. Without loss of generality we can
assume that a = —1. Thus

t> f(w) = (y,w) <t



Then (y,w) < f(w) for all w. Thus y € X, that is X # @. Furthermore, (y,v) = f(v) (for
(Ua f(U)) € H((y) _1)7 0)) Then

o(X)(v) = sup{(z,v) | z € X} > (y,v) = f(v).
This holds for every v # 0. For v = 0 this inequality is obvious, and we conclude that o(X) > f,
which was to be proved. ]

4.11. Remark. We can give an alternative proof of Proposition 4.10(b) which uses the upper
slope transform for functions discussed in §3.4.

Assume that f is Ls.c. and sublinear, and that f # +oo. We show that f = o(X) for
some (closed, convex) set X. Consider the function ¢ = S (f). Since f # 400 we have
g(z) < +oo for all z. The sublinearity of f in combination with Proposition 3.18(d)-(e) implies
that g(rz) = g(z) for r > 0, € R%. We conclude therefore that g assumes only the values
—oo and 0, and so g = 1,(X) for some closed convex set X (note that g is u.s.c. and concave
by Proposition 3.16(b)). Since f € Ran(S, ) by Proposition 3.16(a), we have

f=8.87(f) =8u(9) = Su(ta(X)) = o(=X),
by (4.4). This concludes the proof.
We have the following analogue of Corollary 3.17.
4.12. Corollary.

(a) 00 is a closing on P(IRY) with invariance domain the closed convex sets in R?, i.e.,
o0 (X) = B:.8,(X) =o(X).

(b) oo is an opening on Fun(IR?) with invariance domain the Ls.c. sublinear functions, i.e.,

a0 (f) = us(f).

PROOF. (a) follows from the previous results.

To prove (b) we still have to show that Qi is an opening with invariance domain
Fun;(IRY) N Fun,;(IR?), the Ls.c. sublinear functions. Exploiting Proposition 2.3(a), it remains
to show that o, ;00 = L. We use the fact that the first term (v, at the left-hand-side
may be replaced by (v, (because of Lemma 4.3). Now

Q, 005 = O, 040 Ol = OGO, Ol = OGO,

(cf. Corollary 3.23) and this concludes the proof. |
Many results in the literature follow easily if one uses Proposition 4.10 and Corollary 4.12. For
example, in Satz 12.4, Leichtweiss [15] shows that

o@(X1U---UXp)) =0(X1)V---Va(Xn),

if Xy, Xs,...,X,, are compact and convex. From the fact that ¢o(-) = 0~ 0 (hence o(co(X)) =
oo~ c(X) = o(X)) and that o is a dilation, we find that

o(|J X:) = o(eo(| X2)) = \/ o(Xa),
i€l i€l i€l
for a collection X;, i € I, of arbitrary subsets of IR%.
If one applies Proposition 2.1(b) to the adjunction (0=, c) one finds that

0(ﬂ X;) = alav(/\ o(X3)), (4.8)
i€l iel
if X; is closed and convex for every ¢ € I; cf. [13, Thm. V-3.3.3(iii)].

We list properties of o and its adjoint . For a set X C IR? and a vector k € R? we define
X}, as the translate of X along h, i.e., X = {z+h|z € X}.



4.13. Proposition. (Properties of o)
For X,Y CR% heR% andr >0:
(a) o(Xn) = o(X)pn

(b) o(rX) =ro(X)
(¢) o(=X) = o(X)(—)
(d) o(X @Y) = a(X) +o(Y).

4.14. Proposition. (Properties of o)
For f € Fun(IR?%), h € R?, and r > 0:

(@) o= (fin) = o= (f)n

(b) o=(rf) =ra=(f)

(¢) o=(f(r) =ro=(f)

(d) o= (f(=)) === (f)-

We substitute f = 0(X) and g = 0(Y) in (4.2) and get
o (o(X)ANo(Y))=0(X)Oo(Y).
Applying «; at both sides and using (4.8) yields
o(XNY)=0y(c(X)do(Y)).
In [22, Cor.16.4.1] and [13, p.227] similar results have been obtained.

4.4. Polar, gauge, and support function
The polar X° of a set X C R? is defined by

X°={y € R*| (z,y) <1forallzc X}.

We define the operator m by
m(X)=X°.

Let P'(IR?) be the opposite of the complete Boolean lattice P(IR?) (see §2.1).

4.15. Proposition.
(a) (m,7) is an adjunction between P'(IR?) and P(IR?), in particular

(Jx)"=x7,

€1 i€l

for every collection X; C R%, i€ I.
(b) Ran() consists of the closed convez sets which contain the origin.

PROOF. (a): We must show that Y C 7(X) <= X C «(Y), for X,Y C R%. Because of the
symmetry of this assertion, it suffices to prove ¢ = ’. Therefore, assume that ¥ C 7(X). We
show that X C n(Y'). Take z € X; we must show that z € n(Y'), i.e., that (y,z) <1fory €Y.
Since Y C 7(X) we have that (y,z) <1 for z € X,y € Y. This proves the result.

(b): It is easy to show that a set in the range of 7 is closed, convex, and contains the
origin. To prove the converse we observe that Ran(7) is closed under intersection. Every closed
convex set containing the origin is the intersection of closed halfplanes containing the origin.
A straightforward computation shows that 72 leaves such halfplanes invariant, which means in
particular that they lie in Ran(7). Now the result follows. [ |



4.16. Corollary. 72 is a closing on P(R?) and 72(X) = co(X U{0}), for every X C RR%.

PROOF. The theory on adjunctions summarized in §2.1 gives that 72 is a closing. Furthermore,
Proposition 4.15(b) yields that the invariance domain of 72 consists of the closed convex sets
which contain the origin. Therefore, 72(X) is the smallest closed convex set containing the
origin which is larger than X. This means that 7%(X) = co(X U {0}). [ |

A similar result (though only for convex sets) can be found in [22, p.125].
In Example 4.2(c) we have introduced the gauge function of a convex set containing the
origin. We extend this definition to arbitrary subsets of IR and put

Y(X)(z) =inf{r >0 |z € rX}.

Thus v is a mapping from P(IR?) into Fun(IR?). Furthermore, we define v~ : Fun(R?) — P(IR?)
by
T = {z € R [vr>0: f(ro) <7},

4.17. Proposition.

(a) (7,77) is an adjunction between P'(IR?) and Fun(RR?).

(b) Ran( ) consists of all positively homogeneous functions.
(c) Ran(y~) consists of all sets X C R* with the property that

zeX < Vre(0,1): re e X. (4.9)

PROOF. (a): We must show that X C v (f) < f < ~vy(X).

‘=7 Assume X C y—(f); we show that f < (X). Suppose that, for some z, f(z) >
inf{r > 0 | z € rX}. Then there is an r < f(z) such that z € rX, ie, 1z € X. Since
X C v (f), this means that %:c € v~ (f). Then f(2z) < s for every s > 0. Substituting s = r
yields that f(z) < r, a contradiction.

‘<’: Assume that f < v(X); we show that X C y=(f). Suppose z € X and r > 0. Then

flrz) < y(X)(rz) =inf{s >0 |rz € sX} <

This yields that z € v=(f).

(b): It is easy to see that every function (X)) is positively homogeneous. We have to show
that for every positively homogeneous function f there exists a set X such that v(X) = f.
Define X = v (f) = {z | Vr > 0: f(rz) < r}. We show that v(X) = f. Since yy~ is a
closing, it follows immediately that y(X) = yy—(f) > f. Thus it remains to be shown that
v(X) < f. Assume that yv(X)(y) > f(y) for some y. Choose r such that v(X)(y) > r > f(y)-
Then v(X)(y) = inf{s > 0| y € sX} > r, meaning that y ¢ rX. This yields that 1y ¢ X =
{z|Vs>0: f(sz) < s}. Hence there exists an s > 0 such that f(s-1y) > s. As fis p051t1vely
homogeneous this means that

1 s ]
3<f(3';?/) ;f(y)< s TS
a contradiction.

