
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A New Cluster Algorithm for Graphs

Stijn van Dongen

Information Systems (INS)

INS-R9814 December 1998

Report INS-R9814
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

A New Cluster Algorithm for Graphs

Stijn van Dongen
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

A new cluster algorithm for graphs called the Markov Cluster algorithm (MCL algorithm) is introduced.

The graphs may be both weighted (with nonnegative weight) and directed. Let G be such a graph. The

MCL algorithm simulates flow in G by first identifying G in a canonical way with a Markov graph G1. Flow is

then alternatingly expanded and contracted, leading to a row of Markov Graphs G(i). The expansion step is

done by computing higher step transition probabilities (TP ’s), the contraction step creates a new Markov graph

by favouring high TP ’s and demoting low TP ’s in a specific way. The heuristic underlying this approach is the

expectation that flow between dense regions which are sparsely connected will evaporate. The stable limits of the

process are easily derived and in practice the algorithm converges very fast to such a limit, the structure of which

has a generic interpretation as an overlapping clustering of the graph G. Overlap is limited to cases where the

input graph has a symmetric structure inducing it. The contraction and expansion parameters of the algorithm

influence the granularity of the output. The algorithm is space and time efficient with a space+quality/time

trade–off, works very well for a wide range of test cases, and lends itself to drastic scaling. Experiments with

a scaled C–implementation have been conducted on graphs having several tens of thousands of nodes. This

report describes the algorithm, its complexity, and experimental results. The algorithm is introduced by first

considering a generalization of generic single link clustering for graphs called k–path clustering.

1991 Mathematics Subject Classification: 05B20, 05B25, 60J15, 62H30, 68T10, 90C35.

Keywords and Phrases: Clustering, graph clustering, random walk, Markov matrix, flow simulation.

Note: Work carried out under project INS 3.2, Digital Libraries.

1. Introduction

In this report I describe the Markov Cluster (MCL) algorithm, a new cluster algorithm for graphs
which is based on simulation of flow expansion and flow contraction in graphs. This algorithm is
specifically suited to sparse graphs, i.e. graphs for which the average node degree is an order of
magnitude smaller than the number of nodes in the graph. The algorithm is in fact motivated by
considering how the concept of ’cluster’ in the setting of sparse graphs can be formalized to some
extent.

The idea that clustering in the setting of sparse graphs may very well merit from a separate approach,
as opposed to viewing this problem as a minor variant of clustering in a more general setting, does
not seem to be widespread. The proposed distinction is between clustering in the setting of sparse
graphs and clustering in the setting of attribute spaces or vector spaces. In the first case, the relation-
ship between elements is typically of the kind ‘share a property or not’. A famous example springs
from the Erdös number defined for a mathematician M, which is the length of the shortest chain
of mathematicians M1, . . . ,Ml, such that M1 is Erdös and Ml is M, and such that Mi and Mi+1 have
co–authored an article. In this case, mathematicians are viewed as the nodes in a graph, and there is
a link between two mathematicians (perhaps of strength s) if they have co–authored an article (s arti-
cles). In the second case, the relationship between elements is typically defined in terms of a measure

1. Introduction 2

on the difference between one or more attributes possessed by the elements, such as weight, length,
age, et cetera. The two settings can be viewed as different ends of the same spectrum, and this issue
is discussed extensively in [2]. This report deals exclusively with clustering in the setting of sparse
graphs.

The basic idea is that dense regions in sparse graphs correspond with regions in which the number
of k–length paths is relatively large, for small k ∈ IN. Random walks of length k thus have higher
probability for paths with beginning and ending in the same dense region than for other paths. This
is especially true if one looks at the subset of all random walks departing from a specific node.
If this node is situated in a dense region, random walks departing from it will in general have a
tendency to end in the same region. The crucial element in the MCL algorithm is that this effect
is deliberately boosted by an iterative procedure. First, an input graph G is mapped in a generic
way onto a Markov matrix M1. Then the set of transition probabilities is iteratively recomputed
via expansion and inflation. The expansion step corresponds with normal matrix multiplication (on
stochastic matrices), the contraction step corresponds with a parametrized operator Γr , called the
inflation operator, which acts column–wise on (column) stochastic matrices. Henceforth, the term
inflation will be used rather than contraction. Via expansion, nodes are able to see new neighbours;
via inflation, favoured neighbours are further promoted, and less favoured neighbours are further
demoted. For nearly all undirected graphs G, this process triggered by G converges very fast. The
structural characteristics of the matrix limit of the process may be very different from the initial
Markov matrix M1. The associated graph of the matrix limit can have a larger number of connected
components than the original input graph. This is in fact what makes the algorithm work, since the
strongly connected components of the limit, joined with the respective node–sets that reach them,
are interpreted as an overlapping clustering of the original graph. As in the usual Markov process,
the ‘nice’ limits are idempotent matrices.

An infinite sequence consisting of repeated alternation of expansion and inflation constitutes a new
algebraic process called the Markov Cluster (MCL) process. If the inflation operator Γr is parametrized
such that all inflation steps correspond with the identity operator, a normal Markov process results.
Interpretation of the limit then yields a clustering which corresponds with the set of connected com-
ponents of the original graph. In general, the parameters of the MCL process influence the granularity
of the clustering. For all testcases, the correlation between input graphs, algorithm parameters, and
output clusterings is in line with heuristic considerations. Some examples show surprising strengths
of the algorithm. Most notable among these are separating power and the absence of chaining.
The algorithm performs well in recognizing clusters which are spherical in nature, also if chains are
present. All clusterings that are found have the property that the clusters in them correspond with
regions in which there are relatively many k–length paths within. In this sense, it is impossible to find
bad clusterings. The number of clusters is influenced by the flow characteristics of the MCL process.
The cluster granularity can be affected by varying the flow parameters, but the number of clusters
need not (and can not) be specified explicitly. The parametrizations of the MCL process which are
useful for clustering purposes, generally lead to intermediate matrix iterands and equilibrium states
which are very sparse in a ‘weighted’ sense. That is, a column may have many nonzero entries, but
most of them are very small compared to the largest entries within the column. This gives the means
to scale the algorithm drastically, by applying columnwise pruning.

