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Entropy Conditions for Heterogeneity Induced
Shocks in T'wo-Phase Flow Problems
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Abstract

We study two-phase flow in a porous medium with piecewise smooth
permeability. If capillary forces can not be neglected, the flow problem
is parabolic. Without capillary forces this problem degenerates to a
hyperbolic conservation law with a discontinuous flux function. The
solution for this problem has stationary shocks at discontinuities in the
permeability. In this paper we derive an entropy condition for these
shocks by studying the limit case of vanishing capillarity.
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1 Introduction

We study two-phase flow in a 1D porous medium with piecewise con-
stant permeability including gravitational effects. If capillary diffusion
can not be neglected, the flow problem is parabolic. Assuming the
classical Leverett model for the capillary pressure, the solution is dis-
continuous at heterogeneities in the permeability. However, except for
some degenerate cases the capillary pressure is continuous.

Without capillary forces the flow problem degenerates to a first or-
der hyperbolic conservation law with a discontinuous flux function. In
general the solution for this problem is again discontinuous at hetero-
geneities in the permeability. These discontinuities can be considered
as stationary shocks. Here we derive an entropy condition for these
shocks by considering the limit case of vanishing capillarity.

An outline of this paper is as follows. In Section 2 we present
the standard two-phase flow model, and in Section 3 we consider the



derivation of the interface conditions at heterogeneities in the capil-
lary dominated case. This is of interest because the procedure is the
same as we use in Section 4 for deriving entropy conditions in the hy-
perbolic limit case of no capillarity. In Section 4 we first present the
standard way for deriving the entropy condition, namely by a ’vanish-
ing viscosity’ argument. Next we derive the new entropy condition by
a vanishing capillary diffusion argument. This new entropy conditions
appears to be more restrictive than the standard one.

2 Equations

In this section we briefly state the two-phase flow model. For a more
elaborate introduction the reader is referred to e.g. Bear [5] or Aziz
and Settari [1]. The volumetric flow rate of two immiscible fluids in a
porous medium is given by the generalized Darcy’s law,
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with k£ the absolute permeability, g acceleration due to gravity and g,
kro, P, Pa and p, the Darcy velocity, relative permeability, viscosity,
pressure and density of the wetting phase w and the non-wetting phase
n, respectively. The saturation of each phase « is denoted by s, so

Sy + 8, = 1. (2)

In the sequel we drop the subscript on s,. In addition to these mo-
mentum equations we have mass conservation laws for both phases,
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with ¢ the (constant) porosity of the rock. The pressure of the non-
wetting fluid differs from the wetting fluid because of interfacial tension
on the microscopic pore level. This pressure difference, which is called
the capillary pressure p., obeys the so called Leverett-relationship

Pn — Pw :Pc(m73) =0 m‘](s)v (4)

with o the interfacial tension.

We assume that the relative permeabilities k., (s) and k. (s) are
continuously differentiable on [0, 1], and that J(s) is continuously dif-
ferentiable on (0, 1]. Further we assume that they satisfy

® kyy is strictly increasing such that k., (0) = 0 and k. (1) =1,



o k.p is strictly decreasing such that k,,(0) = 1 and k,,(1) =0,
e J'<0on (0,1] and J(1) > 0.
In one space dimension the system of partial differential equations can

be reduced to a single convection-diffusion equation using the incom-
pressibility of the fluids. After appropriate scaling we obtain

Os 0 - v 0 J(S) _
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with g the_(scaled) total flow which is determined by the boundary
conditions, A the total mobility that is defined by

kpw(8)krn(s)
krw(8) + krn(s)pw / pin”

and Ny and N, the gravity and capillary numbers that are defined by
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with k*, ¢* and L* characteristic values for the permeability, flow rate
and length, respectively.

In the following two sections we study what happens if k(z) is
discontinuous. In Section 3 we consider the case that the capillary
forces can not be neglected, i.e., if the capillary number N, is not
small. In Section 4 we consider the case that N. vanishes, and (5)
degenerates to a first-order hyperbolic conservation law.
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3 Interface Conditions With Capillary Forces

At discontinuities in k(z) the partial differential equation (5) ceases to
hold. At those points we need interface conditions. To derive them we
consider a medium with a single discontinuity at z = 0, i.e. k satisfies

| kT, =<0,
v ={ b 230 ©)
The first interface condition, the flux continuity condition, is straight-
forward. Assuming that the time derivative in (5) is bounded, we
integrate this equation in a small neighborhood of z = 0. This leads
to continuity of the flux,

I;%ng(:c,t) Igirolqw(:c,t), (10)



where the wetting phase flux g,, is given by

o J(s)
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qw = fu(8)gs — Ngk(z)A(s) + Nck(z)A(s) (11)
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The other interface condition, the eztended pressure condition, is
obtained by regularization of k. Following an earlier idea by Yortsos [T7]
we approximate the discontinuous function k(z) by a smooth monotone
function k.(z) that differs from % only in a small interval (—e, €) around
the discontinuity. Then we determine the differential equation that
should be satisfied by the limit function in the transition interval for
vanishing e. From this differential equation a relation can be derived
between the saturations at the end points of the interval. This relation
is the other interface condition.

