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Abstract

A complementarity framework is described for the modeling of certain classes of mixed continu-
ous/discrete dynamical systems. The use of such a framework is well-known for mechanical systems
with inequality constraints, but we give a more general formulation which applies for instance also
to systems with relays in a feedback loop. The main theoretical results in the paper are concerned
with uniqueness of smooth continuations; the solution of this problem requires the construction of a
map from the continuous state to the discrete state. A crucial technical tool is the so-called linear
complementarity problem (LCP); we introduce various generalizations of this problem. Specific results
are obtained for Hamiltonian systems, passive systems, and linear systems.
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1 INTRODUCTION

The mixing of continuous and discrete dynamics on the one hand and of plant and controller dynamics
on the other hand can lead to many different settings for hybrid control systems. In some cases the
continuous dynamics may reside completely in the plant and the discrete dynamics may be associated
completely with the controller, but in other cases the controller may be of a mixed discrete/continuous
nature, in still other cases the plant itself may be hybrid, and one may also have situations where
both plant and controller are of mixed type. The interaction between plant and controller may have a
discrete or a continuous nature; sometimes the distinction may be not so clear, as in the classical case
of bang-bang control in which the scalar control input is a prior:i allowed to be piecewise continous,
but effectively assumes only two values. The controlled system may actually be subject to various
inputs (controls and disturbances) which may be of different nature, and also the measurements and
the purposes of control may be of discrete or of continuous nature or both.

In this paper we shall be mainly concerned with the description of the discontinuous dynamics of
systems that switch between various modes as a result of state events; such events may be triggered
by a control mechanism or by the nature of the plant (the distinction may not always be clear and is
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FIGURE 1. A system with state events.

immaterial in a closed-loop situation). To motivate the development, let us consider the following very
simple example of such a hybrid system with a continuous input (see Fig.1). Two carts are connected
to each other and to a fixed wall by springs. The motion of the left cart is restricted by a purely
non-elastic stop. A control force can be exerted on the right cart. For simplicity, we shall normalize
all constants to 1 and let the springs be linear, and we shall assume that the stop is placed at the
equilibrium position of the left cart. An ‘event’ takes place when the left cart hits the stop or when
it is pulled away from a position at the stop; such events mark a change in nature of the dynamical
system as seen by the input. When an event takes place, the system switches from ‘constrained mode’
to ‘unconstrained mode’ or vice versa; these two modes correspond to the two discrete states of the
system. Note that the function v(t) which we have called an input may be viewed as a control or as a
disturbance; in a situation in which the system depicted in Fig. 1 is part of a larger system, we may
also view v(t) as just a connecting variable.

We shall now discuss the dynamics of the system in the example. It is not difficult to write equations
of motion for each of the two modes separately. Let z;(t) and z3(t) represent the deviations of the
left and the right cart respectively from their equilibrium positions, and let z3(t) and z4(t) denote
the corresponding velocities. In the unconstrained mode the equations are the ones that would hold
if there were no block:

i?l (t) = I3 (t)
z3(t) = —2z1(t) + za(t)
24(t) = z1(t) — za2(t) + v(2).

The equations of motion in the constrained mode are the ones that would hold if the first cart were
nailed to the block:

I (t) = 0
z3(t) = 0
24(t) = —za(t) +v(t).

To give a complete description of the hybrid system, one also needs to specify under what conditions
events take place and what the effects of such events will be. Under the assumption of inelastic
collision, one can argue that a transition from the unconstrained mode to the constrained mode will
occur at times ¢ty when the following Boolean expression in terms of equality and inequality conditions
on the state variables evaluates to TRUE:

(#1(to) = 0) A ((z3(to) < 0) V (((w3(to) = 0) V ((m2(to) < 0) V ((m2(to) = 0) A (z4(t0) < 0))))))-



Moreover, when this event takes place the variable z3 is reset to zero, whereas the other continuous
state variables keep the values that they had just before the event. A transition from the constrained
mode to the unconstrained mode will take place at times t; when the following expression evaluates
to TRUE:

(mg(to) = 0) A (.’E4(t0) > 0)

This event produces no jumps in the continuous state variables. Note that it is possible that the
conditions for a transition from the constrained mode to the unconstrained mode are satisfied imme-
diately after a transition from the unconstrained mode to the constrained mode has taken place; in
such cases there are two events in one time instant (in a well-defined order).

The equations and conditions given above are already fairly complicated although they come from a
very simple example. In many cases the formulation of equations of motion in the above explicit form,
including all the condition/event rules, will be a formidable task, and there is a clear need for devices
that enable the modeler to work in what might be called a ‘high-level language’. This language should
be such that it allows automatic translation to a ‘low-level language’ which provides the explicit
forms as in the above, and which can be used as a basis for simulation and other purposes. The
situation is not unlike that of analytical mechanics, where one avoids having to write down equations
of motion for each mechanical system from scratch by introducing ‘principles’ and ‘formalisms’ that
can be written down easily, and from which the explicit equations of motion can be written down
in a perhaps tedious but in principle straightforward way. It is the purpose of this paper to discuss
such a formalism that may be used for certain classes of hybrid systems. Given the vastness of the
area covered by the term ‘hybrid dynamical systems’, there is no reason to assume that there will be
any modeling principle having uniform validity for all hybrid systems; on the contrary, one should
expect that powerful principles can only be formulated for fairly limited classes. In view of the success
of studies of classes of dynamical systems with very special properties (linear systems, Hamiltonian
systems, planar systems, singularly perturbed systems, etc.), one shouldn’t be too unhappy with such
limitations.

We call the formalism that will be discussed in this paper the complementarity formalism because
it is based on complementarity ideas (in the sense to be explained below). Roughly speaking, the
modeling principle that is used here applies to hybrid systems that arise from the combination of
inequality constraints with variational principles; examples include mechanical systems, optimization
problems, and electrical networks. A number of specific applications will be discussed below, which
show that the extent of complementarity modeling is larger than one might think at first. In this paper
we shall be mainly concerned with the issue of well-posedness, in the sense of existence and uniqueness
of solutions for each given input v(-). This is clearly a basic question to deal with in any dynamical
system. One of the benefits that one may expect from the formulation of modeling principles is that
they will make it possible to verify well-posedness for at least some classes of hybrid systems. In this
paper we shall concentrate on the uniqueness of smooth continuations, generalizing (in this respect)
the earlier results in [16] which were limited to the case of systems with only two discrete states. The
generalization is made possible by the use of what we call the ‘dynamic complementarity problem’,
which is an extension of the linear complementarity problem (LCP) that has been studied widely
in the mathematical programming community (see for instance [3]). It should be noted that proving
well-posedness is not a merely academic exercise; besides providing a test of integrity of the formalism,
any constructive method used in the proof can be put to use in algorithms for the computation of
solutions.

The paper is structured as follows. We state the complementarity formalism in the next section
and show how it can be applied to some situations that might appear at first sight not to be covered
by the formalism. Specifically, we shall discuss Coulomb friction, relays, and input saturation. In
section 3, we introduce the dynamic complementarity problem (DCP) and derive a general result on
uniqueness of smooth continuations. We then apply this result to a number of particular cases in
section 4. Conclusions follow in section 5.



