
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

On the Direction of Fibring Feature Logics with Concatenation
Logics

N. Francez

Information Systems (INS)

INS-R9706 September 30, 1997

Report INS-R9706
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

On the Direction of Fibring Feature Logics with Concatenation Logics

Nissim Francez

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and OTS, Utrecht university

On leave from the computer science dept., Technion-IIL, Haifa, Israel

ABSTRACT

A dual-�bring of a feature-logic and a concatenation-logic is proposed, in which syntactic categorial types \live in"

feature terms, in contrast to current �bring, in which feature-terms \live in" types. The dual-�bring contains also

arrow-introduction rules for hypothetical reasoning. It is used to explain some \privileged features" in HPSG and

their non-uni�cation manipulation.

1991 Computing Reviews Classi�cation System: F.4.1, F.4.2, J.5

Keywords and Phrases: Feature-Logic, Lambek-calculus, uni�cation, �bring, categorial-grammar, natural language

Note: Paper presented at the Logical aspects of computational linguistics (LACL97) conference, Nancy,

France, 22-24/9/97.

Work carried out under project INS.3, PDP.

1. Introduction

Recent advances in the `parsing as deduction' paradigm are advocating the combination of two logics,

a \concatenation-logic" and a \feature-logic", as the adequate means of implementing this paradigm, in

view of the advent of `uni�cation-based grammar-formalisms'. Two recent examples of this approach are

[3] and [4]. The combination of the logics is called `�bring' in [3], and we retain this name generically in

this paper. Both papers consider the Lambek logic L [5] as the concatenation-logic, but di�er in several

respects regarding the way L should be �bred with a feature-logic:

1. Should the operators of L be applied directly to atomic elements of the feature-logic, or should the

latter be embedded within atomic L-types (as arguments)?

2. Should the feature-logic be based on uni�cation or on subsumption?

3. Should the restrictions imposed by the feature-logic be localized (to derivation-steps), or kept globally?

However, one common implicit assumption in both approaches is, that in the �bring (in spite of its sym-

metric de�nition w.r.t. the �bred logics), the feature-logic should be embedded within the concatenation-

logic, no matter how the above di�erences are to be resolved. Thus, the focus is on extended-types, in

such a way that feature information \lives-within" types. In particular, this view induces a role of feature

information as a partitioning of types into subtypes, or a re�nement of the type-structure. For example,

the basic type np (denoting noun-phrases) can be partitioned into1 np(num : sg) and np(num : pl),

denoting, respectively, singular and plural noun-phrases.

In this paper, a dual-�bring is proposed, that embeds the concatenation-logic within the feature-logic,

by which categorial information is made to \live-within" feature-terms. It seems that this kind of dual-

�bring �ts better the practice of grammar writers, in particular in the HPSG framework [7], and explains

the role of \privileged features" such as `cat', `subcat', `dtrs' etc., a role stipulated in HPSG without any

theoretical justi�cation, except for the clear linguistic need and adequacy of its use. Often, such privileged

features have values the manipulation of which exceeds uni�cation, again, without an explicit justi�cation.

The latter phenomenon is mentioned in [8] (p. 295) as a general characteristic of many uni�cation-

based grammar-formalisms. The dual-�bring suggested here may constitute a common explanation and

justi�cation for many such \deviations" from uni�cation, and explains the privileged features as arising

from the interface-rules used in the �bring of two logics, while the deviation from uni�cation in handling

the values of these features re
ects the proof-rules of the concatenation-logic. This view induces a dual

1In the introduction, the notation is supposed to be self-explanatory. It is properly introduced in the body of the paper.

2. The base-logics 2

T �! p (sorts; p2P)
jx (variables)

jf : T1 (features; f2F)
jT1^T2 j :T1 (propositional� logic connectives)

Figure 1: The syntax of FL

hA; g; dij=FLp i� d2pA

hA; g; dij=FLx i� d = g[jxj]
hA; g; dij=FLf : T1 i� there exists a d0 s.t. d0 = fA(d) and hA; g; d0ij=FLT1
hA; g; dij=FLT1^T2 i� both hA; g; dij=FLT1 and hA; g; dij=FLT2
hA; g; dij=FL:T1 i� hA; g; di6j=FLT1

