
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Scalable Storage for a DBMS using Transparent Distribution

J.S. Karlsson, M.L. Kersten

Information Systems (INS)

INS-R9710 December 31, 1997

Report INS-R9710
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Scalable Storage for a DBMS
using Transparent Distribution

Jonas S. Karlsson, Martin L. Kersten

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

jonas@cwi.nl, mk@cwi.nl

ABSTRACT

Scalable Distributed Data Structures (SDDSs) provide a self-managing and self-organizing data storage of

potentially unbounded size. This stands in contrast to common distribution schemas deployed in conventional

distributed DBMS. SDDSs, however, have mostly been used in synthetic scenarios to investigate their properties.

In this paper we concentrate on the integration of the LH* SDDS into our e�cient and extensible DBMS,

called Monet
1
. We show that this merge permits processing very large sets of distributed data.

In our implementation we extended the relational algebra interpreter in such a way that access to data,

whether it is distributed or locally stored, is transparent to the user. The on-the-
y optimization of operations

| heavily used in Monet | to deploy di�erent strategies and scenarios inside the primary operators associated

with an SDDS adds self-adaptiveness to the query system; it dynamically adopts itself to unforeseen situations.

We illustrate the performance e�ciency by experiments on a network of workstations. The transparent integra-

tion of SDDSs opens new perspectives for very large self-managing database systems.

1991 Computing Reviews Classi�cation System: H.2.4 : Systems { Query Processing, D.4.3 : File

Systems Management { Distributed File Systems, C.2.4 : Distributed Systems { Distributed Databases

Keywords and Phrases: DBMS, Scalable Distributed Data Structures, Distributed/Parallel Databases, Dis-

tributed Query Processing, Client/Server Architecture

Note: Partially funded by the HPCN/IMPACT project.

1. Introduction

Over the last decades major progress has taken place in e�cient data management in a distributed
setting. Many commercial DBMS already provide the hooks to control distribution of data and op-
timizers to cope with it. Despite this, modern applications, such as GIS and Data Mining, continue
to stress the need for better techniques; both in terms of scalability and performance. Especially the
limited and rigid scheme deployed for distributed and parallel data handlers and resulting complexity
of the query optimizers, hinder major breakthroughs.
Scalable Distributed Data Structures (SDDSs) [LNS93] [LNS96] particular addresses the issue of

scalable storage, i.e. the ability to administer any foreseen and not foreseen amount of data distributed
over a number of nodes. Most studies have been focused on algorithm and experiments in an isolated
context, i.e., not integrated in a database system.
In this paper we promote deployment of the SDDSs at a broader scale. First, the SDDS LH* [LNS93]

has been integrated in a full
edged extensible database system. Second, we demonstrate how SDDS
functionality can be exploited in the algebra to choose from a set of strategies for excelling in per-
formance. The strategy chosen depends on several dynamic properties, such as locality of data, their
size, and costs of partitioning and distributing.
Their integration solves a problem often encountered in distributed systems, where manual (re-

)con�guration is required to handle larger and larger data sets. SDDS storage scale automatically

1See http://www.cwi.nl/�monet

2. Background 2

without any costly re-organization of all data in lock-step mode. They indeed provide transparent
fragmentation.
Our target experimentation platform is a network multi-computer, i.e. a collection of workstations

and SMP (Symmetric Multi Processor) computers. It enables the system to grow over time by adding
components to meet the increased storage and processing demands.
The outline of our paper is as follows. In Section 2 we shortly describe the key properties of Scalable

Distributed Data Structures and the Monet database system. Then, in Section 3, we describe the
implementation and its integration of SDDSs in Monet. The in
uence of Monets' algebraic components
and dynamic operator optimization scheme is analysed in Section 4. Section 5 shows preliminary
performance measures of our implementation. Finally, in Section 6 we conclude this work and give
directions for future research.

2. Background

In this section we give a short introduction to the key concepts of Scalable Distributed Datastructures
and the Monet database system.

