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Abstract

In this paper we report on the use of the Larch Prover to mechanize the correctness proof of the audio control

protocol as presented in �BPV����
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SION ����������	�

�� Introduction

The systems that are analysed using formal methods increase in size and complexity and so
do the proofs� Because it is not realistic to assume that a proof of �� pages is �awless� the
computer is asked for help to check those proofs� The protocol that is subject of investigation
here is a fragment of the Enhanced Easy Link �EEL� protocol� This protocol is used by
Philips to communicate control information between the components of an audio set �CD�
DCC� ampli	er� tuner etc�� Though a simpli	ed version of the protocol is veri	ed �the same
as in 
BPV��
� it is still fairly complicated�

As a vehicle to mechanize the proof we used the Larch Prover �LP�� LP is a proof�checker
for 	rst�order predicate logic and it is based on rewriting� It has been used for protocol
veri	cation in a comparable model MMT 
LSGL��
� Here we use the Linear Hybrid Systems
�LHS� model of 
BPV��
� the semantics of systems in this model is de	ned in terms of timed
I�O�automata 
LV��� LV��� GSSL��
�

We think that both general proof checkers and model checkers are useful for protocol
veri	cation� Model checkers require the description to be 	nite in some sense and sometimes
the type of questions the system can answer is restricted� On the other hand the advantage
of model checking is of course that the questions are answered without any user interaction�
When using general mathematical proof checkers almost no restrictions on the description
of the system and�or the type of questions exist� But here much more user interaction is
required to 	nish the proof�

As a correctness criterion we use trace�inclusion between the EEL protocol and a speci	�
cation� This tells us that the EEL protocol behaves like a message bu�er with capacity one
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Figure �� Manchester encoding of �������

and that each message is delivered before a speci	ed moment� To prove this we use invariants
and a simulation relation�

We formalized the whole proof� including proofs of simple identities like x � � � �� Other
users of LP 
CL��
 chose to concentrate on the crucial parts and assume simple properties
like

��� � X � jY j � �i���Y � ���� �jY j � �i � X � �Y � �i� � ��

We proved facts like these because if they are really simple it should be easy to prove them
and when they are not simple it is possible that one makes a mistake� Also� we think it
interesting to see what happens if one tries to prove everything from the basic axioms�

This paper is organized as follows� In the next section the EEL protocol is introduced� In
Section � the LHS model is informally introduced� In Section � the model and the protocol
are formalized� In Section � the Larch Prover is introduced� In Section � the correctness
proof is formalized� In the last section we discuss the results of our work� In two appendices
an example proof is presented and the formal speci	cations are listed�

�� The EEL�protocol

The EEL protocol is used by Philips for communication of control information between the
components of an audio set� When for instance only the ampli	er has a red�eye to receive
the commands of the remote control� the other components receive these commands via the
EEL�protocol� It is also used to implement �added intelligence�� one can copy a CD to a
cassette by pressing a single key� the CD and the cassetedeck are started and when the CD
has 	nished playing the deck stops recording� In fact the components are connected by a
small local area network �LAN�� This network has one special quality� it is cheap� It uses
only one wire� no extra clock wire is needed� Furthermore high tolerances on the timing are
allowed� this makes it possible to implement the network via processors that are also used
for other tasks�

To transmit messages from one component to the other� Manchester encoding is used� The
components are connected by a single wire� the bus� On this wire the voltage can be either
high or low� Time is divided in bit�slots of equal length� Bits are transmitted half�way the
bit�slots� a bit � is transmitted by changing the voltage from low to high� a bit � is transmitted
by changing the voltage in the other direction� If the same bit is transmitted twice in a row�
the voltage changes exactly in between� See Figure � for an example�

This is the basic idea but some problems must be solved�

�� The down�going edges are not sharp enough to be accurately detected� so the receiver



�� Linear Hybrid Systems �

only detects the up�going edges� To make correct reception of messages still possible� a
restriction is needed� only messages of odd length or ending in �� are valid�

�� The receiver does not know when the 	rst bitslot of a message starts� Therefore each
message starts with a bit�� and between messages the voltage on the wire is low�

�� The receiver does not know the length of the message it is receiving�

�� All timing is inexact because the protocol has to share one micro processor with several
other processes� The Philips documentation of the protocol allows a tolerance of ���
on all timings�

�� Arbitration is needed when two senders start transmitting at the same time�

�� The delay on the bus can be signi	cant�

Problems � and � are not addressed in this paper� problem � is analysed in 
Gri��
�

�� Linear Hybrid Systems

In this section we give an informal introduction into the LHS model of 
BPV��
� The seman�
tics is de	ned using �old�fashioned recipes� 
AL��
� in a layered fashion� The I�O automata
model is based on labeled transition systems� In the untimed case the transition labels can be
input and output actions� which model the interactions of a system with its environment� and
internal actions� which model internal computation steps� In 
LV��� LV��
 it is shown how
real�time systems can be represented as labeled transition systems by adding� as additional
labels� time�passage actions� In the resulting model of timed I�O automata the continuous
progress of real�time is represented by a continuum of discrete time�passage transitions� The
LHS model can be viewed as a subclass of timed I�O automata� 
BPV��


The precondition�e�ect�style is used to de	ne the LHS�systems� Each state of the labeled
transition system is described by a valuation of the state variables� When the init predicate
holds for a state� it is a start state� For every state variable v we have a primed variable v�

to denote the new value of v after a transition� The labeled transitions are described by the
precondition and e�ect functions� When the precondition holds in a state s and the e�ect on
s is s� then a transition from s to s� exists�

In Figure � an example of a LHS in the style of 
BPV��
 is given� The system receives
a message by a IN action and after length�message� time units the message is transmitted
by an OUT action� The clock �x� is not very accurate� when time elapses by d the clock is
advanced by an amount between ���d and ���d� The discrete variables �list in the example�
are not allowed to change during a time step� this is expressed by Unchanged �list� in the
TIME�d� action predicate� Now we come to a somewhat subtle point� Suppose the length
of the message is �� then the OUT action must occur when x equals �� What happens if x
equals �� the time action takes a �giant� leap to a new state where x equals �� That is� the
TIME�d� action didn�t allow the OUT action to occur� This scenario is not possible because
Stable�Below �x� prec�E�OUT �list���� states that if the OUT �list� action is possible now or in
the future this should still hold after the time step� The function prec�E�OUT �list�� returns



�

Discrete� list � List
Continuous� x � Time

init� list � � � x � �

IN�m�
E�ect

list �� m	 x �� 


OUT �list�
Precondition

x � length�list� � list �� �

E�ect

list �� �

T IME�d�
Action formula

� d � 

� Unchanged�list�
� �
�� � d� � x� � x � ���� � d�
� Stable�Below �x� prec�E�OUT �list����

Figure �� Example of LHS�system



�� Formal speci	cation �

the precondition of the action OUT �list� of the system E� The other functions used in the
action formula of the TIME�d� action are de	ned as follows�

For W a 	nite set of unprimed variables� � an unprimed formula� and x an unprimed
variable�

Unchanged�W �
�

�
V
w�W w��w

Stable���
�

� �� ��

Below�x� ��
�

� �x� � x � x� � �
x��x
�

Note that system E forgets the former message when a new message is received before the
current message is transmitted�

In LHS�systems a clock is just a continuous variable� updated by the time action� A
clock can be inspected and reset by all actions� compared to other values or other clocks�
Furthermore a clock can di�er from the ideal clock �see example�� so a lot of other things can
be described using continuous variables �water�levels� leaked gas�� Of course the behaviour
of the time action is restricted� for instance two steps of one time�unit should result in the
same state as one step of two time�units� For a formal de	nition of the restriction on the
time action we refer to 
BPV��
�

�� Formal specification

To formalize part of the LHS�model and the protocol the Larch Shared Language �LSL�
is used� LSL is a 	rst�order algebraic speci	cation language� also used to specify software�
Besides LSL the Larch family consists of several other languages� the Larch interface lan�
guages� These make it for instance possible to specify a program partly in LSL and partly in
programming language such as C and still do type checking�

In this paper LSL is used as a front�end for the Larch Prover �LP�� The LP input corre�
sponding to a speci	cation in �lename can be generated automatically by lsl �lp �lename�

We will start with the LSL speci	cation of the List and Time data�types� Then we will
formalize part of the LHS model� followed by a formalization of the EEL protocol� Finally
the correctness criterion will be given�

��� Lists and Time in LSL

In this section we will give the List and Time traits that we will use in the speci	cation of
the EEL protocol� The List data type will be used in the protocol to store the messages�
Here we will use the speci	cation as a LSL example� We will present the LSL speci	cation
piece by piece�

�
List � trait

includes Bit� Nat



�

In the 	rst line the name of the trait �module� is given� In the second line the traits Bit
and Nat are included� Including a trait is taking the union of the introduces and asserts

clauses of the current trait and the included traits�



introduces

head � List �� Bit

tail � List �� List

last � List �� Bit

last�two � List �� List

length � List �� Nat

empty � �� List

�� � �� � List � List �� List

���	 � Bit �� List

finalize � List �� List

The introduces clause introduces new function symbols and their types�

�
asserts

List generated by empty����	�Bit��List��


forall d�e � Bit� m�l�l� � List

head�empty
 � ��

head��d	�m
 � d�

tail�empty
 � empty�

tail��d	�m
 � m�

last�empty
 � ��

last�m � �d	
 � d�

last�two�empty
 � empty�

last�two��d	
 � �d	�

last�two�m � �d	 � �e	
 � �d	 � �e	�

length�empty
 � ��

length��d	 � m
 � s�length�m

�

finalize�m
 � �if last�m
 � � �
 odd�length�m



then m

else m � ��	
�

A generated by clause asserts that a list of operators is a complete set of generators for
a sort� That is� each value of the sort is equal to one that can be written as a 	nite number
of applications of just those operators� and variables of other sorts 
GH��
�

Lists are generated by the empty list �empty�� lists with one element ������ Bit �� List�
and the concatenation operator ���� The axioms for the functions head� tail� last� last two�
length and �nalize are taken from 
BPV��
� The �nalize function is speci	c for the speci	cation
of the EEL protocol� It is used in the speci	cation of the receiver� When necessary it adds a
��bit to a message�

�
��l � l�
 � m
 � �l � �l� � m

�



�� Formal speci	cation �

m � empty � m �

empty � m � m �

�d	 � l �� empty �

d � e �
 l � l� ��� �d	 � l � �e	 � l�

These axioms complete the speci	cation of our List data�type� These were implicitly
assumed in the handwritten proof� but we had to make them explicit in the formalization�

Note that the booleans and the conjunction �	
� are part of the LSL language� Also the
if then else construct is part of LSL�

Each well�formed trait de	nes a theory in a multisorted 	rst�order logic with equality� Each
theory contains the trait�s assertions� the conventional axioms of 	rst�order logic� everything
that follows from them� and nothing else� This loose semantic interpretation guarantees that
formulas in the theory follow only from the presence of assertions in the trait � never from
their absence� Using the loose interpretation ensures that all theorems proved about an
incomplete speci	cation remain valid when it is extended� �page �� 
GH��
��

In Appendix B�� the Time trait is given� The continuous variables of LHS are of type Real�
As mentioned in 
BPV��
� for the purpose of this veri	cation any interpretation of Real as
an ordered 	eld will do� the only properties of reals that we use are the axioms for ordered
	elds� So the Time trait contains essentially the properties of an ordered 	eld� For notational
convenience some functions and constants are added� like the integer numbers � �� ��� the
other inequalities �	� ���� and the min function� Speci	c for this veri	cation a constant T�
which denotes the drifting of the clocks� is added� Furthermore an �almost� equal operator 

is de	ned that will be used in the proof� In LSL and LP there is no need for functions to be
total so we did not add ��� � � as in 
BPV��
�

��� The LHS model

In this section the LSL�speci	cation of the LHS�model is given� That is� a part of the model�
traces� executions and simulations� Not de	ned in this paper are� composition of systems�
hiding and liveness� As starting point we used traits for MMT�automata that are presented
in 
LSGL��
� The main di�erence is the way time is handled� the adaption comes down to
deleting some traits �the ones that handle time intervals� and slightly adapting the others�

In Figure � the trait System is depicted� This trait contains the basics for all systems� every
trait that de	nes a LHS�system will include this one� In this trait are the declarations for
the underlying labeled transition system� the sort States�A� corresponding to the states of
the system� the function start denoting the set of start states� the function isStep denoting
the transition�relation� Using the brackets 

 	nite sequences are constructed� s�a�s�a�s�
is written as 
s�

a�� s�

a�� s�
� The function execFrag tests if a sequence is an execution�
fragment and the function trace returns the list of visible actions from a sequence� The
common function is needed because in the formalization every system has its own sort for
actions and sorts are disjunct in LSL� The common function maps the actions that systems
have in common to a new sort CommonActions �see appendix B���� This makes it possible to
compare the actions and traces of di�erent systems�



�

System�A
�trait

introduces

start � States�A	 �� Bool

pre � States�A	� Actions�A	 �� Bool

eff � States�A	� Actions�A	� States�A	 �� Bool

isStep � States�A	� Actions�A	� States�A	 �� Bool

���	 � States�A	 �� StepSeq�A	

��������	 � StepSeq�A	� Actions�A	� States�A	 �� StepSeq�A	

execFrag � StepSeq�A	 �� Bool

first� last � StepSeq�A	 �� States�A	

isVisible � Actions�A	 �� Bool

common � Actions�A	 �� CommonActions

empty � �� Traces

�� � �� � Traces� CommonActions �� Traces

trace � Actions�A	 �� Traces

trace � StepSeq�A	 �� Traces

reachable � States�A	 �� Bool

asserts

StepSeq�A	 generated by ���	� ��������	

Traces generated by empty� �


forall a�a� � Actions�A	� s�s� � States�A	� ss� StepSeq�A	

isStep�s� a� s�
 ��� pre�s�a
 �
 eff�s� a� s�
�

execFrag��s	
�

execFrag�ss�a�s	
 ��� execFrag�ss
 �
 isStep�last�ss
�a�s
�

first��s	
 � s� first�ss�a�s	
 � first�ss
�

last��s	
 � s� last�ss�a�s	
 � s�

trace�a
 � �if isVisible�a
 then empty � common�a
 else empty
�

trace��s	
 � empty�

trace�ss�a�s	
 � �if isVisible�a
 then trace�ss
 � common�a
 else trace�ss

�

reachable�s
 ��� 
E ss �execFrag�ss
 �
 start�first�ss

 �
 last�ss
 � s


Figure �� LSL trait System

Forward�A�B�f
 � trait

assumes System�A
� System�B


introduces f � States�A	� States�B	 �� Bool

asserts 
forall s� s� � States�A	� u � States�B	� a � Actions�A	�

alpha � StepSeq�B	

start�s
 �� 
E u �start�u
 �
 f�s�u

�

f�s�u
 �
 isStep�s�a�s�
 �
 reachable�s
 �
 reachable�u
 ��


E alpha �execFrag�alpha
 �
 first�alpha
 � u �


f�s�� last�alpha

 �
 trace�alpha
 � trace�a



Figure �� LSL trait Forward�lsl



�� Formal speci	cation 	

We say that a system implements another system when the set of traces of A is a subset
of the set of traces of B� To prove this we use a forward simulation relation between the
implementation and the speci	cation� In a forward simulation each start state of the im�
plementation is related to at least one start state of the speci	cation� When two states are
related and the implementation can do an action a� the speci	cation can also do an action
a and the new states are also related� When it has been proved that a forward simulation
exists� a meta�theorem �see for instance 
LV��
� gives us the trace inclusion� In Figure � the
notion of a forward simulation is de	ned� Because it is restricted to the reachable states this
is essentially the �weak forward simulation� of 
LV��
�

In this paper we use the untimed interpretation of timed systems� In 
BPV��
 there
are input�� output� and internal actions and a special time action� Here we have visible and
invisible actions� where the input� output and time actions are visible and the internal actions
are invisible� In timed traces each action has a time stamp and the time action itself does not
occur as an action in the traces� An untimed trace of timed system is just a sequence of actions
and the time action occurs in it like the other visible actions� The untimed interpretation
is sound in the sense that trace inclusion in the untimed interpretation implies timed trace
inclusion in the timed interpretation� We chose to work with this untimed interpretation
because it is slightly easier to work with� We refer to 
LV��
 for a formal description of the
relation between the timed and the untimed interpretation�

��	 The EEL protocol

In appendix B�� the machine readable de	nition of the protocol is presented� In this section
we will point out the di�erences between the original speci	cation of 
BPV��
 and the Larch
trait S in the appendix�

The system de	ned in trait S corresponds to the composition of the sender S and the
receiver R with the UP action hidden as internal action �HIDE UP IN �S k R�� of 
BPV��
�
In this paper the whole system is presented directly instead of presenting the subsystems S
and R and the whole system as a composition of these� because the composition operator �k�
is not de	ned in LP�

Some di�erences between the original�speci	cation 
BPV��
 and the one given in this paper
are caused by abbreviations in the original speci	cation� For assignments the x �� c notation
is used instead of x� � c� The phrase if b then x �� c else x �� x is abbreviated to if b then

x �� c� When a variable is not assigned a new value� it is assumed to have the same value in
the new state� so x �� x is added implicitly� These notations are not formalized in LP�

A more substantial di�erence between the original and the LSL version of the speci	cation
is caused by the fact that LP does not support higher�order logic� In the original speci	cation
the phrase Stable�Below �x� prec�S�UP ��� expresses that� When the precondition of UP holds
or can hold in the future the TIME�d� action is not allowed to bring the system in a state
where this does not hold� The higher�order functions are replaced by 	rst�order functions
that exhibit exactly the same behaviour� For this purpose the function aux is introduced� it
is essentially the same as the precondition� The only di�erence is that the clock variable x is
added as a parameter� Using this help�function the phrase can be translated to�
��
E y �y �� s�S�x �
 aux�s�y�UP


 �� �
E z �z �� s��S�x �
 aux�s��z�UP








�

This section is 	nished by a small piece of a speci	cation in both styles to give an idea of
the distance between the two� First the �normal� notation is given followed by the Larch
Shared Language version� Note that this is not part of the EEL speci	cation as used in the
veri	cation because the error variable is not taken into account�

IN �m�
Precondition

� head�m���
� �odd�length�m�� � last two�m��h

i�

E�ect

if �transmitting � �wire high � list�� then �list �� m

x �� 
�

�
�� ��� IN�m
 ���

pre�s� IN�m

 �

�head�m
 � � �
 �odd�length�m

 
� last�two�m
 � ��	 � ��	

�

eff�s� IN�m
� s�
 � �

�if �s�S�transmitting �
 �s�S�wire�high �
 s�S�list � empty

then s��S�list � m �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x


�
 s��S�transmitting � s�S�transmitting

�
 s��S�wire�high � s�S�wire�high

�
 s��R � s�R
 �

��� Correctness criterion

Beside a speci	cation of the protocol a speci	cation of the desired behaviour is needed� the
LSL�de	nition of this system is presented in appendix B���

The speci	cation of system P is slightly di�erent from the original speci	cation 
BPV��

which contained a small mistake� The precondition of the OUT action was�

OUT �list�
Precondition

��list �� � � ��� T �x � ��length�list� � ��Q�
�chaos

but it should have been�

OUT �m�
Precondition

��list � m � list �� � � ��� T �x � ��length�list� � ��Q�
�chaos

This makes a di�erence when chaos is true� in the former case only OUT �list� actions
are allowed while in the new case OUT �m� actions for arbitrary messages m are allowed�
Although the 	rst version was on paper� the handwritten proof assumed the second speci	�
cation�



�� Introduction to LP 



�� Introduction to LP

The Larch Prover �LP� 
GG� GH��
 is an interactive proof support system� It does not use
complicated heuristics to search for a proof� It supports 	rst�order logic and is based on
rewriting� When LP is asked to prove a conjecture� it typically normalizes the conjecture
using the rewrite�rule versions of the axioms and the lemmas that have already been proved�
When a normal�form is reached the proof is suspended and the user can invoke a command�
We will mention a few typical options� The user can start a proof by cases� making LP to
generate a subgoal for each case� A proof by induction is possible when a sort has a set of
generators� This set of generators must be given by the user� LP will then generate a subgoal
for each generator� An other possibility is to apply a rewrite rule in the reversed direction� this
is allowed because the rewrite�rules are oriented axioms� not implications� When quanti	ers
are involved� variables or constants can be 	xed� specialized or generalized� Furthermore LP
can compute critical�pairs and complete a set of rewrite�rules� Besides these proof�commands
LP has commands to direct the orientation of axioms into rewrite�rules� to make rewrite�rules
inactive� to make proof scripts� etc� Because a proof in LP is based on rewriting� the tool is
good at it� it is fast and rewriting modulo associativity and commutativity is supported�

As mentioned before the lsl tool compiles the LSL�traits into LP scripts� These scripts
can be executed from LP to add the axioms of the traits to the current set of facts� The
	rst step of constructing a proof in LP is to orient the axioms into rewrite rules� Several
methods are provided to do this� The standard method is a registered ordering based on a
LP�suggested partial ordering of operators� This usually works very well without any user
interaction� This method is also used to orient the new facts� like assumptions and proved
conjectures� that are generated during the proof� We sometimes guided it toward the intended
result by providing a small part of the ordering on the function symbols� Another method is
polynomial ordering� we did not use this for the proof of this paper� The least elegant are the
�brute�force� ordering procedures� which give users complete control over whether equations
are oriented from left to right or in the other direction� This method is used sometimes in
a proof when we want to use a rewrite rule in the other direction� typically to expand a
de	nition �
 �� � � ���

If a set of rules is non�terminating and LP is �apparently� in a rewrite�loop LP will stop
the normalization after a number of rewrite steps� This number can be chosen by the user�
A reasonable number is one thousand� which is the default value� In our experience this
happens hardly ever� If it happens the user can do several things� One can increase the
maximum number of rewrite steps and resume the normalization� An o�ending rule can be
made inactive� thereafter LP will not use it in rewriting� Another option is to orient a rule
in the other direction� A more elegant solution is to use polynomial ordering or a registered
ordering to guarantee that the rewrite system is terminating�

Note that LP does not require the user to prove that the set of rules is consistent or
terminating� The authors expect that an inconsistency will reveal itself when one starts
using the rules in a proof�

When the user is satis	ed with the set of rewrite rules the proving can really start� When
a proof is non�trivial �and sometimes even when it is trivial� it is necessary to have a fairly
detailed handwritten proof before LP is started� It is possible to play around in LP and




�

just try a proof by induction and see what happens� And when it does not work use the
cancel command to backtrack to the point just before the induction proof was started� In
our experience this only worked in very rare cases�

We constructed most of our proofs in LP in several rounds� In the 	rst round we constructed
a rough proof� When a subgoal was not interesting but still complicated to prove we just
added the goal as an axiom to the system thereby skipping that part of the proof� Although
a proof with holes is not a proof at all� it still provides useful information� The user can go
to the problematic parts of the proof very fast and begin proving those parts� Hereby he
gets a higher con	dence in the correctness of the conjecture before starting with the time
consuming and boring parts of the proof� Furthermore it sometimes turned out that several
ad�hoc axioms were �almost� the same so it was useful to construct a lemma and use it to
prove these subgoals� instead of proving the same thing several times� In the next rounds we
proved some skipped subgoals� sometimes these proofs also contained some skipped subgoals�
We continued in this way till the proof was complete�

This method is possible and reasonable because LP can generate script�	les of the com�
mands the user types� The script 	les are plain ASCII 	les with neatly indented commands
with some extra annotation� When a subgoal is generated LP adds a diamond ���� and when
a �sub�goal is proved a box ���� is added� This annotation is useful when the conjecture
or the set of axioms is slightly changed and a proof is rerun� When LP runs a script and
encounters a box but has not proved a �sub�goal it stops and noti	es the user about the
problem� Without this annotation LP would execute all following commands to that subgoal
and it would be very hard to 	nd the place were the problems started�

To 	nish the introduction in LP� in the diagrams below two �very� simple LP proofs are
presented� The 	rst lemma states that length�m � �d�� � s�length�m��� while the cor�
responding axiom is length��d� � m� � s�length�m��� For this purpose a more general
theorem is proved� length�l � l�� � length�l� � length�l�� by induction on l� For
the l � empty case LP proves it without user interaction� Note that x � � �� x� � is com�
mutative and empty � m �� m� For the case l � �b��� where b� is fresh variable of type
Bit� some user interaction is necessary�

The subgoal now reads� s�length�l��� � length��b��� � length�l��� So we have to
convince LP that length��b��� � s���� We use the mempty fact� m � empty �� m and of
the List trait length��d� � m� � s�length�m��� A critical pair of these is
length��d�� � s�length�empty��� After this fact has been added� the proof is completed
by normalization�

�
set name p

prove �list�� length�m � �d	
 � s�length�m



prove length�l � l�
 � length�l
 � length�l�


res by ind on l

�� basis subgoal

�	 basis subgoal

�� basis subgoal

cri�pair List with mempty

�	 basis subgoal



�� Formalization of the proof 
�

�� induction subgoal

�	 induction subgoal

�	 conjecture

�	 conjecture

For the second example we do not give any intuition but only the facts mentioned in the
proof�

x �� y �� �x � z� �� �y � z�� �� TimeF�

x �� y 	
 � �� z �� �x � z� �� �y � z�� �� TimeF


x �� y 
	 y �� x� �� TimeL�



set name p

prove �time�� �x � x
 �� �

prove x �� � �� m�x
 �� �

ins y by �� z by m�x
 in TimeF�

�	 conjecture

res by case x �� �� m�x
 �� �

�� case justification

res by case � �� x

�� case � �� xc

�	 case � �� xc

�� case ��� �� xc


ins x by �� y by xc in TimeL�

ins x by xc in p

�	 case ��� �� xc


�	 case justification

�� case xc �� �

ins x by �� y by xc� z by xc in TimeF�

�	 case xc �� �

�� case m�xc
 �� �

ins x by �� y by m�xc
� z by m�xc
 in TimeF�

�	 case m�xc
 �� �

�	 conjecture

qed

�� Formalization of the proof

In this section we will report on the proof that there exists a weak forward simulation from
the implementation �S� to the speci	cation �P��

Unlike the handwritten proof the formal proof starts with proving data�identities� Apart
from three trivial lemmas over the Bit and Nat sorts we have a dozen identities over the
sort List� For instance last�l� � � �� ��last�two�l � ���� � ��� � ���� and
length�m � �d�� � s�length�m��� These are fairly easy to prove with LP� The twelve also
include some trivial ones like last��d�� � d and tail��d�� � empty� These hardly deserve
it to be a lemma� the proof consists of applying one rewrite rule in the reversed direction�




�

�d� � empty � �d� � �d� � empty� But once these identities have been proven� last�����
will be rewritten to � without further user interaction� This seemed very useful because
sometimes a conjecture did not normalize as expected because we assumed last����� � �

while LP did not know this� And when the logical system contains about four hundred
facts� some of them one screen full� it can be hard to 	nd that the reasoning is stuck at
last����� � ��

We have about thirty lemmas concerning the data type Time� Again we have some trivial
ones like� m��� � � where m�x� is the negation of x�� But we also have some lemmas that
needed some thought how to prove them in LP� We started with some basic properties like
� � �� For this one we needed about twenty proof commands� we think that this is not
an optimal proof� probably both at the abstract mathematical level and at the level of LP
commands it is possible to optimize it�

In the proof the relation between the clock of the sender and the receiver is very important�
In 
BPV��
 an operator 
 is used to express that two clocks are approximately the same�
that is� equal modulo drifting� It is de	ned as follows �our ASCII notation for 
 is ���

x 
 y
�

�
�� T

� � T
x � y �

� � T

�� T
x

About ten of the lemmas contain the 
 operator� these are relatively intricate to prove
in LP� An example is� y �� � 	
 x � y �� x � �y � ��� For this one we used about
forty proof commands in LP� It is listed in Appendix A� First we constructed a very detailed
handwritten proof of ten steps� The LP proof comes down to instantiating facts and explicitly
applying rewrite rules in the reversed direction� To prevent that we lose track we constructed
a sub proof for every step of the handwritten proof� Of course it is possible to do it without
a division in sub proofs but then the proof would consist of a long list of instantiate and
rewrite commands and it would not be clear how it corresponds to the handwritten proof�
Furthermore the logical system �the set of facts� would get messy� It would contain a lot of
instantiated rules and some other rules are made inactive to use them for reversed rewriting�
Sometimes such a messy system has unexpected rewrite properties� By using a proof for each
step� a proof context is created for each step� These are deleted when the step is proved and
only the sub�conjecture is added to the top context�

After the data lemmas the �real� proof starts� The rest of the proof presented here is the
Larch formalization of the proof presented in 
BPV��
� so all de	nitions are taken from that
paper� When there is a di�erence we will say so�

First we prove some invariants about the state space of the sender� We start with an easy
one� it re�ects the observation that the sender is always transmitting if the voltage on the
bus is high� In LSL invariants are functions with this signature inv� States�A� �� Bool�

inv�s
 � �s�S�wire�high �� s�S�transmitting


�We do not use the more natural notation �x because in an old release LP could not parse its own output

when the unary � was involved�



�� Formalization of the proof 
�

For every invariant we prove �a� that it holds in the start states and �b� that if a state
is reachable and the invariant holds and the system can do an action to a new state the
invariant holds also in this new state� In LP this is expressed as follows�

prove

a� �start�s�States�S	
 �� inv�s

 �


b� �reachable�s�States�S	
 �
 inv�s
 �
 isStep�s�States�S	�a�s�
 �� inv�s�



��

Given a and b it follows that �c� holds�
c� reachable�s
 �� inv�s


In higher order logic we can prove that the implication a�b� c holds where inv is a variable
of type States�S� �� Bool� In LP we have a proof that is replicated for each invariant were
inv is substituted by the current concrete invariant� This is one of the few cases were the fact
that LP is a 	rst order tool is really a disadvantage�

The next invariant gives an upper bound of the clock in the various stages of progress of
the sender�

invS�s
 � �

��s�S�transmitting �
 �s�S�wire�high �
 s�S�list � empty



� ��s�S�wire�high �
 s�S�list �� empty �
 �s�S�transmitting �
 s�S�x � �



� ��s�S�wire�high �
 s�S�list �� empty �
 s�S�transmitting

�
 head�s�S�list
 � � �
 s�S�x �� �



� ��s�S�wire�high �
 s�S�list �� empty �
 s�S�transmitting

�
 head�s�S�list
 � � �
 s�S�x �� �



� �s�S�wire�high �
 s�S�list �� empty �
 head�s�S�list
�� �
 s�S�x �� �



� �s�S�wire�high �
 �s�S�list � empty 
� head�s�S�list
 � �
 �
 s�S�x �� �



Now we give invariants for relations between the states of the sender and the receiver� The
next invariant tells us that during normal operation �s�error is false� an input of a new
message can only happen when the receiver is at rest� This invariant is slightly di�erent from
the one given in 
BPV��
 where the s�error disjunct has been omitted in the conclusion of
the implication� In Section ��� we discuss this mistake�

invFirstBit�s
 � ���s�S�wire�high �
 s�S�list �� empty �
 �s�S�transmitting


�� s�R�list � empty 
� s�error


For the correctness of the implementation it is very important how the clocks of the sender
and the receiver are related� The 	rst invariant gives the possible distances and the second
gives a more detailed description� The second di�ers from the one presented in 
BPV��
 in
the same way as invFirstBit di�ers from the original�

invW�s
 � �

��s�S�transmitting �
 �s�S�wire�high ��

�s�R�x � �s�S�x � �




� �s�R�x � �s�S�x � �




� �s�R�x � s�S�x �
 head�s�S�list
 � � 



�
 �s�S�transmitting �
 s�S�wire�high ��




�

�s�R�x � s�S�x



� �s�R�x � �s�S�x � �
 �
 s�S�list �� empty �
 head�s�S�list
 � �





invX�s
 � �

���s�error �
 s�S�transmitting �
 s�R�list �� empty 
 ��

� �last�s�R�list
 � � �
 s�R�x �� �pTmT � �


�
 s�R�x � s�S�x



� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �pTmT � �


�
 s�R�x � �s�S�x � �




� �last�s�R�list
 � � �
 s�R�x �� �pTmT � �


�
 s�R�x � �s�S�x � �




� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �pTmT � �


�
 s�R�x � �s�S�x � �





�
 �� �s�error �
 �s�S�transmitting �
 �s�S�wire�high

�
 s�S�list � empty �
 s�R�list �� empty 
 ��

� �last�s�R�list
 � � �
 s�R�x �� � �
 s�R�x � s�S�x



� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �

�
 s�R�x � �s�S�x � �




� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �

�
 s�R�x � �s�S�x ��

 