Figure 2: The semantics of FL

role of features and types; the types are now seen as partitioning feature-structures (or re�ning them)

according to categorial information. For example, the class of feature-structures satisfying (in AVM-

notation) T = [vform : finite], denoting all entities with a �nite verb-form feature, can be partitioned

into T [np! s] and T [np! (s np)], denoting, respectively intransitive verbs (or object-saturated verb-

phrases) and transitive verbs. Here T [A] denotes an encoding of an extended-type (explained below) as

a sub-feature-term within a feature-term T . The resulting logic has a lot in common with CUG ([2],

[1]). However, it is, according to the classi�cation of [6], a second-generation logic, due to the presence

of residuation-rules for hypothetical reasoning, while CUG is classi�ed as �rst-generation system in the

absence of such rules. It still remains to be investigated what is the logic arising when neither of the

entities \lives-within" the other, applying the fully-recursive de�nition of �bring as given in [3]. Many

simpli�cations are assumed in the current paper. The uncovering of the �bred-logics structure of \full

HPSG" remains an issue for further research.

2. The base-logics

The following de�nitions are basically extracted from [3].

The feature-term logic

The syntax of FL (over a signature hF ;Pi of feature-names and node-predicate-names, respectively)

is described in Figure 1. Terms of the feature-logic FL are interpreted over feature-structures A =

hDA; ffAjf2Fg; fpAjp2Pgi, where: DA is a non-empty set of nodes, for each f2F , fA is a partial

function on DA, and for each p2P , pA is a subset of DA. The satisfaction of an FL term T over a feature

structure A w.r.t. a variable assignment g (taking care of reentrancy), denoted by hA; g; dij=FLT , is

presented in Figure 2. A term T2 is an FL-consequence of a term T1, denoted by T1j=FLT2, i� for all

A; g; d: if hA; g; dij=FLT1, then hA; g; dij=FLT .

The concatenation logic

As for the concatenation logic, we also consider L, Lambek's basic logic, over a set B of basic types. The

syntax of L is given in Figure 3. Terms of L (types) are interpreted over string structures (models) (S; :S),
consisting of a non-empty set S (\words"), and an interpretation that assigns to each basic category b2B
a non-empty set bS � S+ (strings over S). The denotations of syntactic types are presented in Figure

4. The deductive calculus is de�ned over (declarative) units U � A, where U keeps track of the resource

managment over assumptions in proofs. The proof-rules are presented in Figure 5. The reader is referred

to [3] for the de�nition of the �bred logic L(FL), the �bred structure over which this logic is interpreted,

and a complete calculus for deriving valid declarative units.

3. The dual-�bring logic 3

A �! b (b2B; basic types)
jC ! B (leftward type)

jB C (rightward type)

Figure 3: The syntax of L

[jbj]
S
= bS

[jC ! Bj]
S
= f� j8� 02[jCj]

S
� 0�2[jBj]

S
g

[jB Cj]
S
= f� j8� 02[jCj]

S
�� 02[jBj]

S
g

Figure 4: The denotation of L-types

3. The dual-fibring logic

In this section, we show how to dual-�ber the concatenation-logic L into the feature-terms logic FL. The

dual-�bred logic is referred to as FL(L), in analogy with the �bring L(FL) in [3]. The corresponding

calculus is also based on �bring satis�ability of feature-terms with validity of types, as in the usual �brings.

For the interface-rules of the dual-�bring, we assume that fcat; lsubcat; rsubcat; dtrs; hdtr; cdtrg\F = ;,
and extend the F-component of the signature of FL(L) by these feature-names. The �rst three features

accomodate the directionality of L-types similarly to the way subcat and cat act2 in HPSG. Similarly,

the last three encode the hierarchical structure of signs (strings), similarly to the use of the `DTRS'

(daughters), head-daughter and complement daughter in HPSG. As we are simplifying a lot here, the

special role of heads is not fully re
ected. The functor is the head, and the argument - the complement

(in the right linear-order imposed by the directionality of the functor). In addition, we assume that

P\B = ;, and extend the P-component of the signature with the elements of B as new sort-names.

For de�ning the syntax of FL(L), we use some auxiliary de�nitions. Wherever convenient, we use the

AVM-notation for feature terms. First, extended types are de�ned by extending the arrow-operators to

feature-terms encoding type on top of some other information. Let T be an FL-term and b2B.