2.1 SDDSs

Scalable Distributed Data Structures (SDDSs) [LNS93] can be classi�ed as an general access path
mechanism. Several SDDSs has been de�ned [Dev93] [WBW94] [KW94] [LNS94] [KLR96]. SDDSs
allow storage of a very large number of tuples distributed over any number of nodes. The tuples are
distributed to di�erent nodes according to their key value and the state of the SDDS. The primary
means for retrieval is again the key value. The objective of SDDSs is to minimize the messages needed
to locate the tuple anywhere in the system. Typically, a tuple can be accessed with at most two
network messages. One message for requesting the tuple and one message for sending the data.
SDDSs di�ers from other distributed schemas in that it allows the number of nodes to increase with

a very small cost. Many other distributed data structures requires a costly total re-organization for
adding a node because they employ static distribution schemas, examples are round-robin [Cor88],
hash-declustering [KTMO84], range-partititioning [DGG+86]. The ability of SDDSs to scale to several
nodes by acquiring one node at a time and gradual reorganization opens up new areas of storage
capacity and data access.
For accessing data stored using an SDDS, a client can calculate where a tuple resides using the

key. In the case that the client is not fully aware of the number of servers involved in storing the
distributed data, the server receiving the request will forward it towards its correct destination. The
reason that the client's calculation may lead to addressing errors is that they are not actively updated
when the SDDS is partly re-organized. The facts on how the data is distributed is called the clients
image. When a server receives a mal-addressed request it will in addition to the forwarding send back
an Image Adjust Message to the client. This message improves the image of the client, preventing it
from repeating the same mistake. The rationale behind this is that the number of clients may be too
large to be e�ciently updated continously, also, not all clients might be interested in the most accurate
information at all times. This design decision is aimed at minimizing communication overhead. The
incurred cost for updating clients has been shown to be low [LNS96].
In conclusion the main features of an SDDS are:

� There is no central directory that clients have to go through for data access. This avoids hot-
spots.

� Each client accessing the data, has an approximately image of how the data is distributed. The
image is lazily updated by servers. The updates only occurs when clients make addressing errors.

� The servers are responsible to handle all requests from clients, even if the client makes an
addressing error. It is also the responsibility of the server to update the client.

3. SDDS within Monet 3

The operations directly supported are limited to individual tuple access. It requires generalization
to support a relational algebra, which is addressed in this paper.
LH* [LNS93], which is our choice of implementation, is a distributed variant of Linear Hash-

ing [Lit80]. The LH* schema allows e�cient hash-based retrieval of any tuple based on the tuple
key. Insertion requires, on average, one message and retrieval two messages. If the clients image is
outdated the request is forwarded and the client is updated by the server.

2.2 Monet

Monet [BK95] provides for the Next Generation DBMS Solutions using todays trends in hardware and
operation system technology. Monet's features include:

� Decomposed Storage Model using binary relations only.

� Employs main-memory algorithms for querying/processing.

� Extensive use of OS virtual memory primitives to manage larger sets.

� Extensibility through modules providing support for domain speci�c data structures, indices,
and operators.

� Relational algebra operators implementations with dynamic run-time optimizations | \Live
Optimization".

� High throughput achieved using bulk operator processing. This enables Monet to bene�t most
from modern computers cache-line behavior, on the expense of that intermediate results are fully
materialized.

Monet is heavily used in Data Mining applications[HKM95] and GIS[BQK96], and its supreme
performance has been demonstrated against several benchmarks, including OO7[BKK96] and TPC-
D[BWK98]. The current implementation runs on workstations and exploits parallelism of SMP ma-
chines. However, shared memory computers provide limited means to scale. Therefore, several activ-
ities are underway to exploit MPP (Massivly Parallel Processing) machines to deal with TeraByte
problems. In this paper we focus on the SDDS approach to tackle the distribution issue.
Monet features of direct relevance to this paper are the concepts of atoms and bats. Atoms are

user de�nable abstract data types, i.e. non-modi�able data, such as strings, integers, and
oats. The
atoms are stored in tables. Since Monet employs a fully decomposed storage schema, tables only
contains <key,value> pairs. Such a table is called a Binary Association Table, BAT for short. The
BATs are operated upon using an extended relational algebra.
The system is heavily optimized for these algebraic operations. In particular, the operators decide

on-the-
y on the best algorithm to perform their task, including construction of temporary search
accelerators, OS memory advice, etc..

3. SDDS within Monet

Adding SDDSs functionality to Monet implies that the system can be scaled to larger dimensions, both
when it comes to query processing as well as to storage capacity. This can be achieved mostly with the
extensibility already provided by Monet system. We show how these already-in-the-box features allows
us to integrate LH* into Monet. In particular, we address issues related to distributed processing and
management of the SDDS dictionary information.

