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Abstract

In this paper we discuss a mathematical model for gas storage processes. In addition we outline an approach
for numerical simulations. The focus is on model assumptions and limitations with respect to the software to

be developed.
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1. INTRODUCTION

Gas injection into gas reservoirs can be considered for reasons of gas storage or CO4 disposal.
It is the purpose of this paper to present a basic mathematical model for these gas injec-
tion processes, and to outline a numerical approach. Since we aim at developing numerical
software, we focus on the model assumptions and limitations (Section 2). The mathematical
model used (Section 3) is quite standard, and is discussed in more detail in [2] and [3]. In
addition to the mathematical model we outline the numerical method to be used (Section
4). After discussing the concept of numerical diffusion, we propose a method that should
minimize the detrimental effects of numerical diffusion. To demonstrate the soundness of
our approach, we show computational results for a simple linear model problem, and a more
realistic problem describing a cycle of gas storage.

2. MODEL ASSUMPTIONS
Major assumptions in our mathematical model for gas injection are

A1l. The gas consists of two pseudo-components with different viscosity and density.
A2. The flow is two-dimensional.
A3. Darcy’s law is valid.

A4. The microscopic mixing is caused by molecular diffusion and convective dispersion. The
mixing is described by Fick’s first law.

Ab5. No-flow conditions are prescribed at the domain boundary.

A6. Gravity effects are negligible.



A7. The rock permeability is described by a diagonal tensor.
A8. Rock compressibility is negligible.

A9. Wells are modeled by point sources. At a well either the flow rate is prescribed, or the
pressure.

A10. The reservoir temperature is uniform and constant.

A1l. The density and viscosity of the gas in the mixing zone are given functions of the
pressure and gas composition only.

Apart from these physical assumptions there is an additional assumptions that we use in the
numerical algorithm:

A12. The domain is decomposable into rectangles, so orthogonal grids can be used.

3. MATHEMATICAL MODEL

3.1 Choice of variables

The composition of the gas mixture is defined in terms of a mole fraction. The mole fraction
y; of pseudo-component 7 is defined by

P = A 1
Yi=c (3.1)

where ¢; is the molar concentration of pseudo-component 7 (the number of moles of pseudo-
component ¢ per unit volume), and C' the total molar concentration,

C = C1 + C2, (32)
SO
11ty =1 (3.3)

We use two independent variables: the gas pressure P and the mole fraction y; of pseudo-
component 1. The reason for using the mole fraction as the independent variable, instead
of the mass concentration (mass per unit volume), is that we expect that the total molar
concentration is a smoother function than the total mass density.

3.2 Flow Fguations
The total volumetric flow rate u of gas is determined by Darcy’s law (A3,A6):

1
u=--K-VP, (3.4)
I

where K is the diagonal permeability tensor (A7), and p the viscosity of the mixture. The
total molar flux (number of moles per unit area per unit time) is given by

j=Cu. (3.5)

The molar flux jg; of pseudo-component 7 due to diffusion and dispersion is described by
Fick’s law (A4) (see [1]):



jai=-CD-Vy,. (3.6)

The dispersion tensor D is in two space dimensions defined by

D:am1+$( iz jz.g'y)+ﬁ( Iy _j.“;jy), (3.7)
31\ Jzdy  dy 3\ —dady  Je
where a,,, o and a; represent molecular diffusion, longitudinal dispersion and transversal
dispersion, respectively.

The molar flux of each pseudo-component consists of two terms, a convective term and a
dispersion term. Hence for both pseudo-components we have the following molar conservation
laws:

0y;C
ot

where ¢; denotes the injection rate for pseudo-component 7 in moles per unit time per unit
volume. Summing these two equations and using (3.3) gives

ocC .
¢E+V'JIQ1+Q2=Q, (3.9)

where @ denotes the total injection rate. Substitution of Darcy’s law (3.4) and (3.5) yields
the pressure equation:

ocC C

8% V-(ﬂK-VP) _ 9. (3.10)
This pressure equation combined with the the molar conservation law (3.8) for component 1
form the system of partial differential equations that describe the problem. Both the viscosity
p and the total molar concentration C' depend on the pressure P and the gas composition
y1. Usually it is assumed that the gas composition is constant. In that case the pressure
equation can be made 'more linear’ by introducing a pseudo-pressure variable. Because we
are dealing with cases that the composition of the gas varies through the reservoir, we cannot
use a pseudo-pressure variable.