EA �! T [b] j T [EA1 ! EA2] j T [EA2 EA1]:

With each extended-type EA we can naturally associate its underlying L-type, \stripping " all its feature
information, so to speak, denoted �(EA), by letting

�(EA) =

8<
:

b EA = T [b]

(�(EA1)! �(EA2)) EA = (T [EA1 ! EA2])

(�(EA2) �(EA1)) EA = (T [EA2 EA1])

We use a type-extension T [EA] for denoting the extension of a feature-term T with an extended type EA,

de�ned by T [EA] =df: Tt�[EA], where �[EA] is a function encoding
3 an extended-type as an FL(L)-term,

2We ignore here mutiple complements on the subcat list in HPSG, and consider a \binary version" of it. Also, we ignore

here HPSG's multiple valency lists. A full exposition of HPSG as a �bred logic should deal with both issues.
3Similarly to the encoding in CUG ([2], [1]).

(ax) A�A

(! E)
U1�B; U2�(B!A)

(U1U2)�A
(E)

U2�(A B); U1�B

(U2U1)�A

(! I)
(BU)�A

U�(B!A)
(I)

(UB)�A

U�(A B)

Figure 5: The type calculus for L

3. The dual-�bring logic 4

using the new feature-names and new type-sorts in the extended signature, de�ned as follows:

�[EA] =df:

8>>>><
>>>>:

T t
�
cat : b

�
EA = T [b]

T t

�
cat :

�
cat : �[EA2]

lsubcat : �[EA1]

��
EA = (T [EA1 ! EA2])

T t

�
cat :

�
cat : �[EA2]

rsubcat : �[EA1]

��
EA = (T [EA2 EA1])

By this construction, the categorial information \lives-within" feature-terms as desired, leaving the de-

notation of type-extended feature-terms to be a feature-structure. The dependence on the embedded

categorial type is re
ected in the de�nition of the validity of a declarative-unit as de�ned below, and in

the preservation of this validity by the rules of the FL(L)-calculus presented in the sequel. This speci�c

way of encoding types allows feature-information everywhere, not only in conjunction with basic types,

or heads. The linguistic motivation for such encodings may be found in [2] and [1]. For example, as-

suming that fnum; pers; vform; sformg � F , fsg; 3rd; fin; affirmg � P and fnp; sg � B, and letting

T1 =

�
num : sg

pers : 3rd

�
, T2 =

�
sform : affirm

�
and T3 =

�
vform : fin

�
, we have:

T3[T1[np]! T2[s]] =

2
6666664
cat :

2
66664
cat :

�
cat : s

sform : affirm

�

lsubcat :

2
4cat : np

pers : 3rd

num : sg

3
5

3
77775

vform : fin

3
7777775

as an FL(L)-term. Note that it has feature information at all levels. Under this view, lexical entries

assigned to words are extended-types.

Before embarking of the full presentation of FL(L), we make a small detour to explain more of HPSG's

privileged features. One can make a distinction between two kinds of logics expressing grammars:

recognition-logics and parsing-logics. In a recognition logic, derivability of a suitable term signals mem-

bership of a certain string in the language de�ned by the grammar encoded by the logic. However, no

extra information about the member string is present. On the other hand, in a parsing-logic, the derived

term expresses (in addition to membership in the language) some syntactic structure attributed to the

member string by the grammar, e.g., a phrase-structure. This re
ects the known distinction between weak

generative power and strong generative power; usually, yhe latter is of more interest in computational

linguistics.

As it turns out, the role of HPSG's features like `DTRS' (daughters), `HDTR' (head-daughter),

`CDTRS' (complement-daughters) and the like, is an encoding of the information needed for a parsing-

logic. In de�ning a dual-�bring for that purpose, we use �(T [EA]; T1[EA1]; T2[EA2]) to denote the

hierarchical embedding of two (type-extended) feature terms T1; T2 in (the type-extended) feature-term

T , using the daughters features. Thus,

�(T [EA]; T1[EA2 EA1]; T2[EA1]) =df: T [EA] t

�
dtrs :

�
hdtr : T1[EA2 EA1]

cdtr : T2[EA1]

��

To maintain a simpler notation, we focus in the rest of this paper on a dual-�bring variant of FL(L)
re
ecting a recognition-logic only. The extension to a full parsing-logic is not hard. Thus, the syntax of

FL(L) consists of type-extended feature terms T [EA] as de�ned above.

We now turn to the denotation of FL(L)-terms and declarative-units. Both are interpreted in dual-�bred

structures M = (S;A; g; fRbgb2B), where S is a string-model, A is a feature-structure, g is a variable-

assignment V ! DA, and Rb � D
A � bS is a familly (indexed by basic types) of �bring-relations4, such

that whenever A; g; dj=cat : b (for some b2B), there exists some string �2S+ such that dRb� .