3.1 SDDS requirements on a DBMS

A transparent and e�cient integration of SDDSs into a DBMS, without complete redevelopment of
the DBMS kernel, poses several requirements on its functionality:

3. SDDS within Monet 4

� The DBMS should be extensible at multiple levels, i.e. enable addition of new data types, al-
gorithms and operators. Unfortunately, few (commercial) DBMS provide su�cient functionality
in this area so far.

� The DBMS should provide a general communication package, such that the SDDS implementa-
tion does not have to \know" about what data is transported. This is supported in our system.

� The DBMS should support storage of any kind of data, i.e., to use native tables as building
blocks for our management of the data held within the SDDS.

To fully bene�t from an SDDS, the database system should In addition provide a means to adjust
the query execution plan. In particular, it should provide accurate optimization information to select
the algorithm most �t for a given operation. For this we identify two strategies: a traditional approach
and Live Optimization.
The traditional approach is to extend the DBMS's query optimizer with knowledge (cost modelling)

that distributed relations are potentially more expensive to use, and then do parallel query optimiza-
tion. It would have to make plans how to place, gather, allocate data and resources in an optimal way.
A drawback with such a (static) plan is that it usually does not adapt itself gracefully to new circum-
stances. For example, errors in estimates of cardinality of multi-joins are easily orders of magnitudes
o�[IC91].
Live Optimization, on the other hand, liberates the optimizer from the burden of physical aspects.

It provides a coherent interface to bulk operators on data, whether distributed or not, and it hides
optimization decisions in the operators themselves; they do their best in being e�cient. This is achieved
by allowing operators to select from di�erent algorithms to produce the result. Examples of this are
creating or using indices when applicable, sorting data to allow for merge-joins, etc.. This kind of
dynamic optimization is already successfully used in Monet for non-distributed operators.

3.2 SDDSs in Monet

There are many aspects of storing and using SDDSs in DBMSs. Ideally they can be used in very much
the same way as non-distributed data. In a Monet perspective it means that SDDSs should exhibit
the same behavior as operations on Binary Association Tables (BATs).
The transparency, in the Monet case, is partially achieved by its automatic builtin type dispatching2.

The target language to which queries are compiled is built on a basis that the interpreter can resolve
overloaded functions. Therefore, the obvious strategy is to make an LH* atom or an abstract data type
in Monet. This type then has to implement all (relevant) methods de�ned over BATs. But, whereas
operations on relations occur in main memory, the operations on SDDSs have to be distributed to
where the data is stored. We will sketch the implementation of the most interesting algebraic operators
in Section 4.
We use the general mechanism provided by the Monet interface to \override" algebraic operators

with more subtle algorithms. The algorithm for resolving overloaded functions will select the appro-
priate one, especially crafted for SDDSs. All relevant operators on relations are extended with their
counterparts that hide the e�ects of the distribution given by the SDDS. SDDSs just become another
type, with the normal relational operators de�ned upon it.

3.3 Resource Management

Each SDDS has a logical numbering of its participating nodes usually numbered [0::n � 1] by its
algorithm, n being the number of nodes employed. When a node is addressed, the logical number is
mapped to a virtual machine number. This virtual number can be translated to the unique machine
number, which in turn can be used to get to the internet machine address. This is a convenient way

2Monet allows addition of user de�ned \commands". The interpreter selects commands based on the types of the

arguments, whereas for scripting procedures it does not.

3. SDDS within Monet 5

to cluster di�erent SDDS's data so that they use the same physical distribution, \syncing"3 on the
primary key.
For example if two relations (SDDSs) are indexed on the same oid. It makes sense to always cluster

data in such a way that all tuples with the same oid are kept at the same physical node. By letting
the SDDSs have the same mapping, and only changing the mapping of virtual machine number to
physical node, this clustering e�ect is achieved. Also, SDDS load balancing [WBW94] can bene�t
from a strategy where severa logical nodes of the same SDDS are mapped onto the same machine.
This information is part of the SDDS dictionary, and is therefore kept between di�erent loads of
the database. No physical node information needs to be updated to achieve the same cluster/load
balancing e�ect at the next load onto, possible, a di�erent set of physical machines.
For allocation of machines to the SDDSs we currently use a central node. It keeps track of all SDDS

nodes and establishes a mapping from physical identity (such as an Internet address) to a unique

machine number.