3.3 Boundary Conditions
There are only no-flow boundary conditions (A5).

3.4 Wells
At wells either the flow rate is prescribed, or the pressure. The volumetric flow rate (at
reservoir conditions) into a well for given bottom hole flowing pressure P, is
2nKh
u =

i (1og(re/ra) — 1/2 1 5)
where h denotes the thickness of the reservoir, r,, and r. the well and drainage boundary
radius, respectively, and S the so called skin factor.

(P — Puy), (3.11)



3.5 Mizing Rules
The molar concentration of a real gas is given by

P
C= SRT (3.12)
where R is the gas constant, 7" the temperature and z the Z-factor that describes the deviation
from the ideal gas law.
The Z-factor is an empirical factor that can be determined by the following method pro-
posed by Hall and Yarborough [4]. Let P,; and T,; be the critical pressure and temperature
of pseudo-component ¢. The reduced pressure and temperature are defined by

P

P, = IR (3.13)
T, = T (3.14)
y1Te1 + yaTe2
The Z-factors are then implicitly given by
Y }(ffir;:;_ LG bY? 4 cY? =0, (3.15)
where
a = —0.06125(P,/T,)exp (—1.2(1 - 1/T,)?) (3.16)
b=14.76T, 1 — 9.76T, % + 4.587T,%, (3.17)
c=90.7T, ' — 242272 + 42.4T, 3, (3.18)
d=2.18+2.82T 1, (3.19)
Y = —a/z. (3.20)

Because the reservoir temperature is constant (A10), relation (3.15) implicitly defines the
Z-factor as a function of the reduced pressure P,.
The gas viscosity can be determined from the model proposed by Lee e.a. [5] (A11):

p = Kexp(X(107%p)"), (3.21)
where

(22.7 + 48 M)T**

- 3.22

209 + 19000M + 1.8T" (3-22)
X = 3.5+ 548/T + 10M, (3.23)
Y =24 - 0.2X. (3.24)

Another possible model for the viscosity is given by Lohrenz e.a. [6].

Here we have summarized two popular models for the density and viscosity, but more
mixing rules can be found in the literature. For our purposes it is sufficient to assume that
the density and viscosity are given functions of the pressure P and the composition y;.



4. NUMERICAL METHOD

In this section we first discuss the concept of numerical diffusion in standard first-order
accurate schemes for the linear convection equation. To minimize the amount of numerical
diffusion we propose to use second-order accurate schemes. The feasibility of this approach
is shown by comparing the numerical solutions for the radial convection-diffusion equation.
Next we present a discretization for the full model: we extend the approach outlined in
Section 4.1 to the pressure equation (3.10) and the transport equation (3.8). A numerical
experiment with a single cycle of gas storage again shows the merits of the second-order
accurate schemes, although there is room for improvement.

4.1 Numerical diffusion
The concept of numerical diffusion is based on the study of the one-dimensional convection
equation

0 0
3_-(; + ua—; = 0. (4.25)

Let us consider the standard forward in time and upwind in space scheme for u > 0,

M= (1 — N)el? + Ay, (4.26)
where the subscript ¢ denotes the discretization cell, the superscript n the time step and A
the so-called CFL-number that is defined by

At
A=u—. (4.27)
AT

The truncation error of this discretization is found by substituting the exact solution of (4.25)
into the discrete equation (4.26). Substituting the Taylor expansions of the solution c¢(z,t)
of (4.25) around (z;,t")

ny __ n BC n 1 2826 n 3
c(ziog,1") = clw;, %) — azg(2;,17) + S az® o5 (2, t7) + O(az”), (4.28)
(0 t71) = ey, %) + 8t (2, 1) + Lu2at2 O (2, 7)1 O(a?) (4.29)
77 - 77 at 79 2 3:132 I3 ’ .
into (4.26) yields
Oc n Oc U d?c n
5 (B t") Fug (2, t7) = S(1 = Naz o (e, 7). (4.30)

Clearly the exact solution of (4.25) does not satisfy the discrete equation (4.26). Conversely,
the solution to the discrete equation (4.26) does not satisfy (4.25), but the modified differential
equation (4.30) with the extra (numerical) diffusion term

U 0%

For A = 1 this numerical diffusion term vanishes, and for A > 1 the anti-diffusion term causes
numerical instability.

The modified equation (4.30) shows that the additional diffusion term vanishes as O(az)
for Az — 0. This term appears because both the upwind in space and the forward in time

(4.31)



¥(r)

min (1,7 + |r]) Davis
max (0, min (2, 2r,(2r+ 1)/3)) | Leonard
(r+1r))/(1+7) Van Leer
(r2+7)/(r2+1) Van Albada

Table 4.1: Overview of some popular limiter functions ¥(r).

discretization are only first-order accurate. Of course one can try to balance these two
contributions to the numerical diffusion by taking A ~ 1. However, for our problem we expect
a radial velocity field (A9). Because the velocity field is not uniform is seems impossible to
have A &~ 1 throughout the domain. Moreover the use of the explicit Euler scheme for the
time integration in (4.26) enforces a small time step, because the velocities near the well are
very high. Violating the CFL-condition A < 1 leads to numerical instability.

