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A Heavy-tra�c Theorem for the GI/G/1 Queue with

a Pareto-type Service Time Distribution

J.W. Cohen
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P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

For the GI=G=1-queueing model with tra�c load a < 1, service time distribution B(t) and

interarrival time distribution A(t) holds, whenever for t!1:

1 �B(t) � c
(t=�)�

+O(e��t); c > 0; 1 < � < 2; � > 0;

1R

0

t�dA(t) <1 for � > �;

that (1� a)
1

��1w converges in distribution for a " 1. Here w is distributed as the stationary

waiting time distribution. The L.S.-transform of the limiting distribution is derived and an

asymptotic series for its tail probabilities is obtained. The theorem actually proved in the text

concerns a slightly more general asymptotic behaviour of 1 �B(t), t !1, than mentioned

above.
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1. Introduction

For the GI=G=1 queue denote by A(t) and B(t) the interarrival { and service time
distribution and by a the tra�c load with a < 1.
The distribution B(t) is said to have a Pareto type-tail if: for t!1,

1�B(t) =
c

(t=�)�
+

NX
n=1

cn

(t=�)�n
+O(e��t);

1 < � < 2; � :=

1Z
0

tdB(t)); c > 0; � > 0;

cn � 0; �n > �;N a �nite integer � 1:

(1.1)

w shall denote a stochastic variable with distribution W (t), the stationary distribution
of the actual waiting time of the GI=G=1-model.
Write

� :=

�
1� a

a

�(�) sin(v � 1)�

c�

� 1
��1

; (1.2)



2

here �(�) is the gamma function and x�, � real, is de�ned by its principal value, i.e., it
is positive for x positive.

Theorem. When B(t) has a Pareto-type tail as speci�ed in (1.1) and when

1Z
0

t�dA(t) <1 for a � > �; (1.3)

then the stochastic variable (1� a)
1

��1w=� converges for a " 1 in distribution, and

lim
a"1

Efe���w=�g = 1

1 + ���1
; Re � � 0; (1.4)

the righthand side of (1.4) is the Laplace-Stieltjes transform of a true probability distri-

bution R��1(t) with support (0;1); and for t!1 and every �nite H 2 f1; 2; : : :g,

1�R��1(t) =
1

�

HX
n=1

(�1)n�1�(n(� � 1)) sinn(� � 1)�

tn(��1)
+Oft�(H+1)(��1)g: (1.5)

For a special class of Pareto-tailed service time distributions the theorem has been de-
rived for the M=G=1-model in [2]. The distribution R��1(t) is called the Kovalenko
distribution, cf. [9]. For � = 1 1

2
we have , cf. [1],

R1=2(t) = 1� 2p
�
etErfc(t1=2); t > 0; (1.6)

with

Erfc(x) =

1Z
x

e�u
2

du:

The proof of the theorem is given in the next section, it uses an idea of the proof of
Theorem 1, Doetsch [7], vol. I, p. 467.
The theorem stated above is a heavy tra�c result. The classical heavy tra�c theorem

for the GI=G=1-model, cf. [3], Section III.7.2, requires the �niteness of the second moment
of A(t) and that of B(t). In a forthcoming paper by O.J. Boxma and the present author
generalisations of the theorem above will be discussed.

2. Proof of the theorem

We consider �rst the case with all cn = 0, n = 1; : : : ; N . Consequently, it is seen from
(1.1) that we may write for t � �,

1�B(t) =
c

(t=�)�
+ F (t); (2.1)

with

1Z
�

e��tF (t)dt convergent for Re � > ��; � > 0: (2.2)
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With

�(�) :=

1Z
0�

e��tdB(t); Re � � 0; (2.3)

we have: for Re � � 0,

1� �(�)

��
=

1Z
0

e��t(1�B(t))
dt

�
=

�Z
0

e��tf1�B(t)gdt
�
+

1Z
�

e��t
c

(t=�)�
dt

�
+

1Z
�

e��tF (t)
dt

�
;

(2.4)

and

1 =

�Z
0

f1�B(t)gdt
�
+

1Z
�

c

(t=�)�
dt

�
+

1Z
�

F (t)
dt

�
�

It follows: for Re � � 0,

1� 1� �(�)

��
= g1(��)�

1Z
�

e��t
c

(t=�)�
dt

�
; (2.5)

with

g1(��) :=

�Z
0

(1� e��t)
1�B(t)

�
dt+

1Z
�

c

(t=�)�
dt

�
+

1Z
�

f1� e��tgF (t)dt
�
� (2.6)