3.4 Storage Demands for the SDDS itself

The SDDS dictionary; the information used to access data stored contains the following:

� the home location, the virtual machine number where the zero'th logical server node of the SDDS
is kept,

� the mapping from logical nodes to virtual machine numbers,

� the unique identity number of the SDDS,

� the clients current image of the SDDS,

� and �nally, servers store the distributed data of the SDDS.

On the client-side we represent all data needed using a handle. The handle is an atom of type lhslh.
Methods on the type lhslh implement algebraic operations. The actual data is stored distributed on
several server-nodes. A server needs access to the same information about the SDDS as a client, apart
from that it stores the actual data. We therefore let the server-handle, lhslh server, give access to
the client-handle. At each physical site we store only one client information for each SDDS. Server
nodes, however, may store several logical servers nodes of an SDDS, all of which will share the same
client information.
In Monet, complex objects are usually stored vertically decomposed into a number of tables, i.e.

BATs. The SDDS dictionary is a complex object and, therefore, could be decomposed. However, we do
not see SDDSs dictionaries themselves as interesting objects for querying, so we choose to implement
SDDS handles using atoms. This proves to be an interesting decision. When the image of a client is
updated we have to replace the atom4. For Monet this will actually show up as an advantage rather
as an disadvantage, even though that it seems a bit cumbersome at �rst.
In a multi-processing environment such as Monet, there is an advantage in that ATOMs cannot be

updated, it means that the SDDS information does not need to be locked. For example, if multiple
threads look up the same atom they will be provided with their own copy. Since all threads have
their own copies of the same data, no locks has to be applied. This simpli�es implementation. At the
downside, if a thread retains the value too long its actions might be somewhat outdated. The thread
will eventually have to update it at convenient points. However, SDDS implementation schemes ensure
that a client's request will reach its �nal correct destination, possibly with some additional overhead.
To conclude, we introduced two new atoms into Monet to support SDDS. lhslh, the client atom,

contains the necessary state information. It also acts as a handle to a BAT containing the logical node

3In a fully decomposed storage schema, full clustering of associated data on the same physical nodes would, for

example, require synchronous splitting of servers. Still, even if this is not done, many operators will be more e�cient.
4Remember, we cannot update it, but we can update the table where it is stored.

4. Algebraic Operations 6

to virtual machine mapping. The second atom, lhslh server, contains the identity of the distributed
relation, the logical number of the server, and a handle to the BAT containing the data stored by that
node of the SDDS.

4. Algebraic Operations

Studies on SDDSs were mostly focussed on individual tuple access. PJLH [SAS95] investigates the
usage of an SDDS for storing the output of a distributed (hash-) joins, the results are then extended for
multi-joins. The join sites of PJLH are disjoint from the sites storing the participating join relations.
However, in our setting, this is insu�cient. Instead, we have added extended relational operators to
deal with the SDDSs storage layout. For our implementation we merely assume that some relations
has been chosen to be distributed using a SDDS schema and in many cases the structure is inherited
by the result.
Querying these relations is made transparent. The query optimizer merely generates code as was

the table stored locally. Although this simpli�es the optimizer, it does not necessarily lead to the most
optimal execution plans. However, this choice aligns with the research hypothesis of the Monet group
| to relieve the optimizer as much as possible by extensive dynamic support within the operator
implementation.
For example, the Monet select operator performs many runtime optimization decisions, such as,

creating indices when doing lookups, sorting when it is considered to be bene�cial, etc...
For this experiment we focus on the select and (semi-) join operators. They are the key operators

needed to support SQL-like query languages. Note that the binary representation of the tables stresses
the need for semi-joins instead of the traditional projection operator. Futhermore, their implemen-
tations show characteristics typical for a large group of relational operations. An informal semantic
description is shown below (A;B are BATs and a; b; c; d are atom)view:

operator "de�nition"

select(A, h, l) f(a; b) 2 Ajl � b � hg

join(A, B) f(c; d)j(a; b) 2 A; (c; d) 2 B; b = cg

semijoin(A, B) f(a; b)j(a; b) 2 A; (c; d) 2 B; a = cg

The select operator is rather straightforward to implement on an SDDS. The parameters are sent
to all nodes storing buckets of the SDDS, where the data is scanned, results are either stored locally
or sent back to the originator of the operation. In a semijoin one or both of the relations A and
B may be distributed but it is rather e�cient and simple to implement. However, the join operator
requires more implementation e�ort, especially in the case of join over two SDDS-based tables. In the
next section we outline the di�erent settings and ideas used.