2 COMPLEMENTARITY MODELING

We consider systems which are described by general differential-algebraic equations
F(z(t),2(t)) =0, z€RN (2.1)
together with a complementary set of inequality constraints defined as follows. Define two mappings

y(t) = Hi(z(t), yeR*

(2.2)
u(t) = Ha(2(t)), uweR

(note, in first instance u and y should not be interpreted as inputs and outputs, see however below) and
consider the “complementary-slackness conditions” (the terminology stems from optimization theory)

y(t) >0, wu(t)>0, y'(thu(t)=0 (2.3)

where the inequalities are understood componentwise. The conditions on y(t) and w(t) imply that
for each index ¢ in the index set K := {1,---,k} and each time ¢ we must have either y;(t) = 0 and
u;(t) > 0, or u;(t) = 0 and y;(¢) > 0. Thus for every subset I C K we obtain a different set of DAE’s

F(2(t),2(t)) = 0
Hyi(2(t) = 0, 1€l (2.4)

together with feasibility conditions

Hii(2(t) >0, ieK\I

(2.5)
Hgi(z(t)) 2 O, 1€1.
The dynamics described by (2.4) will be called a mode of the hybrid system; the mode corresponding
to the subset I will be simply denoted as “mode I”. It follows that we have obtained a hybrid (or
multi-mode) system with, in principle, 2* different modes, which each have to satisfy a set of additional
feasibility conditions (2.5). These hybrid systems have been called “complementary-slackness systems”
in [16].

A point zp € RY is said to be consistent for mode I if there exists a continuously differentiable
solution of (2.4) passing through zp; the point zg is said to be feasible for mode I if in addition the
inequality constraints (2.5) are satisfied for z(t) = zo. The set of all points that are consistent for
mode I will be denoted by V;. Every mode I may describe a dynamics with continuous inputs; i.e.
we may be able to represent z (satisfying (2.4)) through (zy,vr), with z; the state of mode I and vy
the inputs of mode I. In the sequel, however, we will mainly concentrate on the case that every mode
I is autonomous, i.e. for every consistent point zy there exists only one solution z(t) of (2.4) (meaning
that the vector vy is void). A special class of complementary-slackness systems which is especially
amenable for analysis (in the sense that standard concepts and tools from systems and control theory
can be exploited), is obtained by replacing (2.1-2.2) by the equations of an input-state-output system

z(t) = fa(t),u(t))
y(t) = h(z(t),u(t))

and adding to (2.6) the complementary-slackness conditions

(2.6)

y(t) 20, u(t) >0, y"(H)u(t)=0. (2.7)



We will call (2.6-2.7) a “semi-explicit complementary-slackness system”. There are many examples of
(semi-explicit) complementary-slackness systems. Perhaps the most immediate examples are electrical
networks with diodes and mechanical systems subject to geometric inequality constraints, as already
demonstrated in [16]. Indeed, the equations of a (linear) electrical network with diodes can be obtained
by first replacing the diodes by external ports, leading to a port-controlled representation

z(t) = Az(t)+ Bu(t)
y(t) = Cz(t) + Du(t)

(2.8)

with u; denoting either the current or voltage at the i-th port, and y; denoting accordingly either
the voltage or the current. Connecting the diodes to the external ports will produce equations u; =
—Vi, yi = L;, or u; = I;, y; = —V;. By finally adding the ideal diode characteristics

Vi<0, L;>0, Vil =0 (2.9)

one then obtains a (linear) input-output complementary-slackness system (2.6-2.7). Mechanical sys-
tems with geometric inequality contraints (such as the simple example of Figure 1) are given by
equations of the following form (see [16]), in which %—5 and %—H denote column vectors of partial

derivatives, and the time arguments of ¢, p, y, and u have been omitted for brevity:

i = %) geR",pe R

b= —%(q,p)+ 2% (q)u, uek (2.10)
y = C(a), y € R* '
y > 0, u>0, yTu=0.

Here, C(g) > 0 is the column vector of geometric inequality constraints, and u > 0 is the vector of

Lagrange multipliers producing the constraint force vector %(q)u. (% denotes an n X k matrix

with i-th column given by 886(’1 i) The complementary-slackness conditions in this case express that

the 4-th component of u; can be only non-zero if the i-th constraint is active, that is, y; = C;(q) = 0.
Furthermore, u; > 0 since the constraint forces will be always pushing in the direction of render-
ing y; non-negative. This basic principle of handling geometric inequality constraints can be found
e.g. in [13, 9], and dates back to Fourier and Farkas. H(q,p) (the Hamiltonian) denotes the to-
tal energy, generally given as the sum of a kinetic energy %pTM ~1(q)p (where M(q) denotes the
mass matrix, depending on the configuration vector ¢) and a potential energy V(q). The semi-explicit
complementary-slackness system (2.10) is called a Hamiltonian complementary-slackness system, since
the dynamics of every mode is Hamiltonian [16]. In particular, every mode is energy-conserving (since
the constraint forces are workless); it should be noted though that the model could be easily extended
to mechanical systems with dissipation by replacing the second set of equations of (2.10) by

O0H OR ocT
p= —6—q(qap) - a—q-(d) + a—q(Q)U (2.11)
where R(q) denotes a Rayleigh dissipation function.

We will now discuss some less “obvious” examples of complementary-slackness systems. Our first
example concerns the modeling of Coulomb friction for mechanical systems. Coulomb friction is
described by the ideal characteristic in the (v, F')-plane depicted in Fig. 2. Here v denotes the velocity,
and F' the friction force which is equal to a constant F, for v > 0, or —F for v < 0, while —F, < F < F,
for v = 0. Clearly, a single Coulomb friction element has three modes, and it is not immediate how



FIGURE 2. Coulomb friction characteristic.

a mechanical system with Coulomb friction elements can be modeled as a complementary-slackness
system. Introduce however two auxiliary variables &1, €2, and define y = (y1,92)7, v = (ug,u2)? as

Y1 = Elj u ‘= FC_F

(2.12)
Y2 := &2, ug:=F. +F.
Furthermore, impose the complementary-slackness conditions
y>0, u>0, uTy=0, (2.13)

and the algebraic constraint

v=2~& — &2, (2.14)

where v is a generalized velocity corresponding to a mechanical system

= %2(¢,p), @pER"
b= ~2(gp) - 2 AQF (2.15)
v o= AT(g)q
for some n-dimensional vector A(g). Equations (2.15) express that v is the generalized velocity “caus-

ing” the Coulomb friction force F'. The equations (2.12-2.15) define a complementary-slackness system
of the general form (2.1-2.3) (with z = (g, p, &1, &2, v, F)) having four modes described by the tableau

y1=0 120

u120 U1:0
Yy =0 v=20 v>0
up >0 | —F, < F < F, F=F
y2 >0 v<0 F,=—-F,
uy =0 F=-F, not feasible

which indeed yields the three modes of Figure 2. It is clear that mechanical systems with multiple
Coulomb friction elements can be modeled in the same way as complementary-slackness systems by



FIGURE 3. Saturation characteristic.

repeating the above procedure for every Coulomb friction element, leading to 2/-dimensional y- and
u-vectors in case of £ Coulomb friction elements.