�
 ���s�error �
 s�R�list � empty 
 ��

��s�S�transmitting �
 �s�S�wire�high




The next invariant implies that during normal operation output of a message by the receiver
cannot happen when the sender is still busy�

invLO�s
 � �

s�S�list �� empty

�
 ��s�R�list �� empty �
 last�s�R�list
 � � �
 s�R�x � �



� �last�s�R�list
 � � �
 s�R�x � �



�� s�error 


The next invariant gives an obvious property of the speci	cation P�

invp�u�States�P	
 � �

u�list � empty 
�

�head�u�list
 � � �


�odd�length�u�list

 
� last�two�u�list
 � ���	 � ��	

 
 


The two simple invariants below are not mentioned in 
BPV��
�

invRX��s
 � �s�R�list �� empty �� s�R�x �� �


invSX��s
 � ��s�S�transmitting 
� s�S�list �� empty
 �� s�S�x �� �




�� Discussion 
�

Finally we de	ne a simulation relation SIM� de	ned in LSL as follows�

�
SIM � trait

includes S� P

introduces SIM � States�S	� States�P	 �� Bool

asserts 
forall s � States�S	� p � States�P	

SIM�s�p
 �

�if s�error

then p�chaos

else �if s�R�list � empty

then p�list � s�S�list �
 �s�S�list � empty 
� p�x � �


else �if s�R�x � �s�S�x � �� � �t�last�s�R�list

 � �




then �p�list � s�R�list � s�S�list


�
 ����T
�p�x


��

�����t�length�s�R�list


 � ������t�last�s�R�list






�

min�s�R�x� s�S�x � �� � �t�last�s�R�list

 � �





else �p�list � s�R�list � ��	 � s�S�list


�
 ����T
�p�x


��

�����t�length�s�R�list


 � ������t�last�s�R�list






�

min�s�R�x� s�S�x � �� � �t�last�s�R�list

 � �








implies

Forward�S�P�SIM


Note that a lot of brackets are needed because in Larch it is impossible to de	ne a prece�
dence for self de	ned operators�

By the implies clause at the end of this trait it is claimed that SIM is a forward simulation
from S to P� If that can be proved �and we did� then a meta result �see for instance 
LV��
�
tells us that S is indeed an implementation of P�

How to read the simulation above� The basic idea behind this simulation is that the
concatenation of the lists in the implementation �s�R�list and s�S�list� is about the same
as the message in transit �p�list�� Formally� when the system is transmitting then the
following holds�
�p�list � s�R�list � s�S�list� 
	

�p�list � s�R�list � ��� � s�S�list��
This is expressed in the third if�then�else� in the second if�then�else it is tested if the system
is �almost� transmitting and in the 	rst it is tested if the system is in an error situation� The
big inequations � ���T��p�x �� ���� express that the system returns the messages in time�

	� Discussion

In this section we will give some conclusions about this case�study� As said in the introduction
it is unlikely that a handwritten proof is �awless� In the 	rst subsection we will report on




�

the errors we encountered� In the second subsection we will draw some conclusions about LP
and in the last subsection we will compare the approach of this paper with other approaches�


�� Errors in handwritten proof�

As mentioned at the end of Section ��� we found a small error in the speci	cation of the
OUT�action of system P� In some of the invariants a similar error existed� namely that INV
was claimed while only �error� INV holds�

The source of these mistakes was that the model in which the protocol was described
had been changed during the construction of the proof� In the former model states where
error held were not accepted and traces that ended in a not accepted state were left out of
consideration� Parts of the proof in the former model were still valid in the model presented
in 
BPV��
� but unfortunately the subtlety with the error variable was overlooked�

From a practical point of view these bugs were not so important because it was very easy
to 	x them� It was far more time consuming to 	x an illegal proofstep in the TIME case
of the simulation� There the following implication was assumed� s�u �� not�X � Y� �
s��u� �� not�X � Y�� In general this does not hold� For example when T equals ���� and
s�u �� X � � 	
 Y � ��
 and s��t� �� X � 
 	
 Y � 
�
 then the implication does not
hold� We had to make extra case distinctions and do some extra arithmetic�

Because of the distance between the LP�proof and the handwritten proof it is possible that
there are other illegal proof steps in the handwritten proof that were not noticed� When
a conjecture is successfully proved by LP along similar lines� we did not investigate the
handwritten proof�

In the handwritten proof data identities like� last�l� � �� last two�l�
�
� �� 
�
�
�

are used without a proof� To our taste this is reasonable in a handwritten proof� But when
a proof is mechanized in LP� it is necessary to prove such data identities�

For a lot of facts concerning the time domain the same can be said� Facts like � � � and
x � �� ���x� � � are fairly obvious for humans� In this paper we even proved these simple
ones� Less obvious is for instance� y �  � x 
 y � x � �y � �� � This is not proved in the
handwritten proof� to our taste this is an omission� It took some time to formulate them in
a proper way and prove them in LP�


�� About LP

In this section we will report on the use of LP�

Installing and starting� To start at the beginning� it is easy to install LP� Release ���a comes
with online documentation in HTML 	les that can be viewed using a WWW viewer� For
release ��� a paper document 
GG��
 is available� to start with this is probably easier to
read� In about ninety pages the ideas and commands of LP are explained and one can start
using LP� The most important di�erence between the two versions are� Full 	rst�order logic
is supported� not just the universal�existential subset supported by Release ���� Furthermore
a simple sort system for describing polymorphic abstractions is added�

Statistics� In Figure � the number of occurrences of LP commands is listed� In the LP proofs
we also used a number of display commands but these are not included in the list because



�� Discussion 
	

command ! meaning

prove �� ask LP to prove a conjecture
res by �� ��� resume the prove by assuming the lhs
res by ��� �� resume by two cases� �� and ��

res by case ��� resume by a case distinction
res by spec �� resume by specialization
res by contra �� resume by assuming the contradiction of the current goal
res by ind �� resume by a proof by induction
rew �� rewrite �mostly in reversed direction�
ins �� instantiate variables in a fact
cri�pair � compute critical pairs
	x �� 	x a variable
reg � give part of ordering on function symbols
set ��� set system variables of LP
make ��� make facts immune� passive etc�
del �� delete facts
dec �� declare variables or functions�

Figure �� Number of uses of LP commands

class ! commands in �

bit � �
naturals �� �
list ��� �
time ��� ��
invariants ��� ��
main theorem ��� � 

TOTALS �� �

Figure �� Number of LP commands used in the proof�

these commands do not in�uence the proof and could be deleted without harming the proof�
Of course the commands often have arguments� but mostly the complete command 	ts on
one line� The total proof script consists of about ���� lines ���� Kb�� Beside the commands
it contains lines with annotations� the boxes ���� and the diamonds �����

The proofs can be divided in di�erent classes� the lemmas over the datatypes� the invariants
and the simulation� To gain some insight in the relative complexity of each class� the number
of proof commands used to proof all lemmas in a class are depicted in Figure ��

The proofs concerning time take up more than one third of the total proof� This is caused
by the intrinsic complexity of the timing in the protocol� and by the absence of arithmetic
procedures in LP� Although the time lemmas are simple arithmetic� our experience is that
it is equally hard to 	nd the right lemmas� and in LP the time lemmas are even harder to
prove than the invariants�

LP is fast enough to be used really interactive� Running the complete proof script� which