4.1 Live Optimization

The SDDS implementation generates a large number of options for Live Optimization. It includes run-
time decisions on materializing of distributed data onto one node, or redistribution of data according
to another schema, creating indices when operators do bene�t, etc..
The granularity of execution in Monet is at the level of algebraic bulk operators. Operators are

executed in sequence. Intermediate results are stored fully materialized. Live optimization allows
us to use the same plans generated for a non-distributed environment without having to do any
rewriting, or further restructuring. These keeps
exibility in the plans by deferring decisions until
more information is known. For example, for performance reasons there may be a great di�erence
if intermediate results are stored distributed or not. By default, results are stored distributed. The
result can later be redistributed or collected onto one node if succeeding operators �nd it bene�cial.
The current implementation uses the following strategies. They have been chosen for ease of imple-

mentation, because we are primarily interested in the overhead incured by the use of SDDSs on the
database kernel.

5. Implementation and Performance Study 7

� select(SDDS1, low, high) ! SDDS2

The select operator broadcast a normal select to all sites of the SDDS1. Results are stored where
generated and a handle, SDDS2, is returned. The generated SDDS is a subset of SDDS1, but with
the same distribution.

� join(SDDS1, BAT) ! SDDS2

The BAT is broadcasted to all nodes of SDDS1 where a local join then takes places. The result
is kept on the same node as it was generated, i.e., the SDDS2 is distributed in the same way as
SDDS1. Broadcasting the BAT, is practically costly. If the nodes of the SDDS1 store less data, the
data can be materialized on the node where the BAT resides, giving a local join and local result.

� join(BAT, SDDS) ! BAT*

The BAT is distributed on its join-attribute onto the same number of nodes of the SDDS. E�ec-
tively this turns into a hash-join. Results are stored distributed, and are \randomly" organized.
Again, if the SDDS is \small" an alternative is to materialize it as an BAT, and join locally.

� join(SDDS1, SDDS2) ! SDDS3 or BAT*

The �rst alternative is to hash-join the SDDS1 data onto the nodes storing SDDS2. The result is
\randomly" distributed on the nodes of SDDS2.

The second alternative is to broadcast SDDS2 to all nodes of SDDS1. The result SDDS3 is then
distributed similarly as SDDS1 on the same nodes.

Again, depending on the sizes of the SDDSs, either of them could be materialized and then
broadcasted to the other.

� semijoin(SDDS1, BAT) ! SDDS2

This semijoin hash-joins the BAT onto the nodes of SDDS1. The result SDDS2 is a subset of SDDS1,
distributed in the same way on the same nodes.

� semijoin(BAT, SDDS1) ! SDDS2

Again, we hash-join the BAT onto the nodes of SDDS1. The result SDDS2 is a subset stored similarly
on the same nodes as SDDS1.

� semijoin(SDDS1, SDDS2) ! SDDS3

This semijoin is most e�cient if the both SDDSs use the same mapping (and same number of
servers). Then we semijoin locally. The result will already \appear" distributed correctly.

If the SDDSs resides on a disjoin set of servers using di�erent mappings we send the SDDS that
incurs the least communication onto the other SDDS. The result will again \appear" distributed.

As can be seen from above, in many cases the results \appear" distributed, and can hence be used
as SDDSs. However, their load may indicate that they either should be shrinked (employ less nodes)
or be expanded.