The heuristic underlying the MCL algorithm is first motivated by considering k–path clustering, a
generalization of generic single link clustering for graphs. Several phenomena of concern to the
MCL algorithm also play a role in the conceptually simpler setting of k–path clustering. An example
of this is the effect of adding loops to a graph in order to improve, for the purpose of clustering, its
topological properties. I have not found a description of k–path clustering in the literature. In this
report, it serves as a tool supporting the main contribution, the MCL algorithm.

2. Basic terminology 3

The MCL process is a complex process which, to the best of knowledge, is described here for the first
time. The inflation operator Γ , introduced in Section 4, does not distribute over the normal matrix
product, as Γ acts on matrices column–wise. For a normal Markov process, the columns of any iterand
lie within the convex hull of the columns of any previous iterand. This is not true for the MCL process,
which is due to Γ again. However, the MCL process has remarkable convergence properties. The
‘nice’ equilibrium states of the process are easily derived, and in practice the algorithm converges
nearly always to such a limit. Exceptions to this rule are quite rare. The only ones found so far were
made by construction, and are in line with heuristic considerations. They are discussed in Section 7.
This section also gives a classification of the theoretically possible equilibrium states of the process,
with examples from each of the introduced classes. The class of nice equilibrium states is further
subdivided into two categories in Section 8. It is shown that in the neighbourhood of the equilibrium
states in the first subclass the MCL process converges quadratically towards equilibrium. Then it is
shown that the equilibrium states S in the second subclass are instable, but that the MCL process
converges quadratically at least on a macroscopic scale, once close enough to such an equilibrium
state S. That is, it is proven that the structural form of the elements of MCL process converges towards
the same block structure as present in S. Roughly speaking, the conclusion is that the phenomenon
of cluster overlap is instable in nature, and that otherwise the instability of an equilibrium state,
c.q. perturbation followed by convergence towards another equilibrium state, does not change the
associated clustering.

In Section 2 the setting, notation, and terminology are formally introduced. Section 3 introduces
k–path clustering. The section after that shows an example run of the MCL algorithm. Section 5
gives a formal description of the MCL process and the MCL algorithm. This includes a theorem
which gives the means to formally associate an overlapping clustering with the limits generically
resulting from an MCL process. Section 6 gives mathematical properties of the inflation operator Γ .
In Section 7 the equilibrium states of the MCL process are categorized. These include instable states
for which expansion and inflation act as each other inverse. In Section 8 local convergence properties
of the MCL process are studied, followed by a section in which cluster properties of the algorithm
are discussed. Section 10 is concerned with complexity and scalability of the algorithm. It is shown
that the algorithm can be scaled drastically for large graphs allowing clusterings in which the natural
cluster size is relatively small. This section ends with a benchmark proposal. Conclusions and further
research make up the last section.

2. Basic terminology

This section introduces the needed terminology for graphs, matrices, (dis)similarity spaces, and clus-
terings.

Definition 1 Let V be a finite collection of elements, enumerated v0, . . . , vt−1.

i) A weighted graph G on V is a pair (V,w), where w is a function mapping pairs of elements
of V to the nonnegative reals: w : V × V → IR≥0.

a) G is called undirected if w is symmetric, it is called directed otherwise.

b) G is said to be irreflexive if there are no loops in G, that is, w(v,v) = 0,∀v ∈ V .

ii) A dissimilarity spaceD = (V,d) is a pair (V,d), where s is a symmetric function mapping V×V
to IR≥0, satisfying s(u,v) = 0 ⇐⇒ u = v. The function d is called a dissimilarity measure or
dissimilarity coefficient.

2. Basic terminology 4

iii) A similarity space is a pair (V, s), where s is a symmetric function mapping V×V to IR>0∪{∞},
satisfying s(u,v) = ∞ ⇐⇒ u = v. The function s is called a similarity measure or similarity
coefficient. �

The definition of a dissimilarity coefficient is identical to that of an irreflexive undirected weighted
complete graph (see below for the definition of weighted complete). However, this is not a very natu-
ral relationship if the set of all irreflexive undirected weighted graphs is considered. The problem is
that the weight function of undirected weighted graphs which are not complete is best viewed as be-
ing of a similarity nature, where longer distance dependencies give extra information about elements
which are not immediately related. More sophisticated approaches such as the ones suggested in [4]
construct a dissimilarity measure from the weight function by considering such longer distance de-
pendencies. The dissimilarity measure thus constructed looks very different from the original weight
function. It follows that a dissimilarity space is better viewed as a relaxation of a metric space than
as a special instance of the set of irreflexive undirected weighted graphs. In this report, I shall be
using similarity coefficients rather than dissimilarity coefficients (in Section 3). The two types are
interchangeable if it is only the relative ordering of the values assumed by them that matters (e.g.
one can be mapped onto the other by the map x , 1/x). The latter condition holds in the setting of
single link clustering, and this method (see Definition 3) will be used in Section 3.

Definition 2 Let G = (V,w) be a finite weighted directed graph with |V | = t. The associated matrix
of G lying in IR≥0

t×t , denoted MG, is defined by setting the entry (MG)pq equal to w(vp, vq). Given a
matrixM ∈ IR≥0

N×N , the associated graph ofM is written GM , which is the graph (V,w) with |V | = N
and w(vp, vq) =Mpq. �

Matrices and graphs of dimension N are indexed using indices running from 0 to N − 1. Other
enumeration types are usually indexed starting with 1. If u,v are nodes for which w(u,v) > 0, I
say that there is an arc going from v to u with weight w(u,v). Then v is called the tail node,
and u is called the head node. The reason for this ordering lies in the fact that graphs will be
transformed later on into stochastic matrices, and that I find it slightly more convenient to work
with column stochastic matrices rather than row stochastic matrices. A column stochastic matrix
is a nonnegative matrix in which the entries of each column sum to one. The degree of a node
is the number of arcs originating from it. A graph is called void–free in this report if there is at
least one arc originating from each node. A matrix is called void–free if its associated graph is
void–free, that is, it has no zero columns. Note that a column stochastic matrix is by definition
void–free. A path of length p in G is a sequence of nodes vi0 , . . . , vip such that w(vik, vik−1) > 0,
k = 0, . . . , p. The path is called a circuit if i0 = ip, it is called a simple path if all indices ik are
distinct, i.e. no circuit is contained in it. A circuit is called a loop if it has length 1. If the weight
function w is symmetric then the arcs (vk, vl) and (vl, vk) are not distinguished, and G is said to
have an edge (vl, vk) with weight w(vl, vk). The two points vl, vk are then said to be connected. A
simple graph is an undirected graph in which every nonzero weight equals 1. The simple graph
on t points in which all node pairs u,v,u ≠ v, are connected via an edge (yielding t(t − 1) edges in
all) is denoted by Kt, and is called the complete graph on t points. A weighted directed graph for
which w(u,v) > 0,∀u ≠ v, is called a weighted complete graph.

Let G = (V,w) be a finite directed weighted graph G = (V,w). In this report the interpretation of
the weight function w is that the value w(u,v) gives the capacity of the arc (path of length 1) going
from v to u, or (equivalently) the number of paths of length 1 from v to u. The latter interpretation
takes the concept ’the number of’ to a higher level of abstraction, since w may assume all values in
the nonnegative reals. Let G be a simple graph, let M = MG be its associated matrix. The capacity
interpretation of the weight function w is very natural in view of the fact that the pq entry of the

2. Basic terminology 5

kth power Mk gives exactly the number of paths of length k between vp and vq. This can be verified
by a straightforward computation. There is in fact nothing special about the weight function of a
simple graph with respect to this property (except that it allows easy manual verification), and the
given interpretation of the entries of Mk extends to the class of finite weighted directed graphs.

Notation The graph which is formed by adding loops to G is denoted by G + I. In general, if ∆ is a
nonnegative diagonal matrix, then G+∆ denotes the graph which results from adding to each node vi
in G a loop with weight ∆ii. �

Definition 3 A partition or clustering of V is a collection of pairwise disjoint sets {V1, . . . , Vd} such
that each set Vi is a nonempty subset of V and the union ∪i=1,... ,dVi is V . A partition P is called (top
respectively bottom1) extreme if respectively P = {V} and P = {singletons(V)} = {{v0}, . . . , {vt−1}}.

A hierarchical clustering of V is a finite ordered list of partitions Pi, i = 1, . . . , n of V , such that
for all 1 ≤ i < j ≤ n the partition Pj can be formed from Pi by conjoining elements of Pi, where
P1 = {singletons(V)} = {{v0}, . . . , {vt−1}} and Pn = {V}.

An overlapping clustering of V is a collection of sets {V1, . . . , Vd}, d ∈ N, such that each set Vi is
a nonempty subset of V , the union ∪i=1,... ,dVi is V , and each subset Vi is not contained in the union
of the other subsets Vj, j ≠ i. The latter implies that each subset Vi contains at least one element not
contained in any of the other subsets, and this in turn implies the inequality d ≤ t.

Let s be a similarity coefficient defined on V = {v0, . . . , vt−1}. Let s0, . . . , sn be the row of different
values that s assumes on V × V , in strictly descending order and with the value 0 added. Remember
that s(u,u) = ∞, u ∈ V . Thus, ∞ = s0 > s1 > . . . > sn = 0.

The single link clustering of the pair (V, s) is the nested collection of partitions Pi, i = 1, . . . , n,
where each Pi is the partition induced by the transitive closure of the relation in which two ele-
ments u,v, are related iff s(u,v) ≥ si. According to this definition, subsequent partitions may be
equal, P1 = {singletons(V)}, and Pn = {V}. �

Miscellaneous notation
Expressions in which single indices or subscripted or superscripted simple expressions are enclosed
in parentheses denote the object which results from letting the index run over its natural boundaries.
E.g. e(i) denotes a vector or a row (the context should leave no doubt which of the two), Tk(i) denotes
the kth row of the matrix T , and (T (i))kl denotes the set of kl entries of the powers of T . The fact that
each of the entries in a row e(i) equals the same constant c is concisely written as e(i)

c= c.

Let M be a matrix in IRn×n, let α and β both be sequences of distinct indices in the range 0..n−1. The
submatrix of M corresponding with row indices from α and column indices from β is written M[α|β].
The principal submatrix with both row and column indices from α is written M[α].

Finally, in this report account will be given of experiments done with the MCL algorithm. This means
that the realm of finite precision arithmetic is entered. Numerical expressions denote floating point
numbers if and only if a dot is part of the expression.

1The set of all partitions forms a lattice of which these are the top and bottom elements.

3. k–path clustering 6

3. k–path clustering

Of the existing procedural algorithms, single link clustering has the most appealing mathematical
properties, see e.g. [4]. In this section I shall discuss a variant of single link clustering for graphs
which I call k–path clustering. This variant is closely related to the MCL algorithm. The basic obser-
vation underlying both methods is the fact that two nodes in some dense region will be connected by
many more paths of length k, k > 1, than two nodes for which there is no such region. This section
is mainly an exposition of ideas, and quite a few examples are studied. The examples are intended
to support the heuristic underlying the MCL algorithm, and they provide fruitful insights into the
problems and benefits associated with refinements of graph similarities. An example of this is the
fact that the cardinality of the set of paths of length k between two nodes depends very much on the
parity of k. Following the exposition of k–path clustering its pros and cons are reconsidered.

k–path clustering
For k = 1, the k–path clustering method coincides with generic single link clustering. For k > 1 the
method is a straightforward generalization which refines the similarity coefficient associated with 1–
path clustering. Let G = (V,w) be a graph, where V = {v0, . . . , vt−1}, let M = MG be the associated
matrix of G. For each integer k > 0, I define a similarity coefficient Zk,G associated with G on the
set V , by setting Zk,G(vi, vj) = ∞, i = j, and

Zk,G(vi, vj) = (Mk)ij, i ≠ j (3.1)

Note that the values (Mi)pp are disregarded. The quantity (Mk)pq has a straightforward interpretation
as the number of paths of length k between vp and vq; this is the exact situation if G is a simple graph.
If G has dense regions separated by sparse boundaries, it is reasonable to conjecture that there will
be relatively many path connections of length k with both ends in the same region, compared with
the number of path connections having both ends in different dense regions. The next example is
one in which Zk,G does not yet work as hoped for. It will be seen why and how that can be remedied.
For sake of clear exposition, the examples studied are simple graphs.

