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The Busy Period in the Fluid Queue

O.J. Boxma 1 and V. Dumas
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P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Consider a 
uid queue fed by N on/o� sources. It is assumed

that the silence periods of the sources are exponentially distributed,

whereas the activity periods are generally distributed. The in
ow rate

of each source, when active, is at least as large as the out
ow rate of

the bu�er.

We make two contributions to the performance analysis of this

model. Firstly, we determine the Laplace-Stieltjes transforms of the

distributions of the busy periods that start with an active period of

source i, i = 1; : : : ; N , as the unique solution in [0; 1]N of a set of N

equations. Thus we also �nd the Laplace-Stieltjes transform of the

distribution of an arbitrary busy period.

Secondly, we relate the tail behaviour of the busy period distri-

butions to the tail behaviour of the activity period distributions. We

show that the tails of all busy period distributions are regularly vary-

ing of index �� i� the heaviest of the tails of the activity period

distributions are regularly varying of index ��. We provide explicit

equivalents of the former in terms of the latter, which show that the

contribution of the sources with lighter associated tails is equivalent to

a simple reduction of the out
ow rate. These results have implications

for the performance analysis of networks of 
uid queues.
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1 Introduction: 
uid queues and heavy tails

Fluid queueing models are queueing models in which work enters and leaves

a bu�er non-instantaneously, i.e., like a 
uid. The basic 
uid model is that of

a bu�er that is fed by a number of on/o� sources, viz., sources that alternate

between active (on) and silent (o�) periods. This model has in the last 15

years become �rmly established as a key model for capturing the behaviour

of a wide range of, in particular ATM-based, communication networks.

Recently, there has been a rapidly growing interest in such 
uid models,

in which one or more of the probability distributions of the on- and/or o�-

periods have a heavy, non-exponential, tail. The main reason for this is the

following. Plots of tra�c measurements for tra�c in Ethernet Local Area

Networks [21], Wide Area Networks [18] and VBR video [2] have shown a

striking similarity when one considers a time period of hours, minutes or

milliseconds: bursty subperiods are alternated by less bursty subperiods on
each scale. This scale-invariant or self-similar feature of tra�c, and the
related phenomenon of long-range dependence (i.e., the integral over time of

the covariance of the input rate diverges), was also convincingly demonstrated
in [16] using a careful statistical analysis. A natural possibility to introduce
long-range dependence (LRD) in a tra�c process is to take a 
uid queue fed

by one or more on/o� sources, and to assume that either the on-period or
the o�-period of a source has the following `heavy-tail' behaviour:

P[A > t]
t!1
� ht�a; (1)

with h a positive constant and 1 < a < 2 (f(t)
t!1
� g(t), or simply f(t) �

g(t), denotes that f(t)=g(t) ! 1 as t ! 1). As soon as one of the sources

exhibits such behaviour, the cumulative input process is LRD [6]. As ob-
served in [21], in many cases on- and/or o�-periods of actual tra�c sources
do indeed exhibit such a heavy-tail behaviour.

The occurrence of heavy-tailed on- and/or o�-periods of sources seems
to provide the most natural explanation of LRD and self-similarity in aggre-

gated packet tra�c. It is therefore of considerable importance to study the
performance of a 
uid queue fed by on/o� sources, with special attention for

the e�ect of heavy-tailed on- and/or o�-periods on key performance measures

like bu�er content and busy period. Recent studies have been devoted to the
latter issue, focusing on bu�er content [4, 5, 7, 13, 19]; see also the survey [6].

The typical result in those papers is that non-exponential tail behaviour of at
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least one of the on-period distributions gives rise to `worse' non-exponential

tail behaviour of the bu�er content distribution. More precisely, if the heav-

iest of the tails of the on-periods are regularly varying at in�nity of index

�� (see Subsection 2.1 below), then the tail of the bu�er content is regularly

varying of index 1� � ; i.e., the latter tail is heavier.

The present paper is devoted to the analysis of the busy period distri-

bution in 
uid queues fed by on/o� sources. Motivation for this study is

provided by the following observation. The output process of the bu�er

(that may feed into another bu�er) is an on/o� process with on-periods the

busy periods; therefore it is important to investigate whether the busy period

distribution is heavy-tailed when at least one of the sources has heavy-tailed

on-period distributions. Recent work in [11] (cf. its Section IV.C) suggests

that heavy tails, and hence long-range dependence, propagate through a

network. See also Anantharam [1], who considers a discrete-time network of
quasi-reversible queues with Bernoulli routing; in his model, sessions arrive

according to Poisson processes and are active during periods that obey a
regularly varying distribution of index �� 2 (�2;�1). He shows that all
internal tra�c processes are LRD.

We consider a 
uid queue fed by N on/o� sources. It is assumed that
the silence periods of the sources are exponentially distributed, whereas the

activity periods are generally distributed. The in
ow rate ri of each source
i, when active, is assumed to be at least equal to the out
ow rate of the
bu�er { which is assumed to be 1. Our contribution is two-fold. Firstly,

we determine the Laplace-Stieltjes transforms (LSTs) of the distributions of
the busy periods that start with an active period of source i, i = 1; : : : ; N ,
as the unique solution in [0; 1]N of a set of N equations. This generalizes

results of Rubinovitch [20] (N identical sources with in
ow rate 1), Kaspi
& Rubinovitch [15] (N nonidentical sources with in
ow rate 1) and Cohen

[8] (an in�nite number of identical sources with in
ow rate 1). Secondly, we
relate the tail behaviour of the busy period distributions to the tail behaviour

of the activity period distributions. Using the above-mentioned result on the

distributions of the busy periods, and applying techniques developed in [17],
we prove the following result: The tails of all busy period distributions are

regularly varying of index �� i� the heaviest of the tails of the activity period

distributions is regularly varying of index ��. More precisely, we provide
explicit equivalents of the former in terms of the latter. This shows that

the sources whose associated tails are negligible with respect to those of the
other sources, can equivalently be ignored if the out
ow rate is subsequently
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reduced by their tra�c intensities.

The paper is organized as follows. In Section 2 we �rst brie
y discuss

the concept of regular variation, and we present a lemma that plays a key

role: It relates the regularly varying tail-behaviour of a distribution and

that of its LST in the neighbourhood of 0 (Lemma 2.2). Then we describe

our model and introduce the various busy periods under consideration. In

Sections 3 and 4, we study the case of only two sources. Section 3 is devoted to

the derivation of expressions for the LST's of the busy period distributions

(Theorem 3.4). The regular variation results for busy periods are derived

in Section 4 (Theorem 4.2). In Section 5 we provide the extension of the

results in Sections 3 and 4 to an arbitrary number of sources (Theorems 5.2

and 5.3). Section 6 contains concluding remarks, with a brief discussion of

the implications of our study for networks of 
uid queues.