5. Implementation and Performance Study

In this section we report on preliminary results obtained by integration of LH* in Monet. The exper-
imentation is geared towards uncovering implementation problems and to obtain a �rst assessment of
the overhead incurred in distributed processing under the SDDS with live optimization. We want to
show the following:

� Optimal Size of a Distributed Partition

� Overhead Added by SDDSs

5. Implementation and Performance Study 8

� Performance Scalability

We use a network multicomputer [Cul94] [Tan95] | in our case a number of Silicon Graphics O2s,
running IRIX6.3, each having 64 MBytes of memory. For communication the o�ce network is used.
This network is a mix of ATM-switches and Ethernet. Each workstation has a 180 MHz, R5000 MIPS
CPU. All measures are given in milli seconds (ms).
Loading of a database may be done in several di�erent ways. If there is only one source, it could be

segmented and the data could be loaded N-way parallel. We will not go into further details of di�erent
ways of loading data distributedly, and we assume that when the queries are run that appropriate
starting relations have already been loaded/distributed, and thus are main memory resident.
We make use of two tables big and t5. big is an SDDS table stored over a number of nodes, wheras

t5 is a main memory table at the front node. The size of the table t5 is �xed to 100 000 entries. The
contents of both tables are pairs of integers (int, int). Values are unique, and data is not stored
sorted. During the query processing indices may be created when operators �nd it bene�cial.

5.1 Optimal Size of an Distributed Partition

A large �le, larger than main memory, cannot be searched with high performance, if it fully resides on
a single node. We investigate for some operators the behaviour for larger and larger datasets to �nd
the breakpoint where their performance degrades into that of a disk-based system. This gives us the
optimal size of a partition for a distributed BAT is.

Bytes .select(5) .select(1,10) join(t5, big) join(big, t5)

1 M 8 MB 276 427 498 2846
2 M 16 MB 553 896 516 5653
3 M 24 MB 866 1302 498 8804
4 M 32 MB 1160 1763 774 12042
5 M 40 MB 1582 2216 965 17846
6 M 48 MB 15777 14874 1203 22994
7 M 56 MB 17885 18043 7423 26864
8 M 64 MB 19932 19686 6073 33892
9 M 72 MB 22017 21489 10126 36898
10 M 80 MB 33340 24174 5585 37829
11 M 88 MB 28474 26714 13993 43783

The �rst column is the number of element stored in the LH* �le, the second the �le size in Bytes,
third column is the cost of a select of an �xed value, fourth column is the cost of selection of an
interval. The operator select uses scanning of the whole LH*-table to �nd the matching values. And
the last two columns contains two di�erent joins. t5 is a BAT with integers, containing approximately
100 000 entries (800 KBytes), and big is the distributed LH* �le. In all our experiements we assume
only the SDDS to be distributed. All other data is broadcasted to all nodes, which execute the operators
in parallel, sending back the results. Then the results are combined. All timing vaules are shown in
milli seconds (ms). Note that the timing in our experiments include the time for collecting the result.
Thus the results are not kept distributed.
As can be seen on scanning of a 48 MBytes table compared to a 40 MBytes table, there is a big

gap in performance. This illustrates that the table/�le cannot be kept wholly in main memory. It is
an result from the limited main-memory, 64 MBytes, in our workstations.
Joins were done on a table, t5, with 100 000 entries (800KBytes). The cost of the join approximately

increase linear upto a �le of 48 MBytes. From 48MBytes and upwards the cost is higher. These datasets
do not �t entirely into the main memory. Thus the performance degrades.

5. Implementation and Performance Study 9

Bytes pagefaults elapsed user system

1 M 8 MB 1 - - -
2 M 16 MB 2 - - -
3 M 24 MB 2 1344 1240 40
4 M 32 MB 5 1874 1660 80
5 M 40 MB 213 3060 2070 120
6 M 48 MB 11408 66 000 2490 1900
7 M 56 MB 13676 122 000 2930 3060
8 M 64 MB 16037 103 000 3320 2920

To more clearly understand the actual performance degradation that occurs at 48 MByte usage, we
studied the number of memory faults (number of pages needed to be swapped in). We studied it for
the select(1, 10) command. As can be seen above, it increase slowly for smaller sets of data at 5
M entries we see a small rise, and at 6 M entries (48 MBytes) and beyond the number of pagefaults
clearly corresponds to the size of the data set. The table also shows a case where we measured the
elapsed time, user CPU time, and system CPU time. The latter two grows linearly with the increase
of data, whereas the elapsed time indicates disc input waiting. Times are shown in ms.

5.2 Overhead added by SDDSs

The overhead imposed in using SDDSs, is measured by taking �les of the same sizes as above, but
distributed to one remote node.