A systematic way to decrease the numerical diffusion is to use a scheme that is more
accurate with respect to the discretization in both space and time. Therefore we consider
cell-centered discretizations of (4.25) of the form

dc; Cit1/2 — Ci—1)2

_ 4.32
dt v AT ’ (4.32)

where Civ1/2 is an approximation of ¢ at the edge between the cells ¢ and 7 + 1. In the first-
order upwind scheme c, +1/2 is approximated by c,. More accurate discretizations are obtained
by using a larger stencil. A rather general class of schemes are the so-called k-schemes that

are generated by

1+ & 1-x
Ciy1/2 =Gt —— (ciy1 — ) + 2 (ci—¢i_q), we[-1,+1]. (4.33)
For k = —1 we obtain the two-point upstream scheme, and for K = +1 the central discretiza-

tion. All these k-schemes suffer from 'wiggles’ near strong gradients in the solution. (In fact,
these problems are caused by the lack of numerical diffusion.) To avoid these wiggles the
scheme is changed: where the solution is smooth we use (4.33), but near strong gradients we
switch over to a scheme that introduces more numerical diffusion. The smoothness of the
solution is measured by the ratio of consecutive gradients r

Ciy1 — G
. S & 4.34
Tit1/2 R ( )
so if the solution is locally smooth we have r ~ 1. We now approximate ¢, , /2 38 follows:
1
Ciy1/2 = G T §¢(Ti+1/2)(ci —¢i_1)- (4.35)

For second-order accuracy it is necessary that (1) = 1. To suppress spurious wiggles re-
strictions are imposed on the function ¥(r) (see e.g. [8]). An enormous amount of limiter
functions have been proposed in the literature. Some of them are listed in Table 4.1.



The fact that ¢(1) = 1 does not mean that the scheme (4.35) is equivalent to a two-point
upstream scheme, i.e., the scheme obtained by taking x = —1 in (4.33). A careful analysis
shows that in smooth parts of the solution, where » ~ 1, the limited schemes (4.35) are
related to the x-schemes (4.33) by

k+1

(1) = - (4.36)

It is important to note that the introduction of the limiter function leads to a nonlinear
discrete scheme for the linear equation (4.25).

The proper choice of a time integration scheme for the system of ordinary differential
equations (4.32) is difficult. There exists an enormous literature on schemes that are at least
second order accurate. An important division in these schemes is whether they are implicit
or explicit. Explicit schemes are computationally cheap per time step, but usually have to
satisfy some time step criterion for stability reasons. Implicit schemes are more stable, but
in each time step we have to solve large, possibly nonlinear systems of algebraic equations.

The transport equation, that we are eventually interested in, is of convection-diffusion type,

2
Jdc Je DB c (4.37)

The diffusion part of the operator necessitates an implicit scheme. A possible approach here
is operator splitting. An explicit scheme is then used is used for the time integration of the
convective part of the operator, and an implicit scheme for the diffusive part. This splitting
is quite tricky, and a possible source of instability. Moreover, because we have to deal with
radial velocity fields (A9), the stability conditions for explicit schemes may turn out to be
too restrictive in practice.

Therefore we consider the use of implicit schemes. The backward Euler scheme,

= = ANy — ), (4.38)

is widely used, but it is inappropriate for our purposes because it is only first order accurate.
The Crank-Nicholson scheme is an example of an implicit second-order accurate scheme:

C

n+1 n n+1 n
nil _ oy [ Git1/2 Tl Gt i
mHl_en _

5 5 (4.39)

Implicit schemes with even higher orders of accuracy are found in the class of implicit Runge-
Kutta schemes. However, since we aim at second-order accuracy we propose to use the
Crank-Nicholson scheme.