The denotation [jT [EA]j]
M

of an FL(L)-term T [EA] has already been �xed via satisfaction in A. To

take the categorial type into account, we associate with every FL(L)-term T [EA] a language L[jT [EA]j]
M
,

4Note the di�erence in the direction of the relation compared to the �bring-relations in [3].

3. The dual-�bring logic 5

L[jT [b]j]
M

=df: f� j 9d2D
A(A; g; dj=T^cat : b and dRb�)g

L[jT [EA1 ! EA2]j]
M

=df: f� j 9d2D
A(A; g; dj=T^cat : cat : EA2^cat : lsubcat : EA1

and 8� 02L[jEA1j]
M
:� 0�2L[jEA2j]

M
)g

L[jT [EA2 EA1]j]
M

=df: f� j 9d2D
A(A; g; dj=T^cat : cat : EA2^cat : rsubcat : EA1

and 8� 02L[jEA1j]
M
:�� 02L[jEA2j]

M
)g

Figure 6: The language associated with type-extended feature-terms

as presented in Figure 6. Thus, the \privileged" features are related to the denotations of L-types in a

�bred-structure. Note that by this de�nition we have for every FL(L)-term T [EA] andM

L[jT [EA]j]
M
� [j�(T [EA])j]

M
:

As for the denotation of the resources (\structured databases"), these are a natural extension of feature-

structures called multi-rooted structures (MRSs), described5 in detail in [9]. Basically, these are sequences

of feature-structures with possible sharing (reentrancy) of substructures between elements of a sequence.

We use sequences of FL(L)-terms (with possibly shared variables) to denote them. The de�nition of the

language associated with a type-extended feature-term is naturally extended by letting

L[jT1[EA1]; T2[EA2]j]
M

=df: L[jT1[EA1]j]
M
� L[jT2[EA2]j]

M
�

namely, the concatenation (in S+) of the respective languages. Note that by this de�nition, the inclusion

of languages to the denotations of the underlying type is preserved, i.e.,

L[jT1[EA1]; T2[EA2]j]
M
� [j�(T1[EA1]; T2[EA2])j]

M
:

Finally, a declarative-unit (U1; :::; Um)� T [EA] is valid i� for all dual-�bred structuresM,

L[j(U1:::; Um)j]
M
� L[jT [EA]j]

M
:

Following the HPSG convention, we represent also the lexical input words (and the generated concate-

nations thereof) as the value of yet another (new) feature, phon.

For the presentation of the �bred calculus, we use u(T1; T2) to denote that the (satis�able) FL(L)-terms

T1; T2 are uni�able, and T1 t T2 for the (satis�able) outcome of their uni�cation. The form of an axiom

now becomes as follows.

T

T [EA]� T [EA]

meaning that the type-extension of a satis�able term with any extended type derives itself. The new

form of the elimination rule E now becomes:

(E)
U1 � T1[T1:2[EA1:2] T1:1[EA1:1]]; U2 � T2[EA2:1];u(T1; T1:2);u(T1:1[EA1:1]; T2[EA2:1])

(U1; U2)� t(T1; T1:2)[EA01:2]

The primes indicate the feature-terms after the side-e�ect of uni�cation. The uni�ability requirement is a

side-condition of the rule, and is placed as assumptions for notational convenience only. This rule re
ects

a simpli�ed version of the subcategorization-principle, as well as the head-feature principle of HPSG.

In Figure 7 is a sample derivation of a highly simpli�ed representation for Mary loves John, where the

only syntactic restriction present is number-agreement between the subject and the verb. To save space,

the feature names `rsubcat' and `lsubcat' are abbreviated to `rsub' and `lsub', respectively.

5Only rooted, connected, �nite feature-structures are considered in [9], but all de�nitions extend naturally to the more

relaxed de�nition employed here.

3. The dual-�bring logic 6

2
4phon : Mary

cat : np

num : sg

3
5

2
6666664

phon : loves

cat :

2
664cat :

2
4cat : s

lsub :

�
cat : np

num : sg

�
3
5

rsub :
�
cat : np

�

3
775

3
7777775

2
664
phon : John

cat : np

num : sg

3
775

(E)2
66664
phon : loves John

cat :

2
4cat : s

lsub :

�
cat : np

num : sg

�
3
5
3
77775

(! E)"
phon : Mary loves John

cat : s

#

Figure 7: A derivation of Mary loves John

(Ax)
T

T [EA]� T [EA]