Bytes .select(5) .select(1,10) join(t5, big) join(big, t5)

1 M 8 M 198 781 8378 5191
2 M 16 M 200 1200 11952 7939
4 M 32 M 174 1999 20553 13427
8 M 64 M 112 107781 crash crash

Interestingly, the overhead for scanning, select(1,10), is keept reasonably low in the experiments.
The overhead for a �le of 40 MByte is only approximately 380 ms. Joins, however loose in performance
directly, since the amount of data needed to be transferred, table t5, to the added nodes, is much
larger. For 64 MB joins, the memory was exhausted so no �gures are availiable.

5.3 Performance Scalability

We show the performance by varying two parameters.

� The size (cardinality) of the stored BAT.

� The number of server nodes (workstations).

In the �rst experiment, we keep the size constant at 1M entries giving a BAT using 8MBytes. The
number of nodes is varied from 1 to 16, consequently.

#nodes # .select(5) .select(1,10) join(t5, big) join(big, t5)

1 1 M 198 781 5191 8378
2 1 M 198 388 5430 4026
4 1 M 200 400 6851 6737
8 1 M 200 330 9315 8955
16 1 M 320 1363 22394 21492

This experiment con�rms that employing more nodes for storing the same amount of data is in
some cases bene�cial. This is true for scanning. For joining the increased cost stems from sending t5

to more nodes. However, the cost does not increase linearly which means that more data can be stored
at each node without too large an overhead in the cost.

6. Summary 10

The second experiment varies the size from 1M entries to 32M entries (8MBytes to 256MBytes).
The number of nodes is kept constantly at 8.

#nodes # .select(5) .select(1,10) join(t5, big) join(big, t5)

8 1 M 200 330 9315 8955
8 2 M 237 399 9909 9858
8 4 M 248 398 11196 11219
8 8 M 218 618 13597 11956
8 32 M 273 1999 53145 42992

An increase of data on a �xed number of nodes modestly increases the querying cost. Scanning is
very fast, much faster than using local main memory, since it is execute in parallel over the nodes.
Join cost increases slowly, apart from the drastic �gure for 32M entries.
The last experiment keeps the ratio of entries and number of nodes constant. 4M entries are stored

at each node. The �le size varies from 4M entries to 32 M entries, giving 32MBytes to 256MBytes and
1 to 8 nodes.

#nodes # .select(5) .select(1,10) join(t5, big) join(big, t5)

1 4 M 174 1999 20553 13427
2 8 M 190 1999 22393 15721
4 16 M 227 1999 25414 20079
8 32 M 273 1999 53145 42992

Keeping the same amount of data on all nodes, keeps the querying cost vaguely constant. Part of the
increase for joins is explained by the cost of distributing the t5 table to a larger number of nodes. Again,
at 32M entries the increase is higher than expected, and requires more investigation. Surprisingly, the
time to execute select(1,10) is extra ordinarly constant. However, this is not unlikely in view of
the declining numbers in the constant sized experiments, and the increasing numbers in the constant
nodes experiments.

5.4 Conclusions

The overall conclusions from the experiments are shortly:

� A partition storing distributed data from an SDDS using Monet should not exceed approximately
40 MB on a 64 MB machine. This keeps the performance from degrading from main memory to
disk based with trashing.

� The SDDS related overhead added by our integration is low. Scanning when employing an
increasing number of nodes excell over the non-distributed case. Showing perfect scalability.

� For a �xed sized �le, joining shows a moderate increase in the cost when a larger number of
nodes is used.

� When using a variety of di�erent �le sizes, for a �xed number of nodes, the costs are higher for
larger �les. However, it increases much slower than linearly. For example, comparing joins on 1
M entries and joins on 8 M entries, the cost increase with only 46 %.

� A �le can easily be scaled. I.e, a larger number of nodes is used for a larger amount of data,
keeping a constant load on each node. Querying of data is done vaguely in constant time,
independent on the amount and the number of nodes.

6. Summary

The prime novelties of this paper is that it shows | by analysis and implementation | that Scalable
Distributed Data Structures provides a viable alternative to conventional data distribution schemes.

6. Summary 11

LH*, a well-known SDDS, is integrated with the Monet database system. The key relational operators
have been made SDDS aware, such that the query optimizer is relieved from the expensive task to a
priori select the 'best' data fragmentation and distribution scheme.
The integration was facilitated by the ease of extensibility of the Monet system. The module mech-

anism enables concise description of the SDDS dictionary information, and its relational interpreter
is able to cope with overloaded functions to facilitate queries over SDDS-based tables. In the end, it
meant that data being stored could be treated without any textual/syntactical changes needed over
ordinary tables.
We have also indicated that Live Optmization | as pervasive in Monet | is a promising concept.