By using (2.2) it is readily seen that g1(��) is a regular function of � for Re � > ��.
For the integral in (2.5) we have by partial integration: for Re � � 0,

c

1Z
�

e��t
�
t

�

���
d
t

�
= �g2(��) + c�(1� �)(��)��1; (2.7)

with

g2(��) :=
c

� � 1
e��� +

c�

1� �

�Z
0

e��t
�
t

�

�1��

dt: (2.8)

Obviously g2(��) is also an entire function of � for all �, note that 0 < � � 1 < 1.
From, cf. [8], p. 3,

�(�)�(1� �) =
�

sin��
; � not an integer, (2.9)

and with

g(��) := g1(��) + g2(��); (2.10)
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we have from (2.5), : : : , (2.10) for Re � � 0,

1� 1� �(�)

��
= g(��) +

c�

�(�) sin(� � 1)�
(��)��1 � (2.11)

From (2.6), (2.8) and (2.10), it is seen that g(��) is also a regular function of � for
Re � > ��. From (2.11) it follows that g(0) = 0. Hence since g(��), Re � > �� is a
regular function we have: for Re � > ��, j�j ! 0,

g(��) = 
�� +O((��)2); (2.12)

with 
 a �nite constant.
Put

�(��) :=
1Z
0

e�tdA(t); Re � = 0; (2.13)

so that �(��) is the characteristic function of the distribution A(t). From (1.1), (1.3) and
the series expansion of a characteristic function, cf. [10], p. 199, we have: for Re � = 0,
j�j ! 0,

�(��) = 1 + ��+O(j�j�); (2.14)

� :=

1Z
0

tdA(t) = �=a:

Let i be the idle period, i.e. the di�erence of a busy cycle and the busy period contained
is this busy cycle. The relation between the distributions of w and i is given by, cf. [4],
p. 21, or [3], p. 371; for Re � = 0,

Efe��wg = 1� Efe�ig
��Efig

�
1� �(�)�(��)

(� � �)�

��1
; (2.15)

note that

Efig = (�� �)Efng; (2.16)

with n the number of customers served in a busy cycle.
With

A� :=
c�

�(�) sin(� � 1)�
; (2.17)

we have from (2.11): for Re � = 0,

1� �(�)�(��)
(� � �)�

=

�

� � �

�
1� �(��)

��
+ f1� g(��)g�(��)�A�(��)

��1�(��)
�
:

(2.18)
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Put, cf. (1.3),

� := min(1; �� 1) > 0: (2.19)

By using (2.12) and (2.14) it follows from (2.18) since � > �, cf. (1.3), that for Re � = 0,
j�j ! 0,

1� �(�)�(��)
(� � �)�

=
�

� � �

�
��
�
+ 1�A�(��)

��1 +O(j�j�)
�

(2.20)

= 1 +
a

1� a
fA�(��)��1 +O(j�j�)g:

Put for Re r � 0, cf. (1.2),

� =

�
1� a

a
A�1�

� 1
��1

r=� = �r=�: (2.21)

With for Re r � 0, a < 1,

!(�) := Efe��wg; �(�) :=
1� Efe��ig

�Efig : (2.22)

we have from (2.15), (2.20) and (2.21): for 0 < 1� a << 1 and Re r = 0,

i. !(r�=�) = �(�r�=�)
h
1 + r��1 + r�O((1� a))

1��+�

��1 )
i�1

,

ii. !(r�=�) and �(�r�=�) are both regular for Re r > 0, continuous for Re r � 0,

iii: j!(r�=�)j � 1; j�(�r�=�)j � 1; Re � � 0;
!(0) = 1; �(0) = 1:

The conditions (2.23)i formulate for !(r�=�) and �(�r�=�) a boundary value problem
of a type as discussed in [6]. It is not di�cult to verify that the conditions (26)i,: : : ,iv
of [6] are ful�lled for the present boundary value problem with 0 < 1 � a << 1. Hence
from (31) of [6] its solution reads: for 0 < 1� a << 1,

!(r�=�) = eH(r�=�); Re r > 0; (2.23)

�(�r�=�) = eH(r�=�); Re r < 0;

with

H(r�=�) :=
1

2�i

i1Z
�i1

log
h
1 + ���1 + ��O((1� a)

1��+�

��1 )
i rd�

(� � r)�
:

This integral is a principal value, singular Cauchy integral, cf. [5], Section 1.1.5 and [6].
The integral is absolutely convergent and it follows readily by contour integration in the
right half plane that

lim
a"1

H(r�=�) =
1

2�i

i1Z
�i1

logf1 + ���1g rd�

(� � r)�
(2.24)

= � logf1 + r��1g for Re r � 0;

= 0 for Re r � 0;
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note that the logarithm of the integrand is regular for Re � > 0, continuous for Re � � 0
and zero for � = 0, cf. further [5], Section 1.1.5. Hence from (2.24) and (2.25): for
Re r � 0,

lim
a"1

!(r�=�) = lim
a"1

Efe�r�w=�g = 1

1 + r��1
; (2.25)

lim
a"1

�(r�=�) = 1:

By using Feller's continuity theorem for L.S. transforms of probability distributions it
follows that �w=� converges in distribution for a " 1, with limiting distribution R��1(t)
given by

1Z
0

e�rtdR��1(t) =
1

1 + r��1
; Re r � 0: (2.26)

It remains to prove (1.5).

1Z
0

e�rtf1�R��1(t)gdt = 1

r
f1� 1

1 + r��1
g = r��2

1 + r��1
� (2.27)

Because 1 < � < 2, the righthand side can be continued analytically out from Re r � 0,
into fr : j arg rj �  ; 1

2
� <  < �g. With D the contour de�ned by: for a r0 > 0,

D := fr : r = r0e
i�; � = � g [ fr : r = Re�i ; R � r0g; (2.28)

it is readily shown by starting from the inversion integral for the Laplace transform that

1�R��1(t) =
1

2�i

Z
D

ert
r��2

1 + r��1
dr; (2.29)

with the direction on D such that on r = r0e
i� it is counterclockwise with respect to the

origin. For r = jr0j < 1 we have

r��2

1 + r��1
=

1

r

1X
n=0

(�1)n�1rn(��1): (2.30)

We now apply a theorem of Doetsch [7], vol. II, p. 159 to derive an asymptotic series
for 1�R��1(t), t!1. It is not di�cult to show that this theorem may be applied here.
It uses the relation

1

2�i

Z
D

ertr�d� =
1

�(��) t
���1; � 6= 0; 1; 2; : : : ;

and it states that: for t!1 and every �nite H 2 f1; 2; : : :g.

1�R��1(t) =

HX
n=1

(�1)n�1 t�n(��1)

�(1� n(� � 1))
+ O(t�(H+1)(��1)): (2.31)

By using the relation (2.9) the relation (1.5) follows, and the theorem has been proved
for the case cn = 0, n = 1; : : : ; N .
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To complete the proof for cn > 0, it su�ces to take c1 > 0, c2 = : : : = cN = 0, since it
is readily seen that the general case proceeds along the same lines. However, we have to
distinguish the case that �1(> �) is not an integer and that of �1 is an integer � 2.
First, we consider the case c1 > 0, �1 noninteger. Instead of (2.1) we write: for t � �,

1�B(t) =
c

(t=�)�
+

c1

(t=�)�1
+ F (t); (2.32)

with F (t) again satisfying (2.2). By repeated partial integration it is readily shown,
cf. [7], vol. II, p. 468, and (2.7), that: for Re � � 0,

c1

1Z
�

e��t
1

(t=�)�1
dt

�
= �g2(��) + c1�(1� �1)(��)

�1�1; (2.33)

with g2(��) an entire function of � for Re � > ��.
The relation (2.11) is now replaced by: for Re � � 0,

1� 1� �(�)

��
= g(��) +

c�

�(�) sin(� � 1)�
(��)��1

+
c1�

�(�1) sin(�1 � 1)�
(��)�1�1;

(2.34)

with g(��) again a regular function for Re � > �� and which satis�es g(0) = 0 and
(2.12). Proceeding with the analysis above with (2.11) replaced by (2.35) leads again to
(2.20) since �1 > �, cf. (1.1). The remaining part of the proof with c1 > 0 does not di�er
from that with c1 = 0, and so the theorem has been proved for cn > 0 and �n not an
integer.
Finally we have to consider the case �1 = k � 2, with k an integer. We have, cf. [7],

vol. I, p. 468,

c1

1Z
�

e�st
1

(t=�)k
dt

�
= �g2(��) + c1

(�1)k
(k � 1)!

(��)k�1 log(��);

again with g2(��) a regular function, and (2.35) becomes: for Re � � 0,

1� 1� �(�)

��
= g(��) +

c�(��)��1

�(�) sin(� � 1)�
+ c1

(�1)k�1
�(k � 1)

(��)k�1 log(��); (2.35)

where g(��) is again an entire function for Re � > ��, which satis�es g(0) = 0 and (2.12).
The last term is o((��)��1) since k > �. With this it is readily veri�ed that the second
equality sign in (2.20) also applies for the present case, and so the remaining part of the
proof is similar to that with c1 = 0. Hence the theorem has been proved.
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