(E)
U1 � T1[T1:2[EA1:2] T1:1[EA1:1]]; U2 � T2[EA2:1];u(T1; T1:2);u(T1:1[EA1:1]; T2[EA2:1])

(U1; U2)� t(T1; T1:2)[EA
0
1:2]

(! E)
U1 � T1[EA1:1]; U2 � T2[T2:1[EA2:1]! T2:2[EA2:2]]; u(T2; T2:1);u(T2:1[EA2:1]; T1[EA1:1])

(U1; U2)� t(T2; T2:1)[EA
0
2:1]

(I)
(U; T1[EA1])� T2[EA2]

U � T2[(EA2 T1[EA1])]

(! I)
(T1[EA1]U)� T2[EA2]

U;�T2[(T1[EA1]! EA2)]

Figure 8: The FL(L) calculus

Next, we turn to the new form of a residuation-rule. The feature percolations for such rules are not

explicitly discussed in the literature. The main property of the new form of the residuation-rules is, that

feature-information present in the assumption is preserved, to be made use of after the discharge of the

assumption. The new form of the (I) rule is as follows.

(I)
(U; T1[EA1])� T2[EA2]

U � T2[(EA2 T1[EA1])]

To exemplify the particular feature percolation employed by the rule, we consider in the next section

an example from Hebrew. The full calculus is presented in Figure 8. The following lemma ensures the

soundness of the FL(L)-calculus, based on the soundness of the L-calculus.
Lemma: (type-restriction)

If Ui; i = 1; n are satis�able, and `FL(L)(U1; :::; Um)�T [EA], then T [EA] is satis�able, and furtheremore,

`L(�(U1); :::; �(Um))� �(T [EA]).

Proof: By a simple inductive argument on the structure of proofs. Satis�ability is preserved by the

proof-rules due to the uni�ability tests. The inclusion of the associated languages in the denotations of

the underlying types was observed before, and the proof-rule mimic the categorial manipulation of these

4. An application of residuation 7

languages.

4. An application of residuation

First, recall the derivation of John whom Mary likes slept in [3], using the residuation rule (I) of

L. The category assigned to whom is (np ! np) (s np), which triggers the introduction of an

assumption [np]1 (with a null string value), later discharged by the residuation rule. We now show how

the corresponding FL(L) rule can be used to solve elegantly a generalization of relativizing in English.

In Hebrew, many categories, including NPs, VPs and APs, are marked for gender, being either feminine

or masculine. In particular, according to some syntactic analysis6 of Hebrew, there are two relative

pronouns of the two corresponding genders, ota (feminine) and oto (masculine), similarly to German

and Russian, for example. One of the agreement rules in Hebrew calls for a gender agreement between

a relative pronoun (in a relative clause), and the relativized NP (in addition to subject-verb gender

agreement). Note that the �rst person singular pronoun any (i.e., I) is underspeci�ed for gender, and

agrees with both genders. Thus, we have7:

(1) hayeled oto ani ohev shar

namely

the boym whomm I lovem singsm,

but

(2) (*) hayalda oto ani ohev shara

namely

(*) the girlf whomm I lovem singsf .

Similarly,

(3) hayalda ota ani ohev shara

namely

the girlf whomf I lovem singsf ,

but

(4) (*) hayeld ota ani ohev shar
namely
(*) the boym whomf I lovem singsm.
Actually, as there are also plural versions of these relative pronouns (otam for masculine-plural and otan
for feminine-plural), we end up in four similar, though di�erent, lexical entries. Let us ignore for this
example all other featural distinctions as number, person, etc., as well as their agreement rules. One way
of enforcing the gender agreement in relativization is to assign the following extended categories to oto
and ota, using a gender feature gen with atomic values m (for masculine) and f (for feminine). This way,
the speci�c gender expected by each relative pronoun is built-in in its lexical entry.

2
66666666664

phon : oto

cat :

2
666666664

cat :

2
664
cat :

�
cat : np

gen : [1]

�

lsub :

�
cat : np

gen [1]

�
3
775

rsub :

2
4cat : s

rsub :

�
cat : np

gen : [1]m

�
3
5

3
777777775

3
77777777775

2
66666666664

phon : ota

cat :

2
666666664

cat :

2
664
cat :

�
cat : np

gen : [1]

�

lsub :

�
cat : np

gen [1]

�
3
775

rsub :

2
4cat : s

rsub :

�
cat : np

gen : [1]f

�
3
5

3
777777775

3
77777777775

The generated assumption now carries gender information, that has to be percolated when a residuation-

rule is applied (otherwise this information disappeares with the discharged assumption). Figure 9 shows

the main part of the derivation corresponding to hayeled oto ani ohev shar. The rest of the dertivation

combines with the subject, matching the masculine gender, and then the relativized NP combines with

the intransitive verb sings, again with the right gender agreement.