The same modeling as complementary-slackness systems can be applied to control systems (linear or
nonlinear) containing ideal relays. Relays without deadzone have the same characteristics as in Figure
2, with v replaced by a measured output 4, and F' replaced by a control input @. Ideal saturation
elements can be modeled quite similarly. Again we introduce two auxiliary variables 1, &o; define

y1:=6&, w:=M-1a

(2.16)
y2: =&, uwp:=M+a
together with an algebraic constraint (compare with (2.14))
_ d
§=8& &+ U, (2.17)

M

and impose the complementary-slackness conditions ¥y > 0, v > 0, uTy = 0. As in the tableau
for Coulomb friction this yields three feasible modes, corresponding to the three linear parts of the
characteristic given in Figure 3. Of course, this raises the interesting question which class of multi-
mode systems actually can be formalized as complementary-slackness systems; it seems that most
piecewise linear characteristics can be modeled this way. Indeed, as we will see in the next section,
there is a close connection between complementary-slackness systems and the linear complementarity
problem (LCP) of mathematical programming. Since the LCP is known to be related to piecewise
linear functions (see for instance [4]), it is likely that a close connection exists between systems with
piecewise linear characteristics and complementary-slackness systems.

As a final illustration of the range of complementarity modelling we briefly give the complementarity-
slackness modelling of a relay with deadzone as in Figure 4. We introduce five auxiliary variables

51 ) 52’ 53’ 543 , and define

=& u:=M—1a

= uy =M+ au
Y2 := & 2 (2.18)
y3:=d—n ug 1= §3

Yg:=d+n ug = &4



FIGURE 4. Relay with deadzone.

together with an algebraic constraint
g=&L —-&+n. (2.19)

This leads to 2* = 16 modes, of which eleven are not feasible, and the remaining five correspond to
the five linear parts of the characteristic given in Figure 4.

It is a far from trivial matter how to define the complete dynamics of a complementary-slackness
system. So far, we have defined the modes of a complementary-slackness system, together with the
additional feasibility conditions (2.5), but one also needs a rule to determine switches from one mode
to another. Such switches may in general be due to external causes but may also be necessitated by the
dynamics of the system itself, namely when the dynamics of a given mode would cause the inequality
constraints corresponding to that mode to be violated. Indeed, a main point of our paper [16] is
that such a rule can be given, at least for linear and Hamiltonian complementary-slackness systems,
thus avoiding the necessity of providing transition rules on a case by case basis. We briefly describe
here the proposal of [16] (see the cited paper for full details). Associated to every mode I there is a
consistent manifold V; C RY, consisting of all points z such that there exists (for ¢ small) a solution
z1(t), z1(0) = z¢ of the DAE (2.4). For simplicity we assume that all modes are autonomous, so that
zr(t) is unique. Let us now consider a point z € Vy, for some I, and consider z7(t). If z7(t) satisfies
the feasibility conditions (2.5) on some time interval [0, €), then smooth continuation is possible from
z in mode I If this does not hold a switch has to occur to another mode J. It was suggested in [16]
to determine this new index set by the rule J := (I\I'a(z;I)) UT'1(z;I), where

Ti(z;I) = {ie K\I|3e>0s.t. Hi(z1(t)); <0,t € (0,€)}
Ta(z;I) == {iel|3Je>0s.t. Ha(z1(t)): <0,t € (0,¢e)}.

(2.20)

The initial condition z, however, need not be in the consistent manifold V;; consequently we have to
re-initialize the system to a new state z' € V;. The idea of [16] is that we should be able to define
a foliation of RY which is complementary to V;, and which admits a unique projection (along this
foliation) from any point z € RY to a point 2z’ € V;. It has been shown that such a foliation can
be naturally given for linear complementary-slackness systems as well as (leaving out some details)
for Hamiltonian complementary-slackness systems. For the newly obtained point z' € V; we have to
repeat the same procedure again, resulting possibly in multiple jumps at the same time instant.
Fundamental questions concerning any dynamical system are the ezistence of solutions, and the
uniqueness of solutions. Such questions are not only basic to establishing a theoretical framework,



but also for simulation and control. Clearly these issues are much more delicate for hybrid systems
than for “ordinary” continuous-time systems. A notion of well-posedness for complementary-slackness
systems has been proposed in [16] and has been shown to hold for bimodal (i.e. ¥ = 1) Hamiltonian
complementary-slackness systems and linear complementary-slackness systems with positive leading
Markov parameter. Uniqueness of smooth continuations of complementary-slackness systems with
multiple constraints (k > 1) is the main topic of the present paper.

3 THE MODE SELECTION PROBLEM

In the simulation of hybrid systems, the following phases can be distinguished.

e Simulation of continuous motion within a given mode. In principle this is not different from the
simulation of continuous dynamical systems, since we are concerned here with the situation in
which the system is in a fixed mode; however, in the multimodal context the equations of motion
will more often than not be given by differential and algebraic equations (cf. the example in the
Introduction). Of course, there is an extensive literature on DAE’s (see for instance [1]).

o FEwvent detection. Events are usually categorized as state events (triggered by state variables that
cross certain thresholds) and time events (triggered from outside, at certain given times). The
detection of state events is a nontrivial matter in particular when a DAE solver is being used to
carry out the continuous simulation.

o Mode selection. When an event takes place, there will in general be a change of mode, and
so one is confronted with the problem of determining which mode should be chosen. In some
cases, in particular in connection with time events, the new mode may be prescribed as part of
the event (for instance gear shift in a car). However in other cases the choice of the new mode
may depend on the continuous state and then the challenge is to construct a mapping from the
continuous state to the discrete state, or in other words to define a labeled partitioning of the
continuous state space.

e Re-initialization. As is already clear in the example discussed in the Introduction, in some cases
events may be accompanied by jumps in the continuous state variable. Again in some cases the
jump may be determined exogenously but in other cases will have to be computed on the basis
of certain rules. A projection rule was suggested in [16] for linear and Hamiltonian systems
within a complementarity framework.

Here we shall concentrate on the uniqueness of smooth continuations and the mode selection problem.
We shall therefore work under the assumption that an initial continuous state is given from which
at least one smooth continuation is possible, so no re-initialization is necessary. Moreover, we shall
assume that there are no external inputs (otherwise the problem has to be reformulated as uniqueness
of smooth continuations for a given external input—we believe that this is a fairly straightforward
generalization).

As already shown in [16] it is not difficult to find examples of complementary-slackness systems that
exhibit nonuniqueness of smooth continuations. For a simple example of this phenomenon, consider
an integrator

in closed-loop with a relay
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It was shown in the previous section that such a system can be modelled as a complementary-slackness
system. Note that from the initial state 2(0) = 0, there are three possible smooth continuations: (i)
z(t) =0, y(t) =0, u(t) =0, (ii) z(t) = ¢, y(t) = ¢, u(t) =1, (iii) z(t) = —t, y(t) = —t, u(t) = —1. So
the above closed-loop is not well-posed as a dynamical system. If the sign of the feedback coupling is
reversed, however, there is only one smooth continuation from each initial state.