(c): It is rather easy to show that for every set X = v—(f) property (4.9) holds. To prove the
converse, assume that X # @ is a set for which (4.9) holds. Define f = v(X) and X’ = y=(f).
We show that X’ = X. The composition y~7 is an opening on P'(IR%), hence a closing on
P(IR?). This yields that X C y~y(X) = X'. Therefore, we must show that X’ C X. Suppose
that y € X', that is, f(ry) < r for every r > 0. This means in particular that f(y) < 1. As



f = v(X), this implies that inf{s > 0|y € sX} < 1. If y = 0 then y € X. Therefore we may
assume that y # 0. We distinguish between two cases.

1. y € sX for some 0 < s < 1. Then 1y € X, and (4.9) yields that y € X.

2. y € s, X for some sequence {s,} converging to 1 from above. This yields that iy € X.
Now (4.9) implies that ry € X for r < 1, hence y € X.

In particular, Proposition 4.17(c) gives that a set which lies in the range of v~ and which
contains the origin, is star-shaped with respect to the origin, i.e., if x € X then rx € X for
0<r<I1.

From Proposition 4.17(a) we know that vy~ is a closing on P(IR%) and that " is a closing
on Fun(IRd). We derive explicit expressions for these operators.

Let w: P(IRY) — P(IR?) be given by

w(X) = ﬂ U rX,

s>10<r<s

and let T' : Fun(IR%) — Fun(IR%) be given by

O()(@) = \/ 1 7ra).

>0

4.18. Proposition.
(a) v~y = w, and this operator defines a closing on P(IR?).
(b) vy~ =T, and this operator defines a closing on Fun(IR?).

PROOF. (a): A straightforward computation shows that

T A(X) = {z € R [¥r >0 (X)(rz) <7}
={zeR|Vr>0: inf{s >0|rz € sX}<r}
={zeR*|Vr>0: r-inf{s>0|zesX}<r}
={z e R*|inf{s > 0|z csX}<1}.

Therefore, z € y=y(X) iff inf{s > 0 | z € sX} < 1. We show that v~ v(X) = w(X).
To prove ‘C’ assume that € y~v(X), that is, inf{s > 0 | z € sX} < 1. There are two
possibilities:
1. z € sX for some 0 < s < 1. In this case it is obvious that z € w(X).

2. z € s, X for some sequence {s,} converging to 1 from above. Then z € ;. <, 7X, for
every s > 1, and it follows that z € w(X).

To prove ‘O’ assume that z € w(X). This implies that inf{r > 0| z € rX} < s for every
s > 1. But then inf{r > 0|z € rX} <1, yielding that z € y=(X).



(b): For vy~ we derive

vy (f) = inf{r >0z €y (f)}
=inf{r>0|zer{z|Vs>0: f(sz)<s}}
=inf{r >0|Vs>0: f(gx)gs}
=inf{r >0|Vs>0: f(sz) <rs}

=inf{r >0|Vs>0: 1f(sac)ﬁr}
s

=inf{r > 0| \/ %f(sw) <r}

s>0

= \/ 2 (s2)

s>0

=I(f)(=)

This proves the result. |

From the literature on convex sets [22, Thm.14.5] it is well-known that
1(X°) = a(X),

if X is closed, convex, and if 0 € X. Since 7n2(X) satisfies these constraints for every X C RR?

(cf. Corollary 4.16) we get that y73 = on?. But 73 = 7 since (7, 7) is an adjunction, hence

ym = on?. This yields that yn? = o73 = on.