Let s, be the solution of the problem with the regularized perme-
ability k. and gy the corresponding wetting phase flux. By rescaling
y := z /e we blow up the interval (—¢, €). Inside this interval we have

o J(s.)

oy —ke(y)' (12)

Que = fuw(Se)qt — Ngke(y)X(sE) + %che(y)X(sE)

Boundedness of g, for € tends to zero implies

SRR ACO R
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A pair (s7,sT) is said to satisfy the extended pressure condition if it
satisfies the first-order ordinary differential equation (13), and the two
boundary conditions

lim s.(y) =s" and lim s.(y) = s™. (14)
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A careful analysis of this problem (see Van Duijn and De Neef [3] and
Van Duijn e.a. [2]) yields the following condition:

Hs7) _I6H) i et < gt
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5™ =1, if s* < st <1,

where s~ and st correspond to the limit value of s at the side of the
lowest permeability and the highest permeability, respectively. The
first part of the condition (15) is a jump condition for the saturation:
it states the continuity of capillary pressure. The second part indicates
that the capillary pressure need not always be continuous if J(1) > 0.
In this case there exists a critical saturation s*,
*

)0, (19)
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Figure 1: Capillary pressure p, as a function of s with k* > k~. If J(1) > 0
there exists a critical saturation s* such that p. can not be continuous if
+ *
sT > st

such that the capillary pressure can not be continuous if st > s* (see
Figure 1). Notice that s* = 1 if J(1) = 0, which implies that the
capillary pressure is always continuous if J(1) = 0. Considering the
capillary pressure curves used in practice, we observe that J(1) > 0
for the Brooks-Corey curve and that J(1) = 0 for the Van Genuchten
curve.

4 Entropy Condition for Hyperbolic Limit
If capillary forces can be neglected completely, i.e. if N, = 0, the

convection-diffusion equation (5) reduces to the first-order hyperbolic
conservation law

0s d
5 T 3. F (k) =0, (17)
with _
F(s,k) = fu(s)gs — Ngk(z)A(s). (18)

Again we consider the case that k£ has a single heterogeneity at the
origin as in (9). Continuity of flux at the heterogeneity implies

F(s™,k™) = F(st,kt) = F, (19)

which is the Rankine-Hugoniot condition for a shock that moves with
zero speed. It is well known that the Rankine-Hugoniot condition is



in general insufficient to single out unique solutions of initial value
problems, and an extra condition, an entropy condition, is needed.

The standard way to derive such an entropy condition for (17) is
to regularize the problem by adding a small diffusion term (see e.g.
Langtangen and Tveito [6] or Gimse and Risebro [4]),

0s. 0 0%s,
ot Tant Gek) =G

(20)

which enforces continuity of s.. As in the previous section we consider
the behavior of s, in the neighborhood of z = 0 if € tends to zero.
We assume that the time derivative of s, remains bounded, and blow
up the transition region around the origin by rescaling y := z/e. A
shock (57, s*) satisfies the entropy condition if it has a viscous profile,
that is, if there exist a solution s. that satisfies the first-order ordinary
differential equation (cf. Equation (13))

ds,
dy

= F(se,k) — F, (21)

with the two boundary conditions

lim s.(y)=s" and lim s.(y) = s™. (22)
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The shock (s, s7) with s~ < st satisfies this entropy condition if (see
e.g. Langtangen and Tveito [6]): 35 € [s, s*] such that

Vs € (s7,38),
Vs € (5,s%).

|
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TFa (23)
As similar condition is found for the case sT < s~. This condition
implies that the solution of the regularized problem s, is monotone
increasing for all values of y. Figure 2 shows the condition (23) in
the (k, s)-phase plane. Here it is important to note that according to
Equation (9) k(y) only assumes the values k= and k™.