��

contains the proofs for the data�identities� the invariants and the simulation takes about ����
hours on a Sun Sparc ��� The total number of proof commands is � ��� So on the average
the execution of one command takes � seconds�

Proving The LP proofs follow the lines of reasoning of the handwritten proofs� that is� the
induction schemes and case distinctions are the same� When the handwritten proof refers to
an invariant in the LP proof it is mostly su"cient to instantiate the invariant with the current
state� The normalization does the rest of the reasoning� But especially when arithmetic is
involved the LP proof contains much more details than the handwritten proof�

It is interesting to know how much e�ort it took to formalize the proof in LP� But in this
case it is not possible to give an exact answer� First of all� this was our 	rst project with LP
so it took some time to get used to the system� Furthermore the handwritten proof was not
error free so we also had to pay attention to the abstract content of the proof� Also in the
formal proof we proved the data�identities not present in the handwritten proof� Finally we
had to cope with some problems in LP� But we estimate that given a complete and correct
handwritten proof it still would take weeks to formalize it in LP�

As said LP is really interactive� almost too interactive� Because no tactical language exists
for LP� it is impossible to add your own decision procedures or proof heuristics� A list of
commands can be saved in a script 	le and executed again but this is no substitute for a
tactical language� In LP it is impossible to express things like� �Try di�erent proofs till one
succeeds� or to examine the structure of terms like �If the current goal contains an if�then�else
with a single variable as boolean� then resume by a case distinction on that variable��

Proof Management The Proof Management system of LP is very simple� When LP generates
subgoals in response to a case distinction or induction proof the order in which these subgoals
must be proved is decided on by LP� The only way to escape from this rigid system is by
adding a subgoal as an axiom to the system� continue with the next subgoal and leave the
	rst one for another day� Then rerun the generated script up to the point where the �axiom�
is added and then insert a prove for that subgoal� There is some danger in this method
because LP lacks a special draft�proof mode switch� It is always allowed to add axioms� so
it is up to the user to check that in the 	nal version no �axioms� remain that need a proof�

It is also always allowed to cancel a proof� Obvious this is the quickest way to get at the
qed� which technically means in LP that there are no conjectures left to prove� We claim that
our proof does not contain unintended added axioms or cancels� We used grep� to search for
these commands in our proof script 	les� Still we think that a special proof mode� that one
can enter after loading the axioms� would give some extra con	dence in LP proofs�

As mentioned before� the script 	le that contains our proof is about ��� Kb and takes ����
hours to run� Imagine that one makes a change at the end and wants to check if LP accepts
the new script� This will take ���� hours for each revision� So to keep the proof manageable
it is split in �� lemmas and each lemma is proved in a separate 	le� So if we change the proof
of one lemma we only have to check if LP accepts that one� All lemmas are listed in one 	le�
By assigning a level to each lemma and requiring that only lower level lemmas are used we

�Unix command to search for a string in a set of �les



�� Discussion �


ensure that there is no cycle in the proof� To make life a little easier a small nawk� program
is used to generate the standard begin of the LP scripts� That is� a command to load the
axioms� some settings and adding the lower level lemmas as axioms�

LSL comes with a library of traits� Most of these traits contain an implies clause that
contains some important lemmas for that trait� But it comes without a proof� so the complete
sceptic is not satis	ed� The script	les can be used to distribute proofs for these lemmas� Some
care must be taken because LP proofs tend to be context dependent� Operationally LP proofs
depend heavily on the normalization� and so on the set of facts and the direction in which
the rules are oriented� Logically one can extend the set of facts without harming the proof�
operationally a new rule can disturb a proof� This problem can be solved by making all
rules inactive except the rules that are used� And then force the orientation� for example by
giving a partial ordering on the function symbols� The generation scheme of fresh constants
and variables is also a source of context dependency� For instance in a proof by induction
or when assuming the left hand side of an implication� fresh variables and�or constants are
generated� Variable names are b� b�� b� � � � for variables whose sort name begins with a B
and the 	rst free name is chosen� For constants a c is added so the names are� bc� bc�� bc�
� � � � Because these names are generated in a proof context the next proof does not know
about these names� But the constants and variables that we declare at top level are visible
everywhere� and so they can in�uence the generation of names� To prevent problems with
unexpected names of fresh constants and variables it is advisable to use names that are not
in the generation scheme of LP�

Software Management Besides that Larch is used to describe software� LP itself is a software
product� As to be expected with an experimental tool as LP we encountered some bugs� A
critical bug was an alpha conversion problem� When n�m and k are of type Nat and this is
a rewrite rule� n �� m �� 
E k �n � k � m�� The normalform of n �� k was according to
LP ���� ���������� 
E n �n � n � k�� In the current version of LP ����a ��������� this
bug is 	xed and the normalform is� 
E n� �n � n� � k��

It was far more time consuming to cope with a memory problem� Even when memory on
the machine and heap space in LP are ample available LP still runs out of memory� During
our proof the system contains up to about four hundred rules and the proof is up to ten levels
deeply nested� Steve Garland advised �via mail� to issue the command forget to delete a
data structure used for completion of rewrite systems� This indeed frees memory� but not
enough for our proof� Our �solution� was to delete rules that are not needed any more in
the current proof context� Finding the �deletable� rules is a time consuming trial and error
process� One deletes a lot of rules to 	nd out later that a few of them are still needed� and
then starts again this time without deleting those rules� this time LP runs out of memory�
etc�

Just for the record� we eventually checked the entire proof with LP Release ���a �����������

Next we will give our wish list for LP and LSL� We think that the tactical language� for
our purposes� is by far the most important wish�

�A C�like pattern matching language�



��

�� Tactical language Without a good tactical language it is impossible to extend LP
with heuristics or decision procedures� So proofchecking with LP remains at the level
of normalizing conjectures and proofs by induction� etc� While for really e"cient use of
proof�checkers it is necessary to have larger concepts� For instance a tactic like� try to
proof this invariant by case distinction on all booleans and apply a decision procedure
on the remaining expressions over the reals�

�� Arithmetic decision procedures With or without a tactical language� arithmetic
decision procedures would be very useful� In 
LSGL��
 it is mentioned that a procedure
for linear inequalities is implemented� Unfortunately most of the expressions in our
proof are not linear�

�� Larger proofs accepted without memory problems

�� Better proof management It should be possible to use unproved lemmas and return
to them later or skip cases of an induction proof etc� Furthermore it would be nice if
a proof can be saved in such way that the proved theorem can be loaded directly� also
when the current set of facts is extended compared to the set from which the theorem
is proved�

�� Explicit names in LSL speci�cations Standard facts in LP have the name of the
corresponding speci	cation followed by a number� like in Nat��� One can work around
this because a conjecture can be named explicitly and a conjecture that is an axiom is
easy to prove�

�� More control over rewriting Sometimes a term has di�erent redexes� and it is
useful to be able to select one by hand� For normalizing it would be nice if it is possible
to in�uence the order in which the rewrite rules are applied�


�	 Related Work
The EEL protocol has received some attention from other sites� In 
HWT��
 Ho and Wong�
Toi analysed the audio control protocol using the HyTech tool� HyTech is a symbolic model
checker for linear hybrid systems� Larsen� Pettersson and Yi analysed the protocol with the
UPPAAL tool 
LPY��
� They used a formalization of the protocol based on the one developed
by Ho and Wong�Toi� Daws and Yovine analysed the protocol using KRONOS in 
DY��
�
The formalization used in this paper is di�erent from the one used by the two others� It is
not completely clear what the formal relation is between the 	nite state description used by
the model checkers and the version as presented in 
BPV��
� It seems to be an interesting
research problem how to integrate model�checking and proofchecking� In 
MN��
 M#uller and
Nipkow discuss this topic�

In 
NS��
 the I�O automata model is formalized in Isabelle�HOL� In that paper a much
larger part of the I�O automata model is formalized� in contrast to the limited number of
notions that are formalized in this paper�

Related to wish � is the work discussed in 
Voi��
� In this paper a new proof environment
for LP is proposed which makes it possible to walk through the proof tree as suggested in
point ��



A� Example Proof ��

A� Example Proof

In this appendix a script	le of a LP proof is given� It is hard to read the proof because
it depends on the set of facts� which changes with every proof command� So this proof is
presented here to give some idea of what a script	le looks like more than to show the actual
proof�

set name p

prove �timetwLT� y �� � �
 x � y �� x � �y � �


res by ��

�� �� subgoal

prove �step�� ���yc
 �� ��

ins x by yc� y by �� z by � in timeF�

�	 conjecture

prove �step�� ��� � yc
 � �
 �� ��

ins x by �� � yc
� y by ��� z by � in timeF�

�	 conjecture

prove �step�� ��� � yc
 � �
 � d�T


prove �hulpje� �� � d�T


ins x by T� y by d���
� z by d�T
 in TimeLTF�

ins x by T in time 

ins x by �� y by �d���
 � d�T

� z by �� in timeLTF�

�	 conjecture

ins x by ��� � yc
 � �
� y by ��� z by d�T
 in timeLTran�

�	 conjecture

prove �step�� ��� � yc � T
 � T
 � �

ins x by ��� � yc
 � �
� y by d�T
� z by T in timeLTF�

make ina timeDis

rew timeLTF� with rev timeDis

�	 conjecture

prove �step � �� � yc � T
 � �� � T


ins x by ��� � T � yc
 � T
� y by �� z by m�T
 in timeLTF�

�	 conjecture

prove �step�� �yc � T
 � �� � m�yc � T
 � m�T



ins x by �� � T � yc
� y by �� � m�T

� z by m�T � yc
 in timeLTF�

prove �� � T � yc
 � m�T � yc
 � �T � yc


set im on

prove �hulpje� � � � � �

�	 conjecture

make ina hulpje

rew con with rev hulpje

make ina timeDis

rew con with rev timeDis

rew con with rev timeDis

�	 conjecture

�	 conjecture

prove �step!� �yc � �yc � T

 � �yc � �� � m�T � �yc � T





ins x by �yc � T
� y by �� � m�T � �yc � T


� z by yc in timeLTF�

�	 conjecture

prove �step�� ����T
�yc
 � ��yc ��
� ���T



make ina timeDis

rew con with rev timeDis



��

rew con with rev timeDis

rew con with rev timeDis

�	 conjecture

prove �step�� ����T
 � d���T
 � yc
 � �yc � �


ins x by ��� � T
 � yc
� y by ��yc � �
 � �� � T

� z by d���T
 in timeLTF�

ins x by ��� T
 in time 

�	 conjecture

prove �step�� xc � �yc � �


set im anc

ins x by yc� y by xc in TimeDefTwiddle

ins x by xc� y by yc in timecom

ins x by xc� y by ��� � T
 � d�� � m�T

 � yc
� z by �yc � �
 in timeLTran�

�	 conjecture

�	 �� subgoal

�	 conjecture

�� quit

B� The traits

B�� S

In this section we will present the trait that de	nes System S piece by piece�

�
S � trait

includes System�S
� List� CommonActions�S


States�S	 tuple of S� Send� R � Rec� error � Bool

Send tuple of transmitting� Bool�

wire�high � Bool�

list � List�

x � Time

Rec tuple of list � List�

x � Time

Above the 	rst lines of the trait are given� The name of the trait is S� given on the 	rst
line of the trait� Then the trait System�S� �see Section ���� and the traits List and Time are
included� see Section ���� Next the sort States�S� is de	ned� its domain consists of triples of
��� the state variables of the sender� ��� the state variables of the receiver and ��� a history
variable error� A history variable does not in�uence the behaviour of the system� The
extra information it provides is only used in the proof� The sender has four state variables�
transmitting is true when the system is transmitting� that is from the 	rst UP action till
the last DOWN action� The variable wire high denotes the level of the voltage on the bus�
The variable list contains the bits of the message that still must be transmitted� The clock
variable x is used to specify the distance between the UP and DOWN actions of the sender�
The receiver has two state variables� list denotes the bits of the current message that are
already received and the clock variable x denotes the time elapsed since the last UP action�



introduces

UP � �� Actions�S	

DOWN � �� Actions�S	

aux � States�S	� Time� Actions�S	 �� Bool �� auxiliary�function�



B� The traits ��

The UP and DOWN actions are constants of type Actions�S�� the other actions IN� OUT

and TIME are declared in CommonActions trait� Furthermore the auxiliary function aux is
declared� which is used in the action�predicate of the TIME action�

�
asserts

Actions�S	 generated by IN� UP� DOWN� OUT� TIME


forall s�s�� States�S	� m � List� t�x�y�z� Time

After the asserts key�word the properties of the functions �the axioms� are given� The
generated by clause expresses that every action is an IN� UP� DOWN� OUT or TIME
action�

�
�isVisible�UP
�

�isVisible�DOWN
�

The actions UP and DOWN are declared invisible� the actions IN� OUT and TIME are
declared visible in the CommonActions trait�

�
�� ��� START STATES ���

start�s
 � � �s�S�transmitting

�
 �s�S�wire�high

�
 s�S�list � empty

�
 �s�error

�
 s�R�list � empty
�

Initial the system is not transmitting� the wire is low� there is no message in transit �the
lists are empty� and no error has occurred yet� Note that the values of the clocks �S�x and
R�x� are unde	ned and so we have an in	nite number of start states�

�
�� ��� IN�m
 ���

pre�s� IN�m

 �

�head�m
 � � �
 �odd�length�m

 
� last�two�m
 � ��	 � ��	

�

eff�s� IN�m
� s�
 � �

�if �s�S�transmitting �
 �s�S�wire�high �
 s�S�list � empty

then s��S�list � m �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x


�
 s��S�transmitting � s�S�transmitting

�
 s��S�wire�high � s�S�wire�high

�
 �if s�R�list �� empty then s��error else s��error � s�error


�
 s��R � s�R
 �

The IN action denotes the reception of a new message to be transmitted� The precondition
expresses that each message must start with a bit � and that a message must be of odd length
or end in � �� � �see Section ��� The error variable becomes true when an IN action occurs
too early� that is� when the receiver is not yet ready to receive a new message�

�



��

�� ��� UP ���

pre�s�UP
 � aux�s�s�S�x�UP
�

aux�s�x�UP
 � �

�s�S�wire�high

�
 s�S�list �� empty

�
 �if s�S�transmitting

then �if head�s�S�list
�� then x � � else x � �


else x � �

�

eff�s�UP�s�
 � �

s��S�transmitting

�
 s��S�wire�high

�
 �if head�s�S�list
 � �

then s��S�list � tail�s�S�list
 �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x


�
 s��error � s�error

�
 �s�R�list � empty �� s��R�list � ��	


�
 �last�s�R�list
 � � �
 s�R�list �� empty ��

�s�R�x � ! �� s��R�list � empty


�
 �! �� s�R�x �
 s�R�x �  �� s��R�list � s�R�list � ��	


�
 � �� s�R�x �� s��R�list � s�R�list � ��	 � ��	



�
 �last�s�R�list
 � � ��

�s�R�x � ! �� s��R�list � empty


�
 �! �� s�R�x �
 s�R�x �  �� s��R�list � s�R�list � ��	


�
 � �� s�R�x �
 s�R�x � � �� s��R�list � s�R�list � ��	


�
 �� �� s�R�x �� s��R�list � s�R�list � ��	 � ��	



�
 s��R�x � �
�

The UP action corresponds to an up�going edge on the wire� The sender generates the

UP�s and DOWN�s as required by the Manchester encoding� The receiver�s algorithm to
decode the message via the UP actions is a direct formalization of the algorithm in Philips�
documentation�

�
�� ��� DOWN ���

pre�s�DOWN
 � aux�s�s�S�x�DOWN
�

aux�s�x�DOWN
 � �

s�S�wire�high

�
 �if s�S�list �� empty �
 head�s�S�list
 � � then x � � else x � �

�

eff�s�DOWN�s�
 � �

�if s�S�list � empty 
� s�S�list � ��	

then �s��S�transmitting

else s��S�transmitting � s�S�transmitting


�
 �s��S�wire�high

�
 �if s�S�list �� empty �
 head�s�S�list
 � �

then s��S�list � tail�s�S�list
 �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x


