
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Explicit filtering of building blocks for genetic algorithms

C.H.M. van Kemenade

Computer Science/Department of Software Technology

CS-R9647 1996



Report CS-R9647
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Explicit Filtering of Building Blocks
for Genetic Algorithms

C�H�M� van Kemenade

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

kemenade	cwi�nl

Abstract

Genetic algorithms are often applied to building block problems� We have developed a simple �ltering algorithm

that can locate building blocks within a bit�string� and does not make assumptions regarding the linkage of the

bits� A comparison between the �ltering algorithm and genetic algorithms reveals some interesting insights�

and we discuss how the �ltering algorithm can be used to build a powerful hybrid genetic algorithm�

AMS Subject Classi�cation ������� ��T�	

CR Subject Classi�cation ������� G�
��� I����

Keywords � Phrases� genetic algorithms� optimization

Note� This paper was presented at the Parallel Problem Solving from Nature conference PPSN�IV� Berlin�

Germany� 
���

�� Introduction

Genetic algorithms �GA�s� with bit�based representation are usually regarded as general solvers for
bit�coded problems� An interesting class of problems for a GA are the building block based problems�
Solutions of such problems can be decomposed in a number of independent building blocks� These
building blocks can be discovered separately� and then merged to create a good solution� The schema
theorem �	� 
� describes how a canonical GA behaves on this class of problems� A schema is a string
over the alphabet f�� 
� �g of length n� where n is the length of an individual� which encodes a
complete solution� A � is a so�called don�t�care symbol� which can represent either 
 or �� During
a single generation of a GA �n schemata are processed simultaneously� Because each individual in
the population is an instance of �n schemata� we get the so�called implicit parallelism �	�� also called
intrinsic parallelism �
�� Recently there has been discussion about the generality of the building block
hypothesis� and therefore the schema theorem�

The ultimate goal of the AI�scientist is to create the general problem solver� Such e�orts can be
expected to fail� as the range of possible problems is too large� see for example the no free lunch
theorem for optimization ��
� �	�� Until now all e�orts to �nd this general problem solver have failed�
Each candidate has a limited class upon which it performs well� Hence for each new problem solver
the �probably fuzzy� boundaries of the class upon which it performs well have to be determined� We
think it can also be fruitful to take the opposite approach� and �rst de�ne a broad class of problems�
Next a solver is developed which uses knowledge search a solution rapidly� All information which is
easily extractable and based on the class de�nition should be used� A standard GA deviates from this
approach� as it only uses �tness of complete individuals to steer the search process� SEARCH� which
is an acronym for Search Envisioned As Relation� and Class Hierarchizing� also touches this issue by
emphasizing that one has to search for the set of bits that belong to the same building block ����

In this paper we take the class of building block problems and develop a �ltering algorithm using
knowledge about this class� This �ltering method is shown to perform well on �certain� problem




� Genetic Algorithms �

instances� Then we outline how we can combine this method with genetic algorithms�

The rest of this paper is organized as follows� Section � discusses some of the reasons why GA�s
sometimes fail� Section � describes and brie�y analyses the problems based on the fully deceptive
trap functions� which are assumed to be an important representative for a large class of optimization
problems� Based on these two sections a new �ltering method is developed� This method is compared
to GA�s and messy GA�s in section �� Finally some conclusions are drawn in section ��

�� Genetic Algorithms

In this section we discus some of the di�culties for genetic algorithms�

Before applying a GA we have to decide on a representation for solutions to problem we want to
handle� An important issue is the linkage� Linkage is said to be tight if bits belonging to the same
building block are next to each other on the chromosome� while loose linkage corresponds to a situation
where bits belonging to the same building block are scattered over the chromosome� Loose linkage
cause problems to GA�s using operators that have a positional bias� A positional bias implies that the
probability of two bits being taken from the same parent depends upon the �relative� position within
the chromosome of these bits ���� Problems due to linkage have already been studied by Holland �
��
and the inversion operator is proposed as a remedy� It has been shown that the inversion operator
acts too slow to be useful� Another approach to avoid linkage problems is taken in the �fast� Messy
GA�s ��� �� ��� where a di�erent representation without positional bias is introduced� On many �black�
box� optimization problems the linkage between bits is not known in advance� so handling loose linkage
is of crucial importance for a general optimizer�

Another issue is the number of de�ned bit�positions of a building block� Even when tight linkage
can be assured most genetic operators will introduce a bias� Smaller building blocks are less likely
to be disturbed during crossover� and therefore are more likely to be propagated than larger building
blocks giving a similar �tness contribution�

Other troubling factors for a GA are genetic hitch�hiking� genetic drift ���� mixing problems ���� ���
and sampling errors due to low order schemata of relative high �tness that are not contained in any
of the building blocks� This is for example the case in the fully deceptive trap functions discussed in
section �� Several of these problems are rooted in the iterated character of a GA� A GA continuously
applies selection and production to a population which only contains a very small sample of the
search�space� A small decision error might easily initiate an avalanche of e�ects during subsequent
iterations�

�� Building Block problems

Many problems involve a search�space which is too large to search it completely� In order to �nd
solutions to large problem instances we have to make some assumptions regarding structures in the
search�space� and use these structures to develop a faster optimizer�

An interesting assumption is to assume that a solution is made up of a number of building blocks�
If these building blocks can be discovered independently and combined afterwards� we get a tractable
problem� A di�cult instance of this class can be created by using the parameterized set of fully
deceptive trap functions ���� A fully deceptive trap �sub�function of order k has value ���

f �x � �

�
k if u�x � � k

k � u�x �� � otherwise

where u�x � is a function that counts the number of ��bits in x � The global optimum of this function
is the string consisting of k ��bits resulting in the maximal �tness contribution k � The second best
solution is a string consisting of k 
�bits having value k � �� As decreasing the number of one
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Figure �� The probability IP�at least one BB � for random bit�string coding a solution to a concatena�
tion of fully deceptive trap functions of order k

bits usually increases �tness� except for the optimal string� hill�climbing algorithms will be strongly
attracted by the second best optimum�

By concatenating m of these order k subfunctions we create a building block problem� that has a
solution which can be represented by a bit�string of length l � m� k � When the bits belonging to the
some subfunction are always next to one another we have a building block function with tight linkage�
When the bits of a single subfunction are spread over the total bit�string we talk about loose linkage�

Given a random bit�string of length l � the probability that at least one building block is present
within this string is

IP�at least one BB � � �� ���
�

�k
�m �

m

�k

Figure � shows this probability for l � �
� �

� �

 as a function of the order of the building blocks k �
We see that the probability a building block is present decreases rapidly as k increases� This Figure also
shows a number of additional problems for a genetic algorithm� In order to be certain that all building
blocks are present in the initial population� a large population is required� Application of mutation
will not help us much in this case� A mutation rate of ��l � which is commonly used� will concentrate
on bit�strings at Hamming distance �� The only solution seems to be a highly disruptive crossover�
such as uniform crossover� which can discover new schemata easily combined with a reasonably high
selective pressure in order to prevent the loss of already observed building blocks�

�� Filtering of building blocks

In this section we introduce the �ltering algorithm for building block problems�

Informally� the �ltering method tries to locate building blocks in a bit�string s � In order to do so it
measures the change in �tness when individual bits of s are �ipped� Using this information a set of
most in�uential bits is selected which is likely to contain the building blocks present within s �
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Figure �� Example of one �ltering step

The actual algorithm is as follows

function �lter�string � partial sol�
bb � �
for all i where �de�ned�i � partial sol�
bb � bb 	 �i � stringi � d�tness�string � i��

sort bb on �eld d�tness

truncate�bb�
return bb

The parameter partial sol is used to carry information regarding the bits have been determined already�
The set bb is �lled with tuples �i � bi � d�tness�b� i��� where i is the index of a bit� bi is a bit�value� and
d�tness�b� i� is the change in �tness when the value of bit bi is �ipped within string string b� The
set bb is ordered on �eld d�tness after which the set is truncated on the position where the largest
change in �eld d�tness between subsequent tuples appears� The rationale for this truncation rule
is that the set of bits that makes the largest �tness contribution is selected� By truncating on the
largest gradient in d�tness we enlarge the probability that important building blocks are completely
within the residual set bb� without making assumptions regarding the actual �tness contribution of
a building block� This truncation rule does not give any guarantees� but if a bit is removed from set
bb� then the current value of this bit is not likely to be necessary to maintain a building block present
within set bb�

An example of the application of this �ltering procedure is shown in Figure �� On the left we see a
bit�string of length �� Let us assume that the main �tness contribution within this string is coming
from a building block containing bits �� � and �� resulting in a �tness contribution of �� when the
schema 
����� is present� During the �rst step the individual �tness contribution� d�tness of each
bit is measured by �ipping this bit and observing the change in �tness� and a set of tuples of type
�position� d�tness� is created� Flipping bit �� � or � will break schema 
����� and therefore result
in a relatively large value of d�tness � During the second step� these tuples are sorted on d�tness �
Next the signi�cant tuples are selected by truncating the ordered set of tuples on the position of the
largest jump in d�tness � In our example the largest jump is between the third and the fourth tuple�
where d�tness increased from �� to ��� Based on the remaining tuples a candidate building block can
be reconstructed�

The �ltering procedure does only a detection of building blocks which are present� so in order to
operate� this procedure has to be provided bit�strings which are likely to contain building blocks� In
order to test the performance of the algorithm the main loop shown in Figure � is used� The loop is
entered with an empty partial solution� During each iteration it creates a baseline population of size
Nbase � consisting of bit�strings that have random bit�values for those bits which are not de�ned by the
partial solution� The �tness of each such bit�string is calculated� and the best Nsel strings from this
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BB � �
partial sol � �
repeat
Base � �

�� create a baseline population ��
for i � � to Nbase do
bstring � random string�partial sol�
Base � Base 	 �bstring � �tness�bstring��

�� select high quality subset and do �ltering ��
Sbase � best tuples�Nsel �Base�
for a 
 Sbase do
bb � �lter�a� partial sol�
BB � BB 	 bb

�� merge building blocks to partial solution ��
partial sol � merge bb�BB�

until complete�partial sol� � no progress��

Figure �� Pseudo�code of main loop of �ltering algorithm

baseline population are selected� For each selected bit�string a �ltering process is applied� which tries
to locate a building block contained within this string that is responsible for the relative high �tness
of this string� These building blocks are added to the set BB � At the end of each iteration a partial
solution is created by combining all obtained building blocks� If two building blocks de�ne opposite
values for a bit� the value of the bit is taken from the �rst discovered building block� The main loop
is terminated if the obtained partial solution is complete� i�e� speci�es a value for each bit� or if no
progress is achieved for more than � iterations�

Based on the size of the baseline population Nbase the expected maximal order of discovered building
blocks can be estimated as b�log�Nbase�c� If the �lter process produces a large block� then this block
mainly consists of noise� or it contains a large number of low order building blocks� Currently we use
b�log�Nbase�c as an upper limit on the size of �ltered block� Larger blocks are ignored� Note that this
will deteriorate the performance of the method in case the order k of the building blocks is small�

As the solutions of many binary problems are assumed to be decomposable in a set of independent
building blocks� the �ltering algorithm is a valuable method� It is not necessary to know the linkage
between bits in advance� As each sample represents �n schemata simultaneously we also have a kind of
implicit parallelism� A further advantage of the method is that it yields the actual parts that compose
a solution instead of just a complete solution� Such a decomposed solution allows for analysis� which
helps in getting a better understanding of the speci�c problem at hand� and of the behavior of the
�ltering method on this problem� This is an important advantage over the genetic algorithm� where
one usually only gets the �well performing� bit�string� without any knowledge about internal structure
of the search�space� or an indication of the con�dence one can have in this particular solution�

�� Experiments

A comparison is made between the following algorithms�

GGA� a generational genetic algorithm with population size �


� Pcross � 
�
� Pmut � ��l � and
tournament selection with tournament size ��
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Figure 	� Average fraction of all building blocks found �left� and average number of function evalua�
tions �right� as a function of the order k of the building block �l � �
��

GGA� same as GGA� except for ��point crossover being used�

SSGA a steady�state genetic algorithm with population size �


� Pcross � ��
� Pmut � ��l � uniform
selection� and worst �tness deletion �����

messy GA the messy genetic algorithm ����

FA� the destructive building block �ltering method with Nbase � �

� and Nsel � �
� and

FA� same as FA� except for having an upper bound of b�log�Nbase�c on the number of bits that can
be discovered simultaneously�

The settings of the GGA� and GGA� are the standard ones� SSGA is shown to perform well on a
set of numerical optimization problems ����� For the messy GA we only make a comparison to results
from recent literature ����

During all experiments the building block problems are based on the deceptive trap function� As
we are interested in solving problems without any knowledge of the linkage between bits� it seems
appropriate to assume a worst�case scenario� loosely coupled building block problems� All the results
are averaged over �

 independent runs� The GA�s are terminated when the optimum is found�
the �tness variance over the population has decreased to zero� or the maximal number of function
evaluations is reached�

The �rst set of experiments investigates scaling of di�erent methods with respect to k � All the
problem instances require a bit�string of approximately �
 bits� The exact sizes for m� k � and l are�

k � � 	 � � 

m �� �
 � � � 	
l �
 �
 �� �
 �
 ��

Figure 	 shows the average fraction of building blocks in the best solution detected �left� and the
average number of function evaluations until termination �right� as a function of the order k of the
building blocks� The FA methods outperform the GA�s for all problem instances having building
blocks of order k 
 �� Amongst the GA�s the SSGA method seems to perform best� It �nds the
optimum more often than the GGA�s� An additional advantage of the SSGA is that it is able to
terminate if the optimum is not found� which limits the amount of computation �see Figure 	� right��
The value k � � seems to mark a region where the GA�s start to get in trouble� A second set of
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Table �� Comparison between methods

experiments is performed during which k is set to a �xed value �� while m takes the successive values
�� �
� ��� �
� ��� and �
� Figure � shows the results� The SSGA and FA� method show comparable
performance� The FA� methods breaks down� as too many order�� building blocks will be discovered
simultaneously� resulting in a violation of the length constraint�

When looking at the graphs to the right in Figures 	 and � we see that both FA methods use only a
moderate number of function evaluations� During all experiment the FA method uses approximately
�
 times less function evaluations than the GA�s�

Making a comparison to fast messy GA�s is more di�cult as our only source of information ��� just
contains the outcomes of a single run� Our results are again averaged over �

 independent runs� The
results are shown in table �� Problem P��
�� consists of a �
 bit problem containing �
 deceptive trap
functions of order �� P��

�� consist of �
 building blocks of order �� and P���
�� contains �
 building
blocks� The problem L��
�� contains �
 building blocks of order �� with linear scaling of the importance
of building blocks� The �tness contribution of building block � 
 ��� �
� is multiplied by �
�� Table
� shows that in all cases where the GA�s fail� at least one of the FA methods performs well� Making
a comparison to the fast messy GA is more di�cult� as we do not have information regarding the
probability of convergence of this algorithm� But in all cases the fast messy GA uses at least �
 times
more function evaluations than the FA method�

When comparing FA� and FA� we see that FA� performs best on all instances having building
blocks of order larger than �� This result is to be expected as the only di�erence between these two



�� Conclusions 	

methods is the additional constraint on the order of the obtained block of bits in FA�� As building
blocks of low order are easy to �nd� the bit�strings selected from the baseline population will contain
many building blocks having a combined length that violates this additional constraint� FA� performs
well in all those cases where the GA seemed to fail during our experiments�

It is not known yet how the �ltering methods will behave on more complex problems containing
overlapping building blocks or having building blocks which are not completely independent� On
such problems the simple merging rule we used in this paper might be far from optimal� But we are
convinced that discovering linkage stays important and therefore that the �ltering method is usefull�
Powerful solvers can be obtained by combining genetic algorithms with the �ltering algorithm� For
example� we can use the �ltering algorithm as a pre�processing stage to identify the linkage between
bits� Based on such linkage�information a specialized set of crossover masks can be constructed� or the
genetic algorithm can be used to �nd the best combination of the actual building blocks discovered
by the �ltering algorithm� Another approach would be to incorporate the �ltering in the GA� This
approach is taken in GEMGA� where the a weight is computed for each bit of a chromosome� These
weights are used during recombination operations to determine which sets of bits should be determined
by the same parent ����

�� Conclusions

Genetic algorithms were developed to be general problem solvers for arbitrary bit�coded problems
based on the evolution principle� Most practical applications incorporate problem�speci�c knowledge
in order to get a competitive algorithm� This deviates from the original idea of the GA as a general
problem solver� We propose to incorporate general knowledge instead� One way to do so is to restrict
the class of problems� and use the additional knowledge to enhance the genetic algorithm�

In this paper we have restricted ourselves to the class of building block problems� We have de�ned
a �ltering algorithm to locate building blocks without making assumptions about the linkage between
bits� The results look promising� In this paper we have suggested several ways to combine the �ltering
algorithm with genetic algorithm in order to construct a fast hybrid genetic algorithm that requires
less strong assumptions about the linkage of bits and the de�ning length of building blocks�

Remarks� Measuring the �tness contribution of individual bits and usage of this information has
been developed independently by Hilol Kargupta ���� Furthermore I would like to thank Joost N� Kok
for his useful comments�
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