The mode selection problem is of course related to the problem of uniqueness of smooth continua-
tions; under our standing assumptions, nonuniqueness of smooth continuations can only arise from the
existence of multiple solutions to the mode selection problem. But even when we do have uniqueness of
smooth continuations, it is often a nontrivial problem to determine which mode provides this smooth
continuation for a given continuous state. To illustrate this, consider the example of the Introduction
and assume that we are at an initial state zg = (210, Z20,Z30,%40) With 190 = 0 and z99 = 0; also
assume that the input v(t) is zero. In this situation, smooth continuation is possible, and the mode
selection problem has the following solution:

- continuation in constrained mode if 39 < 0, or 239 = 0 and x40 < 0;
- continuation in unconstrained mode if 239 > 0, or 2390 = 0 and z49 > 0.

These rules leave open one case, namely when z39 = 0 and z49 = 0. Together with the assumptions
2190 = 0 and z9 = 0, these conditions imply that the system is at rest, and the constrained and
unconstrained modes agree in that case. Below we shall discuss how to derive these rules (which
appear to be consistent with physical reality, at least in the example) within the complementarity
formalism.

We start with a rather general nonlinear (although still semi-explicit) setting, in which equations of
motion are given by

(3.1)
y(t) = h(xz(t),u(t))
together with the complementarity conditions
y(#)>0, u(t)>0, y(t)Tu(t)=0. (3:2)

As noted above we consider for simplicity the case in which there are no external inputs. The symbol
u(t) in the above equations should therefore be viewed as a (generalized) ‘constraint force’, or in
system-theoretic terms as an implicitly defined output, although it is written as an input function
(and we shall actually use some of the theory of input/output systems). Explicitly, we shall assume
the following.

AssUMPTION 3.1 The functions f and h defining the dynamics of (3.1) are real-analytic.

AssuMPTION 3.2 For each index set I C {1,...,k} the equations (3.1) together with the equality
constraints

p®)=0 Gel), w)=0 G¢gI) (3.3)

form a system of DAE’s with the following properties. The set of all vectors zy for which there exists
a solution (z(-),y(+),u(:)) of (3.1)-(3.3) such that z(ty) = zo for some time instant ¢, forms a smooth
manifold Vr, and for each 2 and each ty there is only one solution (z(-),y(-),u(+)) of (3.1)-(3.3) such
that z(tg) = zo.
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Assumption 3.1 could be weakened for parts of the development below, but we shall not bother to
give specific smoothness conditions in each case. The condition of Assumption 3.2 comes down to
requiring that the system of DAE’s can be reduced to an ordinary differential equation on the consistent
manifold. The transformation from DAE to ODE can be carried out by so-called index reduction
algorithms (see for instance [6]); such algorithms also provide sufficient conditions for Assumption 3.2
to hold.

The problem with solving (3.1) together with the inequality constraints (3.2) is that one has to
determine which index set I has the property that the solution of (3.1)-(3.3) coincides with that of
(3.1)-(3.2). One option is simply to try all possibilities—solve (3.1) together with (3.3) for some
chosen candidate index set I, and see whether the computed solution is such that the inequality
constraints y(t) > 0 and u(t) > 0 are satisfied on some interval [0,e). Under the assumption that
smooth continuation is possible from xq, there must at least be one index set for which the constraints
will indeed be satisfied, but finding that index set in this way requires in the worst case the integration
of 2% systems of n + k differential /algebraic equations in n + k unknowns.

In order to try an alternative approach which leads to an algebraic problem formulation, let us note
first that we can derive from (3.1) a number of relations between the successive time derivatives of
y(+), evaluated at t = 0, and the same quantities derived from u(-). By differentiating the second line
of (3.1) and using the first line, we get

y(t) = h(=z(t),u(d),

W) = o alt), u(e) F(),uld) + o (a0), u(t))i(r)

= Fl(m(t)au(t)7d(t))a
and in general
yI(t) = Fi(a(t),u),...,u(t) (3.4)

where Fj is a function that can be specified explicitly in terms of f and h. From this we obviously
get the relations

y(0) = h(zo,u(0)) =: Fo(xo,u(0))
y(0) = Fi(wo,u(0),u(0))
(3.5)
y9(0) = Fj(zo,u(0),...,u(0))
From the complementarity conditions (3.2), it follows moreover that for each index ¢ either
(%i(0),5i(0),...) = 0 and (u;(0),;(0),...) = 0 (3.6)
(¥:(0),9:(0),...) = 0 and (u;(0),u;(0),...) = 0 (3.7)

(or both), where we use the symbol > to denote lexicographic nonnegativity. (A sequence (ag, a1, - -.)
of real numbers is said to be lexicographically nonnegative if either all a; are zero or the first nonzero
element is positive.) This suggests the formulation of the following problem.
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PROBLEM DCP(¢). Given smooth functions F; : R*t(@+Dk Rk (j =0,...,£) that are constructed
from smooth functions f : R* — R™ and h : R* — R* via (3.4), find, for given zo € R™, sequences
(¥°,...,y%) and (u°,...,u*) of k-vectors such that for j = 0,..., £ we have

Y = Fj(zo,u,...,u’) (3.8)
and for each index i € {1,...,k} at least one of the following is true:

(W,yl,...,95) = 0 and (ul,ul,...,uf) =0 (3.9)

(v, ut,...,y5) = 0 and (ud,u,...,uf) = 0. (3.10)

The set of indices for which (3.9) holds and (3.10) does not will be called the active index set, and
the set of indices for which (3.10) is true and (3.9) is not satisfied will be called the inactive indez set
(as determined on the basis of £ steps, and corresponding to a given solution). Even if the solution to
DCP is unique, there may be indices that are not classified as active or inactive; for these indices one
has y] = 0 aswell as u! =0 for j =0,...,£. By increasing £ if necessary, one may arrive at a situation
in which all indices are classified as active or inactive. Since the active index set determines the ‘mode’
or ‘discrete state’ of the system, we have then constructed a discrete state I(zg) corresponding to the
continuous state zg. It may also happen that the discrete state I(zg) is not uniquely determined;
in this case one may still have uniqueness of solutions, namely when all modes compatible with z
produce the same trajectory starting from xy.

The problem DCP is a generalization of the nonlinear complementarity problem, which can be
formulated as follows (in a parametrized form).

ProBLEM NCP. Given a smooth function F : R*** — R¥ find, for given z € R", k-vectors y and u
such that

y = F(z,u) (3.11)
and for each index i € {1,...,k} at least one of the following is true:

;=0 and wu; >0 (3.12)

;>0 and wu; =0. (3.13)

An equivalent (and in fact more standard) formulation of the second condition is: y > 0, u > 0 (where
the inequalities are interpreted componentwise), and y7u = 0. Because of the similarity of the two
problems we shall refer to Problem DCP as a dynamic complementarity problem. The terminology
seems so natural that we use it in spite of the fact that a related but different problem has already
been termed a dynamic complementarity problem by Chen and Mandelbaum [2].

Computational methods for the NCP form a highly active research subject (see [7] for a survey),
due to the many applications in particular in equilibrium programming. The DCP is a generalized and
parametrized form of the NCP and given the fact that the latter problem is already considered a major
computational challenge, one may wonder whether the approach taken in the previous paragraphs can
be viewed as promising from a computational point of view. Fortunately, it turns out that under
fairly mild assumptions the DCP can be reduced to a series of linear complementarity problems. The
linear complementarity problem (LCP) can be formulated as follows.