4.2 Numerical example I
To compare some of the schemes that we have discussed, we consider the two-dimensional
radial convection-diffusion equation,

dc P

q r
J— p— . _— = . D- 4:-4
y + -V c| 1= V- (D-Ve), (4.40)



where ¢ is the volumetric injection rate, h the thickness of the layer and » the radial vector.
For the initial and boundary conditions

c(0,8) =1, (4.41)
¢(o0,t) =0, (4.42)
c(r,0)=0 (4.43)

and
h=1, (4.44
g=2m (4.45)

the exact solution is given by

1|
C(?”, t) =T ﬁ’ m ; (446)

where I'(,-) is the (normed) incomplete gamma-function. We discretize this problem on a
unit square, and put the injection point in a corner of the unit square. For small values of ¢
and D the influence of the finiteness of the domain is negligible. In our numerical experiment
we take o, = 0.05 and £ = 0.15. A contour plot of the exact solution is shown in Figure 4.1.
The contour lines are drawn at ¢ = 0.1, 0.2,---,0.9. We compare the following schemes:

S1T1E The backward in space and forward in time scheme (4.26), which is explicit and
first-order accurate in both space and time,

S2T2E The second-order accurate in space scheme (4.35) with an explicit second-order ac-
curate time integration,

S2T2I The second-order accurate in space and time scheme (4.35,4.39), which is implicit.
The discrete problem in each time step is solved by a multigrid method (see [7]).

For the second-order accurate in space discretizations we use the Van Leer limiter (see Table

4.1). In the implicit scheme S2T2I we adaptively determine the time step, so that
max|cz;|-'1 — ¢ ;| ~ 0.05. (4.47)

i,J

This means that the time step increases during the simulation, since the movement of the

front slows down. This approach fails for the explicit schemes S1T1E and S2T2E, because

too large time steps lead to numerical instability. For the explicit schemes we use a fixed

time step that is determined by the condition Aga.x < 0.5.

In Table 4.2 the results are shown for calculations on different grids. The grid £,-error at t =
0.15 of the numerical solution clearly exhibits the difference in convergence behavior for the
different schemes. Halving of the mesh width reduces the error by a factor of approximately
0.5 for the first order method S1T1E, whereas the error is reduced by a factor 0.25 for the
second order methods S2T2E and S2T2I. Although the computing time needed depends on
many factors (implementation, computer architecture, specific problem, etc.), comparison of
the results in Table 4.2 reveals a clear trend. The number of time steps needed for the explicit



u<0.1

u> 0.9

Figure 4.1: Contour plot of the solution of the radial convection-diffusion equation at t = 0.15.

20 x 20 | 40 x 40 | 80 x 80
S1T1E || .0400 .0230 .01200
{y-error S2T2E .0062 .0015 .00034
S2T21 .0060 .0013 .00024
S1T1E 4 57 927
CPU time [sec] | S2T2E 11 176 2942
S2T21 12 66 394
number S1T1E 771 3033 12080
of S2T2E 771 3033 12080
steps S2T21 105 141 177
time S1T1E || 0.005 0.019 0.077
per S2T2E 0.014 0.058 0.244
step [sec] S2T2I | 0.114 0.468 2.226

Table 4.2: Numerical results for the radial convection-diffusion equation.
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methods grows as A~2. This is due to the fact that the maximum velocity in the discretized
problem grows as A~!. Because the amount of work per time step grows as h~2, the total
amount of work for the whole computation grows as A~%. We expect that the number of time
steps needed in the implicit method, where the time step is chosen adaptively, grows as A~ ".
In our numerical example the growth rate is even less. Therefore the total time needed grows
at most as fast as h~2. We generally expect this type of behavior for radial velocity fields.

4.8 Discretization
Let us now consider the discretization of our full model (3.4-3.10)

C

j=-—K-VP, (4.48)
I
e .
¢, TV =0, (4.49)
oyC .
qb—gt +V - (yj—-CD-Vy)=gq, (4.50)

where we have dropped the subscript 1 on y and g. At the heart of our discretization is the
assumption that the pressure P is a smooth variable, whereas the mole fraction y can be
discontinuous. As in Section 4.1 we split the time and space discretization. For the space
discretization we use a cell-centered finite difference scheme. Because we have orthogonal
grids (A12), it suffices to consider the one-dimensional case. For ease of notation we restrict
ourselves to uniform meshes. The space discretized conservation equations are then

dC; ji+1/2 - ji—1/2
.= : 4.51
Q= piCiy Tar Tl (4.51)
_dy,C; Yiy1/2div1/2 — Yic1/2dio1)2
=9 dt + AT
Yiv1 — ¥ Yi — Y
_Di+1/20i+1/27Aw2 + Di—1/20i—1/27Aw2 : (4.52)
The quantities at the cell edge 7 + 1/2 are approximated by
C. P...— P
. i+1/2 3 z
]i—|—1/2 = - Ki_|_1/2 _+Z$ ) (4:53)
i+1/2
Ci-|—1/2 = C(yi-}-l/z: Pi-|—1/2)7 (4.54)
Hiv1/2 = N(?/i+1/2a Pi+1/2)v (4.55)
P+ B
Piy1j2= +12 (4.56)
and
l+1/2 yz-l—l —_ §¢(1/T1+3/2)(y1+2 - yl-|—1) 1f]i+1/2 < 0