Note that the values (Mi)pp are disregarded, which is slightly inelegant and thus unsatisfactory. The
problem is not unfamiliar, since it occurs in the generic formulation of single link clustering for
simple graphs (yielding the connected components as groups). In this formulation, under the flag of
dissimilarity, the values Mpq which are zero (p ≠ q) are set to ∞.

Odd and even

0

1

2

3

4

5

6

7
8

9

10
11

Figure 1: Cut tetraeder G1

The graph G1 in Figure 1 is a tetraeder with flattened tips. It clearly
admits one good non–extreme clustering, namely the one in which
each of the flattened tips, i.e. the four triangles, forms a cluster.
The associated matrix M = MG1 , and the square M2 are shown in
Figure 3. In the same figure the first rows of the matrices Mi, i =
1, . . . ,5 are listed. The other rows of Mi can be found by a suitable
permutation of the first row of Mi, due to the symmetry of M.

For each of the coefficients Zk,G1 , single link clustering immediately
yields the whole vertex set of G1 as one cluster. How can this
be? Somehow, the expectation that there would be relatively more
k–length paths within the dense regions, in this case triangles,
was unjustified. Now, on the one hand this is a peculiarity of this
particular graph and especially of the subgraphs of the triangle type. For even k, spoilers are pairs
like (0,3), for odd k, these are pairs like (0,11). This clearly has to do with the specific structure
of G1, where the set of paths of odd length leading e.g. from 0 to 1 does not profit from (0,1) being
in a triangle, compared with the set of paths leading from 0 to 11. On the other hand the behaviour of

3. k–path clustering 7



0 1 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0





3 1 1 1 0 0 0 1 0 1 1 0
1 3 1 1 0 0 1 0 1 0 0 1
1 1 3 0 1 1 0 1 0 0 0 1
1 1 0 3 1 1 1 0 0 0 1 0
0 0 1 1 3 1 1 0 0 1 0 1
0 0 1 1 1 3 0 1 1 0 1 0
0 1 0 1 1 0 3 1 1 1 0 0
1 0 1 0 0 1 1 3 1 1 0 0
0 1 0 0 0 1 1 1 3 0 1 1
1 0 0 0 1 0 1 1 0 3 1 1
1 0 0 1 0 1 0 0 1 1 3 1
0 1 1 0 1 0 0 0 1 1 1 3


M =MG1 M2

k , j 0 1 2 3 4 5 6 7 8 9 10 11
1 0 1 1 0 0 0 0 0 0 0 0 1
2 3 1 1 1 0 0 0 1 0 1 1 0
3 2 5 5 1 2 1 1 1 2 1 1 5
4 15 8 8 8 3 4 4 8 3 8 8 4
5 20 31 31 15 20 15 15 15 20 15 15 31

Figure 2: The values Mk
0j, k = 1, . . . ,5, j = 0, . . . ,11.

any similarity coefficient Zk,G is in general very much influenced by the parity of k. There is a strong
effect that odd powers of M obtain their mass from simple paths of odd length and that even powers
of M obtain their mass from simple paths of even length. The only exceptions are those paths which
include loops of odd length. Note that the only requirement for a loop of even length is the presence
of an edge (inducing a loop of length 2). Loops of odd length only arise in case triangles are present,
and start to have influence for paths of length at least 3.

Positioning oneself in a particular node, the similarity distribution around this node is seen to depend
heavily on the parity of the simple path connections with the node. It is desirable that while moving
away from a node along a simple path, the similarities at least have a tendency to decline radially. In
general, if this is not the case, single link clustering may produce clusters which are not connected
in the graph. Definition 4 simplifies the formulation of a sufficient criterion for pairs of graphs and
similarity coefficients so that clusters at all levels correspond with connected components in the
graph. Let G be a graph and let Z be a similarity coefficient defined for G.

Definition 4 The radial declination number of the pair (G,Z) is the number of ordered node
pairs (s, t), s ≠ t, such that there is at least one path (s = v1, v2, . . . , vl = t) between s and t with the
property that Z(s, vi) is decreasing in i,2 ≤ i ≤ l.

The pair (G,Z) is said to have full radial declination if the radial declination number is maximal
(which is N(N − 1) if N is the cardinality of the node set of G). �

Lemma 1 A pair (G,Z) which has full radial declination is guaranteed to yield groups which are
connected under the neighbour relation inherited from G, at each stage of single link clustering. �

3. k–path clustering 8



1 1 1 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 1 1 1





4 3 3 1 0 0 0 1 0 1 1 2
3 4 3 1 0 0 1 2 1 0 0 1
3 3 4 2 1 1 0 1 0 0 0 1
1 1 2 4 3 3 1 0 0 0 1 0
0 0 1 3 4 3 1 0 0 1 2 1
0 0 1 3 3 4 2 1 1 0 1 0
0 1 0 1 1 2 4 3 3 1 0 0
1 2 1 0 0 1 3 4 3 1 0 0
0 1 0 0 0 1 3 3 4 2 1 1
1 0 0 0 1 0 1 1 2 4 3 3
1 0 0 1 2 1 0 0 1 3 4 3
2 1 1 0 1 0 0 0 1 3 3 4


M + I, M =MG1 (M + I)2

k , j 0 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 0 0 0 0 0 0 0 0 1
2 4 3 3 1 0 0 0 1 0 1 1 2
3 12 11 11 4 2 1 1 4 2 4 4 8
4 42 38 38 18 11 8 8 18 11 18 18 28
5 146 136 136 75 55 45 45 75 55 75 75 106

Figure 3: The values (M + I)k0j, k = 1, . . . ,5, j = 0, . . . ,11.

The proof of this lemma is trivial. Note that each of the pairs (G1, Zk,G1), k = 1, . . . ,5, has full radial
declination, with a decrease that unfortunately equals zero along vital edges. It shall be seen that full
radial declination cannot be guaranteed unconditionally for the coefficients Zk,G, and that in fact this
property is not the right property to ask for under all circumstances. First I introduce a countermea-
sure to the parity dependence of the coefficients Zk,G. This countermeasure is not sufficient to assure
full radial declination, but it does add power to the coefficients Zk,G and k–path clustering.

A countermeasure to parity dependence
The observation in one of the previous paragraphs that paths containing circuits of odd length form an
exception brings a solution to the problem of parity dependence. By adding loops to each node in G1,
the parity dependence is removed. Just as every edge induces the minimal loop of even length, every
node now induces the minimal loop of odd length. On the algebra side, adding loops corresponds
with adding the identity matrix to M. The numbers defining the new coefficients Zk,G1+I are found in
Figure 3, where the largest off–diagonal matrix entries (diagonal entries are disregarded) are printed
in boldface. Each coefficient now yields the best clustering, consisting of the set of four triangles.
Adding loops helps in further differentiating the numbers Zk,G1+I(s, t) for fixed s and varying t.

For a less symmetrical example, consider the simple graph G2 depicted in Figure 4. Its associated
matrix after adding loops to each node is given next to it in Figure 5. Below are the results of single
link clustering at all levels, using the similarity coefficient Z2,G2+I .

Level Clustering

∞, . . . ,6 {singletons(V)} = { {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11} }
5 { {8,10}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {9}, {11} }
4 { {0,9}, {3,7,8,10}, {1}, {2}, {4}, {5}, {6}, {11} }
3 {{0,5,6,9} {1,2,4}, {3,7,8,10,11} }
2,1,0 {V} = {{0,1,2,3,4,5,6,7,8,9,10,11}}

3. k–path clustering 9

0 1 2 3

4

5 6 7 8

9 10 11

Figure 4: Graph G4.



5 2 1 0 2 3 3 0 0 4 0 0
2 4 3 1 3 1 2 1 0 1 0 0
1 3 4 2 3 0 1 2 1 0 1 0
0 1 2 5 2 0 0 4 4 0 4 2
2 3 3 2 5 0 2 2 1 1 1 0
3 1 0 0 0 3 2 0 0 3 0 0
3 2 1 0 2 2 4 1 0 3 0 0
0 1 2 4 2 0 1 5 4 0 4 2
0 0 1 4 1 0 0 4 5 0 5 3
4 1 0 0 1 3 3 0 0 4 0 0
0 0 1 4 1 0 0 4 5 0 5 3
0 0 0 2 0 0 0 2 3 0 3 3



Figure 5: The matrix (N + I)2, N =MG2.

The clustering at level 3, which is the first in which no singletons remain, is rather pleasing. This
clustering also results if the coefficient is taken to be Z3,G2+I (not given here). The coefficient Z4,G2+I
starts out accordingly, however, before node 5 gets involved, the groups {3,7,8,10,11} and {1,2,4}
are joined. This is caused by the fact that node 5 is located in the sparsest part of G2. The weak spot
of single link clustering, namely chaining, surfaces here in the specific case of k–path clustering.

0

4

1
2

3

Figure 6: Bipar-
tite graph G3.

The last example in this section is a graph G3 for which single link clustering
with coefficient Zk,G3 , k > 1, initially groups points together which are not con-
nected. The graph G3 in Figure 6 is a small bipartite graph. The two nodes 0
and 4 have three simple paths of length 2 connecting them. Even in the pres-
ence of loops, the number of k-step paths, k > 1, will always be greater for the
pair (0,4) than for any other pair. Generally, bipartite graphs have low radial
declination number. However, the bipartite graphs form a class of graphs for
which it is natural to cluster each of the two node domains separately2. More
troublesome are non–bipartite graphs which locally have bipartite characteris-
tics. For these graphs it has to be accepted that intermediate results of single
link clustering may contain clusters which are not connected in the graph. The
procedure of adding loops does not help in this case.

The following conjecture, if true, substantiates the usefulness of adding loops.
It says that for all finite undirected graphs G there exists N ∈ N such that for

all k ∈ N the pair (G,Zk,G+NI) has full radial declination. The counterpart of Conjecture 1, stated in
Lemma 2, is easy to prove. The lemma states that for all k,N ∈ N, graphs G exist such that the
pair (G,Zk,G+NI) does not have full radial declination. The lemma is proven by explicit construction of
a class of such graphs G. Intuitively, these are also the ‘difficult’ graphs with regard to the conjecture.
It is easy to see however that the conjecture holds for this class of difficult graphs G, which is heuristic
support for it. All the same the conjecture is not easily proven, and its status still unsettled.

Conjecture 1 For all finite undirected graphs G with positive weight function, there exists N ∈ IN,
such that for all k ∈ IN, k > 1,

(G,Zk,G+NI) has full radial declination.

2e.g. Document phrase–databases naturally yield bipartite graphs. Clustering the two node domains then yields a
document grouping and a phrase grouping.

3. k–path clustering 10

Lemma 2 For all k ∈ N,k > 1 and all N ∈ IN,N > 1, there exists a finite undirected graph G with
positive weight function such that

(G,Zk,G+NI) does not have full radial declination.