PROBLEM LCP. Given a vector ¢ € R* and a matrix M € RF**, find k-vectors y and u such that

y=q+Mu, y>0, u>0, ylu=0. (3.14)

The LCP has been studied extensively, in particular because of its applications in game theory and
mathematical programming. A wealth of theoretical results and computational methods has been
collected in the volume [3] by Cottle, Pang, and Stone.
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We shall now discuss the assumptions under which the reduction to a sequence of LCP’s is possible.
Firstly, we assume that the dynamics (3.1) can be written in the affine form

B(t) = flz(t) + X gi(z(t)ui(t)
y(t) = h(z(t).

Such a system is sometimes known as a smooth affine nonlinear control system with outputs (see for
instance [12]); as before however we note that under the complementarity conditions (3.2) and under
our standing assumptions the functions u;(t) are implicitly defined outputs rather than control inputs.
For a system in the above form, the first derivative of y(-) can be computed as

9(t) = SE((®)f(=(t) + Lisy SE@()gi(w(t))ui(t)
=i Lsh(a(t) + iy Lo,h(@(t))ui(t).

(The notation in the second line uses Lie derivatives, see for instance [14, p.207].) It may happen
that all functions L, h(z) vanish, so that u actually does not appear in the expression for §. In that
case the second time derivative of y(-) can be computed as

(3.15)

(3.16)

k
§(t) = L3h(z(t)) + Y Ly, Lh(a(t))us(t). (3.17)
i=1
Again it may happen that all functions L,, L¢h(z) vanish; then an expression for the third derivative
of y(-) can be written down which will depend on u(-) via the functions L, L?h(m) We now introduce
the following assumption.

AssuMPTION 3.3 The functions f, g;, and h appearing in (3.15) enjoy the following property. There
exists an integer p > 1 such that for r = 0,...,p — 2 the functions LgiL’JZh(m) vanish identically,
whereas the k x k matrix

LyL5™ h(z) := [Lg, L h(@) -+ Ly LG h(2))] (3.18)
is nonsingular for all z.

In the nonlinear control literature, the above assumption is known as the assumption of uniform
relative degree and nonsingular decoupling matriz (see for instance [12, Ch.8]). In particular the
integer p is known as the (uniform) relative degree of the system (3.15), whereas the matrix appearing
in (3.18) is called the decoupling matriz. A slightly different convention was used in [12] where p — 1
is called the relative degree. For the purposes of a local analysis, the assumption of nonsingularity of
the decoupling matrix for all z could be replaced by nonsingularity for all points z in a neighborhood
of a given point zg.

We also need to introduce also some terminology from matrix theory. Given a matrix M of size
k x k and two nonempty subsets I and J of {1,...,k} of equal cardinality, the (I, J)-minor of M is
the determinant of the square submatrix Mry := (mij;)ier, jes. The (I,I)-minors are also known as
the principal minors; so a k X k-matrix has 2¥ — 1 principal minors. See for instance [5, p. 2] for this
terminology.

The proof of the theorem below is based on reduction of the DCP for affine systems, under suitable
assumptions, to a series of LCP’s. The idea of this reduction is due to Létstedt [11], who applied it
in the context of mechanical systems with inequality constraints.

THEOREM 3.4 Consider the system of equations (3.15) together with the complementarity conditions
(3.2), and suppose that assumptions 3.1, 3.2, and 3.3 are satisfied, with uniform relative degree p. Let
zg € R™ be such that

h(zg) >0, -+, L{ h(zp) > 0. (3.19)
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If all principal minors of the decoupling matriz LgL?_lh(mo) at xo are positive, then the dynamic
complementarity problem DCP(L) has for each £ a solution ((y°,...,y%), (u°,...,u")); moreover this
solution is unique except for the values of ul for j > £ — p and indices ¢ such that y] = 0 for all
j=0,...,¢.

PRrOOF It follows from the special form of (3.15) and the assumption on the relative degree that the
equations of the DCP will take the following form, in which the ¢;’s denote functions that can be
computed explicitly from the given functions f, g;, and h:

yo = h(l'())
yP_l = Ll;_lh(l'())
Yyt = ¢i(ze,ul, ..., uIY) + LgLfe_lh(wo)uj

From this and (3.19) it is already obvious that the claim of the theorem holds for £ =0,...,p—1. We
now continue by induction and so we shall carry out the proof assuming that £ > p and that the claim
in the theorem holds for DCP(£ — 1). Let I;_; and J,_; denote the active index set and the inactive
index set, respectively, as determined by DCP(¢—1), and let K,_; denote the set of remaining indices,
whose status is not determined by DCP(£ — 1). A solution ((¢°,...,%%),(u°,...,u%)) of DCP(¥) can
now be constructed as follows. The components 3/ and u? for j = 0,...,¢ — 1 are taken from the
solution for DCP(£ — 1); by this choice one satisfies automatically all equations of DCP(#) except for
the last one, which is

v' = dep(@o,u®, .., utP7Y) 4 L LS h(wo)ul P (3.21)
which we write in abbreviated form as
y* = 2+ Dut~r. (3.22)

Note that the vector z¢ depends only on the components of the solution of DCP(£ — 1) that are
uniquely determined; the matrix D is just the decoupling matrix at zo. In addition to (3.22), the
complementarity conditions of DCP(£) have to be satisfied; after eliminating all conditions that are
satisfied automatically by building the solution from the one that was obtained from DCP (¢ — 1), this
leaves us with the conditions

Ye=0 (G€l_y), ui =0 (i€ J) (3.23)
and
£ £—p L L—p .
¥; 20, w; >0, yu; =0 (1€ Ko—q). (3.24)

Dividing up the equation (3.22) in three parts corresponding to the index sets Jy—1, I;—1, and K,_,
and dropping all indices and subindices that depend on £ to alleviate the notational burden, we get

YI 21 Dy Dr; Dik ur
ys | = | z7 | +| D Dj; Dk ug
YK ZK Dkr Dks Dkk UK
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By (3.23), we have to take yy = 0 and uy; = 0. We see that the remaining components have to be
chosen such that the following equations are satisfied:

0 = zr+Drrur+ Dikuk (3.25)
Yo = zg+Dyur+ Dyguk (3.26)
Yk = 2k +Dgrur+ Dgguk. (3.27)

Moreover, the complementarity conditions that follow from (3.24) must hold:
yg >0, ug >0, yhug=0. (3.28)

By assumption the determinant of Dyy is positive and hence nonzero, so that ur can be solved in
terms of z7 and ug from (3.25). Inserting the result in (3.27) leads to the equation

Yk = ZK + DKIDI_IIZI + (DKK — DKIDI_IIDIK)UK. (3.29)

The above equation together with the complementary conditions (3.28) constitutes a standard LCP.
From our assumption that all principal minors of D are positive, it follows [15] that the same property
is true for Dg g — DKIDI_IIDIK, since this matrix is a Schur complement of a principal submatrix of
D. From the general theory of the linear complementary problem (see for instance [3, Thm. 3.3.7]),
it then follows that the LCP (3.28)-(3.29) has a unique solution. This determines yx and ug; then
finally ur and y; follow from (3.25) and (3.26). In this way we have constructed a solution of DCP(¥).
The uniqueness claim follows from an inspection of the above construction method. O

Solving the problem DCP(¥) in principle gives more information as £ is increased, but in many cases
the information obtained after just a few differentiations will be enough to determine a mode uniquely.
In principle though it seems difficult to give an upper bound on the number of steps that would be
required to obtain complete information; for the special case of linear systems however the situation is
different, as we will see below. The theorem above is nevertheless strong enough to provide sufficient
conditions for uniqueness of smooth continuations.