Notice that we use simple averaging to approximate P, , /2> and an upwind weighted approx-

imation for Yiv1/2 The standard first order upwind scheme is retained by taking ¢ = 0.
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grid S1TI1I | S2T2I
10x 10 || 0.152 | 0.071
20 x 20 || 0.120 | 0.043
40 x 40 || 0.086 | 0.020
80 x 80 || 0.070 | 0.014
160 x 160 || 0.044 | 0.010

Table 4.3: Amount of unphysical mixing for simple gas injection problem.

4.4 Numerical Example I1

To assess the merits of this discretization we consider a simple gas storage problem. The
reservoir is a square with a side length of 200 m and a thickness of 20 m. The reservoir has a
uniform porosity and permeability (¢ = 0.2 and K = 50mD), and the reservoir temperature
is 70 °C. Initially the reservoir is filled with gas 1 at a pressure of 35 bar, and during 150
days gas 2 is injected into the reservoir with an injection rate of 30 - 103 Nm3/d. The well
is located in a corner of the reservoir. During the next 150 days gas is withdrawn from the
reservoir with a fixed withdrawal rate of 30 - 102 Nm?/d. For simplicity we assume that both
gases can be treated as ideal gases, and that their viscosities are equal and constant. For all
relevant gas data we take the properties of methane. Because there is no physical dispersion
in the problem, we expect a sharp interface between gas 1 and 2.

We compute the solution to this problem with two different schemes, that are labeled by

S1T1I The backward in space (¢ = 0) and time scheme (4.38), which is implicit and first
order accurate in both space and time,

S2T2I The second order accurate in space and time scheme (4.39), which is also implicit.

In Table 4.3 the amount of unphysical mixing is shown, that is the ratio of the amount of the
initially present gas 1 that is produced, and the total amount of gas produced. Two conclusion
can be drawn from these results. First, we observe that the second-order accurate scheme
S2T2I indeed introduces much less unphysical mixing than the first-order accurate scheme
S1T1I. Second, we see that the the formally second-order accurate scheme S2T2I has a lower
order of accuracy for this problem: it appears to be only first order accurate. The reason for
this loss of accuracy is the following. In the problem there is no diffusion or dispersion. That
means that the interface between the two gases is sharp. Near discontinuities the limiter
function v locally causes a switch to a first-order accurate discretization. In the numerical
solution the discontinuity is smeared out over a fixed number of grid points. That means
that the scheme is only first-order accurate with respect to the amount of gas 1 that is being
produced.

5. CONCLUSION

We propose to use a method like S2T2I, that is implicit and second order accurate in both
space and time. The advantage of such methods is that the amount of numerical diffusion is
much less than in conventional first order accurate methods. If the amount of physical mixing
is not negligible, the results for the radial convection-diffusion equation show the superior
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convergence behavior of second-order accurate methods compared with first-order methods.
But if the amount of physical mixing is small, and the mixing zone cannot be properly repre-
sented on a fine grid, the method S2T2I is no longer second-order accurate, although it still
outperforms the first-order method. However, the second-order accurate methods appear to
be a good candidate, because we expect that the problems of interest display an appreciable
amount of physical mixing.

REFERENCES

1.
2.
3.

R.B. Bird, W.E. Stewart, and E.N. Lightfoot. Transport Phenomena. John Wiley, 1960.
L.P. Dake. Fundamentals of reservoir engineering. Elsevier, 1978.

J. Hagoort. Fundamentals of Gas Reservoir Engineering, volume 23 of Developments in
Petroleum Science. Elsevier, 1988.

K.R. Hall and L. Yarborough. A new equation-of-state for z-factor calculations. In Gas
Technology, volume 13 of SPE reprint series. SPE, 1977.

. A.L. Lee, M.H. Gonzalez, and B.E. Eakin. The viscosity of natural gases. In Gas Tech-

nology, volume 13 of SPE reprint series. SPE, 1977.

. J. Lohrenz, B.G. Bray, and C.R. Clark. Calculating viscosities of reservoir fluids from

their composition. In Gas Technology, volume 13 of SPFE reprint series. SPE, 1977.

J. Molenaar. Multigrid methods for fully implicit oil reservoir simulation. Technical
Report 95-40, T.U. Delft, 1995. To appear in "Proceedings Copper Mountain Conference
on Multigrid Methods 1995”.

. P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.

SIAM J. Numer. Anal., 21:995-1011, 1984.