Also for hiding and making operations on distributed data transparent. The performance experiments
demonstrate that the overhead incurred by the SDDS itself is minimal. The bulk processing cost
stems from moving large fragments of data around. However, in most realistic cases of distribution,
distributed memory is faster than accessing disk-based data.
This study is currently extended to improve the runtime optimizations further and to compare our

results on TPC-D with those obtained on an SP/2 platform using SDDS storage.

12

References

[BK95] Peter A. Boncz and Martin L. Kersten. Monet: An Impressionist Sketch Of An Advanced
Database System. In Basque International Workshop on Information Technology: Data

Management Systems, San Sebastian (Spain), July 1995. IEEE.

[BKK96] Peter A. Boncz, F. Kwakkel, and Martin L. Kersten. High Performance Support for OO
Traversals in Monet. In British National Conference on Databases(BNCOD'96), 1996.

[BQK96] Peter A. Boncz, Wilko Quak, and Martin L. Kersten. Monet And Its Geographic Exten-
sions: a Novel Approach to High Performance GIS Processing. In Advances in Database

Technology | EDBT'96, pages 147{166, Avignon, France, March 1996. Springer.

[BWK98] Peter Boncz, Annita N. Wilschut, and Martin L. Kersten. Flattening an object algebra to
provide performance. To appear at the 14th International Conference on Data Engineering,
February 1998.

[Cor88] Teradata Corporation. DBC/1012 data base computer concepts and facilities. Technical
Report Teradata Document C02-001-05, Teradata Corporation, 1988.

[Cul94] D. Culler. NOW: Towards Everyday Supercomputing on a Network of Workstations.
Technical report, EECS Technical Reports UC Berkeley, 1994.

[Dev93] R. Devine. Design and implementation of DDH: A distributed dynamic hashing algorithm.
In Procedings of the 4th International Conference on Foundations of Data Organization

and Algorithms (FODO), 1993.

[DGG+86] D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Muralikrishna.
GAMMA: A high performance data
ow database machine. In Procedings of VLDB, August
1986.

[HKM95] M. Holsheimer, M. L. Kersten, and M. L. Mannilla. A Perspective on Databases and Data
Mining. Montreal, Canada, 1995.

[IC91] Yannis E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of
join results. In International Conference on Management of Data. ACM-SIGMOD, June
1991.

[KLR96] Jonas S Karlsson, Witold Litwin, and Tore Risch. LH*lh: A Scalable High Performance
Data Structure for Switched Multicomputers. In Advances in Database Technology |

EDBT'96, pages 573{591, Avignon, France, March 1996. Springer.

References 13

[KTMO84] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Architecture and performance of relational
algebra machine GRACE. In Procedings of the Intl. Conference on Parallel Processing,
Chicago, 1984.

[KW94] B. Kroll and P. Widmayer. Distributing a Search Tree Among a Growing Number of
Processors. In ACM-SIGMOD International Conference On Management of Data, 1994.

[Lit80] W. Litwin. Linear Hashing: A new tool for �le and table addressing. In Procedings of

VLDB, Montreal, Canada, 1980.

[LNS93] W. Litwin, M-A Neimat, and D. Schneider. LH*: Linear hashing for distributed �les. ACM
SIGMOD International Conference on Management of Data, May 1993.

[LNS94] W. Litwin, M-A Neimat, and D. Schneider. RP*: A Family of Order Preserving Scalable
Distributed Data Structures. VLDB Conference, 1994.

[LNS96] W. Litwin, M-A. Neimat, and D. Schneider. LH*: A Scalable Distributed Data Structure.
ACM-TODS Transactions on Database Systems, Dec. 1996.

[SAS95] Vineet Singh, Minesh Amin, and Donovan Schneider. An Adaptive, Load Balancing Par-
allel Join Algorithm. Technical Report HPL-95-46, Hewlett-Packard Labs, 1995.

[Tan95] Andrew S. Tanenbaum. Distributed Operating Systems. 1995.

[WBW94] R. Wingralek, Y. Breitbart, and G. Weikum. Distributed �le organisation with scalable
cost/performance. In Proc of ACM-SIGMOD, May 1994.