THEOREM 3.5 Consider the system of equations (8.15) together with the complementarity conditions
(8.2). Suppose that assumptions 3.1, 3.2, and 3.3 are satisfied, with uniform relative degree p. If all
principal minors of the decoupling matriz LgL?_lh(ﬂ?(]) at a given xg € R™ are positive, and smooth
continuation from xo is possible, then this smooth continuation is unique.

PrRoOOF First of all, note that smooth continuations within a given mode are unique by Assumption
3.2. Solutions according to mode I will be denoted by (z(-;TI),y(-;I),u(-;I)), where it is under-
stood that 2(0;I) = 2. Consider now two solutions of (3.15)-(3.2) corresponding to different modes
I; and I,. The sequences (y((0;1;),u"(0;1})) and (y9)(0; L), u)(0;I;)) must then both sat-
isfy DCP(¥) for all values of £. By the uniqueness property of solutions to DCP(¥), it follows that
y(0; I) = y9)(0; I) for all §, and likewise for the u-variables. Since the solutions are real-analytic as
a consequence of Assumption 3.1, it follows that actually y(-; 1) = y(-;I2) and w(-; 1) = u(-; I2).
This implies that the solution (z(-;I2),y(-;I2),u(-;I2)) also satisfies the conditions of mode I;.
Uniqueness of the solutions now follows from Assumption 3.2. O

REMARK 3.6 Note that in the above theorem there is no claim that the mode associated with the
initial condition xg is uniquely determined. In the example of the Introduction, the initial state
zg = 0 gives rise to the solution z(t) = 0 which belongs to the constrained mode as well as to the
unconstrained mode. Because the active and inactive index sets I, and J, determined by DCP() are
nondecreasing functions taking values in a finite lattice, there must exist an £* such that I, = I,
and J; = Jg« for all £ > £*. Of course we then also have Ky = Ky« for £ > £*. The unique smooth
continuation starting from the given initial condition zy will take place according to any mode I such
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that I« C I C Iy U Ky (all such modes give rise to the same solution starting from zg). Although
the initial conditions for which such an indeterminacy occurs will be relatively rare, one might for the
purposes of completeness think of classifying indices corresponding to constraints not just as active
or inactive, but as active, inactive, or indeterminate. This would give rise to a description with 3%
rather than 2F discrete states.

REMARK 3.7 In the formulation of the system equations (3.15) we have not included an affine
feedthrough term; this follows common practice in nonlinear control theory, where y(t) may indi-
cate coordinates on a manifold so that an additive structure is not available. Nevertheless it may be
meaningful in some cases to write down equations in the form

B(t) = fla(t) + X, gi(z(t)ui(t)
y(t) = h(z(t)) + i, ri(2(t))uq(t).

If the matrix R(z) := [r1(z) --- rig(z)] has positive principal minors at © = x(, then a similar
reasoning as in the theorems above can be used to prove the uniqueness of smooth continuations.

)
(3.30)
)

4 SOME PARTICULAR CASES

In this section we shall consider a number of special situations in which the results of the previous
section can be applied or extended. We shall consider Hamiltonian systems, passive systems, and
linear systems.

4.1 Hamiltonian systems

Consider the Hamiltonian complementary-slackness system (2.10), with real-analytic Hamiltonian
(total energy)

H(q,p) = 5" M (a)p+V(a), M(q)=M"(g)>0 (4.1)
where M (q) is the generalized mass matrix. Assume that the geometric inequality constraints C;(g) >

0 are real-analytic and independent, that is

rank 8—(q) =k, for all ¢ with C(q) > 0. (4.2)
q

It is immediately seen that the system has uniform relative degree 2 with decoupling matrix D given
as

act oct
9q 9q
Since M(q) > 0 also M ~1(q) > 0, and hence from (4.2) it follows that

T
D(q>=[ (q)] M (@)% (). (4.3)

D(q) = D¥(q) >0, for all ¢ with C(q) > 0. (4.4)

A positive definite matrix has the property that all its principal minors are positive, and hence if we
start from a point zg = (go, o) such that

C(q) = 0, [ﬁ(qo)] M~"(go)po >0 (4.5)

dq
then the dynamic complementarity problem DCP(£) has for each £ a solution ((y°, - -, %%), (u°, - -, u?)),
which is unique except for the values of u? with j > £ — p. Consequently we also have uniqueness of
smooth continuations. Note that these results are unchanged if we replace the second set of equations
in (2.10) by (2.11) (involving dissipation).
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4.2 Passive systems

A system (3.15) is called passive (see [17]) if there exists a function V(z) > 0 (a storage function) such
that

L;V(z) <0
Vi) < (4.6)
Ly, V(z)=hi(z), i=1,---,k.
Let us assume the following non-degeneracy condition on the storage function V:
rank [Lg, L, V(z)] ii=1,..) =k, for all z with h(z) > 0. (4.7)

Since Ly, h; = Ly, Ly, V it follows that a passive system satisfying (4.7) has uniform relative degree 1,
with decoupling matrix D(z) given by the matrix in (4.7). If we additionally assume that the input
vector fields g1, - - -, gr are commuting, i.e.,

[giagj] :05 Z:] € {1751{:} (48)
then this decoupling matrix is symmetric, since (see e.g. [12, Ch. 2])
Ly, Lg;V(x) = Lg; Ly, V() — L[gi,gj]V(m)- (4.9)

Hence D(z) = DT(z) > 0, and by (4.7) D(z) = DT(z) > 0. Therefore, as in the previous subsection,
the dynamic complementarity problem is solvable for each £.

An example is provided by a passive (linear) electrical network with diodes, as briefly discussed in
Section 2. If the storage function, which in this case can be taken to be total energy stored in the
network (e.g. at the capacitors and inductors) is positive definite, and the matrix B in (2.8) has full
column rank, then the above properties hold.

4.8 Linear systems

In this subsection we shall consider the case in which we have linear dynamics in (3.15). We shall
moreover allow a feedthrough term which we shall denote by D following the usual conventions of
linear system theory; so in this subsection D does not in general indicate a decoupling matrix. The
equations (3.15) are thus replaced by

z(t) = Az(t)+ Bu(t)

(4.10)
y(t) = Cz(t) + Du(t).

Linear complementarity modeling applies for instance to electrical networks with linear elements and
diodes, to certain mechanical systems made up of masses and linear springs (or rotational inertias
and corresponding elasticity), and to the Hamiltonian equations for linear-quadratic optimal control
problems with linear inequality constraints.

For linear systems the results of the previous section can be sharpened considerably. First of all,
the DCP can be specialized to the linear dynamic complementarity problem shown below; note that
in this problem the number of steps is not taken as a variable but rather is determined by the problem
data.