Proof Let k and N be numbers in IN, both greater than one. Construct a graph G as follows. Let c be
a number in IN. Begin with c subgraphs, each of which is a line–graph on k + 1 nodes. For each
subgraph, label one of the ends α, label the other end ω. Now create G by identifying all nodes α
as one and identifying all nodes ω as one. Thus, the nodes α and ω have degree c in G, and all
other nodes of G have degree 2. There are exactly c paths of length k between α and ω, independent
of the presence of loops. The graph G3 in Figure 6 has this form with parameters k = 2 and c = 3.
Let υ be a neighbour of ω. Because k > 1 it is true that υ ≠ α, and the shortest path between α and υ
has length k − 1. In the graph G′ = G + NI all paths of length k between α and υ must visit a loop
exactly once. Such a path has multiplicity N (the weight of the loop), and there are exactly k such
paths. It follows that if c is chosen such that c > Nk, then Zk,G′(α,ω) = c > Nk = Zk,G′(α, υ). Because
of symmetry, it then follows that the pair (G+NI,Zk,G′) does not have full radial declination. �

A critical eye on k–path clustering
If k–path clustering were to be applied to large graphs, it would be desirable to work with varying k
and the corresponding coefficients Zk,G. However, for most application graphs in this research, the
matricesMk and (M+I)k fill very rapidly due to high connectivity of the graphs. The potential number
of nonzero elements equals 102N for graphs of vertex–size |V | = 10N . For N = 4 this quantity is al-
ready huge and for N = 5 it is clearly beyond current possibilities. More importantly, it is quadratically
related to N. In large scale applications, this is known to be a bad thing. It seems rather difficult to
remedy this situation by a regime of disposing of “smaller” elements.

A second minus was mentioned in the discussion of the example graph G2 in Figure 4. I remarked
that under the coefficient Z4,G2 groups which had formed already started to unite before the last node
left its singleton state. The coefficients Zk,G do account for the local topological structure around a
node. However, a region which is denser than another region with which it connected to a certain
extent, will tend to swallow the latter up. This is the effect of chaining in k–path clustering. A third
minus is related to the preceding and arises in the case of weighted graphs. Differentiation in the
weight function will lead to the same phenomenon of heavy–weight regions swallowing up light–
weight regions. It should be noted that this situation is problematic for every cluster method based
on single link clustering.

On the credit side I find that at least in a number of examples the idea of considering higher length
paths works well. The manoeuvre of adding loops to graphs is clearly beneficial, and the reason
for this lies in the fact that parity dependence is removed, leading to a further differentiation of
the associated similarity coefficient. With the plusses and minuses of k–path clustering in mind, the
MCL algorithm is now ready to come to the fore.

4. Introducing the MCL algorithm 11

4. Introducing the MCL algorithm

Given the considerations in the last sections, it seems interesting to investigate models in which the
weight of an edge is not interpreted globally, contrary to single link clustering. The MCL algorithm
achieves this by, for each vertex, rescaling the sum of all weights of all outgoing arcs to one, which
in effect boils down to a transformation of the graph G into a Markov graph.

Definition 5 Let G be a graph on d nodes, let M =MG be its associated matrix. The Markov matrix
associated with a graph G is denoted by TG and is formally defined by letting its qth column be the
qth column of M normalized, as follows.

TGpq = Mpq /
d−1∑
i=0

(Miq)

The Markov matrix TG corresponds with a graph G′, which is called the associated Markov graph
of G. The directed weight function of G′, which is encoded in the matrix TG, is called the localized
interpretation of the weight function of G. �

Given a graph G, the MCL algorithm first creates the associated Markov matrix M = TG, which has
the effect that variations in the weight function of G, for each tail node involved, affect the whole
corresponding column in M. The matrix M is no longer symmetric. The value Mpq now indicates “how
much the vertex q is attracted to the vertex p”, and this is meaningful only in the context of the other
values found in the qth column. It is still possible to move a node away from all its neighbours by
increasing the weight of its loop. Before the MCL algorithm is fully introduced by means of an example
session, I consider the behaviour of powers of M. In Figure 7 the matrix M = TG2 (corresponding with
the graph G2 in Figure 4) is given which results after the rescaling procedure, followed by three
successive powers and a matrix labeled M∞. The matrix M is column stochastic. The fact that for
each of its columns all nonzero values are homogeneously distributed can be interpreted as “each
node is equally attracted to all of its neighbours”.

All powers of M are column stochastic matrices too. For any Markov matrix N, the powers N(i) have
a limit, which is possibly cyclic (i.e. consisting of a sequence of matrices rather than a single matrix).
A connected component C of a graph G, which has the property that the greatest common divisor of
the set of lengths of all circuits in C is 1, is called regular. If for every vertex in C there is a path
in C leading to any other vertex in C it is called ergodic. If the underlying graph of a Markov matrix
consists of ergodic regular components only, then the limit of the row N(i) is non–cyclic. The graph G2

in Figure 4 clearly has this property, and the limit is found in Figure 7, denoted as M∞. The columns
of M∞ each equal the unique eigenvector of M associated with eigenvalue 1. This eigenvector e
denotes the equilibrium state of the Markov process associated with M. A good review of Markov
theory in the setting of nonnegative matrices can be found in [1].

As is to be expected, the equilibrium state e spreads its mass rather homogeneously among the states
or vertices of G2. However, the initial iterands Mk, k = 2, . . . , exhibit the same behaviour as did the
matrices (N + I)k in Figure 5, inducing the similarity coefficients Zk,G. Transition values Mk

pq are
relatively high if the vertices p and q are located in the same dense region. There is a correspondence
between the numerical distribution of the column Mk

p(q), and the distribution of the edges of G2 over
dense regions and sparse boundaries.

Boosting the multiplier effect
The obvious interpretation of the new weight function is in terms of flow rather than in terms of path
sets, but the observed behaviour of matrix multiplication is similar. The new interpretation of the

4. Introducing the MCL algorithm 12



0.2000 0.2500 −− −− −− 0.3333 0.2500 −− −− 0.2500 −− −−
0.2000 0.2500 0.2500 −− 0.2000 −− −− −− −− −− −− −−
−− 0.2500 0.2500 0.2000 0.2000 −− −− −− −− −− −− −−
−− −− 0.2500 0.2000 −− −− −− 0.2000 0.2000 −− 0.2000 −−
−− 0.2500 0.2500 −− 0.2000 −− 0.2500 0.2000 −− −− −− −−

0.2000 −− −− −− −− 0.3333 −− −− −− 0.2500 −− −−
0.2000 −− −− −− 0.2000 −− 0.2500 −− −− 0.2500 −− −−
−− −− −− 0.2000 0.2000 −− −− 0.2000 0.2000 −− 0.2000 −−
−− −− −− 0.2000 −− −− −− 0.2000 0.2000 −− 0.2000 0.3333