�
 s��error � s�error

�
 s��R � s�R
�

The DOWN action of course corresponds to a down�going edge on the bus� The receiver
does not observe this action� and indeed the values of the state variables of the receiver do



B� The traits ��

not change �s��R � s�R��

�
�� ��� OUT ���

pre�s�OUT�m

 �

�m � finalize�s�R�list
 �
 aux�s�s�R�x�OUT�m


�

aux�s�x�OUT�m

 � �

s�R�list �� empty

�
 �if last�s�R�list
 � � then x � � else x � �

�

eff�s�OUT�m
�s�
 � �

s��R�list � empty

�
 s��R�x � s�R�x

�
 s��S � s�S

�
 s��error � s�error
�

When the receiver received the complete message the OUT action happens� Hereafter the

receiver is ready to receive a new message�

�

�� ��� TIME ���

isStep�s�TIME�t
� s�
 � �

t � �

�
 s��S�transmitting � s�S�transmitting

�
 s��S�wire�high � s�S�wire�high

�
 s��S�list � s�S�list

�
 s��error � s�error

�
 ���T
 �� ��s��S�x � s�S�x
 � t
 �
 ��s��S�x � s�S�x
 � t
 �� ���T


�
 ��
E y �y �� s�S�x �
 aux�s�y�UP


 ��

�
E z �z �� s��S�x �
 aux�s��z�UP





�
 ��
E y �y �� s�S�x �
 aux�s�y�DOWN


 ��

�
E z �z �� s��S�x �
 aux�s��z�DOWN





�
 s��R�list � s�R�list

�
 ���T
 �� ��s��R�x � s�R�x
 � t
 �
 ��s��R�x � s�R�x
 � t
 �� ���T


�
 ��
E y �y �� s�R�x �
 aux�s�y�OUT�m



 ��

�
E z� z �� s��R�x �
 aux�s��z�OUT�m







In the TIME action the discrete variables �transmitting� wire high� list� error� are
not allowed to change� Only the clocks are advanced by �about� t� formally� for both clocks
��� T � � x

�
�x

t
� �� � T � must hold�

B�� P
In this appendix the correctness criterion is given� It is a LSL�version of system P of 
BPV��
�

P � trait

includes System�P
� Time� List� CommonActions�P


States�P	 tuple of list � List�

chaos � Bool�

x � Time

introduces

aux � States�P	� Time� Actions�P	 �� Bool �� auxiliary�function

asserts



��

Actions�P	 generated by IN� OUT


forall s�s� � States�P	� t � Time� m � List� x�y�z� Time

start�s
 � �s�list � empty �
 not�s�chaos

�

pre�s�IN�m

 � �

head�m
 � �

�
 �odd�length�m

 
� last�two�m
 � ��	 � ��	

�

eff�s�IN�m
�s�
 �

�if s�list � empty

then �s��list � m �
 s��x � � �
 s��chaos � s�chaos


else �s��chaos � true �
 s��list � s�list �
 s��x � s�x

�

pre�s�OUT�m

 � aux�s�s�x�OUT�m

�

aux�s�x�OUT�m

 � �

� s�list � m

�
 s�list �� empty

�
 ����T
�x
 �� ��� � t�length�s�list


 �  




� s�chaos
�

eff�s�OUT�m
�s�
 �

�s��list � empty �
 s��chaos � s�chaos �
 s��x � s�x
�

isStep�s�TIME�t
�s�
 � �

t � �

�
 s��list � s�list

�
 s��chaos � s�chaos

�
 s��x � s�x � t

�
 
A m ��
E y �y �� s�x �
 aux�s�y�OUT�m



 ��

�
E z� z �� s��x �
 aux�s��z�OUT�m







B�	 CommonActions
The trait given in this appendix is needed for technical reasons� In LSL sorts are disjunct and
here a CommonActions sort is introduced to make it possible to compare actions of di�erent
systems�

CommonActions�A
 � trait

assumes System�A


introduces

IN � List �� Actions�A	

OUT � List �� Actions�A	

TIME � Time �� Actions�A	

IN � List �� CommonActions

OUT � List �� CommonActions

TIME � Time �� CommonActions

asserts 
forall m� List� t � Time

common�IN�m

 � IN�m
�

common�OUT�m

 � OUT�m
�

common�TIME�t

 � TIME�t
�

isVisible�IN�m

�

isVisible�OUT�m

�

isVisible�TIME�t





B� The traits �	

B�� Bit
In this appendix a little trait for the sort Bit is given� Bits are the elements of the messages
transmitted by the protocol�

Bit � trait

introduces

��� � �� Bit

asserts 
forall bit� Bit

�bit � �
 
� �bit � �
�

� �� �

B�� Nat
The sort Nat is introduced because it is the result sort of the length function on lists�

Nat � trait

introduces

� � �� Nat

s � Nat �� Nat

�� � �� � Nat� Nat �� Nat

odd� Nat �� Bool

asserts

Nat generated by ��s


forall n�n�� Nat

� �� s�n
�

s�n
 � s�n�
 ��� n � n��

n � � � n�

n � s�n�
 � s�n � n�
�

�odd��
�

odd�s�n

 � �odd�n


B�
 Time
Here the Time trait is given� It is discussed in section ����

Time � trait

includes Bit� AC���Time
� AC���Time
� Nat

introduces

�� �� ��� �� �� �� � Time� Time �� Bool

�� � �� � �� � �� � Time� Time �� Bool

�� � ��� �� � �� � Time� Time �� Time

�� � ��� �� � �� � Time� Time �� Time

m � Time �� Time

d � Time �� Time

min � Time � Time �� Time

t � Bit �� Time

t � Nat �� Time

������!��� �������� � �� Time

����������!����� ��������������� � �� Time

�� � �� � Time�Time �� Bool

T�pTmT�mTpT � �� Time



��

asserts 
forall x�y�z�t� Time� n � Nat

�� Studies in Logic and the Foundations of Mathematics� �Chang� C� C� and Keisler� H� J�


�� Volume �! Model Theory �Page !�


�� LINEAR ORDER Axioms�

x �� y �
 y �� z �� x �� z� �� TimeL�

x �� y �
 y �� x �� �x � y
� �� TimeL�

x �� x� �� TimeL!

x �� y 
� y �� x� �� TimeL�

�� ABELIAN GROUPS�

�� x � �y � z
 � �x � y
 � z� �� �associativity of �


x � � � x� �� TimeId �identity


�� 
E y �x � y � � �
 y � x � �
���

x � m�x
 � �� �� TimeMx �existence of inverse


�� x � y � y � x� �� �commutativity of �


�� FIELDS � These � axiomas � Abelian groups�

� � x � x� �� TimeUn �� is unit


�� x � �y � z
 � �x � y
 � z� �� �associativity of �


�� x � y � y � x� �� �commutativity of �


�x � y
 � �x � z
 � x � �y � z
��� TimeDis �distributivity of � over �


� �� ��Time� �� Time��

�� x �� � �� 
E y �y � x � �
� �� �existence of multiplicative inverse�


x �� � �� �x � d�x
 � �
� �� TimeDx

�� ORDERD FIELDS � These � � Field � Linear Order�

x �� y �� �x � z
 �� �y � z
� �� TimeF�

x �� y �
 � �� z �� �x � z
 �� �y � z
� �� TimeF�

t���Bit
 � ��

t���Bit
 � ��

t���Nat
 � ��

t�s�n

 � t�n
 � ��

�� Notational convenience�

x �� y � y �� x �

�x �� y �
 x �� y
 � x � y� �� TimeLT

x � y � y � x �

x�y � x � d�y
�

x � y � x � m�y
�

min�x�y
 � �if x �� y then x else y
��� TimeMin

� � � � �� � � � � !� ! � � � �� � � � �  �  � � � ��

� � � � �� � � � � �� � � � � �� � � � � ��� �� � � � ���

�� � � � ��� �� � � � �!� �! � � � ��� �� � � � � � � � � � ���

�� � � � ��� �� � � � ��� �� � � � ��� �� � � � ���

�� Specific for this proof�

� � T �
 T � �����
 �

pTmT � ����T
����T

� mTpT � ����T
����T

�

������T
 � ���T

 � x
 �� y �
 y �� �����T
 � ���T

 � x

 � x � y
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