Although this way of regularizing the hyperbolic problem in order
to obtain the entropy condition is well established from the mathemat-
ical point of view, it is less satisfying from the physical point of view.
Instead of just adding a small linear diffusion term, it seems to be more
appropriate in the context of two-phase flow to use the capillary diffu-
sion term for regularizing the problem. In the previous section we have
outlined the procedure to deal with the regularization of problems in
cases that capillary diffusion can not be neglected. For any small non-
zero value of the capillary number N, we obtain the interface condition
given by Equation (15). This interface condition involves the Leverett
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Figure 2: Standard entropy condition in the (k, s)-phase plane for the case
s~ < s*. Indicated is the sign of F(s,k) — F

J-function. However we want the entropy condition to be independent
of the particular choice for the J-function that is being used.

To avoid this dependence on the J-function we consider a different
procedure. Instead of letting the interval in which the regularized
permeability k. differs from & vanish and keeping the capillary number
N, fixed, we not let both terms tend to zero. Suppose that k. varies in
an interval of length L., and that the capillary number is of the form
€N, with N, fixed. As before we rescale by y := z/¢ and obtain the
following expression for the flux in the regularized problem:

F = F(se, k) +eNcX(sE)k% <J\'/(Z_:) ‘Zj - ;}Ei;lké(yﬂ - (29

In order to get rid of the explicit dependence on the shape of the
smooth, monotone function k. that is used to regularize k, we estimate

k()| = O(Li) for € — 0, (25)
and assume that c
li_r)% L_e =0. (26)

A shock (s7,sT) satisfies the new entropy condition if there exists a
s¢ such that for any admissible regularization k. (cf. (13,21))

(_NCX(SE)\/EJ'(SE)) i—j = F(se, ko) — F, (27)

with
lim s.(y) =37, lim s.(y) =st, (28)
Yy——c0 y—+oo
lim k(y) =%k, lim k.(y) =k (29)
Yy——c0 y—+oo



(k+,3+) (k+,3+)

- - - - + + 4+ +

+ + + + - - - -

(k,s7) (k,s7)
Figure 3: Sign of ‘(ii—’; in the (k,s)-phase plane with k* > k= (left), and
kT < k™ (right).
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Figure 4: Sign of F(s,k)—F in (k, s)-phase plane for the case that F(s,k*)—
F changes sign.

The fundamental difference between this approach and the standard
approach (21) is that Equation (27) now involves values for k. in be-
tween k~ and kT. For the flux function F(s,k) it follows from (18)
that

sign (‘;—D = sign (—N,). (30)

Let us consider the case s~ < st and Ny < 0. In Figure 3 the sign
of ‘(li“;e is shown in the (k, s)-phase plane for the two different values of
sign (k¥ — k7). Here we have used (19) and (30). If we want s, to be

bounded by s~ and st for any k. it is clearly necessary to require

sign (kT — k™) = sign (sT — s7) *sign (—NN,). (31)



F(s,k)| *~ kTt

Figure 5: Example of a shock that satisfies the standard entropy condition,
but violates the new entropy condition.

However this is condition alone is insufficient to guarantee the existence
of a solution to (27) that satisfies the boundary conditions (28). Sup-
pose that s~ < s*, Ny < 0 and that condition (31) holds, so k™ > k™.
If F(s,kT)—F changes sign for some § € [s™, s1] this implies (cf. (30))

F(5,k)—F <0, Vk<kt. (32)

This situation is shown in Figure 4. Clearly the solution s. can not

cross the line s = § in the phase plane. Conversely, if F(s, k%) —

F does not change sign there is always a solution s, possible. This

consideration leads to the following entropy condition for the case s~ <
st:

sign (k* — k) = sign (—NN,), (33)

F(s,kT)—F >0, Vsc(s,s). (34)

A similar condition holds for the case s~ > s™.

A comparison of this new entropy condition with the standard en-
tropy condition (23) is interesting. If condition (33) holds, then condi-
tion (34) and the standard entropy condition (23) are equivalent (see
Figure 4). However there exist pairs (s, s%) that violate condition
(33) but do satisfy (23). An example of this situation is shown in Fig-
ure 5. Here we have taken Ny < 0, k¥ < k™ and s* > s~, which
clearly violates condition (33). However by taking § = s* we see that
the standard entropy condition (23) is satisfied.



Conclusion

We have studied two-phase flow through heterogeneous porous media
including gravity effects. In the case that there is no capillarity, the
solution has stationary shocks at discontinuities in the permeability.
An entropy condition for these shocks has been derived by consider-
ing the case of vanishing capillarity. This new entropy condition does
not depend on the particular shape of the capillary pressure curve or
permeability function that is used for the regularization. The new
entropy condition is more restrictive than the standard one that is de-
rived by a ’vanishing viscosity’ argument. This difference is caused by
the fact that in our approach also the discontinuity in the permeability
is regularized, so that we have to consider intermediate values for the
permeability.
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