2 Preliminaries

2.1 Regular variation and Laplace-Stieltjes transforms

Regular variation is an important concept in probability theory and various
other �elds. The main reference text is the book [3]. A measurable positive

function f is called regularly varying of index � if, for all x > 0,

f(xt)=f(t)! x� ; t!1;

(cf. [3], p. 18). When � = 0, one speaks of a slowly varying function; this

could for instance be a constant, or a logarithmic function. In this paper, a
slowly varying function is denoted by l(�). A basic result that we will often
use without mention is:

8� > 0 :
l(t)

t�
! 0; t!1: (2)

We shall say that a stochastic variable X � 0 has a regularly varying tail

when P[X > t] is a regularly varying function; an example is provided by the
Pareto distribution. If the tail is regularly varying of index ��, � 2 (n; n+1)
(for some n 2 N), then it is easy to see by (2) that E [Xn ] <1 and E [Xn+1 ] =

1. Of particular interest is the case that the activity period distribution of

an/o� source has a regularly varying tail of index � 2 (�2;�1). In that case
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the �rst moment of the distribution exists, but the variance is in�nite. This

case is known to give rise to long-range dependence, see below (1).

A crucial property of variables with regularly varying tails is that they

may be characterized in terms of their LST. First we need the following

lemma (cf. Lemma 1 of [17] and the lines following it).

Lemma 2.1 Let X be a non-negative random variable with LST �[!].

(i) If X has �nite moments �k of order k, k = 0; 1; : : : ; n, then

�n[!] := (�1)n+1f�[!]�

nX
j=0

�j
(�!)j

j!
g = o (!n); ! # 0: (3)

(ii) If there exist constants fj, j = 0; : : : ; n, such that

�[!]�

nX
j=0

fj!
j = o (!n); ! # 0;

then �j <1 and fj = (�1)j�j=j!.

The next lemma links the behaviour of P[X > t] for t ! 1 to the

behaviour of its LST �[!] for ! ! 0. It plays a key role in Section 4.

Lemma 2.2 Let X a non-negative random variable of LST �[!], l(t) a

slowly varying function, � 2 (n; n + 1) (n 2 N) and C � 0. Then the

following are equivalent:

(i) P[X > t] = (C + o (1))l(t)=t�, t!1.

(ii) E [Xn ] <1 and �n[!] = (�1)n�(1� �)(C + o (1))l(1=!)!�, ! ! 0.

Proof:

Case C > 0 is part of Theorem 8.1.6 on p. 333/334 of [3], originally due to
Bingham and Doney. (In Theorem 8.1.6 of [3] the somewhat more compli-

cated case � = n is also discussed.) Case C = 0 is treated in our Appendix.

�
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2.2 Model description

Consider a 
uid queueing system with an in�nite storage capacity and con-

stant, unit, out
ow rate. This system receives input from N independent

on/o� sources. Source i has mutually independent alternating silence pe-

riods Sin and activity periods Ain, i = 1; : : : ; N , n = 1; 2; : : :. Source i

constantly transmits at rate ri � 1 when active, so it feeds riAin tra�c into

the bu�er during its nth activity period. The silence periods Sin are negative

exponentially distributed with mean 1=�i, and the activity periods Ain are

i.i.d. with mean �i > 0 (case �i = 0 is trivial) and LST �i[�].

We shall often use auxiliary parameters that naturally appear in the for-

mulas: the stationary probability of silence of source i is

pi :=
1

1 + �i�i
;

and its tra�c intensity (that is the long-run average amount of 
uid it sends
per time unit) is

�i := ri(1� pi) = ri
�i�i

1 + �i�i
:

Similarly, the stationary probability of total silence is: p :=
QN

i=1 pi, and the

total tra�c intensity is: � :=
PN

i=1 �i.
A busy period of the 
uid queue is an uninterrupted period during which

there is output leaving the bu�er; it is followed by an idle period. Denote

by Pn (resp. In) the nth busy period (resp. the nth idle period), assuming
that they are all almost surely �nite. Since silence periods are exponentially

distributed, the idle periods are i.i.d. exponential variables, with rate � :=PN
i=1 �i; moreover, they are independent from the busy periods, which are

i.i.d. too. Finally, during Pn (resp. during In) the queue generates an output

at rate 1 (resp. no output), due to our assumption that the active sources
send input at rate � 1. Hence the tra�c on the output line is as generated

by an on/o� source of input rate 1 whose active periods would be the busy

periods of the 
uid queue.

Our goal is to study the e�ect of one or several sources with active periods

of regularly varying tails on the tail behaviour of the busy periods. In what

follows, (Pn)n�1 (resp. (Pin)n�1) will denote an i.i.d. sequence of busy periods

(resp. an i.i.d. sequence of busy periods starting with an activity period of

source i). To restrict the use of indices, we shall use the notation Ai: for a
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typical activity period of source i, and similarly P: and Pi: for typical busy

periods. We introduce their associated LSTs:

�[!] := E [e�!P: ]; �i[!] := E [e�!Pi: ]; 1 � i � N; ! � 0:

Since silence periods are exponentially distributed:

�[!] =

NX
i=1

�i

�
�i[!]: (4)

We �rst restrict ourselves to the case of two sources. This restriction is

partly done for the sake of clarity of argument and notation; but the exten-

sion from two to an arbitrary number of sources also gives insight into the

in
uence of individual sources on the busy period behaviour. This extension

is presented in Section 5. In the next section we characterize the LST's �1[!]
and �2[!].

3 Two sources: The busy period distribu-

tions

In this section we do not assume that �i < 1 nor even P[Ai: < 1] = 1,
i = 1; 2. The main result of the section is Theorem 3.4, which characterizes

the distributions of the busy periods Pi:, i = 1; 2, and P:. A big step towards
that result is made by the following statement (where notation X ' Y

denotes two random variables X and Y that follow the same law, and by
convention

P0

n=1 = 0).

Theorem 3.18>>>>>><
>>>>>>:

P1: ' r1A1: +

K1((r1�1)A1:)X
n=1

P1n +

K2(r1A1:)X
n=1

P2n;

P2: ' r2A2: +

K2((r2�1)A2:)X
n=1

P2n +

K1(r2A2:)X
n=1

P1n:

(5)

In the above expressions, the sequences (Pin)n�1 and the processes (Ki(t))t�0,

i = 1; 2, are independent of each other and of Ai:, i = 1; 2; and (Ki(t))t�0 is

the counting function of a Poisson process of intensity �i, i = 1; 2.
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For the ordinary M/G/1 queue, the typical busy period ~P: satis�es:

~P: ' B: +

K(B:)X
j=1

~Pj; (6)

with B: denoting service time and (K(t))t�0 being the counting function of

the Poisson arrival process. The usual proof of (6), cf. [9], p. 250, is based

on the observation that the order of service does not a�ect the busy period

length, as long as the service discipline is work conserving. A suitable service

discipline, like last-come-�rst-served preemptive resume, then yields (6).