PROBLEM LDCP. Given matrices A, B,C,D of sizes n X n, n X k, k X n, and k X k respectively,
find, for given zo € R™, sequences (y°,y!,...,y" 1) and (u®,u!,...,u™" 1) of k-vectors such that the
following equations hold:

0 Czy + Du®
CAzy + CBu® + Du!

<
=
([l

(4.11)

ynt CA™ 12g+CA 2By + ...+ CBu™ 2 + Du™!
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and for all indices ¢ € {1,...,k} at least one of the following is true:
Wyl ) =0 and (ud,ul,...,u?"h) =0 (4.12)
(v, 9yt ., y7 ) =0 and (ud,u},...,u?"") =0. (4.13)

The restriction to n — 1 steps is motivated by the theorem below. Note that a system of the form
(4.10) has uniform relative degree p > 1 with invertible decoupling matrix if D = 0 and CA’B = 0
for j = 0,...,p — 2, and moreover CAP~! B is invertible. When D is nonsingular, we shall say that
the system has uniform relative degree 0 with invertible decoupling matrix. The matrices My := D,
M; := CA’~1B are also known as the Markov parameters of the system (4.10). The condition of
uniform relative degree p and invertible decoupling matrix is equivalent to the condition that the
Smith-McMillan form at infinity of the transfer matrix G(s) := C(sI — A)71B + D (see for instance
[8, p.415] or [10, p.17]) is s~ ?I (where I}, denotes the k X k unit matrix), or in other words that G(s)
has k zeros at infinity, all of order p. For this reason we shall say that the system (4.10) has uniform
zero structure at infinity when M; =0for j =0,...,p—1 and M, is invertible, and M, will be called
the leading Markov parameter.

THEOREM 4.1 Consider the system ({.10) together with the complementarity conditions (3.2). As-
sume that the system (4.10) has uniform zeros at infinity of order p, and that all principal minors of
the leading Markov parameter are positive. Under these conditions the LDCP has, for each xy such
that CAizg >0 (j = 0,...,p— 1), a solution ((y°,...,y"" 1), (u°,...,u""1)), unique except for the
values of u] for j > n — p and indices i such that y] = 0 for all j = 0,...,n — 1. For such initial
conditions there exists an € > 0 such that (4.10)-(3.2) has a solution on [0, ); moreover, this solution
1S unique.

PROOF The first claim is immediate from the nonlinear case (see also Remark 3.7). Let I be the
active index set as indicated by the LDCP for the given initial value xy. Since indices 7 such that
Ci;Aizy > 0 for some j € {0,...,p — 1} will not belong to I, we have that C;A’z¢ = 0 for i € I and
7=0,...,p—1. Note that the motion in mode I is described by the equations

8-
Il

Az + Bru

0=y = Crz + Drru
where CT denotes the submatrix of C' consisting of the rows with indices ¢ € I, and By is the submatrix
of B consisting of the columns with indices ¢ € I. From the assumptions we have made, it follows
that (in case p = 0) Dy is invertible, or (in case p > 0) Dyy =0, CfA’B; =0 for j = 0,...,p — 2,

and C; AP~ By is invertible (since det C1 AP~ By is a principal minor of C’AP_IB). This implies that
the set of consistent initial conditions for mode I is

Vi = {z|C1Aiz=0,5=0,...,p—1}.

Since we already found that C; A9z = 0fori € Tand j =0,...,p—1, it follows that a smooth contin-
uation from z according to the equality constraints of mode I is possible. Denote the corresponding
solution by (z(-),y(-),u(-)). From the uniqueness property of solutions to the LDCP, it follows that
for each index 7 we have either

(:(0),5:(0), ..., 5" M) =0 and  (u;(0),75(0),...,u{""M(0)) =0 (4.14)

(%:(0),5:(0),. .., 5" () =0 and  (4(0),(0),...,u{"*"V(0)) = 0. (4.15)
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Note that both y(-) and u(-) can be read as outputs of a linear time-invariant system of the form
E(t) = F¢(t), n = HE(t); moreover the dimension of the underlying state space is at most n. So in
case (4.14) holds, we get that u;(-) = 0 and either (if the inequality in (4.14) is strict) y;(¢) > 0 for
small ¢, or y;(-) = 0. In case (4.15) holds, we obtain y;(-) = 0 so that index 7 is active. From our
assumptions it then follows that the system evolves on a state space of dimension at most n— p, so that
the inequality in (4.15) is enough to conclude that either u(t) > 0 for small ¢ (in case strict inequality
holds), or u(-) = 0. We see that in all cases the inequality constraints of mode I are satisfied by
(z(-),y(-),u(:)), so that it is really a smooth continuation in mode I. The uniqueness follows directly
from the general Theorem 3.4. |

A special feature of the linear setting is that it allows a frequency-domain approach to the mode
selection problem. To see this, note that to a strictly proper rational vector function y(s) we can
associate the coeflicients y? of its power series expansion around infinity

y(s) = ¢’ +ylsTP+yts T 4

and, as is easily verified, the lexicographic nonnegativity condition (¥°,4!,...) = 0 is equivalent to
the condition

y(s) > 0 for all sufficiently large s. (4.16)
Moreover, when two strictly proper functions y(s) and u(s) are related via
y(s) = C(sI — A)"tazg + (D + C(sI — A)"'B)u(s) (4.17)

then, as is again easily verified, the corresponding coefficients (y°,...,y""!) and (u°,...,u are

related in exactly the same way as in the LDCP. We are therefore motivated to consider the following
problem, which we shall call the rational complementarity problem.

n—l)

PROBLEM RCP. Let matrices A, B,C, D of sizesn X n, n X k, k X n, and k X k respectively be given.
Define rational matrix functions 7'(s) of size k x n and G(s) of size k x k by T'(s) = C(sI — A)~! and
G(s) = C(sI — A)"'B + D. For given x, find strictly proper rational functions y(s) and u(s) such
that the equality

y(s) = T(s)zo + G(s)u(s) (4.18)
holds, and there exists an sg € R such that for all s > sg we have

y(5)>0, u(s)>0, y(s) u(s)=0. (4.19)
The following theorem shows that the problems RCP and LDCP are equivalent.

THEOREM 4.2 For given data A, B, C, D, and zy, the problem LDCP has a solution if and only if
the problem RCP has a solution.

PROOF Suppose first that RCP has a solution (y(s),u(s)); write y(s) = y%s~! +yls72 + --- and
u(s) = u¥s™! +uls™2 + - ... From (4.18) it follows that (4.11) holds. Clearly (4.19) implies that for
all ¢ = 1,...,k and for all s > s either y;(s) = 0 or u;(s) = 0 or both. Now y;(s) and w;(s) are
rational functions and so they vanish either only at a finite number of points or identically. It follows
that we actually have y;(s) = 0 or u;(s) = 0 or both. If y;(s) or u;(s) is nonzero, then the inequalities
in (4.19) guarantee that at least one of (4.12) and (4.13) will be satisfied.

