
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Proof-checking an audio control protocol with LP

W.O.D. Griffioen

Computer Science/Department of Software Technology

CS-R9570 1995

Report CS-R9570
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Proof�checking an Audio Control Protocol with LP

W�O�D� Gri�oen

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

gri�oe�cwi�nl

Abstract

In this paper we report on the use of the Larch Prover to mechanize the correctness proof of the audio control

protocol as presented in �BPV����

AMS Subject Classi	cation
������ ��B�	
 ��B�	
 �
Q��
 �
Q��
 �
Q���

CR Subject Classi	cation
������ C����
 C���	
 C��
 D����
 F����
 F����
 F�����

Keywords
 Phrases� Communication protocols
 Larch
 Manchester encoding
 consumer electronics
 protocol

veri�cation
 proof�checking
 real�time systems
 timed I�O automata
 linear hybrid systems�

Note� Research supported by the Netherlands Organization for Scienti�c Research �NWO� under contract

SION ����������	�

�� Introduction

The systems that are analysed using formal methods increase in size and complexity and so
do the proofs� Because it is not realistic to assume that a proof of �� pages is �awless� the
computer is asked for help to check those proofs� The protocol that is subject of investigation
here is a fragment of the Enhanced Easy Link �EEL� protocol� This protocol is used by
Philips to communicate control information between the components of an audio set �CD�
DCC� ampli	er� tuner etc�� Though a simpli	ed version of the protocol is veri	ed �the same
as in
BPV��
� it is still fairly complicated�

As a vehicle to mechanize the proof we used the Larch Prover �LP�� LP is a proof�checker
for 	rst�order predicate logic and it is based on rewriting� It has been used for protocol
veri	cation in a comparable model MMT
LSGL��
� Here we use the Linear Hybrid Systems
�LHS� model of
BPV��
� the semantics of systems in this model is de	ned in terms of timed
I�O�automata
LV��� LV��� GSSL��
�

We think that both general proof checkers and model checkers are useful for protocol
veri	cation� Model checkers require the description to be 	nite in some sense and sometimes
the type of questions the system can answer is restricted� On the other hand the advantage
of model checking is of course that the questions are answered without any user interaction�
When using general mathematical proof checkers almost no restrictions on the description
of the system and�or the type of questions exist� But here much more user interaction is
required to 	nish the proof�

As a correctness criterion we use trace�inclusion between the EEL protocol and a speci	�
cation� This tells us that the EEL protocol behaves like a message bu�er with capacity one

�

�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

Figure �� Manchester encoding of �������

and that each message is delivered before a speci	ed moment� To prove this we use invariants
and a simulation relation�

We formalized the whole proof� including proofs of simple identities like x � � � �� Other
users of LP
CL��
 chose to concentrate on the crucial parts and assume simple properties
like

��� � X � jY j � �i���Y � ���� �jY j � �i � X � �Y � �i� � ��

We proved facts like these because if they are really simple it should be easy to prove them
and when they are not simple it is possible that one makes a mistake� Also� we think it
interesting to see what happens if one tries to prove everything from the basic axioms�

This paper is organized as follows� In the next section the EEL protocol is introduced� In
Section � the LHS model is informally introduced� In Section � the model and the protocol
are formalized� In Section � the Larch Prover is introduced� In Section � the correctness
proof is formalized� In the last section we discuss the results of our work� In two appendices
an example proof is presented and the formal speci	cations are listed�

�� The EEL�protocol

The EEL protocol is used by Philips for communication of control information between the
components of an audio set� When for instance only the ampli	er has a red�eye to receive
the commands of the remote control� the other components receive these commands via the
EEL�protocol� It is also used to implement �added intelligence�� one can copy a CD to a
cassette by pressing a single key� the CD and the cassetedeck are started and when the CD
has 	nished playing the deck stops recording� In fact the components are connected by a
small local area network �LAN�� This network has one special quality� it is cheap� It uses
only one wire� no extra clock wire is needed� Furthermore high tolerances on the timing are
allowed� this makes it possible to implement the network via processors that are also used
for other tasks�

To transmit messages from one component to the other� Manchester encoding is used� The
components are connected by a single wire� the bus� On this wire the voltage can be either
high or low� Time is divided in bit�slots of equal length� Bits are transmitted half�way the
bit�slots� a bit � is transmitted by changing the voltage from low to high� a bit � is transmitted
by changing the voltage in the other direction� If the same bit is transmitted twice in a row�
the voltage changes exactly in between� See Figure � for an example�

This is the basic idea but some problems must be solved�

�� The down�going edges are not sharp enough to be accurately detected� so the receiver

�� Linear Hybrid Systems �

only detects the up�going edges� To make correct reception of messages still possible� a
restriction is needed� only messages of odd length or ending in �� are valid�

�� The receiver does not know when the 	rst bitslot of a message starts� Therefore each
message starts with a bit�� and between messages the voltage on the wire is low�

�� The receiver does not know the length of the message it is receiving�

�� All timing is inexact because the protocol has to share one micro processor with several
other processes� The Philips documentation of the protocol allows a tolerance of ���
on all timings�

�� Arbitration is needed when two senders start transmitting at the same time�

�� The delay on the bus can be signi	cant�

Problems � and � are not addressed in this paper� problem � is analysed in
Gri��
�

�� Linear Hybrid Systems

In this section we give an informal introduction into the LHS model of
BPV��
� The seman�
tics is de	ned using �old�fashioned recipes�
AL��
� in a layered fashion� The I�O automata
model is based on labeled transition systems� In the untimed case the transition labels can be
input and output actions� which model the interactions of a system with its environment� and
internal actions� which model internal computation steps� In
LV��� LV��
 it is shown how
real�time systems can be represented as labeled transition systems by adding� as additional
labels� time�passage actions� In the resulting model of timed I�O automata the continuous
progress of real�time is represented by a continuum of discrete time�passage transitions� The
LHS model can be viewed as a subclass of timed I�O automata�
BPV��

The precondition�e�ect�style is used to de	ne the LHS�systems� Each state of the labeled
transition system is described by a valuation of the state variables� When the init predicate
holds for a state� it is a start state� For every state variable v we have a primed variable v�

to denote the new value of v after a transition� The labeled transitions are described by the
precondition and e�ect functions� When the precondition holds in a state s and the e�ect on
s is s� then a transition from s to s� exists�

In Figure � an example of a LHS in the style of
BPV��
 is given� The system receives
a message by a IN action and after length�message� time units the message is transmitted
by an OUT action� The clock �x� is not very accurate� when time elapses by d the clock is
advanced by an amount between ���d and ���d� The discrete variables �list in the example�
are not allowed to change during a time step� this is expressed by Unchanged �list� in the
TIME�d� action predicate� Now we come to a somewhat subtle point� Suppose the length
of the message is �� then the OUT action must occur when x equals �� What happens if x
equals �� the time action takes a �giant� leap to a new state where x equals �� That is� the
TIME�d� action didn�t allow the OUT action to occur� This scenario is not possible because
Stable�Below �x� prec�E�OUT �list���� states that if the OUT �list� action is possible now or in
the future this should still hold after the time step� The function prec�E�OUT �list�� returns

�

Discrete� list � List
Continuous� x � Time

init� list � � � x � �

IN�m�
E�ect

list �� m	 x ��

OUT �list�
Precondition

x � length�list� � list �� �

E�ect

list �� �

T IME�d�
Action formula

� d �

� Unchanged�list�
� �
�� � d� � x� � x � ���� � d�
� Stable�Below �x� prec�E�OUT �list����

Figure �� Example of LHS�system

�� Formal speci	cation �

the precondition of the action OUT �list� of the system E� The other functions used in the
action formula of the TIME�d� action are de	ned as follows�

For W a 	nite set of unprimed variables� � an unprimed formula� and x an unprimed
variable�

Unchanged�W �
�

�
V
w�W w��w

Stable���
�

� �� ��

Below�x� ��
�

� �x� � x � x� � �
x��x
�

Note that system E forgets the former message when a new message is received before the
current message is transmitted�

In LHS�systems a clock is just a continuous variable� updated by the time action� A
clock can be inspected and reset by all actions� compared to other values or other clocks�
Furthermore a clock can di�er from the ideal clock �see example�� so a lot of other things can
be described using continuous variables �water�levels� leaked gas�� Of course the behaviour
of the time action is restricted� for instance two steps of one time�unit should result in the
same state as one step of two time�units� For a formal de	nition of the restriction on the
time action we refer to
BPV��
�

�� Formal specification

To formalize part of the LHS�model and the protocol the Larch Shared Language �LSL�
is used� LSL is a 	rst�order algebraic speci	cation language� also used to specify software�
Besides LSL the Larch family consists of several other languages� the Larch interface lan�
guages� These make it for instance possible to specify a program partly in LSL and partly in
programming language such as C and still do type checking�

In this paper LSL is used as a front�end for the Larch Prover �LP�� The LP input corre�
sponding to a speci	cation in �lename can be generated automatically by lsl �lp �lename�

We will start with the LSL speci	cation of the List and Time data�types� Then we will
formalize part of the LHS model� followed by a formalization of the EEL protocol� Finally
the correctness criterion will be given�

��� Lists and Time in LSL

In this section we will give the List and Time traits that we will use in the speci	cation of
the EEL protocol� The List data type will be used in the protocol to store the messages�
Here we will use the speci	cation as a LSL example� We will present the LSL speci	cation
piece by piece�

�
List � trait

includes Bit� Nat

�

In the 	rst line the name of the trait �module� is given� In the second line the traits Bit
and Nat are included� Including a trait is taking the union of the introduces and asserts

clauses of the current trait and the included traits�

introduces

head � List �� Bit

tail � List �� List

last � List �� Bit

last�two � List �� List

length � List �� Nat

empty � �� List

�� � �� � List � List �� List

���	 � Bit �� List

finalize � List �� List

The introduces clause introduces new function symbols and their types�

�
asserts

List generated by empty����	�Bit��List��

forall d�e � Bit� m�l�l� � List

head�empty
 � ��

head��d	�m
 � d�

tail�empty
 � empty�

tail��d	�m
 � m�

last�empty
 � ��

last�m � �d	
 � d�

last�two�empty
 � empty�

last�two��d	
 � �d	�

last�two�m � �d	 � �e	
 � �d	 � �e	�

length�empty
 � ��

length��d	 � m
 � s�length�m

�

finalize�m
 � �if last�m
 � � �
 odd�length�m

then m

else m � ��	
�

A generated by clause asserts that a list of operators is a complete set of generators for
a sort� That is� each value of the sort is equal to one that can be written as a 	nite number
of applications of just those operators� and variables of other sorts
GH��
�

Lists are generated by the empty list �empty�� lists with one element ������ Bit �� List�
and the concatenation operator ���� The axioms for the functions head� tail� last� last two�
length and �nalize are taken from
BPV��
� The �nalize function is speci	c for the speci	cation
of the EEL protocol� It is used in the speci	cation of the receiver� When necessary it adds a
��bit to a message�

�
��l � l�
 � m
 � �l � �l� � m

�

�� Formal speci	cation �

m � empty � m �

empty � m � m �

�d	 � l �� empty �

d � e �
 l � l� ��� �d	 � l � �e	 � l�

These axioms complete the speci	cation of our List data�type� These were implicitly
assumed in the handwritten proof� but we had to make them explicit in the formalization�

Note that the booleans and the conjunction �	
� are part of the LSL language� Also the
if then else construct is part of LSL�

Each well�formed trait de	nes a theory in a multisorted 	rst�order logic with equality� Each
theory contains the trait�s assertions� the conventional axioms of 	rst�order logic� everything
that follows from them� and nothing else� This loose semantic interpretation guarantees that
formulas in the theory follow only from the presence of assertions in the trait � never from
their absence� Using the loose interpretation ensures that all theorems proved about an
incomplete speci	cation remain valid when it is extended� �page ��
GH��
��

In Appendix B�� the Time trait is given� The continuous variables of LHS are of type Real�
As mentioned in
BPV��
� for the purpose of this veri	cation any interpretation of Real as
an ordered 	eld will do� the only properties of reals that we use are the axioms for ordered
	elds� So the Time trait contains essentially the properties of an ordered 	eld� For notational
convenience some functions and constants are added� like the integer numbers � �� ��� the
other inequalities �	� ���� and the min function� Speci	c for this veri	cation a constant T�
which denotes the drifting of the clocks� is added� Furthermore an �almost� equal operator

is de	ned that will be used in the proof� In LSL and LP there is no need for functions to be
total so we did not add ��� � � as in
BPV��
�

��� The LHS model

In this section the LSL�speci	cation of the LHS�model is given� That is� a part of the model�
traces� executions and simulations� Not de	ned in this paper are� composition of systems�
hiding and liveness� As starting point we used traits for MMT�automata that are presented
in
LSGL��
� The main di�erence is the way time is handled� the adaption comes down to
deleting some traits �the ones that handle time intervals� and slightly adapting the others�

In Figure � the trait System is depicted� This trait contains the basics for all systems� every
trait that de	nes a LHS�system will include this one� In this trait are the declarations for
the underlying labeled transition system� the sort States�A� corresponding to the states of
the system� the function start denoting the set of start states� the function isStep denoting
the transition�relation� Using the brackets

 	nite sequences are constructed� s�a�s�a�s�
is written as
s�

a�� s�

a�� s�
� The function execFrag tests if a sequence is an execution�
fragment and the function trace returns the list of visible actions from a sequence� The
common function is needed because in the formalization every system has its own sort for
actions and sorts are disjunct in LSL� The common function maps the actions that systems
have in common to a new sort CommonActions �see appendix B���� This makes it possible to
compare the actions and traces of di�erent systems�

�

System�A
�trait

introduces

start � States�A	 �� Bool

pre � States�A	� Actions�A	 �� Bool

eff � States�A	� Actions�A	� States�A	 �� Bool

isStep � States�A	� Actions�A	� States�A	 �� Bool

���	 � States�A	 �� StepSeq�A	

��������	 � StepSeq�A	� Actions�A	� States�A	 �� StepSeq�A	

execFrag � StepSeq�A	 �� Bool

first� last � StepSeq�A	 �� States�A	

isVisible � Actions�A	 �� Bool

common � Actions�A	 �� CommonActions

empty � �� Traces

�� � �� � Traces� CommonActions �� Traces

trace � Actions�A	 �� Traces

trace � StepSeq�A	 �� Traces

reachable � States�A	 �� Bool

asserts

StepSeq�A	 generated by ���	� ��������	

Traces generated by empty� �

forall a�a� � Actions�A	� s�s� � States�A	� ss� StepSeq�A	

isStep�s� a� s�
 ��� pre�s�a
 �
 eff�s� a� s�
�

execFrag��s	
�

execFrag�ss�a�s	
 ��� execFrag�ss
 �
 isStep�last�ss
�a�s
�

first��s	
 � s� first�ss�a�s	
 � first�ss
�

last��s	
 � s� last�ss�a�s	
 � s�

trace�a
 � �if isVisible�a
 then empty � common�a
 else empty
�

trace��s	
 � empty�

trace�ss�a�s	
 � �if isVisible�a
 then trace�ss
 � common�a
 else trace�ss

�

reachable�s
 ���
E ss �execFrag�ss
 �
 start�first�ss

 �
 last�ss
 � s

Figure �� LSL trait System

Forward�A�B�f
 � trait

assumes System�A
� System�B

introduces f � States�A	� States�B	 �� Bool

asserts
forall s� s� � States�A	� u � States�B	� a � Actions�A	�

alpha � StepSeq�B	

start�s
 ��
E u �start�u
 �
 f�s�u

�

f�s�u
 �
 isStep�s�a�s�
 �
 reachable�s
 �
 reachable�u
 ��

E alpha �execFrag�alpha
 �
 first�alpha
 � u �

f�s�� last�alpha

 �
 trace�alpha
 � trace�a

Figure �� LSL trait Forward�lsl

�� Formal speci	cation 	

We say that a system implements another system when the set of traces of A is a subset
of the set of traces of B� To prove this we use a forward simulation relation between the
implementation and the speci	cation� In a forward simulation each start state of the im�
plementation is related to at least one start state of the speci	cation� When two states are
related and the implementation can do an action a� the speci	cation can also do an action
a and the new states are also related� When it has been proved that a forward simulation
exists� a meta�theorem �see for instance
LV��
� gives us the trace inclusion� In Figure � the
notion of a forward simulation is de	ned� Because it is restricted to the reachable states this
is essentially the �weak forward simulation� of
LV��
�

In this paper we use the untimed interpretation of timed systems� In
BPV��
 there
are input�� output� and internal actions and a special time action� Here we have visible and
invisible actions� where the input� output and time actions are visible and the internal actions
are invisible� In timed traces each action has a time stamp and the time action itself does not
occur as an action in the traces� An untimed trace of timed system is just a sequence of actions
and the time action occurs in it like the other visible actions� The untimed interpretation
is sound in the sense that trace inclusion in the untimed interpretation implies timed trace
inclusion in the timed interpretation� We chose to work with this untimed interpretation
because it is slightly easier to work with� We refer to
LV��
 for a formal description of the
relation between the timed and the untimed interpretation�

��	 The EEL protocol

In appendix B�� the machine readable de	nition of the protocol is presented� In this section
we will point out the di�erences between the original speci	cation of
BPV��
 and the Larch
trait S in the appendix�

The system de	ned in trait S corresponds to the composition of the sender S and the
receiver R with the UP action hidden as internal action �HIDE UP IN �S k R�� of
BPV��
�
In this paper the whole system is presented directly instead of presenting the subsystems S
and R and the whole system as a composition of these� because the composition operator �k�
is not de	ned in LP�

Some di�erences between the original�speci	cation
BPV��
 and the one given in this paper
are caused by abbreviations in the original speci	cation� For assignments the x �� c notation
is used instead of x� � c� The phrase if b then x �� c else x �� x is abbreviated to if b then

x �� c� When a variable is not assigned a new value� it is assumed to have the same value in
the new state� so x �� x is added implicitly� These notations are not formalized in LP�

A more substantial di�erence between the original and the LSL version of the speci	cation
is caused by the fact that LP does not support higher�order logic� In the original speci	cation
the phrase Stable�Below �x� prec�S�UP ��� expresses that� When the precondition of UP holds
or can hold in the future the TIME�d� action is not allowed to bring the system in a state
where this does not hold� The higher�order functions are replaced by 	rst�order functions
that exhibit exactly the same behaviour� For this purpose the function aux is introduced� it
is essentially the same as the precondition� The only di�erence is that the clock variable x is
added as a parameter� Using this help�function the phrase can be translated to�
��
E y �y �� s�S�x �
 aux�s�y�UP

 �� �
E z �z �� s��S�x �
 aux�s��z�UP

�

This section is 	nished by a small piece of a speci	cation in both styles to give an idea of
the distance between the two� First the �normal� notation is given followed by the Larch
Shared Language version� Note that this is not part of the EEL speci	cation as used in the
veri	cation because the error variable is not taken into account�

IN �m�
Precondition

� head�m���
� �odd�length�m�� � last two�m��h

i�

E�ect

if �transmitting � �wire high � list�� then �list �� m

x ��
�

�
�� ��� IN�m
 ���

pre�s� IN�m

 �

�head�m
 � � �
 �odd�length�m

� last�two�m
 � ��	 � ��	

�

eff�s� IN�m
� s�
 � �

�if �s�S�transmitting �
 �s�S�wire�high �
 s�S�list � empty

then s��S�list � m �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x

�
 s��S�transmitting � s�S�transmitting

�
 s��S�wire�high � s�S�wire�high

�
 s��R � s�R
 �

��� Correctness criterion

Beside a speci	cation of the protocol a speci	cation of the desired behaviour is needed� the
LSL�de	nition of this system is presented in appendix B���

The speci	cation of system P is slightly di�erent from the original speci	cation
BPV��

which contained a small mistake� The precondition of the OUT action was�

OUT �list�
Precondition

��list �� � � ��� T �x � ��length�list� � ��Q�
�chaos

but it should have been�

OUT �m�
Precondition

��list � m � list �� � � ��� T �x � ��length�list� � ��Q�
�chaos

This makes a di�erence when chaos is true� in the former case only OUT �list� actions
are allowed while in the new case OUT �m� actions for arbitrary messages m are allowed�
Although the 	rst version was on paper� the handwritten proof assumed the second speci	�
cation�

�� Introduction to LP

�� Introduction to LP

The Larch Prover �LP�
GG� GH��
 is an interactive proof support system� It does not use
complicated heuristics to search for a proof� It supports 	rst�order logic and is based on
rewriting� When LP is asked to prove a conjecture� it typically normalizes the conjecture
using the rewrite�rule versions of the axioms and the lemmas that have already been proved�
When a normal�form is reached the proof is suspended and the user can invoke a command�
We will mention a few typical options� The user can start a proof by cases� making LP to
generate a subgoal for each case� A proof by induction is possible when a sort has a set of
generators� This set of generators must be given by the user� LP will then generate a subgoal
for each generator� An other possibility is to apply a rewrite rule in the reversed direction� this
is allowed because the rewrite�rules are oriented axioms� not implications� When quanti	ers
are involved� variables or constants can be 	xed� specialized or generalized� Furthermore LP
can compute critical�pairs and complete a set of rewrite�rules� Besides these proof�commands
LP has commands to direct the orientation of axioms into rewrite�rules� to make rewrite�rules
inactive� to make proof scripts� etc� Because a proof in LP is based on rewriting� the tool is
good at it� it is fast and rewriting modulo associativity and commutativity is supported�

As mentioned before the lsl tool compiles the LSL�traits into LP scripts� These scripts
can be executed from LP to add the axioms of the traits to the current set of facts� The
	rst step of constructing a proof in LP is to orient the axioms into rewrite rules� Several
methods are provided to do this� The standard method is a registered ordering based on a
LP�suggested partial ordering of operators� This usually works very well without any user
interaction� This method is also used to orient the new facts� like assumptions and proved
conjectures� that are generated during the proof� We sometimes guided it toward the intended
result by providing a small part of the ordering on the function symbols� Another method is
polynomial ordering� we did not use this for the proof of this paper� The least elegant are the
�brute�force� ordering procedures� which give users complete control over whether equations
are oriented from left to right or in the other direction� This method is used sometimes in
a proof when we want to use a rewrite rule in the other direction� typically to expand a
de	nition �
 �� � � ���

If a set of rules is non�terminating and LP is �apparently� in a rewrite�loop LP will stop
the normalization after a number of rewrite steps� This number can be chosen by the user�
A reasonable number is one thousand� which is the default value� In our experience this
happens hardly ever� If it happens the user can do several things� One can increase the
maximum number of rewrite steps and resume the normalization� An o�ending rule can be
made inactive� thereafter LP will not use it in rewriting� Another option is to orient a rule
in the other direction� A more elegant solution is to use polynomial ordering or a registered
ordering to guarantee that the rewrite system is terminating�

Note that LP does not require the user to prove that the set of rules is consistent or
terminating� The authors expect that an inconsistency will reveal itself when one starts
using the rules in a proof�

When the user is satis	ed with the set of rewrite rules the proving can really start� When
a proof is non�trivial �and sometimes even when it is trivial� it is necessary to have a fairly
detailed handwritten proof before LP is started� It is possible to play around in LP and

�

just try a proof by induction and see what happens� And when it does not work use the
cancel command to backtrack to the point just before the induction proof was started� In
our experience this only worked in very rare cases�

We constructed most of our proofs in LP in several rounds� In the 	rst round we constructed
a rough proof� When a subgoal was not interesting but still complicated to prove we just
added the goal as an axiom to the system thereby skipping that part of the proof� Although
a proof with holes is not a proof at all� it still provides useful information� The user can go
to the problematic parts of the proof very fast and begin proving those parts� Hereby he
gets a higher con	dence in the correctness of the conjecture before starting with the time
consuming and boring parts of the proof� Furthermore it sometimes turned out that several
ad�hoc axioms were �almost� the same so it was useful to construct a lemma and use it to
prove these subgoals� instead of proving the same thing several times� In the next rounds we
proved some skipped subgoals� sometimes these proofs also contained some skipped subgoals�
We continued in this way till the proof was complete�

This method is possible and reasonable because LP can generate script�	les of the com�
mands the user types� The script 	les are plain ASCII 	les with neatly indented commands
with some extra annotation� When a subgoal is generated LP adds a diamond ���� and when
a �sub�goal is proved a box ���� is added� This annotation is useful when the conjecture
or the set of axioms is slightly changed and a proof is rerun� When LP runs a script and
encounters a box but has not proved a �sub�goal it stops and noti	es the user about the
problem� Without this annotation LP would execute all following commands to that subgoal
and it would be very hard to 	nd the place were the problems started�

To 	nish the introduction in LP� in the diagrams below two �very� simple LP proofs are
presented� The 	rst lemma states that length�m � �d�� � s�length�m��� while the cor�
responding axiom is length��d� � m� � s�length�m��� For this purpose a more general
theorem is proved� length�l � l�� � length�l� � length�l�� by induction on l� For
the l � empty case LP proves it without user interaction� Note that x � � �� x� � is com�
mutative and empty � m �� m� For the case l � �b��� where b� is fresh variable of type
Bit� some user interaction is necessary�

The subgoal now reads� s�length�l��� � length��b��� � length�l��� So we have to
convince LP that length��b��� � s���� We use the mempty fact� m � empty �� m and of
the List trait length��d� � m� � s�length�m��� A critical pair of these is
length��d�� � s�length�empty��� After this fact has been added� the proof is completed
by normalization�

�
set name p

prove �list�� length�m � �d	
 � s�length�m

prove length�l � l�
 � length�l
 � length�l�

res by ind on l

�� basis subgoal

�	 basis subgoal

�� basis subgoal

cri�pair List with mempty

�	 basis subgoal

�� Formalization of the proof
�

�� induction subgoal

�	 induction subgoal

�	 conjecture

�	 conjecture

For the second example we do not give any intuition but only the facts mentioned in the
proof�

x �� y �� �x � z� �� �y � z�� �� TimeF�

x �� y 	
 � �� z �� �x � z� �� �y � z�� �� TimeF

x �� y
	 y �� x� �� TimeL�

set name p

prove �time�� �x � x
 �� �

prove x �� � �� m�x
 �� �

ins y by �� z by m�x
 in TimeF�

�	 conjecture

res by case x �� �� m�x
 �� �

�� case justification

res by case � �� x

�� case � �� xc

�	 case � �� xc

�� case ��� �� xc

ins x by �� y by xc in TimeL�

ins x by xc in p

�	 case ��� �� xc

�	 case justification

�� case xc �� �

ins x by �� y by xc� z by xc in TimeF�

�	 case xc �� �

�� case m�xc
 �� �

ins x by �� y by m�xc
� z by m�xc
 in TimeF�

�	 case m�xc
 �� �

�	 conjecture

qed

�� Formalization of the proof

In this section we will report on the proof that there exists a weak forward simulation from
the implementation �S� to the speci	cation �P��

Unlike the handwritten proof the formal proof starts with proving data�identities� Apart
from three trivial lemmas over the Bit and Nat sorts we have a dozen identities over the
sort List� For instance last�l� � � �� ��last�two�l � ���� � ��� � ���� and
length�m � �d�� � s�length�m��� These are fairly easy to prove with LP� The twelve also
include some trivial ones like last��d�� � d and tail��d�� � empty� These hardly deserve
it to be a lemma� the proof consists of applying one rewrite rule in the reversed direction�

�

�d� � empty � �d� � �d� � empty� But once these identities have been proven� last�����
will be rewritten to � without further user interaction� This seemed very useful because
sometimes a conjecture did not normalize as expected because we assumed last����� � �

while LP did not know this� And when the logical system contains about four hundred
facts� some of them one screen full� it can be hard to 	nd that the reasoning is stuck at
last����� � ��

We have about thirty lemmas concerning the data type Time� Again we have some trivial
ones like� m��� � � where m�x� is the negation of x�� But we also have some lemmas that
needed some thought how to prove them in LP� We started with some basic properties like
� � �� For this one we needed about twenty proof commands� we think that this is not
an optimal proof� probably both at the abstract mathematical level and at the level of LP
commands it is possible to optimize it�

In the proof the relation between the clock of the sender and the receiver is very important�
In
BPV��
 an operator
 is used to express that two clocks are approximately the same�
that is� equal modulo drifting� It is de	ned as follows �our ASCII notation for
 is ���

x
 y
�

�
�� T

� � T
x � y �

� � T

�� T
x

About ten of the lemmas contain the
 operator� these are relatively intricate to prove
in LP� An example is� y �� � 	
 x � y �� x � �y � ��� For this one we used about
forty proof commands in LP� It is listed in Appendix A� First we constructed a very detailed
handwritten proof of ten steps� The LP proof comes down to instantiating facts and explicitly
applying rewrite rules in the reversed direction� To prevent that we lose track we constructed
a sub proof for every step of the handwritten proof� Of course it is possible to do it without
a division in sub proofs but then the proof would consist of a long list of instantiate and
rewrite commands and it would not be clear how it corresponds to the handwritten proof�
Furthermore the logical system �the set of facts� would get messy� It would contain a lot of
instantiated rules and some other rules are made inactive to use them for reversed rewriting�
Sometimes such a messy system has unexpected rewrite properties� By using a proof for each
step� a proof context is created for each step� These are deleted when the step is proved and
only the sub�conjecture is added to the top context�

After the data lemmas the �real� proof starts� The rest of the proof presented here is the
Larch formalization of the proof presented in
BPV��
� so all de	nitions are taken from that
paper� When there is a di�erence we will say so�

First we prove some invariants about the state space of the sender� We start with an easy
one� it re�ects the observation that the sender is always transmitting if the voltage on the
bus is high� In LSL invariants are functions with this signature inv� States�A� �� Bool�

inv�s
 � �s�S�wire�high �� s�S�transmitting

�We do not use the more natural notation �x because in an old release LP could not parse its own output

when the unary � was involved�

�� Formalization of the proof
�

For every invariant we prove �a� that it holds in the start states and �b� that if a state
is reachable and the invariant holds and the system can do an action to a new state the
invariant holds also in this new state� In LP this is expressed as follows�

prove

a� �start�s�States�S	
 �� inv�s

 �

b� �reachable�s�States�S	
 �
 inv�s
 �
 isStep�s�States�S	�a�s�
 �� inv�s�

��

Given a and b it follows that �c� holds�
c� reachable�s
 �� inv�s

In higher order logic we can prove that the implication a�b� c holds where inv is a variable
of type States�S� �� Bool� In LP we have a proof that is replicated for each invariant were
inv is substituted by the current concrete invariant� This is one of the few cases were the fact
that LP is a 	rst order tool is really a disadvantage�

The next invariant gives an upper bound of the clock in the various stages of progress of
the sender�

invS�s
 � �

��s�S�transmitting �
 �s�S�wire�high �
 s�S�list � empty

� ��s�S�wire�high �
 s�S�list �� empty �
 �s�S�transmitting �
 s�S�x � �

� ��s�S�wire�high �
 s�S�list �� empty �
 s�S�transmitting

�
 head�s�S�list
 � � �
 s�S�x �� �

� ��s�S�wire�high �
 s�S�list �� empty �
 s�S�transmitting

�
 head�s�S�list
 � � �
 s�S�x �� �

� �s�S�wire�high �
 s�S�list �� empty �
 head�s�S�list
�� �
 s�S�x �� �

� �s�S�wire�high �
 �s�S�list � empty
� head�s�S�list
 � �
 �
 s�S�x �� �

Now we give invariants for relations between the states of the sender and the receiver� The
next invariant tells us that during normal operation �s�error is false� an input of a new
message can only happen when the receiver is at rest� This invariant is slightly di�erent from
the one given in
BPV��
 where the s�error disjunct has been omitted in the conclusion of
the implication� In Section ��� we discuss this mistake�

invFirstBit�s
 � ���s�S�wire�high �
 s�S�list �� empty �
 �s�S�transmitting

�� s�R�list � empty
� s�error

For the correctness of the implementation it is very important how the clocks of the sender
and the receiver are related� The 	rst invariant gives the possible distances and the second
gives a more detailed description� The second di�ers from the one presented in
BPV��
 in
the same way as invFirstBit di�ers from the original�

invW�s
 � �

��s�S�transmitting �
 �s�S�wire�high ��

�s�R�x � �s�S�x � �

� �s�R�x � �s�S�x � �

� �s�R�x � s�S�x �
 head�s�S�list
 � �

�
 �s�S�transmitting �
 s�S�wire�high ��

�

�s�R�x � s�S�x

� �s�R�x � �s�S�x � �
 �
 s�S�list �� empty �
 head�s�S�list
 � �

invX�s
 � �

���s�error �
 s�S�transmitting �
 s�R�list �� empty
 ��

� �last�s�R�list
 � � �
 s�R�x �� �pTmT � �

�
 s�R�x � s�S�x

� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �pTmT � �

�
 s�R�x � �s�S�x � �

� �last�s�R�list
 � � �
 s�R�x �� �pTmT � �

�
 s�R�x � �s�S�x � �

� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �pTmT � �

�
 s�R�x � �s�S�x � �

�
 �� �s�error �
 �s�S�transmitting �
 �s�S�wire�high

�
 s�S�list � empty �
 s�R�list �� empty
 ��

� �last�s�R�list
 � � �
 s�R�x �� � �
 s�R�x � s�S�x

� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �

�
 s�R�x � �s�S�x � �

� �last�s�R�list
 � � �
 �mTpT � �
 �� s�R�x �
 s�R�x �� �

�
 s�R�x � �s�S�x ��

�
 ���s�error �
 s�R�list � empty
 ��

��s�S�transmitting �
 �s�S�wire�high

The next invariant implies that during normal operation output of a message by the receiver
cannot happen when the sender is still busy�

invLO�s
 � �

s�S�list �� empty

�
 ��s�R�list �� empty �
 last�s�R�list
 � � �
 s�R�x � �

� �last�s�R�list
 � � �
 s�R�x � �

�� s�error

The next invariant gives an obvious property of the speci	cation P�

invp�u�States�P	
 � �

u�list � empty
�

�head�u�list
 � � �

�odd�length�u�list

� last�two�u�list
 � ���	 � ��	

The two simple invariants below are not mentioned in
BPV��
�

invRX��s
 � �s�R�list �� empty �� s�R�x �� �

invSX��s
 � ��s�S�transmitting
� s�S�list �� empty
 �� s�S�x �� �

�� Discussion
�

Finally we de	ne a simulation relation SIM� de	ned in LSL as follows�

�
SIM � trait

includes S� P

introduces SIM � States�S	� States�P	 �� Bool

asserts
forall s � States�S	� p � States�P	

SIM�s�p
 �

�if s�error

then p�chaos

else �if s�R�list � empty

then p�list � s�S�list �
 �s�S�list � empty
� p�x � �

else �if s�R�x � �s�S�x � �� � �t�last�s�R�list

 � �

then �p�list � s�R�list � s�S�list

�
 ����T
�p�x

��

�����t�length�s�R�list

 � ������t�last�s�R�list

�

min�s�R�x� s�S�x � �� � �t�last�s�R�list

 � �

else �p�list � s�R�list � ��	 � s�S�list

�
 ����T
�p�x

��

�����t�length�s�R�list

 � ������t�last�s�R�list

�

min�s�R�x� s�S�x � �� � �t�last�s�R�list

 � �

implies

Forward�S�P�SIM

Note that a lot of brackets are needed because in Larch it is impossible to de	ne a prece�
dence for self de	ned operators�

By the implies clause at the end of this trait it is claimed that SIM is a forward simulation
from S to P� If that can be proved �and we did� then a meta result �see for instance
LV��
�
tells us that S is indeed an implementation of P�

How to read the simulation above� The basic idea behind this simulation is that the
concatenation of the lists in the implementation �s�R�list and s�S�list� is about the same
as the message in transit �p�list�� Formally� when the system is transmitting then the
following holds�
�p�list � s�R�list � s�S�list�
	

�p�list � s�R�list � ��� � s�S�list��
This is expressed in the third if�then�else� in the second if�then�else it is tested if the system
is �almost� transmitting and in the 	rst it is tested if the system is in an error situation� The
big inequations � ���T��p�x �� ���� express that the system returns the messages in time�

	� Discussion

In this section we will give some conclusions about this case�study� As said in the introduction
it is unlikely that a handwritten proof is �awless� In the 	rst subsection we will report on

�

the errors we encountered� In the second subsection we will draw some conclusions about LP
and in the last subsection we will compare the approach of this paper with other approaches�

�� Errors in handwritten proof�

As mentioned at the end of Section ��� we found a small error in the speci	cation of the
OUT�action of system P� In some of the invariants a similar error existed� namely that INV
was claimed while only �error� INV holds�

The source of these mistakes was that the model in which the protocol was described
had been changed during the construction of the proof� In the former model states where
error held were not accepted and traces that ended in a not accepted state were left out of
consideration� Parts of the proof in the former model were still valid in the model presented
in
BPV��
� but unfortunately the subtlety with the error variable was overlooked�

From a practical point of view these bugs were not so important because it was very easy
to 	x them� It was far more time consuming to 	x an illegal proofstep in the TIME case
of the simulation� There the following implication was assumed� s�u �� not�X � Y� �
s��u� �� not�X � Y�� In general this does not hold� For example when T equals ���� and
s�u �� X � � 	
 Y � ��
 and s��t� �� X �
 	
 Y �
�
 then the implication does not
hold� We had to make extra case distinctions and do some extra arithmetic�

Because of the distance between the LP�proof and the handwritten proof it is possible that
there are other illegal proof steps in the handwritten proof that were not noticed� When
a conjecture is successfully proved by LP along similar lines� we did not investigate the
handwritten proof�

In the handwritten proof data identities like� last�l� � �� last two�l�
�
� ��
�
�
�

are used without a proof� To our taste this is reasonable in a handwritten proof� But when
a proof is mechanized in LP� it is necessary to prove such data identities�

For a lot of facts concerning the time domain the same can be said� Facts like � � � and
x � �� ���x� � � are fairly obvious for humans� In this paper we even proved these simple
ones� Less obvious is for instance� y � � x
 y � x � �y � �� � This is not proved in the
handwritten proof� to our taste this is an omission� It took some time to formulate them in
a proper way and prove them in LP�

�� About LP

In this section we will report on the use of LP�

Installing and starting� To start at the beginning� it is easy to install LP� Release ���a comes
with online documentation in HTML 	les that can be viewed using a WWW viewer� For
release ��� a paper document
GG��
 is available� to start with this is probably easier to
read� In about ninety pages the ideas and commands of LP are explained and one can start
using LP� The most important di�erence between the two versions are� Full 	rst�order logic
is supported� not just the universal�existential subset supported by Release ���� Furthermore
a simple sort system for describing polymorphic abstractions is added�

Statistics� In Figure � the number of occurrences of LP commands is listed� In the LP proofs
we also used a number of display commands but these are not included in the list because

�� Discussion
	

command ! meaning

prove �� ask LP to prove a conjecture
res by �� ��� resume the prove by assuming the lhs
res by ��� �� resume by two cases� �� and ��

res by case ��� resume by a case distinction
res by spec �� resume by specialization
res by contra �� resume by assuming the contradiction of the current goal
res by ind �� resume by a proof by induction
rew �� rewrite �mostly in reversed direction�
ins �� instantiate variables in a fact
cri�pair � compute critical pairs
	x �� 	x a variable
reg � give part of ordering on function symbols
set ��� set system variables of LP
make ��� make facts immune� passive etc�
del �� delete facts
dec �� declare variables or functions�

Figure �� Number of uses of LP commands

class ! commands in �

bit � �
naturals �� �
list ��� �
time ��� ��
invariants ��� ��
main theorem ��� �

TOTALS �� �

Figure �� Number of LP commands used in the proof�

these commands do not in�uence the proof and could be deleted without harming the proof�
Of course the commands often have arguments� but mostly the complete command 	ts on
one line� The total proof script consists of about ���� lines ���� Kb�� Beside the commands
it contains lines with annotations� the boxes ���� and the diamonds �����

The proofs can be divided in di�erent classes� the lemmas over the datatypes� the invariants
and the simulation� To gain some insight in the relative complexity of each class� the number
of proof commands used to proof all lemmas in a class are depicted in Figure ��

The proofs concerning time take up more than one third of the total proof� This is caused
by the intrinsic complexity of the timing in the protocol� and by the absence of arithmetic
procedures in LP� Although the time lemmas are simple arithmetic� our experience is that
it is equally hard to 	nd the right lemmas� and in LP the time lemmas are even harder to
prove than the invariants�

LP is fast enough to be used really interactive� Running the complete proof script� which

��

contains the proofs for the data�identities� the invariants and the simulation takes about ����
hours on a Sun Sparc ��� The total number of proof commands is � ��� So on the average
the execution of one command takes � seconds�

Proving The LP proofs follow the lines of reasoning of the handwritten proofs� that is� the
induction schemes and case distinctions are the same� When the handwritten proof refers to
an invariant in the LP proof it is mostly su"cient to instantiate the invariant with the current
state� The normalization does the rest of the reasoning� But especially when arithmetic is
involved the LP proof contains much more details than the handwritten proof�

It is interesting to know how much e�ort it took to formalize the proof in LP� But in this
case it is not possible to give an exact answer� First of all� this was our 	rst project with LP
so it took some time to get used to the system� Furthermore the handwritten proof was not
error free so we also had to pay attention to the abstract content of the proof� Also in the
formal proof we proved the data�identities not present in the handwritten proof� Finally we
had to cope with some problems in LP� But we estimate that given a complete and correct
handwritten proof it still would take weeks to formalize it in LP�

As said LP is really interactive� almost too interactive� Because no tactical language exists
for LP� it is impossible to add your own decision procedures or proof heuristics� A list of
commands can be saved in a script 	le and executed again but this is no substitute for a
tactical language� In LP it is impossible to express things like� �Try di�erent proofs till one
succeeds� or to examine the structure of terms like �If the current goal contains an if�then�else
with a single variable as boolean� then resume by a case distinction on that variable��

Proof Management The Proof Management system of LP is very simple� When LP generates
subgoals in response to a case distinction or induction proof the order in which these subgoals
must be proved is decided on by LP� The only way to escape from this rigid system is by
adding a subgoal as an axiom to the system� continue with the next subgoal and leave the
	rst one for another day� Then rerun the generated script up to the point where the �axiom�
is added and then insert a prove for that subgoal� There is some danger in this method
because LP lacks a special draft�proof mode switch� It is always allowed to add axioms� so
it is up to the user to check that in the 	nal version no �axioms� remain that need a proof�

It is also always allowed to cancel a proof� Obvious this is the quickest way to get at the
qed� which technically means in LP that there are no conjectures left to prove� We claim that
our proof does not contain unintended added axioms or cancels� We used grep� to search for
these commands in our proof script 	les� Still we think that a special proof mode� that one
can enter after loading the axioms� would give some extra con	dence in LP proofs�

As mentioned before� the script 	le that contains our proof is about ��� Kb and takes ����
hours to run� Imagine that one makes a change at the end and wants to check if LP accepts
the new script� This will take ���� hours for each revision� So to keep the proof manageable
it is split in �� lemmas and each lemma is proved in a separate 	le� So if we change the proof
of one lemma we only have to check if LP accepts that one� All lemmas are listed in one 	le�
By assigning a level to each lemma and requiring that only lower level lemmas are used we

�Unix command to search for a string in a set of �les

�� Discussion �

ensure that there is no cycle in the proof� To make life a little easier a small nawk� program
is used to generate the standard begin of the LP scripts� That is� a command to load the
axioms� some settings and adding the lower level lemmas as axioms�

LSL comes with a library of traits� Most of these traits contain an implies clause that
contains some important lemmas for that trait� But it comes without a proof� so the complete
sceptic is not satis	ed� The script	les can be used to distribute proofs for these lemmas� Some
care must be taken because LP proofs tend to be context dependent� Operationally LP proofs
depend heavily on the normalization� and so on the set of facts and the direction in which
the rules are oriented� Logically one can extend the set of facts without harming the proof�
operationally a new rule can disturb a proof� This problem can be solved by making all
rules inactive except the rules that are used� And then force the orientation� for example by
giving a partial ordering on the function symbols� The generation scheme of fresh constants
and variables is also a source of context dependency� For instance in a proof by induction
or when assuming the left hand side of an implication� fresh variables and�or constants are
generated� Variable names are b� b�� b� � � � for variables whose sort name begins with a B
and the 	rst free name is chosen� For constants a c is added so the names are� bc� bc�� bc�
� � � � Because these names are generated in a proof context the next proof does not know
about these names� But the constants and variables that we declare at top level are visible
everywhere� and so they can in�uence the generation of names� To prevent problems with
unexpected names of fresh constants and variables it is advisable to use names that are not
in the generation scheme of LP�

Software Management Besides that Larch is used to describe software� LP itself is a software
product� As to be expected with an experimental tool as LP we encountered some bugs� A
critical bug was an alpha conversion problem� When n�m and k are of type Nat and this is
a rewrite rule� n �� m ��
E k �n � k � m�� The normalform of n �� k was according to
LP ���� ����������
E n �n � n � k�� In the current version of LP ����a ��������� this
bug is 	xed and the normalform is�
E n� �n � n� � k��

It was far more time consuming to cope with a memory problem� Even when memory on
the machine and heap space in LP are ample available LP still runs out of memory� During
our proof the system contains up to about four hundred rules and the proof is up to ten levels
deeply nested� Steve Garland advised �via mail� to issue the command forget to delete a
data structure used for completion of rewrite systems� This indeed frees memory� but not
enough for our proof� Our �solution� was to delete rules that are not needed any more in
the current proof context� Finding the �deletable� rules is a time consuming trial and error
process� One deletes a lot of rules to 	nd out later that a few of them are still needed� and
then starts again this time without deleting those rules� this time LP runs out of memory�
etc�

Just for the record� we eventually checked the entire proof with LP Release ���a �����������

Next we will give our wish list for LP and LSL� We think that the tactical language� for
our purposes� is by far the most important wish�

�A C�like pattern matching language�

��

�� Tactical language Without a good tactical language it is impossible to extend LP
with heuristics or decision procedures� So proofchecking with LP remains at the level
of normalizing conjectures and proofs by induction� etc� While for really e"cient use of
proof�checkers it is necessary to have larger concepts� For instance a tactic like� try to
proof this invariant by case distinction on all booleans and apply a decision procedure
on the remaining expressions over the reals�

�� Arithmetic decision procedures With or without a tactical language� arithmetic
decision procedures would be very useful� In
LSGL��
 it is mentioned that a procedure
for linear inequalities is implemented� Unfortunately most of the expressions in our
proof are not linear�

�� Larger proofs accepted without memory problems

�� Better proof management It should be possible to use unproved lemmas and return
to them later or skip cases of an induction proof etc� Furthermore it would be nice if
a proof can be saved in such way that the proved theorem can be loaded directly� also
when the current set of facts is extended compared to the set from which the theorem
is proved�

�� Explicit names in LSL speci�cations Standard facts in LP have the name of the
corresponding speci	cation followed by a number� like in Nat��� One can work around
this because a conjecture can be named explicitly and a conjecture that is an axiom is
easy to prove�

�� More control over rewriting Sometimes a term has di�erent redexes� and it is
useful to be able to select one by hand� For normalizing it would be nice if it is possible
to in�uence the order in which the rewrite rules are applied�

�	 Related Work
The EEL protocol has received some attention from other sites� In
HWT��
 Ho and Wong�
Toi analysed the audio control protocol using the HyTech tool� HyTech is a symbolic model
checker for linear hybrid systems� Larsen� Pettersson and Yi analysed the protocol with the
UPPAAL tool
LPY��
� They used a formalization of the protocol based on the one developed
by Ho and Wong�Toi� Daws and Yovine analysed the protocol using KRONOS in
DY��
�
The formalization used in this paper is di�erent from the one used by the two others� It is
not completely clear what the formal relation is between the 	nite state description used by
the model checkers and the version as presented in
BPV��
� It seems to be an interesting
research problem how to integrate model�checking and proofchecking� In
MN��
 M#uller and
Nipkow discuss this topic�

In
NS��
 the I�O automata model is formalized in Isabelle�HOL� In that paper a much
larger part of the I�O automata model is formalized� in contrast to the limited number of
notions that are formalized in this paper�

Related to wish � is the work discussed in
Voi��
� In this paper a new proof environment
for LP is proposed which makes it possible to walk through the proof tree as suggested in
point ��

A� Example Proof ��

A� Example Proof

In this appendix a script	le of a LP proof is given� It is hard to read the proof because
it depends on the set of facts� which changes with every proof command� So this proof is
presented here to give some idea of what a script	le looks like more than to show the actual
proof�

set name p

prove �timetwLT� y �� � �
 x � y �� x � �y � �

res by ��

�� �� subgoal

prove �step�� ���yc
 �� ��

ins x by yc� y by �� z by � in timeF�

�	 conjecture

prove �step�� ��� � yc
 � �
 �� ��

ins x by �� � yc
� y by ��� z by � in timeF�

�	 conjecture

prove �step�� ��� � yc
 � �
 � d�T

prove �hulpje� �� � d�T

ins x by T� y by d���
� z by d�T
 in TimeLTF�

ins x by T in time

ins x by �� y by �d���
 � d�T

� z by �� in timeLTF�

�	 conjecture

ins x by ��� � yc
 � �
� y by ��� z by d�T
 in timeLTran�

�	 conjecture

prove �step�� ��� � yc � T
 � T
 � �

ins x by ��� � yc
 � �
� y by d�T
� z by T in timeLTF�

make ina timeDis

rew timeLTF� with rev timeDis

�	 conjecture

prove �step � �� � yc � T
 � �� � T

ins x by ��� � T � yc
 � T
� y by �� z by m�T
 in timeLTF�

�	 conjecture

prove �step�� �yc � T
 � �� � m�yc � T
 � m�T

ins x by �� � T � yc
� y by �� � m�T

� z by m�T � yc
 in timeLTF�

prove �� � T � yc
 � m�T � yc
 � �T � yc

set im on

prove �hulpje� � � � � �

�	 conjecture

make ina hulpje

rew con with rev hulpje

make ina timeDis

rew con with rev timeDis

rew con with rev timeDis

�	 conjecture

�	 conjecture

prove �step!� �yc � �yc � T

 � �yc � �� � m�T � �yc � T

ins x by �yc � T
� y by �� � m�T � �yc � T

� z by yc in timeLTF�

�	 conjecture

prove �step�� ����T
�yc
 � ��yc ��
� ���T

make ina timeDis

rew con with rev timeDis

��

rew con with rev timeDis

rew con with rev timeDis

�	 conjecture

prove �step�� ����T
 � d���T
 � yc
 � �yc � �

ins x by ��� � T
 � yc
� y by ��yc � �
 � �� � T

� z by d���T
 in timeLTF�

ins x by ��� T
 in time

�	 conjecture

prove �step�� xc � �yc � �

set im anc

ins x by yc� y by xc in TimeDefTwiddle

ins x by xc� y by yc in timecom

ins x by xc� y by ��� � T
 � d�� � m�T

 � yc
� z by �yc � �
 in timeLTran�

�	 conjecture

�	 �� subgoal

�	 conjecture

�� quit

B� The traits

B�� S

In this section we will present the trait that de	nes System S piece by piece�

�
S � trait

includes System�S
� List� CommonActions�S

States�S	 tuple of S� Send� R � Rec� error � Bool

Send tuple of transmitting� Bool�

wire�high � Bool�

list � List�

x � Time

Rec tuple of list � List�

x � Time

Above the 	rst lines of the trait are given� The name of the trait is S� given on the 	rst
line of the trait� Then the trait System�S� �see Section ���� and the traits List and Time are
included� see Section ���� Next the sort States�S� is de	ned� its domain consists of triples of
��� the state variables of the sender� ��� the state variables of the receiver and ��� a history
variable error� A history variable does not in�uence the behaviour of the system� The
extra information it provides is only used in the proof� The sender has four state variables�
transmitting is true when the system is transmitting� that is from the 	rst UP action till
the last DOWN action� The variable wire high denotes the level of the voltage on the bus�
The variable list contains the bits of the message that still must be transmitted� The clock
variable x is used to specify the distance between the UP and DOWN actions of the sender�
The receiver has two state variables� list denotes the bits of the current message that are
already received and the clock variable x denotes the time elapsed since the last UP action�

introduces

UP � �� Actions�S	

DOWN � �� Actions�S	

aux � States�S	� Time� Actions�S	 �� Bool �� auxiliary�function�

B� The traits ��

The UP and DOWN actions are constants of type Actions�S�� the other actions IN� OUT

and TIME are declared in CommonActions trait� Furthermore the auxiliary function aux is
declared� which is used in the action�predicate of the TIME action�

�
asserts

Actions�S	 generated by IN� UP� DOWN� OUT� TIME

forall s�s�� States�S	� m � List� t�x�y�z� Time

After the asserts key�word the properties of the functions �the axioms� are given� The
generated by clause expresses that every action is an IN� UP� DOWN� OUT or TIME
action�

�
�isVisible�UP
�

�isVisible�DOWN
�

The actions UP and DOWN are declared invisible� the actions IN� OUT and TIME are
declared visible in the CommonActions trait�

�
�� ��� START STATES ���

start�s
 � � �s�S�transmitting

�
 �s�S�wire�high

�
 s�S�list � empty

�
 �s�error

�
 s�R�list � empty
�

Initial the system is not transmitting� the wire is low� there is no message in transit �the
lists are empty� and no error has occurred yet� Note that the values of the clocks �S�x and
R�x� are unde	ned and so we have an in	nite number of start states�

�
�� ��� IN�m
 ���

pre�s� IN�m

 �

�head�m
 � � �
 �odd�length�m

� last�two�m
 � ��	 � ��	

�

eff�s� IN�m
� s�
 � �

�if �s�S�transmitting �
 �s�S�wire�high �
 s�S�list � empty

then s��S�list � m �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x

�
 s��S�transmitting � s�S�transmitting

�
 s��S�wire�high � s�S�wire�high

�
 �if s�R�list �� empty then s��error else s��error � s�error

�
 s��R � s�R
 �

The IN action denotes the reception of a new message to be transmitted� The precondition
expresses that each message must start with a bit � and that a message must be of odd length
or end in � �� � �see Section ��� The error variable becomes true when an IN action occurs
too early� that is� when the receiver is not yet ready to receive a new message�

�

��

�� ��� UP ���

pre�s�UP
 � aux�s�s�S�x�UP
�

aux�s�x�UP
 � �

�s�S�wire�high

�
 s�S�list �� empty

�
 �if s�S�transmitting

then �if head�s�S�list
�� then x � � else x � �

else x � �

�

eff�s�UP�s�
 � �

s��S�transmitting

�
 s��S�wire�high

�
 �if head�s�S�list
 � �

then s��S�list � tail�s�S�list
 �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x

�
 s��error � s�error

�
 �s�R�list � empty �� s��R�list � ��	

�
 �last�s�R�list
 � � �
 s�R�list �� empty ��

�s�R�x � ! �� s��R�list � empty

�
 �! �� s�R�x �
 s�R�x � �� s��R�list � s�R�list � ��	

�
 � �� s�R�x �� s��R�list � s�R�list � ��	 � ��	

�
 �last�s�R�list
 � � ��

�s�R�x � ! �� s��R�list � empty

�
 �! �� s�R�x �
 s�R�x � �� s��R�list � s�R�list � ��	

�
 � �� s�R�x �
 s�R�x � � �� s��R�list � s�R�list � ��	

�
 �� �� s�R�x �� s��R�list � s�R�list � ��	 � ��	

�
 s��R�x � �
�

The UP action corresponds to an up�going edge on the wire� The sender generates the

UP�s and DOWN�s as required by the Manchester encoding� The receiver�s algorithm to
decode the message via the UP actions is a direct formalization of the algorithm in Philips�
documentation�

�
�� ��� DOWN ���

pre�s�DOWN
 � aux�s�s�S�x�DOWN
�

aux�s�x�DOWN
 � �

s�S�wire�high

�
 �if s�S�list �� empty �
 head�s�S�list
 � � then x � � else x � �

�

eff�s�DOWN�s�
 � �

�if s�S�list � empty
� s�S�list � ��	

then �s��S�transmitting

else s��S�transmitting � s�S�transmitting

�
 �s��S�wire�high

�
 �if s�S�list �� empty �
 head�s�S�list
 � �

then s��S�list � tail�s�S�list
 �
 s��S�x � �

else s��S�list � s�S�list �
 s��S�x � s�S�x

�
 s��error � s�error

�
 s��R � s�R
�

The DOWN action of course corresponds to a down�going edge on the bus� The receiver
does not observe this action� and indeed the values of the state variables of the receiver do

B� The traits ��

not change �s��R � s�R��

�
�� ��� OUT ���

pre�s�OUT�m

 �

�m � finalize�s�R�list
 �
 aux�s�s�R�x�OUT�m

�

aux�s�x�OUT�m

 � �

s�R�list �� empty

�
 �if last�s�R�list
 � � then x � � else x � �

�

eff�s�OUT�m
�s�
 � �

s��R�list � empty

�
 s��R�x � s�R�x

�
 s��S � s�S

�
 s��error � s�error
�

When the receiver received the complete message the OUT action happens� Hereafter the

receiver is ready to receive a new message�

�

�� ��� TIME ���

isStep�s�TIME�t
� s�
 � �

t � �

�
 s��S�transmitting � s�S�transmitting

�
 s��S�wire�high � s�S�wire�high

�
 s��S�list � s�S�list

�
 s��error � s�error

�
 ���T
 �� ��s��S�x � s�S�x
 � t
 �
 ��s��S�x � s�S�x
 � t
 �� ���T

�
 ��
E y �y �� s�S�x �
 aux�s�y�UP

 ��

�
E z �z �� s��S�x �
 aux�s��z�UP

�
 ��
E y �y �� s�S�x �
 aux�s�y�DOWN

 ��

�
E z �z �� s��S�x �
 aux�s��z�DOWN

�
 s��R�list � s�R�list

�
 ���T
 �� ��s��R�x � s�R�x
 � t
 �
 ��s��R�x � s�R�x
 � t
 �� ���T

�
 ��
E y �y �� s�R�x �
 aux�s�y�OUT�m

 ��

�
E z� z �� s��R�x �
 aux�s��z�OUT�m

In the TIME action the discrete variables �transmitting� wire high� list� error� are
not allowed to change� Only the clocks are advanced by �about� t� formally� for both clocks
��� T � � x

�
�x

t
� �� � T � must hold�

B�� P
In this appendix the correctness criterion is given� It is a LSL�version of system P of
BPV��
�

P � trait

includes System�P
� Time� List� CommonActions�P

States�P	 tuple of list � List�

chaos � Bool�

x � Time

introduces

aux � States�P	� Time� Actions�P	 �� Bool �� auxiliary�function

asserts

��

Actions�P	 generated by IN� OUT

forall s�s� � States�P	� t � Time� m � List� x�y�z� Time

start�s
 � �s�list � empty �
 not�s�chaos

�

pre�s�IN�m

 � �

head�m
 � �

�
 �odd�length�m

� last�two�m
 � ��	 � ��	

�

eff�s�IN�m
�s�
 �

�if s�list � empty

then �s��list � m �
 s��x � � �
 s��chaos � s�chaos

else �s��chaos � true �
 s��list � s�list �
 s��x � s�x

�

pre�s�OUT�m

 � aux�s�s�x�OUT�m

�

aux�s�x�OUT�m

 � �

� s�list � m

�
 s�list �� empty

�
 ����T
�x
 �� ��� � t�length�s�list

 �

� s�chaos
�

eff�s�OUT�m
�s�
 �

�s��list � empty �
 s��chaos � s�chaos �
 s��x � s�x
�

isStep�s�TIME�t
�s�
 � �

t � �

�
 s��list � s�list

�
 s��chaos � s�chaos

�
 s��x � s�x � t

�

A m ��
E y �y �� s�x �
 aux�s�y�OUT�m

 ��

�
E z� z �� s��x �
 aux�s��z�OUT�m

B�	 CommonActions
The trait given in this appendix is needed for technical reasons� In LSL sorts are disjunct and
here a CommonActions sort is introduced to make it possible to compare actions of di�erent
systems�

CommonActions�A
 � trait

assumes System�A

introduces

IN � List �� Actions�A	

OUT � List �� Actions�A	

TIME � Time �� Actions�A	

IN � List �� CommonActions

OUT � List �� CommonActions

TIME � Time �� CommonActions

asserts
forall m� List� t � Time

common�IN�m

 � IN�m
�

common�OUT�m

 � OUT�m
�

common�TIME�t

 � TIME�t
�

isVisible�IN�m

�

isVisible�OUT�m

�

isVisible�TIME�t

B� The traits �	

B�� Bit
In this appendix a little trait for the sort Bit is given� Bits are the elements of the messages
transmitted by the protocol�

Bit � trait

introduces

��� � �� Bit

asserts
forall bit� Bit

�bit � �

� �bit � �
�

� �� �

B�� Nat
The sort Nat is introduced because it is the result sort of the length function on lists�

Nat � trait

introduces

� � �� Nat

s � Nat �� Nat

�� � �� � Nat� Nat �� Nat

odd� Nat �� Bool

asserts

Nat generated by ��s

forall n�n�� Nat

� �� s�n
�

s�n
 � s�n�
 ��� n � n��

n � � � n�

n � s�n�
 � s�n � n�
�

�odd��
�

odd�s�n

 � �odd�n

B�
 Time
Here the Time trait is given� It is discussed in section ����

Time � trait

includes Bit� AC���Time
� AC���Time
� Nat

introduces

�� �� ��� �� �� �� � Time� Time �� Bool

�� � �� � �� � �� � Time� Time �� Bool

�� � ��� �� � �� � Time� Time �� Time

�� � ��� �� � �� � Time� Time �� Time

m � Time �� Time

d � Time �� Time

min � Time � Time �� Time

t � Bit �� Time

t � Nat �� Time

������!��� �������� � �� Time

����������!����� ��������������� � �� Time

�� � �� � Time�Time �� Bool

T�pTmT�mTpT � �� Time

��

asserts
forall x�y�z�t� Time� n � Nat

�� Studies in Logic and the Foundations of Mathematics� �Chang� C� C� and Keisler� H� J�

�� Volume �! Model Theory �Page !�

�� LINEAR ORDER Axioms�

x �� y �
 y �� z �� x �� z� �� TimeL�

x �� y �
 y �� x �� �x � y
� �� TimeL�

x �� x� �� TimeL!

x �� y
� y �� x� �� TimeL�

�� ABELIAN GROUPS�

�� x � �y � z
 � �x � y
 � z� �� �associativity of �

x � � � x� �� TimeId �identity

��
E y �x � y � � �
 y � x � �
���

x � m�x
 � �� �� TimeMx �existence of inverse

�� x � y � y � x� �� �commutativity of �

�� FIELDS � These � axiomas � Abelian groups�

� � x � x� �� TimeUn �� is unit

�� x � �y � z
 � �x � y
 � z� �� �associativity of �

�� x � y � y � x� �� �commutativity of �

�x � y
 � �x � z
 � x � �y � z
��� TimeDis �distributivity of � over �

� �� ��Time� �� Time��

�� x �� � ��
E y �y � x � �
� �� �existence of multiplicative inverse�

x �� � �� �x � d�x
 � �
� �� TimeDx

�� ORDERD FIELDS � These � � Field � Linear Order�

x �� y �� �x � z
 �� �y � z
� �� TimeF�

x �� y �
 � �� z �� �x � z
 �� �y � z
� �� TimeF�

t���Bit
 � ��

t���Bit
 � ��

t���Nat
 � ��

t�s�n

 � t�n
 � ��

�� Notational convenience�

x �� y � y �� x �

�x �� y �
 x �� y
 � x � y� �� TimeLT

x � y � y � x �

x�y � x � d�y
�

x � y � x � m�y
�

min�x�y
 � �if x �� y then x else y
��� TimeMin

� � � � �� � � � � !� ! � � � �� � � � � � � � � ��

� � � � �� � � � � �� � � � � �� � � � � ��� �� � � � ���

�� � � � ��� �� � � � �!� �! � � � ��� �� � � � � � � � � � ���

�� � � � ��� �� � � � ��� �� � � � ��� �� � � � ���

�� Specific for this proof�

� � T �
 T � �����
 �

pTmT � ����T
����T

� mTpT � ����T
����T

�

������T
 � ���T

 � x
 �� y �
 y �� �����T
 � ���T

 � x

 � x � y

References �

References

AL��
 M� Abadi and L� Lamport� An old�fashioned recipe for real time� In J�W� de Bakker�
C� Huizing� W�P� de Roever� and G� Rozenberg� editors� Proceedings REX Work�
shop on Real�Time� Theory in Practice� Mook� The Netherlands� June ����� vol�
ume ��� of Lecture Notes in Computer Science� pages �$��� Springer�Verlag� �����

BPV��
 D�J�B� Bosscher� I� Polak� and F�W� Vaandrager� Veri	cation of an audio control
protocol� In H� Langmaack� W��P� de Roever� and J� Vytopil� editors� Proceedings
of the Third International School and Symposium on Formal Techniques in Real
Time and Fault Tolerant Systems� L#ubeck� Germany� September ����� volume ��
of Lecture Notes in Computer Science� pages ���$���� Springer�Verlag� ����� Full
version available as Report CS�R����� CWI� Amsterdam� July �����

CL��
 B� Chetali and P� Lescanne� An exercise in LP� The proof of the non restoring
division circuit� In First International Workshop on Larch� Dedham� pages ��$� �
Workshops in Computing� Springer�Verlag� July �����

DY��
 C� Daws and S� Yovine� Two examples of veri	cation of multirate timed automata
with KRONOS� Technical Report Spectre������� VERIMAG� Grenoble� France�
April ����� Also appeared in Proceedings �nd European Workshop on Real�Time
and Hybrid Systems� June ����� Grenoble� France�

GG
 S�J� Garland and J�V� Guttag� LP� Introduction�
http�		larch�www�lcs�mit�edu�����	larch	LP	overview�html�

GG��
 Stephen J� Garland and John V� Guttag� A guide to LP� the Larch Prover� Re�
port �� DEC Systems Research Center� Palo Alto� CA� December �����

GH��
 J�V� Guttag and J�J� Horning� Larch� Languages and Tools for Formal Speci�cation�
Springer�Verlag� �����

Gri��
 W�O�D� Gri"oen� Analysis of an Audio Control Protocol with Bus Collision� Master
thesis� Programming Research Group� University of Amsterdam� �����

GSSL��
 R� Gawlick� R� Segala� J�F� S%gaard�Andersen� and N� Lynch� Liveness in timed
and untimed systems� Technical Report MIT�LCS�TR�� �� Laboratory for Com�
puter Science� MIT� Cambridge� MA� December �����

HWT��
 P��H� Ho and H� Wong�Toi� Automated analysis of an audio control protocol� In
Proceedings of the
th International Conference on Computer Aided Veri�cation�
Li&ege� Belgium� Lecture Notes in Computer Science� Springer�Verlag� July �����

LPY��
 Kim G� Larsen� Paul Pettersson� and Wang Yi� Diagnostic model�checking for real�
time systems� In �th DIMACS Workshop on Veri�cation and Control of Hybrid
Systems� New Brunswick� New Jersey� oct ����� Springer Verlag� Lecture Notes in
Computer Science�

LSGL��
 V� Luchangco� E� S#oylemez� S� Garland� and N�A� Lynch� Verifying timing prop�
erties of concurrent algorithms� In Proceedings of the Seventh International Con�
ference on Formal Description Techniques for Distributed Systems and Communi�
cations Protocols� pages ���$���� Berne� Switzerland� October ����� IFIP WG����
Elsevier Science Publishers B� V� �North Holland�� Preliminary version� Final ver�

�� References

sion to be published by Chapman and Hall�

LV��
 N�A� Lynch and F�W� Vaandrager� Action transducers and timed automata� In
W�R� Cleaveland� editor� Proceedings CONCUR ��� Stony Brook� NY� USA� vol�
ume ��� of Lecture Notes in Computer Science� pages ���$���� Springer�Verlag�
����� Full version available as CWI Report CS�R����� Amsterdam� November
����� and as Technical Memo MIT�LCS�TM�� ��b� MIT LCS� Cambridge� MA�
October ����� To appear in Formal Aspects of Computing�

LV��
 N�A� Lynch and F�W� Vaandrager� Forward and backward simulations $ part II�
Timing�based systems� Report CS�R����� CWI� Amsterdam� March ����� Also�
MIT�LCS�TM�� ��b� Laboratory for Computer Science� Massachusetts Institute
of Technology� Cambridge� MA� To appear in Information and Computation�

LV��
 N�A� Lynch and F�W� Vaandrager� Forward and backward simulations� part I�
Untimed systems� Information and Computation� ����������$���� September �����

MN��
 Olaf M#uller and Tobias Nipkow� Combining model checking and deduction for
I�O�automata� In U�H� Engberg� K�G� Larsen� and A� Skou� editors� Proceedings
of the Workshop on Tools and Algorithms for the Construction and Analysis of
Systems� Aarhus� Denmark� volume NS����� of BRICS Notes Series� pages �$���
Department of Computer Science� University of Aarhus� May �����

NS��
 T� Nipkow and K� Slind� I�O automata in Isabelle�HOL� In Proceedings Interna�
tional Workshop TYPES���� Lecture Notes in Computer Science� Springer�Verlag�
����� To appear�

Voi��
 Fr'ed'eric Voisin� A new front�end for the larch prover� In Ursula Martin and
Jeannette M� Wing� editors� First International Workshop on Larch� Dedham �����
pages � �$���� Workshops in Computing� Springer�Verlag� �����

