@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Test set for IVP solvers
W.M. Lioen, J.J.B. de Swart and W.A. van der Veen
Department of Numerical Mathematics

NM-R9615 November 30, 1996

Report NM-R9615
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Test Set for IVP Solvers

W. M. Lioen, J. J. B. de Swart & W. A. van der Veen

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

version August 15, 1996

Abstract

In this paper a collection of Initial Value test Problems for systems of Ordinary Differential Equations, Implicit
Differential Equations and Differential-Algebraic Equations is presented. This test set is maintained by the
project group for Parallel IVP Solvers of CWI, department of Numerical Mathematics. This group invites
everyone to contribute new test problems to this test set. How new problems can be submitted can be found

in this paper as well.

AMS Subject Classification (1991): Primary: 65Y20, Secondary: 65-04, 65C20, 65L05

CR Subject Classification (1991): G.1.7, G.4

Keywords € Phrases: test problems, software, IVP, IDE, ODE, DAE

Note: The idea to develop this test set was discussed at the workshop ODE to NODE, held in Geiranger,
Norway, 19-22 June 1995.

Acknowlegdements: The maintenance of this test set is supported financially by STW (Dutch Foundation for
Technical Sciences). Some problems presented here were contributed by M. Giinther, B. Simeon (TH Darm-
stadt) and G. Denk (TU Miinchen). This work was sponsored by the Stichting Nationale Computerfaciliteiten
(National Computing Facilities Foundation, NCF) for the use of supercomputer facilities, with financial support
from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific
Research, NWO).

[S S G S S et
Ll

© ® N o ooE W D=

Test problems collected so far:

Chemical Akzo Nobel problem

Problem HIRES
Pollution Problem
Ring Modulator

Andrew’s squeezing mechanism

Transistor Amplifier

Medical Akzo Nobel problem
EMEP problem

NAND gate

Charge pump

Wheelset

Two bit adding unit

Car Axis problem

Fekete problem

ii

(ODE of dimension 6)
(ODE of dimension 8)
(ODE of dimension 20)

(ODE of dimension 15)

(index 3 DAE of dimension 27)
(index 1 DAE of dimension 8)
(ODE of dimension 400)

(ODE of dimension 66)

(index 0 IDE of dimension 14)
(index 2 DAE of dimension 9)
(index 2 IDE of dimension 17)
(index 1 DAE of dimension 350)
(index 3 DAE of dimension 10)
(index 2 DAE of dimension 160)

I Introduction

In testing new codes for the numerical solution of Initial Value Problems, it would save a lot of
time if one could give a generally accepted reference for test problems and use the same Fortran 77
codes of the test problems, instead of describing and programming the problems oneself. Moreover,
if everyone would use the same source of the test problem, i.e. the same formulation, parameters,
integration interval, initial values, way of programming, etc., the comparison between the results
of several authors becomes much easier. This test set tries to fulfill these demands.

This set is meant to be a supplement to existing test sets, like NSDTST and STDTST by
Enright & Pryce [EP87], and PADETEST by Bellen [Bel92]. Information on the numerical solution
is presented by solving the problems with some well-known codes. Some problems were taken
directly from industry, others from the literature. Especially, the standard work by Hairer &
Wanner [HW91], in which a lot of problems arising in practice are brought together, turned out
to be very useful. The cooperation with M. Giinther, B. Simeon (TH Darmstadt) and G. Denk
(TU Miinchen) has led to a few contributions to the test set as well.

The test set can be obtained in two ways:

1. via the WWW page with URL
http://www.cwi.nl/cwi/projects/IVPtestset.shtml ,
2. via anonymous ftp at the site
ftp.cwi.nl in the directory pub/IVPtestset .

Every test problem consists of a description (c.f. Section II) and a Fortran code (c.f. Section IIT).
Both are obtainable via WWW or in the ftp directory mentioned above.

Drivers that make these codes suitable for runs with the codes RADAUS5 by Hairer & Wan-
ner [HW95], VODE by Brown, Hindmarsh and Byrne [BHB92] and DASSL by Petzold [Pet91] are
available as well.

Section II gives information on the structure of the problem descriptions. It is followed by
Section IIT on the format of the Fortran subroutines, here we also explain how to use the Fortran
codes for running the test problems.

1.1 How to submit new test problems

In order to let this test set be a success, it is necessary that a lot of new test problems are
contributed. On the other hand, to restrict the amount of time for the maintainers of the test
set to incorporate new problems, it is important that the submissions are in a prescribed format.
Firstly, every problem should have a PostScript file (preferably together with a IATpX-file) with a
description of the problem containing the 4 subsections mentioned in Section II. Secondly, a set of
Fortran routines that are necessary for implementation has to be supplied in the format specified
in Section III.
Submissions can be sent by e-mail to IVPtestset@cwi.nl.

1.2 People Involved

This test set is maintained by the project group for Parallel IVP Solvers of CWI, department of
Numerical Mathematics. Members of this group are:

1. P.J. van der Houwen senna@cwi.nl

2. W. Hoffmann' walter@fwi.uva.nl
3. B.P. Sommeijer bsom@cwi.nl

4. W.M. Lioen walter@cwi.nl

5. W.A. van der Veen wolter@cwi.nl

6. J.J.B. de Swart jacques@cwi.nl

1 University of Amsterdam

iii

IT Problem descriptions

Every problem description contains the following 4 subsections:

1. General information
The problem identification is given. Is it an IDE, ODE or DAE, what is its dimension, its
index? The contributor and any further relevant information are listed too. What is meant

here by IDE, ODE, DAE and index, is explained in Section III.

2. Mathematical description of the problem
All ingredients that are necessary for implementation are given in mathematical formulas.

3. Origin of the problem
A brief description of the origin, in order to give a physical interpretation of the problem.
References to the literature are given for further details.

4. Numerical solution of the problem
This subsection consists of 4 subsubsections.

(a) Solution in the endpoint. The values of the solution components in the endpoint
are listed.

(b) Behaviour of the numerical solution. This subsubsection presents plots of (some
of) the components over (part of) the integration interval.

(¢) Run characteristics. Integration statistics of runs with DASSL, RADAU5 and VODE
(if applicable) serve to give insight in the numerical difficulty of the problem. Specifi-
cations of the computer and Fortran 77 compiler used to perform the run, are included.
The characteristics are in the following format:

solver

The name of the numerical solver with which the run was performed.
rtol

The user supplied relative error tolerance.

atol

The user supplied absolute error tolerance.

ho

The user supplied initial step size (if relevant).

scd

The scd values denote the minimum number of significant correct digits in the
numerical solution in the endpoint, i.e.

scd := —log;o(max. norm of the relative error in the endpoint).

If some components of the solution vector are not taken into account for the com-
putation of the scd value, or if the absolute error is computed instead of the relative
error, then this is specified locally.

steps

Total number of steps taken by the solver (including rejected steps due to error
test failures and/or convergence test failures).

accept

The number of accepted steps.

f and # Jac

The number of evaluations of the derivative function and its Jacobian, respectively.
LU

The number of LU-decompositions (if delivered by the code). The codes, except
for RADAUS5, count the LU-decompositions of systems of dimension d, where d

iv

is the dimension of the test problem. RADAUS5 uses the three-stage Radau ITA
method. Every iteration of the inexact Newton process, used for solving systems
of non-linear equations, requires the solution of a linear systems of dimension 3d.
This linear system is, by means of transformations, reduced to 2 linear systems of
dimension d, one of which is complex. The decompositions of these 2 linear systems
are counted by RADAUS5 as 1 LU-decomposition.
e CPU

The CPU time in seconds to perform the run on the specified computer. Since
timings on most computers may depend on other processes (like e.g. daemons), the
minimum of the CPU times of 100 runs is listed.

Apart from tests with publicly available, well-known codes, tests with PSODE are
included. PSODE is a code developed at CWI for the parallel solution of ODEs. PSODE
uses the 4-stage Radau ITA method and solves the 4 stages in parallel. The integration
statistics listed in this Test Set refer to the implementation on a sequential computer.
We included the speed-up factors obtained with PSODE on the Cray C98/4256 at
SARA, using the tool ATExpert. Since PSODE is still under development, it is not
yet publicly available. For more details on PSODE and its parallel implementation, we

refer to [SB95] and [HS91].

Work-precision diagram. For every relevant solver, a range of input tolerances and,
if necessary, a range of initial stepsizes, were used to produce a plot of the resulting
scd values against the number of CPU seconds needed for the run. The format of
these diagrams is as in Hairer & Wanner [HW91, pp. 166-167, 324-325]. The range of
tolerances and initial stepsizes is problem dependent and specified locally.

We want to emphasize that the reader should be careful with using these diagrams for
a mutual comparison of the solvers. The diagrams just show the result of runs with the
prescribed input on the specified computer. A more sophisticated setting of the input
parameters, another computer or compiler, as well as another range of tolerances might
change the diagrams considerably.

IIT Fortran codes for the problems

For every test problem, the file problem.f contains a set of Fortran subroutines defining the
problem. We have categorized the test problems in three classes: IDEs, ODEs and DAEs.

In this test set, we call a problem an IDE (system of Implicit Differential Equations) if it is
of the form

G(ta Y, y,) = 0; tbegin S t S tend;
y,G(t,y,y") € RY,
Y(tbegin) and y'(tbegin) are given.

A problem is named an ODE (system of Ordinary Differential Equations), if it has the form

y, = f(t,y), tbegin S t S tenda
y, f(t,y) € RY,

Y(tbegin) is given,
whereas the label DAE is given to problems which can be cast in the form

Myl = f(ta y): tbegin S t S tend’

y, f(t,y) € RY, M e R

Y(tbegin) is given,
where M is a constant, possibly singular matrix. Connected to IDEs and DAEs is the concept of
index. Here, we mean by the index of a problem the differential index as defined in [HW91]. Note
that ODEs and DAEs are subclasses of IDEs.

Every class of problems corresponds to one format of the Fortran routines.

I11.1 IDEs
The form for IDEs reads

G(ta yay,) = 0; tbegin S t S tend;
y,G(t,y,y") € RY,
Y(tvegin) and y'(tbegin) are given.

The subroutines are:

1. subroutine prob(problm, neqn, tbegin, tend, ijac, mljac, mujac,
ind1l, ind2, ind3)
character*(*) problm
integer neqn, ijac, mljac, mujac, indl, ind2, ind3
double precision tbegin, tend

describes the problem
problm - character

On exit, problm contains a character string uniquely identifying the problem.
The first 8 characters (possibly blank padded) should be unique.

neqn - integer
On exit, neqn contains d, the dimension of the problem.

tbegin - double precision
On exit, tbegin contains tpegin, the begin point of the integration interval.

tend - double precision
On exit, tend contains tenq, the end point of the integration interval.

vi

ijac - integer
On exit, ijac contains a switch for the computation of the Jacobians 8G/8y and

8G [dy":

e ijac = 0: the Jacobians have to be computed internally by the solver,
a dummy subroutine jeval is supplied;

e ijac = 1: the Jacobians are supplied by the subroutine jeval, defined below.

mljac - integer
On exit, mljac contains a switch for the structure of the Jacobians 8G /8y and 0G/dy':

e mljac = neqgn: the Jacobians are full matrices;

e 0 <mljac < neqn: the Jacobians are band matrices,
mljac is the lower bandwidth of the Jacobian matrices
(mljac > number of non-zero diagonals below the main diagonal).

mujac - integer
On exit, mujac contains the upper bandwidth of the Jacobian matrices G /9y and
8G/dy' (mujac > number of non-zero diagonals above the main diagonal).
Need not be defined if mljac = neqn.

The parameters ind1, ind2 and ind3 give information on the index of the variables. The
right hand side function subroutine feval is written such that the index 1, 2, 3 variables
appear in this order. The relation ind1 + ind2 + ind3 = neqn should hold.

indl - integer
On exit, ind1 contains the number variables with index lower than 2 (ind1 > 0 should
hold).
For systems of index lower than 2 this equals neqn.

ind2 - integer
On exit, ind2 contains the number of index 2 variables.
For systems of index lower than 2 this equals 0.

ind3 - integer
On exit, ind3 contains the number of index 3 variables.
For systems of index lower than 2 this equals 0.

For the definition of index of a variable, we refer to [BCP89]. We remark that the differential
index of the whole problem equals the maximum of the indices of all variables.

. subroutine init(neqn, y, dy, incon)
integer neqn, incon
double precision y(neqn), dy(neqn)

returns the (possibly inconsistent) initial values y(tpegin) and y'(tbegin)
neqn - integer

On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)

On exit, y(i) contains y;(tbegin), ¢ = 1,...,d, the initial values of the solution.
dy - double precision array of dimension at least (neqn)
On exit,
e dy(i) contains y(tpegin), @ = 1,...,d, consistent initial values of the derivative of

the solution, if incon = 1.

e dy(i) contains 0 or an approximation to ¥;(tbegin), @ = 1,...,d, inconsistent initial
values of the derivative of the solution, if incon = 0.

vii

incon - integer
On exit, incon contains a switch for the consistency of the initial values thegin; Y(tbegin),
and yl(tbegin):
e incon = 0: the initial values are possibly inconsistent:
G(tvegin, Y(tbegin)s ¥ (tbegin)) 7 0. The solver has to compute ¥’ (thegin)-
e incon = 1: the initial values are consistent: G(tpegin, Y(tbegin), ¥ (tbegin)) = 0.

. subroutine geval(neqgn, t, y, dy, g)
integer neqn
double precision t, y(neqn), dy(neqn), g(neqn)

evaluates the function G

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), ¢ = 1,...,d, the solution at t = t.
Unchanged on exit.

dy - double precision array of dimension at least (neqn)
On entry, dy (i) must specify yj(t), ¢ = 1,...,d, the derivative of the solution at ¢ = t.
Unchanged on exit.

g - double precision array of dimension at least (neqn)
On exit, g(i) contains G,(t,y,dy), ¢ = 1,...,d, the value of the function G at t = t.

. subroutine jeval(neqn, t, y, dy, dgdy, dgddy, ldim)

integer neqn, ldim

double precision t, y(neqn), dy(neqn), dgdy(ldim,neqn), dgddy(ldim,neqn)
evaluates the Jacobians G /9y and 8G /8y’

(this routine is only called if ijac = 1; a dummy subroutine is supplied in the case ijac = 0)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), i = 1,...,d, the solution at t = t.
Unchanged on exit.
dy - double precision array of dimension at least (neqn)
On entry, dy (i) must specify yi(t), ¢ = 1,...,d, the derivative of the solution at ¢ = t.
Unchanged on exit.
dgdy - double precision array of dimension (ldim,p) where p > neqn
On exit,
o dgdy(i, j) contains G;(t,y,dy)/dy; if the Jacobian is a full matrix
(mljac = neqn);
e dgdy(i— j +mujac + 1, j) contains 0G;(t,y,dy)/dy;
if the Jacobian is a band matrix (0 < mljac < neqn)
(LAPACK / LINPACK / BLAS storage).

viii

dgddy - double precision array of dimension (1ldim,p) where p > neqn
On exit,

e dgddy(i, j) contains 8G;(t,y,dy)/dy; if the Jacobian is a full matrix
(mljac = neqn);

e dgddy(i — j +mujac + 1, j) contains 8G;(t,y,dy)/dy;
if the Jacobian is a band matrix (0 < mljac < neqn)
(LAPACK / LINPACK / BLAS storage).

1dim - integer
On entry, 1dim must specify the first dimension of the arrays dgdy and dgddy as declared
in the calling (sub)program. If m1jac = neqn, then the Jacobians are supposed to be
full and the relation 1dim > neqn must hold. If 0 < mljac < neqn then the Jacobians
are taken as banded and the relation 1dim > mljac + mujac + 1 should hold.
Unchanged on exit.

5. subroutine solut(neqn, y)
integer neqn
double precision y(neqn)

returns a reference solution in the endpoint y(tenq)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tena), ¢ = 1,...,d, the reference solution at ¢t = tepq, the
endpoint.

If the index of the IDE is lower than 2, then the problem can be handled by DASSL. The file
dassld.f contains a driver such that compiling

£77 dassld.f ddassl.f problem.f

yields an executable that solves a problem, of which the Fortran routines in the format above are
in the file problem.f, with DASSL.

The auxiliary linear algebra routines used by DASSL are included in the driver. Unless stated
otherwise, all input parameters are set to their default values.

1I1.2 ODEs

For the ODE case, the problem is written in the form
y, = f(tay)a tbegin S t S tend;
y, f(t,y) € RY,

Y(tbegin) is given.
The subroutines are:

1. subroutine prob(problm, neqn, tbegin, tend, ijac, mljac, mujac)
character*(*) problm
integer neqn, ijac, mljac, mujac
double precision tbegin, tend

describes the problem

problm - character
On exit, problm contains a character string uniquely identifying the problem.
The first 8 characters (possibly blank padded) should be unique.

ix

neqn - integer
On exit, neqn contains d, the dimension of the problem.

tbegin - double precision
On exit, tbegin contains tpegin, the begin point of the integration interval.

tend - double precision
On exit, tend contains te,q, the end point of the integration interval.

ijac - integer
On exit, ijac contains a switch for the computation of the Jacobian:

e ijac = 0: the Jacobian has to be computed internally by the solver,
a dummy subroutine jeval is supplied;

e ijac = 1: the Jacobian is supplied by the subroutine jeval, defined below.

mljac - integer
On exit, mljac contains a switch for the structure of the Jacobian:

e mljac = neqgn: the Jacobian is a full matrix;

e 0 <mljac < neqn: the Jacobian is a band matrix,
mljac is the lower bandwidth of the Jacobian matrix
(mljac > number of non-zero diagonals below the main diagonal).

mujac - integer
On exit, mujac contains the upper bandwidth of the Jacobian matrix
(mujac > number of non-zero diagonals above the main diagonal).
Need not be defined if m1jac = neqn.

. subroutine init(neqn, y)
integer neqn
double precision y(neqn)

returns the initial value y(tbegin)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tpegin), ¢ = 1,...,d, the initial values.

. subroutine feval(neqn, t, y, dy)
integer neqn
double precision t, y(neqn), dy(neqn)

evaluates the right hand side function f (i.e. the derivative y')

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), 2 = 1,...,d, the solution at t = t.
Unchanged on exit.

dy - double precision array of dimension at least (neqn)
On exit, dy (i) contains f;(t,y), 7 =1,...,d, the derivatives of the solution y at t = t.

4. subroutine jeval(neqn, t, y, jac, 1ldim)
integer neqn, ldim
double precision t, y(neqn), jac(ldim,neqn)

evaluates the Jacobian df/dy
(this routine is only called if ijac = 1; a dummy subroutine is supplied in the case ijac = 0)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), 2 = 1,...,d, the solution at t = t.
Unchanged on exit.

jac - double precision array of dimension (1dim,p) where p > neqn
On exit,

e jac(i, j) contains f;(t,y)/dy, if the Jacobian is a full matrix (mljac = neqn);
e jac(i— j+mujac+ 1,j) contains 9f;(t,y)/0y;

if the Jacobian is a band matrix (0 <mljac < neqn)

(LAPACK / LINPACK / BLAS storage).

1ldim - integer
On entry, 1dim must specify the first dimension of array jac as declared in the calling
(sub)program. If mljac = neqn, then the Jacobian is supposed to be full and the
relation 1dim > neqn must hold. If 0 < mljac < neqn then the Jacobian is taken as
banded and the relation 1dim > mljac + mujac + 1 should hold.
Unchanged on exit.

5. subroutine solut(neqn, y)
integer neqn
double precision y(neqn)

returns a reference solution in the endpoint y(tend)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tena), ¢ = 1,...,d, the reference solution at ¢t = tepq, the
endpoint.

The files rad5do. f, voded.f and dassldo.f are drivers such that compiling

£77 radbdo.f radaub.f problem.f
£77 voded.f vode.f problem.f
£77 dassldo.f ddassl.f problem.f

yields executables that solve a problem, of which the Fortran routines in the format above are in
the file problem. f, with RADAU5, VODE and DASSL, respectively.
The auxiliary linear algebra routines used by RADAUS5, VODE and DASSL are included in the
corresponding drivers. For RADAUS5, the DECSOL routines are used. In voded.f, the input
parameter iwork(6) is set equal to 1d6, to allow VODE to make more f-evaluations. Unless
stated otherwise, all input parameters are set to their default values.

xi

I11.3 DAEs
The form for DAEs reads

Myl = f(tay)’ tbegin S t S tenda
y;f(t;y) € Rda M e RdXd

Y(tbegin) is given,
where M is a constant, possibly singular matrix. The subroutines are:

1. subroutine prob(problm, neqn, tbegin, tend, ijac, mljac, mujac,
mlmas, mumas, indl, ind2, ind3)
integer neqn, ijac, mljac, mujac, mlmas, mumas, indl, ind2, ind3
double precision tbegin, tend

describes the problem

problm - character
On exit, problm contains a character string uniquely identifying the problem.
The first 8 characters (possibly blank padded) should be unique.
neqn - integer
On exit, neqn contains d, the dimension of the problem.
tbegin - double precision
On exit, tbegin contains fpegin, the begin point of the integration interval.

tend - double precision

On exit, tend contains te,q, the end point of the integration interval.
ijac - integer

On exit, ijac contains a switch for the computation of the Jacobian:

e ijac = 0: the Jacobian has to be computed internally by the solver,
a dummy subroutine jeval is supplied;

e ijac = 1: the Jacobian is supplied by the subroutine jeval, defined below.

mljac - integer
On exit, mljac contains a switch for the structure of the Jacobian:

e mljac = neqn: the Jacobian is a full matrix;

e 0 <mljac < neqn: the Jacobian is a band matrix,
mljac is the lower bandwidth of the Jacobian matrix
(mljac > number of non-zero diagonals below the main diagonal).

mujac - integer
On exit, mujac contains the upper bandwidth of the Jacobian matrix
(mujac > number of non-zero diagonals above the main diagonal).
Need not be defined if mljac = neqn.

mlmas - integer
On exit, mlmas contains a switch for the structure of the mass matrix M:

e mlmas = neqn: the mass matrix is a full matrix;
e 0 <mlmas < neqn: the mass matrix is a band matrix,
mlmas is the lower bandwidth of the mass matrix
(mlmas > number of non-zero diagonals below the main diagonal).

mumas — integer
On exit, mumas contains the upper bandwidth of the mass matrix
(mumas > number of non-zero diagonals above the main diagonal).
Need not be defined if mlmas = neqn.

xii

The parameters ind1, ind2 and ind3 give information on the index of the variables. The
right hand side function subroutine feval is written such that the index 1, 2, 3 variables
appear in this order. The relation ind1 + ind2 + ind3 = neqn should hold.

indl - integer
On exit, ind1 contains the number variables with index lower than 2 (ind1 > 0 should
hold).

For systems of index lower than 2 this equals neqn.
ind2 - integer
On exit, ind2 contains the number of index 2 variables.
For systems of index lower than 2 this equals 0.
ind3 - integer
On exit, ind3 contains the number of index 3 variables.
For systems of index lower than 2 this equals 0.

For the definition of index of a variable, we refer to [BCP89]. We remark that the differential
index of the whole problem equals the maximum of the indices of all variables.

. subroutine init(neqn, y, dy, incon)
integer neqn, incon
double precision y(neqn), dy(neqn)

returns the (possibly inconsistent) initial values y(tbegin) and y'(tbegin)
neqn - integer

On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)

On exit, y(i) contains y;(tbegin), ¢ = 1,...,d, the initial values of the solution.
dy - double precision array of dimension at least (neqn)
On exit,
e dy(i) contains y;(tpegin), ¢ = 1,...,d, consistent initial values of the derivative of

the solution, if incon = 1.
e dy(i) contains 0 or an approximation to y}(tbegin), ¢ = 1,...,d, inconsistent initial
values of the derivative of the solution, if incon = 0.
incon - integer
On exit, incon contains a switch for the consistency of the initial values thegin; Y(tbegin),
and y'(tbegin):
e incon = 0: the initial values are possibly inconsistent:
My (tbegin) 7 f(tbegin, Y(tbegin)). The solver has to compute y'(tbegin)-
e incon = 1: the initial values are consistent: My'(tpegin) = f(tbegin, ¥(tbegin))-

. subroutine feval(neqn, t, y, dy)
integer neqn
double precision t, y(neqn), dy(neqn)

evaluates the right hand side function f

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

xiii

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), ¢ = 1,...,d, the solution at t = t.
Unchanged on exit.

dy - double precision array of dimension at least (neqn)
On exit, dy (i) contains f;(t,y),¢=1,...,d.

. subroutine jeval(neqn, t, y, jac, 1dim)

integer neqn, ldim

double precision t, y(neqn), jac(ldim,neqn)

evaluates the Jacobian df /9y

(this routine is only called if ijac = 1; a dummy subroutine is supplied in the case ijac = 0)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

t - double precision
On entry, t must specify ¢, the value of the independent variable.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On entry, y(i) must specify y;(t), 1 = 1,...,d, the solution at t = t.
Unchanged on exit.
jac - double precision array of dimension (1dim,p) where p > neqn
On exit,
e jac(i,j) contains 9f;(t,y)/0y; if the Jacobian is a full matrix (mljac = neqn);
e jac(i— j+mujac+ 1,j) contains 9f;(t,y)/0y;
if the Jacobian is a band matrix (0 <mljac < neqn)
(LAPACK / LINPACK / BLAS storage).
1dim - integer
On entry, 1dim must specify the first dimension of array jac as declared in the calling
(sub)program. If mljac = neqn, then the Jacobian is supposed to be full and the
relation 1dim > neqn must hold. If 0 < mljac < neqn then the Jacobian is taken as
banded and the relation 1dim > mljac + mujac + 1 should hold.
Unchanged on exit.

. subroutine solut(neqn, y)
integer neqn
double precision y(neqn)

returns a reference solution in the endpoint y(tend)

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

y - double precision array of dimension at least (neqn)
On exit, y(i) contains y;(tend), ¢ = 1,...,d, the reference solution at t = tenq, the
endpoint.

. subroutine mas(neqn, am, 1ldim)
integer neqn, ldim
double precision am(ldim,neqn)

returns the mass matrix M

neqn - integer
On entry, neqn must specify d, the dimension of the problem.
Unchanged on exit.

xiv

am - double precision array of dimension (1ldim,p) where p > neqn
On exit,
e am(i,j) contains M;; if the mass matrix is a full matrix (mlmas = neqn);
e am(i — j + mumas + 1, j) contains M;; if the mass matrix is a band matrix
(0 < mlmas < neqn) (LAPACK / LINPACK / BLAS storage).
1ldim - integer
On entry, 1dim must specify the first dimension of array am as declared in the calling
(sub)program. If mlmas = neqn, then the mass matrix is supposed to be full and the
relation 1dim > neqn must hold. If 0 < mlmas < negn then the mass matrix is taken
as banded and the relation 1dim > mlmas + mumas + 1 should hold.
Unchanged on exit.

If the index of the problem is lower than 4, then RADAUS5 can solve problems of this type. The
file rad5da.f contains a driver such that compiling

£77 radbda.f radaub.f problem.f

yields an executable that solves a problem, of which the Fortran routines in the format above are
in the file problem.f, with RADAUS5. The DECSOL routines are used for the linear algebra and
are included in the driver.

Since DAEs are a subset of the class of IDEs, DASSL can solve index 1 DAEs by setting

G(t,y,y') = My' - f(t,y).
The file dasslda.f contains a driver for DASSL. Compiling
£77 dasslda.f ddassl.f problem.f

yields an executable that solves a index 1 DAE, of which the Fortran routines are in the file
problem.f, with DASSL.

The auxiliary linear algebra routines used by DASSL are included in the driver. Unless stated
otherwise, all input parameters are set to their default values.

XV

References

[BCP89)

[Bel92]

[BHB92]

[EP87]

[HS91]

[HW91]

[HWO5]

[Pet91]

[SB95]

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. North—Holland, New York — Amsterdam
— London, 1989.

A. Bellen. PADETEST: a set of real-life test differential equations for parallel computing.
Technical Report 103, Dipartimento di Scienze Matematiche, Universita di Trieste, 1992.

Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne. VODE: A
variable coefficient ODE solver, August 1992. Available via WWW at URL
http://www.netlib.org/ode/vode.1.

W. H. Enright and J. D. Pryce. Two Fortran packages for assessing initial value methods.
ACM Transactions on Mathematical Software, 13-1:1-27, 1987.

P. J. van der Houwen and B. P. Sommeijer. Iterated Runge—Kutta methods on parallel
computers. STAM J. Sci. Stat. Comput., 12:1000-1028, 1991.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-algebraic Problems. Springer-Verlag, 1991.

E. Hairer and G. Wanner. RADAUS5, September 1995. Available via WWW at URL
ftp://ftp.unige.ch/pub/doc/math/stiff /radaus.1.

L. R. Petzold. DASSL: A Differential/Algebraic System Solver, June 1991. Available
via WWW at URL http://www.netlib.org/ode/ddassl.1.

J. J. B. de Swart and J. G. Blom. Experiences with sparse matrix solvers in parallel
ODE software. Technical Report NM-R9520, CWI, Amsterdam, 1995. To appear in:
Computers & mathematics with applications.

xvi

@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Test set for IVP solvers
W.M. Lioen, J.J.B. de Swart and W.A. van der Veen
Department of Numerical Mathematics

NM-R9615 November 30, 1996

Report NM-R9615
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Chemical Akzo Nobel problem 1-1

1 Chemical Akzo Nobel problem

1.1 General information
This IVP is a stiff system of 6 non-linear differential equations. It has been taken from [Sto95].
The parallel-IVP-algorithm group of CWI contributed this problem to the test set.
1.2 Mathematical description of the problem
The problem is of the form
dy
— = 0) =
7 f(@), y(0) =yo,
with
ye RS, 0<t<180.
The function f is defined by

—2r1 +ry —r3 -7y
—571 —ry —3r5 +Fin
_ T —T2 +r3
f(y) - —rg +,,,3 _27.4 ’
T9 —7Ts3 +T‘5
—rs
where the r; and F;, are auxiliary variables, given by
1
T1 = kl ° y% ° y227
ry = ka-ys-ya,
ko
r3 = ? *Y1 - Ys,
ra = ks-y1-ui,
5 1
rs = ka Y5y,
pl 2
Fo = HA- (P12 4

The values of the parameters ki1, ko, k3, k4, K, klA, p(2) and are

kh = 187,
ke = 0.58,
ks = 0.09,
ky = 0.42,
K = 344,
klA = 3.3,
p(2) = 093
= 737.
Finally, the initial vector yq is given by
0.437
0.00123
0
Yo = 0
0

1- Chemical Akzo Nobel problem

1.3 Ori in of the problem

The problem originates from Akzo Nobel Central Research in Arnhem, The Netherlands. It
describes a chemical process, in which 2 species, M T and C A, are mixed, while oxygen is
continuously added. The resulting species of importance is C S. The reaction equations, as given
by Akzo Nobel [CBS93], are

1
2M T+§ 2 M TS+ 4,
2
Cc S+M T M TS+ C A,
2
M T+2C A+ o T + sulfate,
1
MT.CA+§2 c S+ 2,
M T+C A M T.C A.

The last equation describes an equilibrium

LM T.C 4
*TIM T]-[C A

while the others describe reactions, whose velocities are given by

ro= ke [M T[])7,
r2 = ko-[M TS]-[C 4],
k
rs = %[M T)-[C 5],
rs = ks-[M T]-[C A]?
rs = ki -[M T.C A]>-] 37,
respectively. Here the square brackets [] denote concentrations.

The in ow of oxygen per volume unit is denoted by Fj,, and satisfies
Fo = k422 [),

where klA is the mass transfer coefficient, is the Henry constant and p(2) is the partial oxygen
pressure. p(2) is assumed to be independent of [3]. The parameters ki, ka2, ks, ks, K, klA,
and p(o) are given constants?.

The process is started by mixing 0.437 mol/liter [M T] with 0.367 mol/liter [M T.C A].
The concentration of oxygen at the beginning is 0.00123 mol/liter. Initially, no other species are
present. The simulation is performed on the time interval [0, 180 minutes].

Identifying the concentrations [M T|,[2], [M TS],[C A],[C S],[M T.C A]withyy,...,ye,

respectively, one easily arrives at the mathematical formulation of the preceding subsection.

1. umerical solution of the problem

Solution at ¢t = 180

y1 | 0.1161602274780192
Yo | 0.1119418166040848 - 10 2
ys | 0.1621261719785814
ys | 0.3396981299297459 - 10 2
ys | 0.1646185108335055
ye | 0.1989533275954281

1 ijsva e aysaroein arameter estimation

A art from i is enera y no n a arameters ave een estimated y torte der to

Chemical Akzo Nobel problem 1-

Behaviour of the numerical solution

The following plots show the behaviour of the solution components:

0.5

0 0
0 50 100 150 200 0 50 100 150 200
y(@3) x10° y(4)
0.2 - 4 -
0.1 2
0 ' ' ' 0 ' ' '
0 50 100 150 200 0 50 100 150 200
y(5) y(6)
0.2 - 0.4 -
0.1} 0.3
0 ' ' ' 0.2 ' ' '
0 50 100 150 200 0 50 100 150 200
v10° Y(2)on[04]
y) . . .
1
O L
0 1 2 3 4

The runs were performed on a SGI workstation, an

Run characteristics

with a 100 MHz R4000SC processor,

using the Fortran 77 compiler with optimization: £77 - .

1- Chemical Akzo Nobel problem

solver rtol atol hO scd steps accept f Jac LU CPU
DASSL 10 ¢ 10 ¢ 3.98 46 44 72 13 0.02
10 10 5.76 160 155 225 24 0.05
10 10 10 10 8.00 396 391 474 32 0.10
RADAU5 10 10 10 7.09 59 58 388 46 55 0.03
10 1 10 10 10 0| 915 284 284 1595 69 109 0.11
VODE 10 4 10 ¢ 2.45 64 63 92 2 17 0.01
10 10 5.91 183 170 263 4 41 0.04
10 10 10 10 7.87 367 358 450 7 44 0.07
PSODE 104 10* 10° 4.94 25 24 612 3 92 0.04
10 10 10 7.71 70 68 1548 7 196 0.09
10 10 10 10 10 10| 1142 219 218 4550 5 248 0.25

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 1.8, 1.8, 1.9.

Work-precision diagram

In Figure 1 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs

were performed on a SGI workstation, an with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 - . We used: rtol = 10 * 4, =0,1,4,...,24
for DASSL, = 6,...,24 for RADAU5, =0,...,24 for VODE, = 1,...,24 for PSODE;

atol = rtol; hO = rtol for RADAUS5 and PSODE.

eferences
[CBS93] CBS-reaction-meeting Kéln. Handouts, May 1993. Br/ARLO-CRC.

[HW91] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-algebraic Problems. Springer-Verlag, 1991.

[Sto95] W. J. H. Stortelder, 1995. Private communication.

Chemical Akzo Nobel problem

T T T T T T T T T
3 DASSL —<— A
RADAUS5 -+-
VODE -8--
PSODE %
i e X
[V X
X
x
-
X,
0.1+ i
o
[}
2 A «]
[} 5
E :
) O]
a
O
b il f+~*+’l 1
I -]
bom FR—— 1
0.01 | f £ 4
1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12
scd

Figure 1: Work-precision diagram for Chemical Akzo Nobel problem

Chemical Akzo Nobel problem

roblem -1

Problem IR

2.1 General information

This IVP is a stiff system of 8 non-linear differential equations. It was proposed by Schéafer
in 1975 [Sch75]. The name HIRES was given by Hairer & Wanner [HW91]. It refers to High
Irradiance RESponse , which is described by this IVPODE. The parallel-IVP-algorithm group of
CWI contributed this problem to the test set.

2.2 Mathematical description of the problem
The problem is of the form

with
yeR , 0<t<321.8122.
The function f is defined by

—1.71y; +0.43y, +8.32ys +0.0007
1.71y1 —8.75y2
—10.03ys +0.43ys +0.035ys
B 8.32ys +1.7lys —1.12y
fly) = —1.745y5s +0.43ys +0.43y
—280ysy +0.69yy +1.71ys —0.43ys —+0.69y
280ygy —1.81y
—280y¢y +1.81y

The initial vector yp is given by (1,0,0,0,0,0,0,0.0057) .

- roblem

2.3 Ori in of the problem

The problem originates from plant physiology, and is described in [Sch75]. It explains the High
Irradiance Responses (HIRES) of Photomorphogenesis on the Basis of Phytochrome, by means
of a chemical reaction involving 8 reactants. It has been promoted as a test problem by Gottwald
in [Got77]. The reaction scheme is given below.

Figure 1: Reaction scheme for IRES taken from ot

The values of the parameters were taken from [HW91]:

kk = 17|k = 280
ke = 043 |k = 0.69
ks = 832k = 0.69
ks = 0.69 = 0.0007
ks = 0.035
ke = 8.32
Identifying , , , " " " and withy;,2€ 1,...,8 , respectively,

the differential equations mentioned in Subsection 2.2 easily follow.

roblem

umerical solution of the problem

Solution at t = 321.8122

U1
Y2
Y3
Ya
Ys
Ys
Y

Y

0.7371312573325668 -
0.1442485726316185 -
0.5888729740967575 -
0.1175651343283149 -
0.2386356198831331 -
0.6238968252742796 -
0.2849998395185769 -
0.2850001604814231 -

10
10
10
10
10
10
10
10

NN N NN AW W

roblem

Behaviour of the numerical solution

The following plots show the behaviour of the solution (on different time intervals):

y(1) y(2)
1 : : 0.2 :
05 - 0.1 L
0 - - 0 - :
0 2 4 6 0 2 4
y(3) y(4)
0.02 - - 05
0.01
0 0
0 2 4 6 0 2 4
y(5) y(6)
0.2 : : : 1 : : :
0-1 1 0-5 (\
0 : : : 0 : :
0 100 200 300 400 0 100 200 300
y(7) y(8)
0.01 : : 0.01

0.005 f - 0.005 L
0 ' ' 0

roblem -

Run characteristics

The runs were performed on a SGI workstation, an with a 100 MHz R4000SC processor,
using the Fortran 77 compiler with optimization: £77 - .
solver rtol atol hO scd steps accept f Jac LU CPU
DASSL 10 4 10 ¢ 1.03 99 20 176 32 0.04
10 10 3.36 311 307 459 40 0.10
10 10 10 10 7.01 1077 1061 1493 47 0.31
RADAU5 10 4 10 * 10 2.32 45 37 331 22 45 0.03
10 10 10 4.81 135 133 784 46 8 0.06
10 101 10| 88 701 701 3752 140 223 0.27
VODE 104 104 1.33 131 129 191 10 24 0.03
10 10 3.84 390 365 608 9 69 0.09
10 19 10 10 6.18 880 827 1224 15 134 0.18
PSODE 104 10* 10 5.18 61 60 1540 17 232 0.12
10 10 10 8.31 203 181 5061 24 624 0.37
10 1 10 10 10 11 | 10.77 570 558 14022 66 984 0.94

The speed-up factors of PSODE on the Cray C98 are, in order of decreasing rtol: 2.2, 2.3, 2.2.

Work-precision diagram

In Figure 2 we present a work-precision diagram (cf. [HW91, pp. 166-167, 324-325]). The runs
were performed on a SGI workstation, an with a 100 MHz R4000SC processor, using the
Fortran 77 compiler with optimization: £77 - . We used: rtol = 10 * 4 =0,...,24;

atol = rtol; h0 = 10 2 - rtol for RADAU5 and PSODE.

eferences

[Got77] B. A. Gottwald. MISS — ein einfaches Simulations-System fiir biologische und chemische
Prozesse. EDV in Medizin und iologie, 3:85—90, 1977.

[HW91] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-algebraic Problems. Springer-Verlag, 1991.

c . Schifer. A new approach to explain the high irradiance responses of photomorpho-
Sch75] E. Schafer. A h lain the high irradi f ph h
genesis on the basis of phytochrome. J. of Math. iology, 2:41-56, 1975.

CPU-time (sec)

0.1

roblem

DASSL -o—
RADAU5 -+~

VODE B+
RSODE -

2 4 6 8
scd

Figure 2: Work-precision diagram for Problem HIRES

10

12

oll io problem

Pollution problem

3.1 General information

This IVP is a stiff system of 20 non-linear differential equations. It is the chemical part of the air
pollution model developed at The Dutch National Institute of Public Health and Environmental
Protection (RIVM) and it is described by Verwer in [Ver94]. The parallel-IVP-algorithm group of

CWI contributed this problem to the test set.

3.2 Mathematical description of the problem

The problem is of the form

with

The function f is defined by

dt

y € R 0<t<60.

— T+

j 110142324 j 23 11122225
—rg—r3—7r —Trig+7r;+7ry
—ris+ri+r +r1 +re
—Try —Tig—T1 —T23+Ti5
—r3+2ry+reg+1r +ri3+ro
—reg —T —7Ti4 —Too+ 73+ 2r;
—r4—T5—Te+T13
Ty +75+76+T

—r —7
—rig+7r +r

—r —ri+7r +7

r

—r11 + 710

—Tr13 + 712

T14

-ry —r1 +7ris

—T20

T20

—T21 — T2 — T4 +T23 +T25
—T25 + 724

where the r; are auxiliary variables, given by

= ki-n re = ka-y2-ys
r3 = k3-ys-y2 |14 = kg-y
rs = ks-y re = ke'y -Us
r =k -y r =k -y -ye
T = k -yu-y2|r0 = kio-y11-n1
r11 = ki1 913 1o = k12 Y102
13 = k13- yu4 T4 = kia-y1-Ye
15 = kis-y3 rie = kie-ya
ry = ki -y rt = ki Y6
rt = ki -y roo0 = k20-Y1 - Us
ro1 = ka1 ros = k221
To3 = koz-Y1-vys |Toa = koa-y1 Y1
Tos = ka5 Y20
The values of the parameters k; are
ky, =0.350 ks =0.266-102
k! =0.123.10° | ks, =0.860-10 3
ks =0.820-10 3| kg =0.150-10°
E =0130-10 3|k =0.240-10°
k. =0.165-10° | k;p = 0.900-10*
ki =0.220-10 1| ks =0.120-10°
ki3 =0.188-10 k4 =0.163-10°
kis =0.480-10 kg =0.350-10 3
ki, =0.175-10 ' |k =0.100-10
ki, =0.444-10'2 | kyy =0.124-10*
koy =0.210-10 koo =0.578-10
ko =0474-10 ' | kyy =0.178-10*
kos =0.312-10

Finally, the initial vector yq is given by

oll

yo = (0,0.2,0,0.04,0,0,0.1,0.3,0.01,0,0,0,0,0,0,0,0.007,0,0,0) .

3.3 Ori in of the problem

io problem

The problem is a chemical model consisting of 25 reactions and 20 reacting compounds. The
reactions read:

1

oti et at t is onstant asaty in errorin er

oll io problem

1. NO2 NO+O3P
2. NO+03 NO2
3. HO2+NO NO2+OH
4. HCHO 2 HO2+CO
5. HCHO CO
6. HCHO+OH HO2+CO
7. ALD MEO2+HO2+4-CO
8. ALD+OH C203
9. C203+NO NO2+MEO2+CO2
10. C203+NO2 PAN
11. PAN C2034+-NO2
12. MEO2+NO CH30+NO2
13. CH30 HCHO+HO2
14. NO2+OH HNO3
15. 03P 03
16. O3 01D
17. O3 03P
18. 01D 2 OH
19. 01D 03P
20. SO2+O0H SO04+HO2
21. NO3 NO
22. NO3 NO2+03P
23. NO2+03 NO3
24. NO3+NO2 N205
25. N205 NO3+NO2

Writing down the reaction velocities r; for every reaction equation and making the identification
in the table below, one arrives at the system of differential equations given in the preceding

subsection. The square brackets [] denote concentrations. Also listed are the concentrations at

t=0.
variable species initial value
n [NO2] 0
Y3 [O3P] 0
Y4 [03] 0.04
Ys (HO2] 0
Ye [OH] 0
Y [HCHO] 0.1
Y [CO] 0.3
Y [ALD] 0.01
Yu (C203] 0
Y12 [CO2] 0
Y13 [PAN] 0
Y16 [O1D] 0
"N [SO2] 0.007
mn [804] 0
1 [NO3] 0

The time interval [0,60] represents the behaviour of the reactants sufficiently.

umerical solution of the problem

Solution at t = 60

n
Y2
Y3
Ya
Ys
Ys

R

Y10
Y1
Y12
Y13
Y14
Yis
Yie
n

n

n

Y20

0.5646255480022769 -

0.1342484130422339

0.4139734331099427 -
0.5523140207484359 -
0.2018977262302196 -
0.1464541863493966 -
0.7784249118997964 -

0.3245075353396018

0.7494013383880406 -
0.1622293157301561 -
0.1135863833257075 -
0.2230505975721359 -
0.2087162882798630 -
0.1396921016840158 -
0.8964884856898295 -
0.4352846369330103 -
0.6899219696263405 -
0.1007803037365946 -
0.1772146513969984 -
0.5682943292316392 -

10

10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10

= oo o N

ot W N =N R W N

oll

io problem

oll

The following plots show the behaviour of the solution components on the interval [0,12]:

0.05

io problem

Behaviour of the numerical solution

y(1)

0 10 20
y(4)
0.04
0.02
0
0 10 20
y(7)
0.1
0.09
0.08
0 10 20
x10° ¥(10)
5
0
0 10 20

0.2

0.15
0

y(2)

—

10

x107 YO
4

0.31

0.3
0

20

20

10

4

20

0 10

20

4

o

0 10

20

4 L\

0 10

X 10'3 y(9)

20

10

1

20

0.5

20

X 10'4 y(13)
1

X 10'5 y(14)
4

oll io problem

X 10'3 y(15)
4

05 2 [\ 2
0 0 0
0 10 20 0 10 20 0 10 20
x 10" Y(16) x10° Y7) x10° Y(18)
2 7 4
1 L——’ 6.95 2
0 6.9 0
0 10 20 0 10 20 0 10 20
x10° y(19) x 10 y(20)
1 4
0.5 / 2
0 0
0 10 20 0 10 20
00 4000
0
0 0 4 00
0 0 4 00
0 0 4 40 0
0 0 0 4 0 4 4 00
0 0 0 4 4 44 44 00
0 0 0 0 0 0
0 0 0 004
0 0 4 4 4 0 4 00
0 0 4 0 0
0 0 0 4 4 4 0 4
0 0 0 0 0 44 0
0 0 0 0 4 4
4
00 4000
0 0 4

CPU-time (sec)

0.1

T
DASSL -o—
RADAU5 -+~
VODE -&--
PSODE >
X

X

10

11

0

000
0000

000

44
000

00
40 40 O

00000000000OO0OCOOO

oS O O O

4

04
04

4 00

(=i el e e il e)

40

04

4

@)

w

x 10

0.5
0
-0.5 :
0 05 1
x 10
y(4)
1 .
OMWW
_1 !
0 05 1
x10°
y(6)
1 .
oA
_1 .
0 05 1
x 10
X 105 y(8)
Ov
_5 !
0 05 1
x10°

x10° y(9) y(10)
2 : 0.01 :
0 0
) : -0.01 :
0 0.5 1 0 05 1
x10° x10°
y(11) y(12)
0.01 : 0.01 :
0 of
-0.01 : -0.01 :
0 0.5 1 0 05 1
x10° x10°
y(13) x10° y(14)
0.01 : 2 :
0 0 %
0.01 ' -2 ‘
0 0.5 1 0 05 1
x10° x10°
X 10‘3 y(15)
1 .
o\ N\ |
] L
0 0.5 1
x10°
4
44
4 4
4 44

CPU-time (sec)

=
o

DASSL ——
RADAUS -+~
VODE -8--
PSODE -~

X

scd

44

4
4
44
4
4
4
4 44 4 4
44
44
4 4 4
44

44

44

=~

44

S

N O DN

y(1) mod(2*pi)

—

0 0.01 0.02 0.03

0.4
0.2

0.6f

0.5

0.4 . . -
0 00l 002 003

1.2

y(3) mod(2*pi)

O.

0 0.01 0.02 0.03

y(5) mod(2*pi)

y(7) mod(2*pi)

0 0.01 0.02 0.03

OOS o

S ooo
NoD o

A
AV

y(2) mod(2*pi)
0
N

0 0.01 0.02 0.03

y(4) mod(2*pi)

OO

0 0.01 0.02 0.03

y(6) mod(2*pi)

0 0.01 0.02 0.03

RADAUS ——

(08s) swn-Ndo

3.8

3.6

3.4

3.2

scd

2.8

2.6

2.4

2.2

44

0.1

[e=)

-0.1

2.8

2.6
0

3.2

2.8
0

DASSL —— 1
RADAU5 -+---

10

scd

(09s) awn-NdD

T SN N
=
XX
Amw.‘.mlﬂm”””,",. N

t-axis

X-axis

X-axis

44

y(79) (=u(L,t))

2
1
0
0 5 10 15 20
y(171) (=u(8.b)
0.4 - - -
0.2 k
0 " " N
0 5 10 15 20
y(80) (=v(1.))
1 . . .
05
0 N N N
0 5 10 15 20
y(172) (=v(3,1)
1 . . .
05 \
0 N N N
0 5 10 15 20

1 : : :
0
O N n N
0 5 10 15 20
y(199) (=u(4.t)
0.04 - - -
0.02} k
0 N
0 5 10 15 20
y(134) (=v(2,1))
1 : : :
0.5\
0 N N N
0 5 10 15 20
y(200) (=v(4.))
1 : :
0 ' N N
0 5 10 15 20

44

CPU-time (sec)

10

DASSL ——
RADAUS -+~
VODE -8--
PSODE -~

>”><

scd

10

44

4
x 10%° x 10™°
27 g’
1.5} 6l
o I S 4l
2 1 Q4
0 0
04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16
35
3.49
- 3.48
I
(&)
3.47
3.46
0 3.45
04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16
X 1012 X 109
4r 6
sl
3,
al
Lo
82 st
=
2,
1,
1/
[0} o) J
04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16 04 16

CPU-time (sec)

10

DASSL -o—
RADAU5 -+-
VODE -&--
PSODE -

35
scd

55

Source| °

Cebp
Rep
Rep
a1
[} Rgs
Ras
Cegs
|
I Bs

y(1)
10 -
TN
0 N
0 50 100
y(3)
-2.499 :
'Z'S_W_\HJ
-2.501 :
0 50 100
y(5)
10 -
T\
0 N
0 50 100
y(7)
10 -
T\
0 N
0 50 100

TV VL
0 50 100
y(4)
0 .
_5 L
0 50 100
y(6)
10 -
O"’"WL______/”’x_____\
-10 :
0 50 100
y(8)
-2.499 -
-2.501 :
0 50 100

y(9) y(10)
-2.499 - 10 -
-2.501 : -10 :
0 50 100 0 50 100
y(11) y(12)
0.02 : 10 :
0 /\ / \ }\ I of\——«f\~—«
-0.02 : -10 :
0 50 100 0 50 100
y(13) y(14)
0 : -2.499 :
-5 : -2.501 ‘
0 50 100 0 50 100
4
4 44
4 4 4

DASSL ——

%S

&

&

(08s) swn-Ndo

3.5

25

scd

15

0.5

30

20

10

-10
0]

40

30

20

10

y(6)

0.5 1 1.5

0.5 1 1.5

10

0.04

0.02}

-0.02¢

-0.04

y(7)

0.5

0.5

DASSL ——

(08s) swn-Ndo

4.5

35

2.5
scd

2

15

0.5

.
| —
O
0

I

9\

o—=— X
f

A
&L
L y
ﬁ contact points /uz

Angular velocity beta [rad/s)

Yaw angle theta [rad]

0.1

0.051

0.1+

-0.15¢

0.2+

-0.25F

-0.3F

-0.35F

0
-0.05 PW\J

-04
0

0.02

2 4 6 8

Time t [

0.015+

0.01

0.005+

-0.01+

-0.015+

-0.02

-0.015

-0.01 -0.005 0 0.005 0.01

Latera displacement x [m]

0.015

DASSL ——

(08s) swn-Ndo

25

15

scd

0.5

@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Test set for IVP solvers
W.M. Lioen, J.J.B. de Swart and W.A. van der Veen
Department of Numerical Mathematics

NM-R9615 November 30, 1996

Report NM-R9615
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

?
- %]
R 10

>

>

o
y

. - =
[! r
_ ; | [T
_ > _ [[
LE [o3 [
| [[
B (I
[¢ T L
[B Aﬁ .
_ 0 Ll o n_.vo J QSR
[A I [I ! [_ _ C o
| | | A ! I ﬂ_ | _ _
| — - b A | X |
_ b ! — ak : |
[3 Loy Lo | —— |
r | | L [
1 o3
T4 | . ! | _
1 H | & _
[mimineEinEE Sl T _
. e _OJO- 4
| : | [[
[A [| |
| _ I | ;
g I _
[A [
|¥|||
Q
. |

BO
Cin
AL
Bl

s

!

o
ki

ﬂE%

Inverse of AQ

IS

I
100

I
150

I
200

Inverse of Al

I
250

I
300

350

50

I
100

I
150

I
200

Inverse of BO

I
250

300

350

IS
T

50

I
100

I
150

I
200

Inverse of B1

I
250

I
300

350

I
100

I
150

I
200

I
250

I
300

350

50

I
100

150

200

I
250

300

350

X(49)

1 1
0 50 100 150 200 250 300 350

x(130)

N
|

0 50 100 150 200 250 300 350

x(148)

1 1 1
0 50 100 150 200 250 300 350

DASSL —<—

RADAU5 -+~

A
4 \
S

1000 |-

25

3.5

scd

4.5

(09s) awn-NdD

15

@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Test set for IVP solvers
W.M. Lioen, J.J.B. de Swart and W.A. van der Veen
Department of Numerical Mathematics

NM-R9615 November 30, 1996

Report NM-R9615
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

x(1) y(1)

1.05 0.7
0.6
1
0.5
0.95
0.4
0.9 0.3
0 1 2 3 0 1
x(2) y(2)
0.05 0.5
0.499
0 0.498
0.497

-0.05 0.496
0

RADAUS ——

(08s) swn-Ndo

scd

@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Test set for IVP solvers
W.M. Lioen, J.J.B. de Swart and W.A. van der Veen
Department of Numerical Mathematics

NM-R9615 November 30, 1996

Report NM-R9615
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

x 102

2.5+

L
n

Aew.v A

0.5F

RADAUS ——

100

(08s) swn-Ndo

14

12

10

scd