In proving Theorem 3.1 we'd like to use a similar change-of-service-order

discipline, cf. also [15] for the case ri � 1. The intuition behind (5) is that

Pi: contains at least a period riAi:, and that source i can become active again

during its last part (ri � 1)Ai:, whereas the other source can become active
during the whole period riAi:; and such new activity periods of a source j
give rise to independent busy periods Pj:. However, the proof of the latter

part of the above statement is more delicate than in the ordinary M=G=1
queue.

Below we provide a proof of Theorem 3.1 based on two essential lemmas.
Following the notations of [15], we denote by Z(t) the content of the bu�er at
time t � 0, and by Yi(t) the residual activity time of source i at time t (with

Yi(t) = 0 if the source is silent), i = 1; 2. Let T12(z; y1; y2) be the residual
busy time of the queue when Z(0) = z, Y1(0) = y1, Y2(0) = y2. Moreover set:

T1(z; y) = T12(z; y; 0), T2(z; y) = T12(z; 0; y), and T (z) = T12(z; 0; 0). They
are related to the busy periods by: Pi: ' Ti(0; Ai:), i = 1; 2. As a preliminary
to the proof of Theorem 3.1, we need to prove the following two lemmas.

Lemma 3.2

T (z) ' z +

K1(z)X
n=1

P1n +

K2(z)X
n=1

P2n; (7)

with the same conventions as in Theorem 3.1.

Proof:

A similar result has already been proved by Rubinovitch in [20]. If no activity
period starts before time z, then T (z) = z. Otherwise, a source starts sending

input at some time z1 < z. Then we may assume that the processing of the
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residual volume z � z1 is interrupted, and the queue treats the new input

until the �rst time t > z1 such that Z(t) = z � z1 and the two sources are

silent again. Clearly, the time we have to wait until this event occurs is

distributed as P:. After that, the processing of the residual input z � z1 can

be restarted, possible interruptions being handled as the �rst one. Hence the

successive interruptions form an i.i.d. sequence (Pn)n�1, and the number of

interruptions is of the form K(z), where (K(t))t�0 is the counting function

of an independent Poisson process of intensity �. We thus obtain:

T (z) ' z +

K(z)X
n=1

Pn;

which yields Equation (7) in view of relation (4). �

Now we give a new formulation and a rigorous proof of an argument that

was �rst introduced in [20] and used again in [15].

Lemma 3.3

T12(z1 + z2; y1; y2) ' T1(z1; y1) + T2(z2; y2);

where T1(z1; y1) and T2(z2; y2) are independent.

Proof:

Denote by ri(t) the input rate at time t from source i, i = 1; 2, and r(t) =

r1(t) + r2(t). Now modify source 2 by skipping the residual activity time
y2 and starting with the next silence period; equivalently we replace r2(t)

by
�
r 2(t) = r2(y2 + t), t � 0. Then wait until the �rst time �1 � 0 such

that Z(�1) = z2 and the two sources are silent again. Now modify source 2
again by re-inserting the residual activity period y2 after time �1; equivalently

replace
�
r 2(t) by

�
r 2(t), with8><
>:

�
r 2(t) =

�
r 2(t) = r2(y2 + t); 0 � t < �1;

�
r 2(t) = r2; �1 � t < �1 + y2;
�
r 2(t) =

�
r 2(t� y2) = r2(t); t � �1 + y2:

(8)

Finally denote by �2 the residual busy period from time �1 for the system

with the modi�ed input
�
r (t) = r1(t)+

�
r 2(t), t � 0. Because all the silence
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periods are exponentially distributed, it is easy to check that (
�
r (t))0�t<�1

and (
�
r (�1 + t))0�t<�2 are independent; the distribution of the �rst process

corresponds to the case when source 2 is initially silent, and Y1(0) = y1; the

second term corresponds to the case when source 1 is initially silent, and

Y2(0) = y2. Proceeding, we �nd that �1 and �2 are independent, with

�1 ' T1(z1; y1); �2 ' T2(z2; y2):

What remains to be proved is that T12(z1+ z2; y1; y2) = �1+ �2, or equiv-

alently:

infft � 0jz +

Z t

0

(r(u)� 1)du < 0g = infft � 0jz +

Z t

0

(
�
r (u)� 1)du < 0g:

But from the de�nition of �1 and relations (8), we see that:8>><
>>:
8t � �1 + y2 : z1 +

Z t

0

r(u)du � z1 +

Z t

0

�
r (u)du � t;

8t � �1 + y2 :

Z t

0

r(u)du =

Z t

0

�
r (u)du;

which completes the proof. �

Proof of Theorem 3.1:

Since P1: ' T1(0; A1:) and the two sources play symmetric roles, it is su�cient

to show that:

T1(z; y) ' z + r1y +

K1(z+(r1�1)y)X
n=1

P1n +

K2(z+r1y)X
n=1

P2n (9)

(with the notations of (5)). So assume that Z(0) = z, Y1(0) = y and Y2(0) =
0. Source 2 remains silent until time �1, with �1 ' S21; its �rst activity period
is of length A21.

If �1 > y, then clearly:

T1(z; y) ' y + T (z + (r1 � 1)y):

On the contrary, if �1 � y:

T1(z; y) ' �1 + T12(z + (r1 � 1)�1; y � �1; A21)

' �1 + T1(z + (r1 � 1)�1; y � �1) + T2(0; A21);
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by Lemma 3.3. Moreover: T2(0; A21) ' P21.

If we replicate �1 to form an i.i.d. sequence (�n)n�1, then by iterating the

above argument we �nally obtain:

T1(z; y) ' y +
X
n�1

P2n1If�1 + :::+ �n � yg + T (z + (r1 � 1)y);

or equivalently:

T1(z; y) ' y +

K2(y)X
n=1

P2n + T (z + (r1 � 1)y);

(with the notations of Theorem 3.1). This yields (9) in view of Lemma 3.2.

�

The next theorem shows that the obtained relations are su�cient to char-

acterize the laws of Pi:, i = 1; 2; it also provides the conditions of �niteness
and the formulas of the �rst moments.

Theorem 3.4 In terms of Laplace-Stieltjes transforms, (�1[!]; �2[!]) is for

! > 0 the unique solution in [0; 1]� [0; 1] of the system of equations:�
�1[!] = �1[r1! + �1(r1 � 1)(1� �1[!]) + �2r1(1� �2[!])];
�2[!] = �2[r2! + �2(r2 � 1)(1� �2[!]) + �1r2(1� �1[!])]:

(10)

Furthermore, for i = 1 or 2, Pi: is a.s. �nite if and only if A1: and A2:

are and � � 1; if this is the case:

E [Pi: ] =
�i

�i(1� �)
(=1 if � = 1); i = 1; 2; E [P: ] =

�

�(1� �)
:

Remark 3.5

� In [15] uniqueness had only been proved among solutions that are Lapla-

ce-Stieltjes transforms.

� Condition � < 1 is the ergodicity condition of the bu�er content process,

cf. [10].
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Proof of Theorem 3.4:

The right-hand side of (10) is obtained by integrating formula (9) (with

z = 0) with respect to y according to the distribution of A11 (and similarly

for source 2).

To prove that the system of equations (10) admits a unique solution, we

�rst construct a minimal solution. Copying the argument of Feller for the

M/G/1 queue (see [12], Section XIII.4), we set: �i0[!] = 0, i = 1; 2, and for

n � 0:�
�1(n+1)[!] = �1[r1! + �1(r1 � 1)(1� �1n[!]) + �2r1(1� �2n[!])];

�2(n+1)[!] = �2[r2! + �2(r2 � 1)(1� �2n[!]) + �1r2(1� �1n[!])]:

Then by an immediate induction we �nd: �in[!] � �i(n+1)[!] � 1 for all n,
hence (�in[!])n2N tends to a limit �i[!] for i = 1; 2, and (�1[!]; �2[!]) is a

solution of (10) in [0; 1] � [0; 1]. (It can also be proved that the �i[!] are
Laplace transforms as limits of sequences of completely monotone functions,
see [12], but we don't need this result here.)

Moreover, the same inductive argument shows that any solution (~�1[!],
~�2[!]) of (10) in [0; 1]� [0; 1] must satisfy: ~�i[!] � �i[!], i = 1; 2. Now assume
that ! > 0 and, say, ~�1[!] > �1[!], and w.l.o.g.:

T := (1� �1[!])=(~�1[!]� �1[!]) � (1� �2[!])=(~�2[!]� �2[!]):

Notice that T > 1 (because ! > 0 and ~�1[!] � �1[r1!] < 1) and set:�
f1(!; x1; x2) = �1[r1! + �1(r1 � 1)(1� x1) + �2r1(1� x2)]� x1;

F (t) = f1(!; (1� t)�1[!] + t~�1[!]; (1� t)�2[!] + t~�2[!]):

Then it is easy to check that F (t) is a convex function, which is de�ned
on [0; T ]. But F (0) = F (1) = 0, and F (T ) � �1[r1!] � 1 < 0, hence a
contradiction. Thus for all ! > 0, there is only one solution of (10), namely

(�1[!]; �2[!]).

To obtain the conditions of �niteness and the �rst moments, we use the

approach of Kaspi and Rubinovitch in [15]. First denote t[!] = (t1[!]; t2[!]),

where: �
t1[!] = r1! + �1(r1 � 1)(1� �1[!]) + �2r1(1� �2[!]);

t2[!] = r2! + �2(r2 � 1)(1� �2[!]) + �1r2(1� �1[!]):
(11)

12



By di�erentiation of (10) for ! > 0, we obtain:�
�01[!] = �01[t1](r1 � �1(r1 � 1)�01[!]� �2r1�

0
2[!]);

�02[!] = �02[t2](r2 � �2(r2 � 1)�02[!]� �1r2�
0
1[!]):

The solution of these two linear equations is:

�(1� �[t])�0i[!] =
�i[ti]

�i
; (12)

with �i[xi] = �ri�i�
0
i[xi]=(1 � �i�

0
i[xi]), i = 1; 2, �[x] = �1[x1] + �2[x2],

x = (x1; x2).

If P1: is a.s. �nite, then �1[0+] = 1, which by (10) implies that �2[0+] = 1

and �1[0+] = 1: thus P2: and A1: are a.s. �nite, and for the same reason

A2: is a.s. �nite too. Hence ti[!] ! 0 and �i[ti] ! �i when ! ! 0, and

consequently:

E [Pi: ] = lim
!!0

(��0i[!]) = �i=�i(1� �); i = 1; 2:

This shows that � must be smaller than or equal to one (because �i > 0
and E [Pi: ] � 0) and provides the formulas of the �rst moments (E [P: ] comes
from (4)).

If P1: or P2: is not a.s. �nite, set:

Fi(t) = fi(0; (1� t)�1[0+] + t; (1� t)�2[0+] + t); i = 1; 2;

(with f2 de�ned like f1 above). Since Fi(0) = Fi(1) = 0, then F 0i (�i) = 0 for
some �i 2 (0; 1), which yields:�

1� �1[0+] = �01[ 1](��1(r1 � 1)(1� �1[0+])� �2r1(1� �2[0+]));
1� �2[0+] = �02[ 2](��2(r2 � 1)(1� �2[0+])� �1r2(1� �1[0+]));

with �
 1=(1� �1) = �1(r1 � 1)(1� �1[0+]) + �2r1(1� �2[0+]);
 2=(1� �2) = �2(r2 � 1)(1� �2[0+]) + �1r2(1� �1[0+]):

Similarly as (12) was derived, we �nd:

�(1� �[ ])(1� �i[0+]) = 0; i = 1; 2;

where  = ( 1;  2). Since �i[0+] < 1 for i = 1 or 2, we obtain on the
one hand: �[ ] = 1; on the other hand, if A1: and A2: are a.s. �nite, then

�[0+] = �, hence: �[ ] < � (since  6= 0), which completes the proof. �
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4 Regularly varying tails

In this section we relate the tail behaviour of the busy period distributions to

the tail behaviour of the activity period distributions in the case when one or

more activity period distributions have regularly varying tails. Throughout

this section we aim to extend arguments of [17] for the tail behaviour of the

busy period distribution of the ordinary M=G=1 queue to the 
uid queue

with two sources. From now on we assume that A1: and A2: are a.s. �nite

and � < 1.

Starting-point for relating the tail behaviour of the busy period distribu-

tions to the tail behaviour of the activity period distributions is Theorem 3.4.

We rewrite the relations (10) into: for ! � 0,�
�1[!] = �1[t1];

�2[!] = �2[t2];
(13)

with ti[!], i = 1; 2, being de�ned in (11). Since it is assumed that � < 1, it
follows that

�i := E [Pi: ] =
�i

�i(1� �)
<1; i = 1; 2;

so Lemma 2.1 (i) with n = 1 implies that, for i = 1; 2:

ti[!] =
ripi

1� �
! + o (!) =

�i

�i
! + o (!); ! # 0: (14)

Use the notation of Lemma 2.1 to introduce �1n[t1], �2n[t2], �1n[!] and

�2n[!], n = 1; 2; : : : if their corresponding �rst n moments are �nite; in
particular, �i1[!] := �i[!]� 1 + �i!, i = 1; 2. An easy calculation, based on
(13) and (11), shows that8<

:
�11[!] = c11�11[t1] + c12�21[t2];

�21[!] = c21�11[t1] + c22�21[t2]:
(15)

Here c11 := p1(1��2)

1��
, c12 := p2

�2
�1

�1
1��

, c21 := p1
�1
�2

�2
1��

, and c22 := p2(1��1)

1��
.

Inverting these relations (note that the determinant equals p1p2=(1 � �))
yields: 8<

:
�11[t1] = d11�11[!] + d12�21[!];

�21[t2] = d21�11[!] + d22�21[!]:
(16)
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Here d11 :=
1��1
p1

, d12 := �
�2
�1

�1
p1
, d21 := �

�1
�2

�2
p2
, and d22 :=

1��2
p2

.

We are now ready to prove the following theorem, which is an extension

of Lemma 3 and Corollary 1 of [17].

Theorem 4.1 For n � 1, the following two statements are equivalent:

(i) E [An
1: ] <1 and E [An

2: ] <1; (ii) E [P n
1: ] <1 and E [P n

2: ] <1.

In addition, both (i) and (ii) imply that, for ! # 0:8<
:

�1n[!] = c11�1n[t1] + c12�2n[t2] + O (!n+1);

�2n[!] = c21�1n[t1] + c22�2n[t2] + O (!n+1);

(17)

8<
:

�1n[t1] = d11�1n[!] + d12�2n[!] + O (tn+11 );

�2n[t2] = d21�1n[!] + d22�2n[!] + O (tn+12 ):
(18)

Proof:

(i)) (ii). Since � < 1, the result is valid for n = 1. Using induction, assume
that the result has been shown for k = 1; : : : ; n � 1 and that E [An

1: ] < 1

and E [An
2: ] <1; hence (3) holds for �1;n�1[!] and �2;n�1[!], while (3) is also

assumed to hold for �1n[!] and �2n[!]. Hence, cf. (15) and (14), for ! # 0,

�1[!] = 1� E [P1: ]! + c11�11[t1] + c12�21[t2] = (19)

1� E [P1: ]! + c11

nX
k=2

E [Ak
1: ]
(�t1)

k

k!
+ c12

nX
k=2

E [Ak
2: ]
(�t2)

k

k!
+ o (!n);

and a similar relation holds for �2[!].

Now use (11) and the induction assumption about the �niteness of the
�rst n� 1 moments of P1: and P2:, to write for ! # 0:

ti[!] =

n�1X
j=1

zij!
j + o (!n�1); i = 1; 2; (20)

and hence for k � 2:

tki [!] =

nX
j=k

z
(k)
ij !

j + o (!n); i = 1; 2: (21)
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Substitution in (19) shows that there exist constants g1j, j = 0; : : : ; n such

that

�1[!]�

nX
j=0

g1j!
j = o (!n); ! # 0:

Lemma 2.1 (ii) now implies that E [P n
1: ] < 1. In exactly the same way the

�niteness of E [P n
2: ] is derived.

(ii)) (i). The proof proceeds similarly as the proof of the reverse statement.

Since � < 1, the result is valid for n = 1. Using induction, assume that

the result has been shown for k = 1; : : : ; n � 1 and that E [P n
1: ] < 1 and

E [P n
2: ] <1; hence (3) holds for �1n[!] and �2n[!]. Hence, cf. (16), for ! # 0,

�1[t1]� 1 + �1t1 = (22)

d11

 
(�1)n+1�1n[!] +

nX
k=2

E [P k
1: ]
(�!)k

k!

!

+d12

 
(�1)n+1�2n[!] +

nX
k=2

E [P k
2: ]
(�!)k

k!

!
:

A similar relation holds for �2[t2].
Now use (11) and the induction assumption to express t1[!] into powers

!1; : : : ; !n. Note that the assumption on the �niteness of the �rst n moments
of the busy periods allows extending the sum in (20) with a term zin!

n:

ti[!] =

nX
j=1

zij!
j + o (!n); i = 1; 2:

Since t1[!] is increasing in !, we can invert, expressing ! into powers of t1:
for t1 # 0,

!(t1) =

nX
j=1

v1jt
j
1 + o (tn1 );

and hence, for t1 # 0,

!k(t1) =

n+1X
j=k

v
(k)
1j t

j
1 + o (tn+11 ):
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Substitution in (22) shows that there exist constants h1j, j = 0; : : : ; n such

that

�1[t1]�

nX
j=0

h1jt
j
1 = d11(�1)

n+1�1n[!]+d12(�1)
n+1�2n[!]+O(tn+11 ); t1 # 0:

By Lemma 2.1 (i): �in[!] = o (!n), or equivalently: �in[!] = o (tn1 ) in

view of Formula (14), i = 1; 2. Lemma 2.1 (ii) then implies that E [An
1: ] <1,

and moreover:

�1n[t1] = d11�1n[!] + d12�2n[!] + O (tn+11 ); ! # 0:

In exactly the same way the �niteness of E [An
2: ] is derived and For-

mula (18) follows. By inversion we obtain (17). �

We are now ready to study the e�ect of regularly varying tails of activity
period distributions on the tail behaviour of the busy period distributions.

Theorem 4.2 Assume that as t!1:

P[Ai: > (�i=�i)t] = (ai + o (1))l(t)=t�; (23)

with ai � 0, i = 1; 2, � 2 (n; n + 1) (for some n � 1) and l(t) a slowly

varying function. Then as t!1:8>>>><
>>>>:

P[P1: > t] =

�
(1� �2)p1�1a1 + �1p2�2a2

(1� �)�1
+ o (1)

�
l(t)

t�
;

P[P2: > t] =

�
(1� �1)p2�2a2 + �2p1�1a1

(1� �)�2
+ o (1)

�
l(t)

t�
:

Conversely, assume that

P[Pi: > t] = (ci + o (1))l(t)=t�; t!1;

with ci � 0 (i = 1; 2), � 2 (n; n + 1) (for some n � 1) and l(t) a slowly

varying function. Then necessarily:

(1� �1)(�1c1)� �1(�2c2) � 0; (1� �2)(�2c2)� �2(�1c1) � 0: (24)

Moreover, either c1 = c2 = 0 or c1 > 0 and c2 > 0, and in the latter case at

least one of the above expressions is positive. Finally, for t!1:
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8>>>><
>>>>:

P[A1: > (�1=�1)t] =

�
(1� �1)(�1c1)� �1(�2c2)

�1p1
+ o (1)

�
l(t)

t�
;

P[A2: > (�2=�2)t] =

�
(1� �2)(�2c2)� �2(�1c1)

�2p2
+ o (1)

�
l(t)

t�
:

Corollary 4.3 Under assumption (23) of Theorem 4.2:

P[P: > t] =

�
p1�1a1 + p2�2a2

(1� �)�
+ o (1)

�
l(t)

t�
:

Proof:

Immediate by Formula (4). �

Proof of Theorem 4.2:

Assumption (23) is equivalent to: P[Ai: > t] = (ai + o (1))l(t)(�it=�i)
��

(which implies that E [An
i: ] <1), i = 1; 2. So it follows from Lemma 2.2 and

Formula (14) that as ! ! 0:

�in[ti] = (�1)n�(1� �)(ai + o (1))(�iti=�i)
�l(1=ti)

= (�1)n�(1� �)(ai + o (1))!�l(1=!); i = 1; 2:

Using Formula (17) of Theorem 4.1 we �nally obtain:

�in[!] = (�1)n�(1� �)(ci1a1 + ci2a2 + o (1))l(1=!)!�; i = 1; 2:

In view of Lemma 2.2, the proof of the direct part is completed. For the

converse part, similar arguments yield, for ! ! 0:

�in[!] = (�1)n�(1� �)(di1c1 + di2c2 + o (1))l(1=!)(�i!=�i)
�; i = 1; 2:

Since �in[!] � 0 for all ! � 0, i = 1; 2, the factors of l(1=!)!� are necessarily

non-negative. It can easily be checked that they can be both null only if
c1 = c2 = 0 (because � < 1); from conditions (24) is clear that c1 > 0 implies

c2 > 0 and conversely. The conclusion �nally comes from Lemma 2.2. �

18



Remark 4.4 For the ordinary M=G=1 queue, De Meyer and Teugels [17]

have proven the following result: The tail of the distribution of the busy

period PM=G=1 is regularly varying of index �� i� the tail of the distribution

of the service time BM=G=1 is regularly varying of index ��, and then

P[PM=G=1 > t]
t!1
�

1

1� �
P[BM=G=1 > (1� �)t]:

Theorem 4.2 and its corollary show that a similar result holds for the 
uid

queue with 2 on/o� sources. In particular, the regularly varying behaviour

of the heaviest of the activity period tails is related to the regularly varying

behaviour of all the busy period tails, with the same index; and again a factor

(1��)�(�+1) appears in the quotient of the tails of the busy period and activity

period distributions.

Remark 4.5 In Theorem 4.2 we have refrained from discussing the - math-

ematically intricate - case of � being integer. We refer to De Meyer and

Teugels [17] for a discussion of the tail behaviour of the M=G=1 busy period

for integer �.

5 Extension to N sources (N � 2)

5.1 The distributions of the busy periods in the gen-

eral case

In order to extend the results obtained for two on/o� sources to the case of
N � 2 sources, we are going to use an argument of work-conservation. Since

the speed at which the bu�er size increases at some time t is completely
determined by which sources are active at t, some speci�c sources may be
given priority for transmission by the queue without a�ecting the busy pe-

riods. So considering our model with N sources and isolating some source

i, we may assume that sources j, j 6= i, are given preemptive priority over

source i. This means that sources j 6= i are treated as if source i were absent,

hence they generate their own busy periods P
(i)
n , namely the busy periods

of the model without source i. As for source i, it is served only during the

corresponding idle periods I
(i)
n .

As far as busy periods are concerned, everything thus works as if all the

sources j 6= i were replaced by a single on/o� source i0 (with preemptive
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priority over i) of activity periods Ai0n = P
(i)
n , input rate ri0 = 1, and expo-

nential silence periods Si0n = I
(i)
n of rate �i0 =

P
j 6=i �j. Besides, the busy

periods Pi0n starting with an activity period of source i0 are just the busy

periods starting with an activity period of some source j 6= i. So if we set

�i0 [!] = E [e�!Pi0 :], we have:

�i0 [!] =
X
j 6=i

�j

�i0
�j[!]: (25)

From Theorem 3.1, we may now write:

Pi: ' riAi: +

Ki((ri�1)Ai:)X
n=1

Pin +

Ki0(riAi:)X
n=1

Pi0n:

Using decomposition (25), we obtain:

Theorem 5.1 For all i:

Pi: ' riAi: +

Ki((ri�1)Ai:)X
n=1

Pin +
X
j 6=i

Kj(riAi:)X
n=1

Pjn; (26)

here the sequences (Pjn)n�1 and the processes (Kj(t))t�0, 1 � j � N , are

independent of each other and of Ai:, and for 1 � j � N , (Kj(t))t�0 is the

counting function of a Poisson process of intensity �j.

Proceeding, we are going to show the following generalization of Theo-
rem 3.4.

Theorem 5.2 In terms of Laplace-Stieltjes transforms, (�i[!])1�i�N is for

! > 0 the unique solution in [0; 1]N of the system of equations:

�i[!] = �i[ri!+�i(ri�1)(1��i[!])+
X
j 6=i

�jri(1��j[!])]; 1 � i � N: (27)

Furthermore, for all i, Pi: is a.s. �nite if and only if all the Aj:'s are and

� � 1; if this is the case:

E [Pi: ] =
�i

�i(1� �)
(=1 if � = 1); 1 � i � N; E [P: ] =

�

�(1� �)
:
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Proof:

Equation (27) is just the LST form of (26). We shall obtain uniqueness,

conditions of �niteness and means by induction on N . Everything has been

proved for a system with N = 2 sources in Theorem 3.4. Assume that the

results are valid for any system with N � 1 sources, and consider a solution

(�j[!])1�j�N of the system with N sources, for some ! > 0. Then clearly

(�j[!])j 6=i is a solution of the system obtained by deleting source i, but for

!0 = !+�i(1� �i[!]) instead of !. By the induction hypothesis, this system

of N � 1 equations admits a unique solution in [0; 1]N�1, namely given by

the LST �
(i)
j [!] of the busy periods P

(i)
j , j 6= i, for the model without source

i. Therefore:

�j[!] = �
(i)
j [!0] = �

(i)
j [! + �i(1� �i[!])]; j 6= i:

With the notations introduced at the beginning of the section, set:

�i0 [!] := E [e�!Ai0 :] = E [e�!P
(i)
: ] =

X
j 6=i

�j

�i0
�
(i)
j [!]; �i0[!] =

X
j 6=i

�j

�i0
�j[!];

so that we �nally obtain:�
�i0[!] = �i0[! + �i(1� �i[!])];

�i[!] = �i[ri! + �i(ri � 1)(1� �i[!]) + �i0ri(1� �i0[!])]

By Theorem 3.4, �i[!] is uniquely determined by these equations, hence
it is equal to �i[!], and so for all i. Moreover, Pi: is a.s. �nite if and only
if Ai: and Ai0: are a.s. �nite and �i + �i0 � 1 (where �i0 denotes the tra�c

intensity of source i0), and then:

E [Pi: ] =
�i

�i(1� �i � �i0)
:

By the induction hypothesis, since Ai0: ' P (i)
: , we �nd that Ai0: is a.s. �nite

if and only if all the Aj:'s with j 6= i are and �(i) :=
P

j 6=i �j � 1; moreover:

�i0 := E [Ai0 ] = �(i)=(�i0(1� �(i)));

which yields: �i0 = �(i). This completes the proof by induction. �
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5.2 Regularly varying tails

Thanks to the �ctitious source i0, we can easily extend the tail analysis of

Theorem 4.2 to the case of N � 2 on/o� sources. Notice that the above

Theorem yields the values of �i0 and pi0 (resp. the tra�c intensity and the

silence probability of source i0), namely:

1� pi0 = �i0 =
X
j 6=i

�j:

From now on we assume that � < 1. Like in Section 4, we denote

�i := E [Pi: ] =
�i

�i(1� �)
; 1 � i � N:

Theorem 5.3 Assume that for t!1:

P[Ai: > (�i=�i)t] = (ai + o (1))l(t)=t�; 1 � i � N; (28)

with ai � 0 (1 � i � N), � 2 (n; n + 1) (for some n � 1) and l(t) a slowly

varying function. Then:

P[Pi: > t] =

 
(1� �)pi�iai + �i

PN
j=1 pj�jaj

(1� �)�i
+ o (1)

!
l(t)

t�
; 1 � i � N:

Conversely, assume that

P[Pi: > t] = (ci + o (1))l(t)=t�; t!1; (29)

with ci � 0 (1 � i � N), � 2 (n; n + 1) (for some n � 1) and l(t) a slowly

varying function. Then either all the ci's are null or all are positive. In the

latter case, they necessarily satisfy:

�ici � �i

NX
j=1

�jcj � 0; 1 � i � N; (30)

and at least one of the above expressions is non-null. Finally, for t!1:

P[Ai: > (�i=�i)t] =

 
�ici � �i

PN

j=1 �jcj

�ipi
+ o (1)

!
l(t)

t�
:
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Corollary 5.4 Under assumption (28) of Theorem 5.3:

P[P: > t] =

 PN
i=1 pi�iai

(1� �)�
+ o (1)

!
l(t)

t�
:

Proof:

Immediate in view of (4). �

Proof of Theorem 5.3:

We argue by induction on N . By Theorem 4.2, the result is valid for N = 2.

Assume that it is valid for N � 1 sources. Then focus on some source i,

1 � i � N , and introduce the �ctitious source i0. Easy calculations show
that

�
(i)
j =

1� �

1� �i0
�j; j 6= i; �i0 =

1� �

1� �i0
�i0 (31)

(with the usual notations �
(i)
j := E [P

(i)
j ], �i0 := E [Pi0 ]). As a �rst conse-

quence, under Assumption (28), for j 6= i:

P[Aj: > (�j=�
(i)
j )t] = P[Aj: > (�j=�j)

1� �i0

1� �
t] = (aj(

1� �

1� �i0
)� + o (1))l(t)=t�:

Since a typical activity period Ai0: of source i
0 is a typical busy period

of the system without source i, the induction hypothesis (in the form of
Corollary 5.4) then shows that:

P[Ai0 : > t] =

 P
j 6=i pj�ja

(i)
j

(1� �i0)�i0
+ o (1)

!
l(t)

t�
; with a

(i)
j = aj(

1� �

1� �i0
)�; j 6= i:

Using (31) again, we �nally obtain:

P[Ai0 : > (�i0=�i0)t] = P[Ai0: >
1� �

1� �i0
t] = (ai0 + o (1))l(t)=t�;

with:

ai0 =

�
1� �

1� �i0

��� P
j 6=i pj�ja

(i)
j

(1� �i0)�i0
=

P
j 6=i pj�jaj

(1� �i0)�i0
:
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Now we have two sources i and i0 which satisfy the conditions of Theo-

rem 4.2, so we can directly conclude that:

P[Pi: > t] =

�
(1� �i0)pi�iai + �ipi0�i0ai0

(1� �)�i
+ o (1)

�
l(t)

t�

=

 
(1� �)pi�iai + �i

PN

j=1 pj�jaj

(1� �)�i
+ o (1)

!
l(t)

t�
:

Since the argument is valid for all i, this completes the induction for the

direct part of the theorem.

Conversely, under assumption (29) a typical busy period Pi0: starting with

an activity period of source i0 satis�es:

P[Pi0 : > t] = (ci0 + o (1))l(t)=t�;

with

ci0 =
X
j 6=i

�j

�i0
cj

by Formula (25). From Theorem 4.2 we obtain:

P[Ai: > (�i=�i)t] =

�
(1� �i)(�ici)� �i(�i0ci0)

�ipi
+ o (1)

�
l(t)

t�

=

 
�ici � �i

PN

j=1 �jcj

�ipi
+ o (1)

!
l(t)

t�
:

Moreover, constants ci and ci0 must satisfy:

(1� �i)(�ici)� �i(�i0ci0) � 0:

By applying this argument to all i, we complete the induction for the converse

part. In view of conditions (30), if cj > 0 for some j, then cj > 0 for all j.
In this case, by summing all these inequalities and using � < 1, we see that

at least one of them must be strict. �

5.3 Special cases

(i) ri = 1; i = 1; : : : ;N

Formula (27) reduces to results of [20] for the case of N identical
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sources, of [15] for the case of N non-identical sources, and of [9]

for the case of N = 1 identical sources (Cohen obtained his result

via a renewal-theoretic approach). In the latter case, with N ! 1,

�i � �! 0 such that N� = �, Formula (27) reduces to

�1[!] = �1[! + �(1� �1[!])];

the equation for the busy period LST in an M=G=1 queue with arrival

rate � and service time LST �1[�]. Note that the result of De Meyer

and Teugels [17] for the tail behaviour of the busy period in anM=G=1

queue now immediately yields the result of Theorem 5.3.

(ii) N identical sources

Again Formula (27) reduces to one equation:

�1[!] = �1[r1! + (N�1r1 � �1)(1� �1[!])]

= �1[! +
N�1r1 � �1

r1
(1� �1[!])]: (32)

Here �1[!] := �1[r1!] is the LST of B1: := r1A1:. Equation (32)
immediately implies that the busy period in this special case is dis-

tributed like the busy period in an M=G=1 queue with arrival rate
(N�1r1 � �1)=r1 and service times B1n; and again the tail behaviour
of the busy period follows immediately from the M=G=1 result of De

Meyer and Teugels [17].

As above, one can let N !1 such that N� = �.

(iii) N = 1

Formula (27), or alternately Formula (32), now reduces to:

�1[!] = �1[r1! + �1(r1 � 1)(1� �1[!])]: (33)

Consider an ordinary M=G=1 queue Q� with arrival rate �1 and ser-
vice times (r1 � 1)A1n. The LST ��[!] of its busy period distribution

satis�es:

��[!] = �1[(r1 � 1)! + �1(r1 � 1)(1� ��[!])]: (34)

The number of customers served in one busy period of Q� equals in

distribution the number of active periods in one busy period of the 
uid
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queue with one source. To see this, observe that after each active period

A1n the bu�er content has increased with (r1 � 1)A1n. But the length

of the busy period of the 
uid queue equals in distribution r1=(r1 � 1)

times the length of the busy period of Q�, since it equals r1 times the

sum of the lengths of the active periods. Hence �1[!] = ��[ r1
r1�1

!],

which is con�rmed by comparing (33) and (34).

5.4 Dominating sources

The reasoning in Subsection 5.1 reveals that, as far as busy period analy-

sis is concerned, it is possible to aggregate sources and thus to concentrate

on just two sources. In this subsection our aim is even more drastic: To

completely remove all sources except those with the heaviest-tailed activity

period distributions.
By a time-scaling argument, all the previous results can be easily extended

to the situation in which the out
ow rate is c instead of 1. The stability
condition is then � < c, and the formulas for the mean busy periods become:

�i =
�i

�i(c� �)
; 1 � i � N:

Under condition (28) of Theorem 5.3, we �nally obtain:8>>>><
>>>>:

P[Pi: > t] =

 
(c� �)pi�iai + �i

PN
j=1 pj�jaj

(c� �)�i
+ o (1)

!
l(t)

t�
; 1 � i � N;

P[P: > t] =

 
c
PN

i=1 pi�iai

(c� �)�
+ o (1)

!
l(t)

t�
:

Now call source i a dominating source if ai > 0, resp. a dominated source
if ai = 0, assuming that the set N� of dominating sources is not empty. The
question arises of evaluating the contribution of the dominated sources to the

tail behaviour of the busy periods, since all the associated terms ai cancel in

the above formulas. Notice that these sources contribute to the total tra�c

intensity �. So a natural idea consists in comparing our model of N sources

with the \model N�" where all the dominated sources are deleted (the total
tra�c intensity is thus �� :=

P
i2N� �i) and the out
ow rate is reduced from

c to c� := c�
P

j 62N� �j.
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First notice that the mean busy periods in model N� are given by:

��i =
�i

�i(c� � ��)
=

�i

�i(c� �)
= �i; i 2 N�;

so they are unchanged. Under condition (28) of Theorem 5.3, we thus have:

P[P �
i: > t]

t!1
�

�
(c� � ��)pi�iai + �i

P
j2N� pj�jaj

(c� � ��)�i

�
l(t)

t�

=

 
(c� �)pi�iai + �i

PN

j=1 pj�jaj

(c� �)�i

!
l(t)

t�

t!1
� P[Pi: > t]; i 2 N�:

Hence the busy periods Pi: and P
�
i: have just the same tail behaviour: as far

as the tail behaviour is concerned, all the dominated sources are replaced
by a constant stream of rate

P
j 62N� �j. The outcome is not as nice if we

compare P: and P
�
: ; setting �

� =
P

i2N� �i, we obtain:

P[P �
: > t]

t!1
�

�
c�
P

i2N� pi�iai

(c� � ��)��

�
l(t)

t�
=
c��

c��

 
c
PN

i=1 pi�iai

(c� �)�

!
l(t)

t�
;

hence (��=c�)P[P �
: > t] � (�=c)P[P: > t].

Remark 5.5 The result about the dominated sources is reminiscent of a re-

sult of Jelenkovic and Lazar [14]. They study the tail behaviour of the bu�er

content distribution in a 
uid queue with one source with heavy-tailed activity

periods and several sources with exponential activity periods. They observe

that this tail of the bu�er content distribution is equivalent with that of a 
uid

queue with only the one source with the heavy-tailed activity period distribu-

tion, and in which the exponential sources are taken into account by reducing

the out
ow rate.

6 Conclusion

In this paper we have considered a 
uid queue fed by N independent on/o�
sources with exponentially distributed silence periods and with the in
ow

rate of each source being at least as large as the out
ow rate of the bu�er.
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We have determined the LST's of the distributions of the busy periods

that start with an activity period of source i, i = 1; : : : ; N . We have also re-

lated the tail behaviour of the busy period distributions to the tail behaviour

of the activity period distributions: The tails of all busy period distributions

are regularly varying of index �� i� the heaviest of the tails of the activity

period distributions is regularly varying of index ��.

One implication of this result is the following. Suppose that the output

of the 
uid queue Q1 feeds into another in�nite-capacity 
uid queue Q2.

That output process constitutes an on/o� process with exp(�1 + : : : + �N)

distributed silence periods and with activity periods that are busy periods

of Q1. If the tails of the distributions of these busy periods are regularly

varying of index �� with � 2 (1; 2), then the output process of Q1 is LRD

{ just like the input process of Q1. This should be compared with the result

about propagation of LRD in networks of quasi-reversible queues mentioned
in [1].

A next step is to study Q2 in isolation. If the out
ow rate of Q2 is larger
than one, then its bu�er will never �ll. If the out
ow rate of Q2 is at most
equal to one, then Sections 4 and 5 of the present paper yield its busy period

behaviour (and the bu�er content behaviour follows from, e.g., [4]). To close
the circle, we end by observing that, in the present study, the tra�c from

the N on/o� sources may be viewed as outputs from N independent 
uid
queues with out
ow rates r1; : : : ; rN .

7 Appendix

Proof of Lemma 2.2:

Here we treat only the case C = 0. Since l(t)=t� is equivalent (when t!

1) to a non-increasing function (see Theorem 1.5.4 of [3]), we may assume

a random variable Y such that P[Y > t] � l(t)=t�, and we denote by 
[!] its

LST. Then E [Y n] <1, and a fortiori E [Xn ] <1 if P[X > t] = o (P[Y > t]).

Like in [17], let us now set:

f0(t) = P[X > t]; fk+1(t) =

Z 1

t

fk(u)du;

and similarly de�ne gk(t) from g0(t) = P[Y > t]. It is easily checked that
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fk(0) = E [Xk ]=k!; hence under the conditions of the Lemma, fk(�) and gk(�)

are well de�ned for k � n. Moreover, a straightforward induction yields:

�n[!] = !n+1

Z 1

0

e�!tfn(t)dt;

with a similar formula for 
n[!].

(i))(ii) If f0(t) = o (g0(t)) (t!1), then
R1
t
f0(u)du = o (

R1
t
g0(u)du).

An immediate induction then shows that fn(t) = o (gn(t)). For any � > 0,

there exists a T > 0 such that fn(t) � �gn(t) for t � T , hence:

�n[!] � !n+1

�Z T

0

e�!tfn(t)dt+ �

Z 1

T

e�!tgn(t)dt

�

� !n+1

Z T

0

fn(t)dt+ �
n[!]:

By Lemma 2.2 in case C > 0: !n+1 = o (
n[!]) (! ! 0), so we obtain:

lim sup
!!0

�n[!]=
n[!] � �:

Since this result is valid for any � > 0, the proof is complete.
(ii))(i) By Lemma 2.2 in case C > 0:


n[!] � (�1)n�(1� �)l(1=!)!�
� (�1)n�(1� �)g0(1=!); ! ! 0: (35)

Since fn is decreasing:

�n[!] � !n+1

Z 1=!

0

e�!tfn(t)dt � !ne�1fn(1=!):

So (ii) and (35) imply that !nfn(1=!) = o (g0(1=!)), or equivalently:

fn(t) = o (tng0(t)); t!1:

Now write:

fn(t) �

Z 2t

t

fn�1(u)du � tfn�1(2t);

which in view of the previous formula yields: fn�1(2t) = o (tn�1g0(t)), or
equivalently:

fn�1(t) = o (tn�1g0(t)); t!1;

since g0 is regularly varying. By repeating this argument we �nally obtain:

f0(t) = o (g0(t)) (t!1), which completes the proof. �
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