Note that the lexical value associated with the verbs ohev/ohevet right-subcategorizes for a (gender-

underspeci�ed) np, being ready to combine with noun-phrases of both genders. The gender of the

generated assumption \dictates" the way the derivation proceeds. A similar derivation exists for (3),

6Other analyses regard these examples as having a phonologically-empty relative-pronoun, and a dislocated resumptive

pronoun.
7To simplify, we ignore the fact that Hebrew is written from right to left.

4. An application of residuation 8

2
6666666664

phon : oto

cat :

2
66666664

cat :

2
664
cat :

�
cat : np

gen : [1]

�

lsub :

�
cat : np

gen [1]

�
3
775

rsub :

2
4cat : s

rsub :

�
cat : np

gen : [1]m

�
3
5

3
77777775

3
7777777775

�
phon : ani

cat : np

�

2
66664

phon : ohev

cat :

2
664cat :

2
4cat : s

lsub :

�
cat : np

gen : m

�
3
5

rsub :
�
cat : np

�

3
775

3
77775

2
4phon : �

cat : np

gen : m

3
5(1)

(E)2
664
phon : ohev

cat :

2
4cat : s

lsub :

�
cat : np

gen : m

�
3
5

3
775

(! E)�
phon : ani ohev

cat : s

�

(! I1)2
664
phon : ani ohev

cat :

2
4cat : s

rsub :

�
cat : np

gen : m

�35

3
775

(! E)2
66664

phon : oto ani ohev

cat :

2
664
cat :

�
cat : np

gen : [1]m

�

lsub :

�
cat : np

gen : [1]

�
3
775

3
77775

Figure 9: A derivation of oto ani ohev

where the generated assumption has
�
gen : f

�
as the extra-categorial initial feature-information, to match

that assigned to ota. On the other hand, there is no way to generate assumptions that will cause the

wrong gender matching with the relative pronoun, thus blocking (4) and (2). The structure of the above

derivation can be viewed as a logical counterpart of a typical use of the SLASH feature in HPSG's

treatment of object relativization. Similar use of hypothetical reasoning in other cases of long-distance

dependencies suggests itself.

5. Acknowledgments 9

5. Acknowledgments

This research was carried out under a grant B 62-443 from Nederlandse Organisatie voorWetenschappelijk

Onderzoek (NWO). I wish to thank NWO for their support. I thank Jan van Eijck and Michael Moortgat,

as well as the OTS students in a seminar on the categories and features, for various discussions and an

oppurtunity to present these ideas while in the making. I thank Gosse Bouma, Mark Johnson and Esther

K�onig-Baumer for various comments on earlier drafts. Ranni Nelken spotted an error in the Hebrew

example in a previous draft.

References

1. Goose Bouma. Modi�ers and speci�ers in categorial uni�cation grammar. Linguistics, 26:21 { 46,

1988.

2. Gosse Bouma. Nonmonotonicity and Categorial Uni�cation grammar. PhD thesis, Groningen univer-

sity, The Netherlands, 1988.

3. Jochem D�orre, Esther K�onig, and Dov Gabbay. Fibred semantics for feature-based grammar logic. J.

of Logic, Language and Information, 5, October, 1996.

4. Jochen D�orre and Suresh Manandhar. On constraint-based Lambek calculi. In Patrick Blackburn and

Martin de Rijke, editors, Specifying Syntactic Structures, Studies in Logic, Language and Information

(SiLLI). CSLI, Stanford, CA 94305, to appear. available from http://xxx.lanl.gov/cmp-lg/9508008.

5. Joachim Lambek. The mathematics of sentence structure. American mathematical monthly, 65:154 {

170, 1958.

6. Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter Muelen, editors,

Handbook for Logic and Language. Elsevier, 1997.

7. Carl Pollard and Ivan Sag. Head-Driven phrase structure grammar. Chicago university press and CSLI

publications, 1994.

8. Stephen G. Pulman. Uni�cation encodings of grammatical notations. Computational Linguistics,

22:295 { 328, 1996.

9. Shuly Wintner and Nissim Francez. Parsing with typed feature structures. In Proceedings of the

4th International workshop on parsing technologies (IWPT), pages 273{287, Prague, Czech republic,

September, 1995.