4.19. Proposition. yr = o7n? and yr? = o.

5. Two applications

In this section we outline the applicability of slope transforms for two different problems in
nonlinear image analysis, distance computation and partial differential equations of the evolution
type that model morphological scale-space.

5.1. Distance transforms

Let || - ||, denote the norm on R? given by

=

Izll, = (Jz1|? + |z2|? + - + |zal?)

Given a set X C R, we define its distance transform (also known as its distance function) with
respect to p-norm by

D,(X)(@) = A llz = yll

yEX

The distance transform has various applications in image analysis and computer vision. For
example, its thresholds at levels 7 > 0 yield the multiscale dilations of X by the balls 7B,
where B, is the unit ball with respect to the p-norm. Further (for p = 2), its local maxima
provide the points of the skeleton (medial) axis of X¢. Then, if we consider the upper indicator
function ¢, (X), and the convex conical structuring function

9(z) = [l=[lp,



it follows that

Dy(X)(z) = N (X)) +llz = ylp) = (1, (X)Dg)().

yeR4

In other words, the distance transform of X can be obtained as the infimal convolution of
the upper indicator function of X with the conical norm function. This infimal convolution is
equivalent to passing the input signal, i.e., the set’s upper indicator function ¢, (X), through an
ETI system with slope response

@)= N\ lzl, - (z,0).

z€ER?

It is evident that ¢g*(v) < 0. Furthermore, by using Hélder’s inequality we get

[(z, o)| < lzllp - llllq

where the exponent ¢ is determined by

Thus we find that
g"(w) = N\ lzlp(1 = vllg)-

z€R?

0, e <1
g"(v) :{ ” “q

—00, |vflg > 1.

Therefore, g” is equal to

That is, the distance transform is the output of an ideal-cutoff slope-selective filter that rejects
all input planes whose slope vector falls outside the unit ball with respect to the | - ||; norm,
and passes all the others unchanged.

5.2. Hamilton-Jacobi equations for multiscale morphology

Let K : R? — IR be a u.s.c. concave function. Consider the parameterized family {K, | ¢ > 0}
given by
Ky =g, (i.e., Ko(x) = 0 if z = 0 and —oo elsewhere)

K,(z) = tK(z/t), =€ R% t>0.
This family satisfies the semigroup property
Kt®Ks :Kt+37 S,tZO. (51)

Let, for a given input f, the function u : [0,00) x R? — IR? be given by

u(t,z) = (f & Ki)(x).

We have the following heuristic derivation of a PDE (partial differential equation) for u(¢,x).

First we note that 5 1
a—qz(t,ac) = lsllI{)l B [u(t + s,z) — u(t, x)] :



We use that u(t + s,-) = u(t,:) ® Ks;

%(t,z) = lsiﬂ)l % Ll{{d (u(t,z — h) + sK(h/s) — u(t,x))]
= ls;lr(r)l % [ \/ (u(t,z — sh) — u(t,z) + sK(h))]

Presuming that u(¢, z) is differentiable in  we may write:
u(t,x — sh) —u(t,z) = —(sh, Vu(t,z)) + o(s), s]0,

where s71o(s) — 0 as s | 0. Here Vu denotes the gradient of u. We get

.anyﬂm1V[KM%%hwﬂﬁ»+“ﬂ
heR?
=V [E®) ~ (b Vu(t,2)]
heR?
= KY(Vu(t, z)),

where KV is the upper slope transform of K. Writing u; = du/0t we arrive at the evolution
equation:
uy = KY(Vu). (5.2)

Before we solve this equation, we give a short treatment of a class of PDE’s known from
mathematical physics, the so-called Hamilton-Jacobi equation, given by

wy + H(Vw) =0, (5.3)
where the Hamiltonian H : R® — IR is a convex function which satisfies