Conversely, suppose that LDCP has a solution. Then, by Thm. 4.1, the problem (4.10)-(3.2) has
a unique smooth solution (z(-),y(:),u(:)) with initial condition z(0) = zo. The time functions y(-)
and u(-) can both be read as outputs of a finite-dimensional linear system and hence their Laplace
transforms, to be denoted (with some abuse of notation) by y(s) and u(s), are rational. Moreover, by
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the fact that (z(-), y(-),u(-)) satisfies (4.10) and (3.2) with initial condition z(0) = zq it follows that
y(s) and u(s) satisfy the conditions of RCP. |

Note that the conditions (4.17) and (4.19) can be looked at as an LCP for any fized and sufficiently large
value of s. But of course we do not know in advance which values of s are ‘sufficiently large’; indeed,
this depends in particular on zy. Nevertheless, if some value of s is selected and the corresponding
LCP is solvable so that it determines an active index set, this index set may be tested for correctness
on the LDCP, which becomes a set of linear equations once the index set has been fixed. If the
candidate fails, a larger value of s can be chosen and the test can be repeated.

To illustrate the use of frequency-domain methods, consider once more the example of the Intro-
duction. First note that a complementary-slackness formulation of the dynamics of this example can
be written as

B1(t) = —2@1(t) + 2a(t) + u(t)
ia(t) = wi(t) —za(t) (4.20)
y(t

) = =t
2

y() 20, ut)>0, y(u(t)=0.

This gives rise to the following equations:

(82 +2)x; = 3 +u+x30 + 8210
(82 + ].).'172 = Il + T40 + 8$Z20,

in which the vector (219, Z20, 230, 40 ) represents an initial condition. The variable 25 can be eliminated
by multiplying the first equation by s2 + 1 and then using the second equation. This leads to

(32 + 1)(32 +2)zy = @1 + x40 + ST + (52 + 1)(u + 230 + sz10)

or

(s*+3s2+ )z, = [s(s2+1), s, 241, 1| 72 | + (2 + 1)u. (4.21)

y=z+u, y=20, u>0, yu=0

are uniquely solved as follows: if x > 0 then u =0, y = z; if £ < 0O theny =0, u = —z;ifz =0
then y = w = 0. Taking this into account, it is seen that the equation (4.21) with the associated
inequality constraints leads to the following solution of the mode selection problem. Since at the
instant of collision always z19 = 0, the selection problem is dominated firstly by the sign of x3. If
this sign is positive, then the mode with inactive constraint will be selected, whereas the mode with
active constraint will be selected (and will give rise to an impulsive solution) if the sign is negative.
However, if z39 = 0, then the highest power of s is associated with x99 and so it will be the sign of
this quantity that will determine which mode is chosen. Again, if the sign of zq is positive, then the
mode with inactive constraint will be selected, and if the sign is negative, then the other mode will be
selected. If also x99 = O then the sign of z49 becomes decisive. Finally if x4¢ vanishes as well then the
system is at rest, a situation which belongs to the constrained mode as well as to the unconstrained
mode.
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5 CONCLUSIONS

The interaction of discrete and continuous elements can lead to extremely complex models. One way
of beating the potential complexity is by the introduction of what one might call ‘formalisms’, that
is, sets of high-level rules that allow a compact specification of the dynamics of a hybrid system. The
trade-off is of course that the use of a formalism reduces flexibility; one cannot expect to model every
hybrid system within a given formalism. By the existence of this trade-off, it is to be expected that
various formalisms at various levels of generality may co-exist with each other and will be used as
alternatives, depending on the concrete situation at hand. The use of formalisms also will help the
development of theory since it adds structure to the rather wide notion of a “hybrid system”.

In this paper we have discussed a formalism which we have called the complementarity formalism.
The formalism appears to be suited for mechanical systems with unilateral constraints, electrical
networks with diodes, and the Hamiltonian equations for optimal control problems with inequality
constraints, and we have shown here that the formalism applies also to systems with relays and systems
with saturation. The fact that the presence of both discrete and continuous aspects creates many new
problems is vividly illustrated by the observation that even the well-posedness of the dynamic systems
within the complementary formalism needs extensive study. In this paper we have considered only
part of this problem, namely the uniqueness of smooth continuations and the associated mode selection
problem. We have given several alternative problem formulations in algebraic and functional form,
and we presented sufficient conditions for uniqueness of smooth continuations to hold.

It should be clear that a full development of the complementarity formalism will take much more
work than has been presented here. The reader may already have noted that some of the examples
we have presented in section 2 actually do not fit the setting that was used in section 3 and later.
Because of the introduction of new variables, a redundancy in the ‘output’ variables (constraints) is
created that is reflected in a nondeterminacy of the ‘input’ variables (multipliers); as a consequence,
Assumption 3.2 needs to be reformulated. These difficulties are not essential however as will be
shown in forthcoming work; it should also be noted that Lotstedt [11] already dealt with dependent
constraints in his treatment of mechanical systems with inequality constraints.

The well-posedness issue concerns more than just the uniqueness of smooth continuations; one also
has to consider the uniqueness of jumps, and one has to guarantee that only a finite number of jumps
can occur within a given instant (no ‘chattering’ at infinite speed). Furthermore the existence of
solutions from each feasible point should be shown. In the classical theory of continuous dynamical
systems, the notion of well-posedness usually refers also to continuous dependence on initial conditions;
it would be of interest to investigate this also for complementary-slackness systems. Among the further
basic dynamic properties that call for investigation, the stability of equilibria is probably the most
important one; the fact that the energy concept still plays a major role for mechanical systems with
inequality constraints would seem to suggest that a Lyapunov approach might be feasible for systems
described by the complementarity formalism. An interesting question is whether stability results so
obtained may be of help in the design of hybrid systems.

As already stressed in the paper, well-posedness is not just a theoretical matter, but is closely related
to basic issues that are of importance in the simulation of complementary-slackness systems. There is a
need to develop algorithms for all the phases mentioned at the beginning of section 3, in continuation
of the work that has already been done in connection with DAEs, the solution of optimal control
problems with inequality constraints, the simulation of electrical networks, and multibody dynamics.
Work is also needed to compare the setting of discontinuous dynamics with other approaches, in
particular the smoothing methods that are often applied in simulation. An element such as a relay or
an ideal diode is usually an approximation of a situation that actually has smoother characteristics,
and one has to weigh the advantages and disadvantages of non-smooth modeling versus those of smooth
modeling. Arguments that may play a role here include the new types of mathematical problems that
are brought in by non-smooth modeling and the associated complexity of programming, the difficulties
that variable-stepsize algorithms may have with steep parts of element characteristics, the complexity
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of physical modeling, and the desired degree of approximation. A comparison between smooth and
non-smooth modeling may also be of interest from a theoretical point of view; for instance the example
mentioned briefly in section 3 of an ill-posed system with relay may suggest that there is a connection
between ill-posedness and instability of equilibria of a corresponding ‘smoothed’ system.

In section 2 we have shown that the extent of complementarity modeling includes for instance sys-
tems with relays or saturation effects, and it was already suggested that piecewise linear characteristics
might more generally be included in the complementarity formalism. It will be of interest to further
explore the range of complementarity modeling. For some systems an extension of the framework will
be called for, for instance when the switching between the alternatives that are typical for complemen-
tarity modeling is not triggered by the variables that are involved in these alternatives, but by other
variables that may be related to the continuous state or to an external (discrete) input. An extension
along a somewhat different line would be the inclusion of hysteretic effects. It is to be expected that
such extensions will bring complementary-slackness systems and their variants closer to other classes
of hybrid systems.
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