Hp) = +o0. (5.4)
lpll—oo lp||

(A function which satisfies (5.4) is called coercive.) The Young-Fenchel conjugate L = H*,
called the Lagrangian, is finitely-valued, convex, and coercive. If f is bounded and Ls.c., then
the function w(t,-) given by

(4 t=0
Mto_{fﬂh,t>m

where Li(z) = tL(z/t), has the following properties:

e w(t,x) — f(x) ast ] 0, for every x;

e w is locally Lipschitz continuous (hence differentiable almost everywhere);

e at every (¢,z) where w is differentiable, it satisfies the Hamilton-Jacobi equation (5.3).
In the literature w is called the viscosity solution of the Hamilton-Jacobi equation; see [16] for
a comprehensive account. For other literature on the Hamilton-Jacobi equation, see [3].

The relation between the Hamilton-Jacobi equation (5.3) and our morphological evolution
equation (5.2) is as follows: if we substitute u = —w in (5.2) we get

—w; = KY(—Vw).



With relation (3.10) this can be written as
wy + (=K)*(Vw) = 0. (5.5)

If we assume that K is concave, u.s.c., and coercive, then the Hamiltonian H = (—K)* is convex,
Ls.c., and coercive, and the Lagrangian is given by

L=H"=(-K)**=-K.
The viscosity solution of (5.5) with w(0) = —u(0) = —f is given by
w(t,) = (~f)OL = (~f) O (~K)..
Therefore, the “viscosity solution” of our morphological evolution equation (5.2) is given by
ut,:) = =(=f)0(-K): = f © K.

We summarize our findings in the following result.

5.1. Proposition. Assume that the function K is concave, u.s.c., and coercive. If f is bounded
and w.s.c. then the function u(t,-) = f ® K; satisfies

e u(t,z) — f(z) ast | 0, for every z;

e u is locally Lipschitz continuous (hence differentiable almost everywhere);

e at every (t,x) where u is differentiable, it satisfies the evolution equation (5.2).

For example, if K(z) = —1||z|?, then KV (v) = 1||v|2.
For some related results on multiscale morphological evolution equations, the reader may

refer to [1, 20, 28].

If we take a flat structuring element, K = ¢,(A) with A a closed convex set, we arrive at

the equation
u = o(—A)(Vu).

If A is symmetric (A = —A) and contains the origin in its interior, then o(—A) = o(A) equals
the gauge functional of the polar set

A° ={z | {a,z) <1, for alla € A}.

This gauge function is a norm with unit ball A°. The examples treated in [5, 6] fall inside this
class.

6. Conclusions and Discussion

In recent studies in mathematical morphology [17, 18] and [7], the slope transform has emerged
as a transform which has similar properties with respect to morphological signal processing as
the Fourier transform does with respect to linear signal processing. Its main property is that it
transforms a supremal convolution (morphological dilation) into an addition, in the very same
way as the Fourier transform transforms a linear convolution into a multiplication. At an earlier
stage, Ghosh [9] built a computational framework for Minkowski addition and subtraction of
convex and non-convex polygons based on the so-called slope diagram, a concept which is very
closely related to the slope transform.



There is, however, an important difference between the Fourier transform and its morpho-
logical counterpart, the slope transform. The Fourier transform is invertible, whereas the slope
transform only has an adjoint in the sense of adjunctions. This means that the ‘inverse’ of the
slope-transformed signal is not the original signal but only an approximation within the subcol-
lection of convex or concave signals. This is why convex analysis plays such a prominent role in
the study of the slope transform. We have pointed out various relations with known concepts
from the theory of convex sets and functions, such as the Legendre transform, the (Young-
Fenchel) conjugate, the support function, the gauge function, and set polarity. In particular, we
have explained how such classical concepts can be studied as complete lattice operators. This
allows one to reformulate various known results, and even to extend a number of them.

The complete lattices considered in this papers are either lattices of sets or of functions. For
an abstract treatment of the slope transform on arbitrary complete lattices we refer to [12].
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