0.2000 −− −− −− −− 0.3333 0.2500 −− −− 0.2500 −− −−
−− −− −− 0.2000 −− −− −− 0.2000 0.2000 −− 0.2000 0.3333
−− −− −− −− −− −− −− −− 0.2000 −− 0.2000 0.3333


M = TG2+I

0.2567 0.1125 0.0625 −− 0.1000 0.2611 0.1750 −− −− 0.2583 −− −−
0.0900 0.2250 0.1750 0.0500 0.1400 0.0667 0.1000 0.0400 −− 0.0500 −− −−
0.0500 0.1750 0.2250 0.0900 0.1400 −− 0.0500 0.0800 0.0400 −− 0.0400 −−
−− 0.0625 0.1125 0.2100 0.0900 −− −− 0.1600 0.1600 −− 0.1600 0.1333

0.1000 0.1750 0.1750 0.0900 0.2300 −− 0.1125 0.0800 0.0400 0.0625 0.0400 −−
0.1567 0.0500 −− −− −− 0.2611 0.1125 −− −− 0.1958 −− −−
0.1400 0.1000 0.0500 −− 0.0900 0.1500 0.2250 0.0400 −− 0.1750 −− −−
−− 0.0500 0.1000 0.1600 0.0800 −− 0.0500 0.2000 0.1600 −− 0.1600 0.1333
−− −− 0.0500 0.1600 0.0400 −− −− 0.1600 0.2267 −− 0.2267 0.2444

0.2067 0.0500 −− −− 0.0500 0.2611 0.1750 −− −− 0.2583 −− −−
−− −− 0.0500 0.1600 0.0400 −− −− 0.1600 0.2267 −− 0.2267 0.2444
−− −− −− 0.0800 −− −− −− 0.0800 0.1467 −− 0.1467 0.2444


M2



0.2127 0.1329 0.0687 0.0125 0.0900 0.2587 0.1975 0.0200 −− 0.2378 −− −−
0.1063 0.1575 0.1475 0.0530 0.1360 0.0689 0.0950 0.0460 0.0180 0.0767 0.0180 −−
0.0550 0.1475 0.1575 0.0950 0.1340 0.0167 0.0600 0.0780 0.0500 0.0250 0.0500 0.0267
0.0125 0.0663 0.1188 0.1605 0.0850 −− 0.0225 0.1560 0.1647 −− 0.1647 0.1511
0.0900 0.1700 0.1675 0.0850 0.1545 0.0542 0.1263 0.0960 0.0500 0.0688 0.0500 0.0267
0.1552 0.0517 0.0125 −− 0.0325 0.2045 0.1163 −− −− 0.1815 −− −−
0.1580 0.0950 0.0600 0.0180 0.1010 0.1550 0.1575 0.0260 0.0080 0.1725 0.0080 −−
0.0200 0.0575 0.0975 0.1560 0.0960 −− 0.0325 0.1520 0.1627 0.0125 0.1627 0.1511
−− 0.0225 0.0625 0.1647 0.0500 −− 0.0100 0.1627 0.2036 −− 0.2036 0.2326

0.1902 0.0767 0.0250 −− 0.0550 0.2420 0.1725 0.0100 −− 0.2253 −− −−
−− 0.0225 0.0625 0.1647 0.0500 −− 0.0100 0.1627 0.2036 −− 0.2036 0.2326
−− −− 0.0200 0.0907 0.0160 −− −− 0.0907 0.1396 −− 0.1396 0.1793


M3



0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962
0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769
0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769
0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962
0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962
0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577
0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769
0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962
0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962
0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769
0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962 0.0962
0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577


M∞

Figure 7: Powers of M = TG2+I, the Markov matrix associated with the graph G2 in Figure 4,
loops added to G2

4. Introducing the MCL algorithm 13

weight function more or less suggests a speculative move. Flow is easier within dense regions than
across sparse boundaries, however, in the long run this effect disappears. What if the initial effect is
deliberately boosted by adjusting the transition probabilities? A logical model is to transform a Markov
matrix T by transforming each of its columns. For each vertex, the distribution of its preferences
(i.e. transition values) will be changed such that preferred neighbours are further favoured and less
popular neighbours are demoted. A logical candidate for achieving this effect is by raising all the
entries in a given column to a certain power greater than one (e.g. squaring), and rescaling the
column to have sum 1 again. This has the advantage that vectors for which the nonzero entries are
nearly homogeneously distributed are not so much changed, and that different column positions with
nearly identical values will still be close to each other after rescaling. This is explained by observing
that what effectively happens is the exponentiation of the ratios of all the pairs (Tp1q, Tp2q). Below
four vectors and their image after rescaling with power coefficient 2 are listed. The notation Γrv is
introduced in Definition 6.

Vector v :


0
3
0
1
2




0

1/2
0

1/6
1/3




1/4
1/4
1/4
1/4
0




0.1513
0.1587
0.2177
0.2251
0.2472




0.0861
0.0000
0.1126
0.8013
0.0000



Image Γ2v :


0

9/14
0

1/14
4/14




0

9/14
0

1/14
4/14




1/4
1/4
1/4
1/4
0




0.1104
0.1215
0.2287
0.2445
0.2949




0.0112
0.0000
0.0191
0.9697
0.0000



Definition 6 Given a matrix M ∈ IRk×l, M ≥ 0, and a real number r > 0, the matrix resulting from
rescaling each of the columns of M with power coefficient r is called ΓrM, and Γr is called the inflation
operator with power coefficient r . Formally, the action of Γr : IRk×l → IRk×l is defined by

(ΓrM)pq = (Mpq)r /
k−1∑
i=0

(Miq)r

If the subscript is omitted, it is understood that the power coefficient equals 2. �

Definition 7 A nonnegative vector v is called homogeneous if all its nonzero entries are equal. A
nonnegative matrix is called column–homogeneous if each of its columns is homogeneous. �

The set of homogeneous probability vectors is precisely the set of vectors which are invariant under
Γr , r ≠ 1 (See Section 6). When applied to vectors, the Γr operator has a nice mathematical property
in terms of majorization. This is discussed in Section 6. Figure 8 gives the result of applying Γr to
the Markov matrix M2 given in Figure 7. The vital step now is to iterate the process of alternatingly
expanding information flow via normal matrix multiplication and contracting information flow via
application of Γr . Thus, the matrix ΓrM2 is squared, and the inflation operator is applied to the
result. This process is repeated ad libitum. The invariant of the process is that flow in dense regions
profits from both the expansion and the inflation step. A priori it is uncertain whether the process
converges, or whether convergence will lead to a meaningful limit. However, the heuristic which leads
to the formulation of the process suggests that something will happen for graphs possessing sparse

5. Formal description of the MCL algorithm 14

boundaries. The transition values corresponding to edges crossing sparse boundaries are given a
hard time by the process, and if anything, it is to be expected that they will tend to zero. This is
exactly what happens for the example graph. The 3rd iterand, the 6th iterand, and the stable limit of
this process (provisorily denoted by M∞

mcl) are given in Figure 8 as well.

The matrix M∞
mcl clearly is an idempotent under both matrix multiplication and the inflation operator.

It has a straightforward interpretation as a clustering. Four nodes can be said to be an attractor,
namely those nodes that have positive return probability. The nodes 8 and 10 are as much attracted
to each other as they are to themselves. The rest of the vertex set of G2 can be completely partitioned
according to the nodes to which they are attracted. Sweeping attractors and the elements they attract
together, the partitioning {3,7,8,10,11} {0,5,6,9} {1,2,4} results, also found earlier with k–path
clustering.

In the next section the MCL process is introduced, and the relationship between equilibrium states of
the MCL process and clusterings is formalized. A certain subset of the equilibrium states only admits
an interpretation as a clustering with overlap. This is related to the presence of symmetry in the
graphs and matrices used. Consider the matrix M depicted in Figure 4, corresponding with a line–
graph on 7 nodes, loops added to each node. An MCL run with e(i)

c= 2, r(i)
c= 2 results in the stable

limit T∞mcl. The nodes 1 and 5 are attractors, the node sets {0,2}, and {4,6}, are respectively attracted
to them. The vertex 3 is equally attracted to 1 and 5. The formation of two clusters, or different
regions of attraction, is explained by the fact that the nodes at the far ends, i.e. 0,1,5,6 have higher
return probability after the first iterations than the nodes in the middle. Given the symmetry of the
graph, it is only natural that node 3 is equally attracted to both regions.

5. Formal description of the MCL algorithm

The general design of the MCL algorithm is given in Figure 10. The main skeleton is formed by the
alternation of matrix multiplication and inflation in a for loop. The kth iteration of this loop yields
two matrix resultants labeled T2k and T2k+1. The resultants with odd index 2k − 1 are fed to the
routine Expand which takes the ekth power of this matrix, yielding the 2kth resultant. The inflation op-
erator Γrk is applied to resultants with even index 2k, yielding the next odd–labeled matrix T2k+1. The
expansion row e(i) and the inflation row r(i) influence the granularity of the resulting partition. The
matrices in Figure 8 correspond with an MCL session in which e(i)

c= 2 and r(i)
c= 2. The stopcriterion

tests whether the current iterand is sufficiently close to an idempotent matrix. If this is the case, the
process stops and the last resultant is fed to an interpretation routine. Definition 12 in this section,
using Theorem 1, provides a mapping from the set of nonnegative void–free idempotent matrices to
the set of overlapping clusterings. There are exceptional cases in which the iterands cycle around a
periodic limit. These cases, and the issues of convergence and equilibrium states at large, are dis-
cussed in the following section. It is useful to speak about the algebraic process which is computed
by the MCL algorithm in its own right. To this end, the notion of an MCL process is defined.

Definition 8 Denote the operator which raises a square matrix to the kth power, k ∈ N,k ≥ 1,
by Expk. �

Definition 9 A nonnegative column–homogeneous matrix M which is idempotent under matrix mul-
tiplication is called doubly idempotent. �

Definition 10 A general MCL process is determined by two rows e(i), r(i), where ei ∈ IN, ei > 1, and
ri ∈ IR, ri > 0, and is written

(· , e(i), r(i)) (5.1)

5. Formal description of the MCL algorithm 15



0.3801 0.0867 0.0268 −− 0.0767 0.2945 0.2012 −− −− 0.3195 −− −−
0.0467 0.3469 0.2099 0.0171 0.1503 0.0192 0.0657 0.0115 −− 0.0120 −− −−
0.0144 0.2099 0.3469 0.0555 0.1503 −− 0.0164 0.0460 0.0090 −− 0.0090 −−
−− 0.0268 0.0867 0.3021 0.0621 −− −− 0.1839 0.1433 −− 0.1433 0.0828

0.0577 0.2099 0.2099 0.0555 0.4057 −− 0.0832 0.0460 0.0090 0.0187 0.0090 −−
0.1416 0.0171 −− −− −− 0.2945 0.0832 −− −− 0.1836 −− −−
0.1131 0.0685 0.0171 −− 0.0621 0.0972 0.3326 0.0115 −− 0.1466 −− −−
−− 0.0171 0.0685 0.1753 0.0491 −− 0.0164 0.2874 0.1433 −− 0.1433 0.0828
−− −− 0.0171 0.1753 0.0123 −− −− 0.1839 0.2876 −− 0.2876 0.2782

0.2464 0.0171 −− −− 0.0192 0.2945 0.2012 −− −− 0.3195 −− −−
−− −− 0.0171 0.1753 0.0123 −− −− 0.1839 0.2876 −− 0.2876 0.2782
−− −− −− 0.0438 −− −− −− 0.0460 0.1204 −− 0.1204 0.2782


Γ2M2, M defined in Figure 7



0.4478 0.0801 0.0226 0.0003 0.0681 0.4257 0.3593 0.0004 0.0000 0.4319 0.0000 −−
0.0176 0.2849 0.2280 0.0070 0.1759 0.0056 0.0330 0.0049 0.0003 0.0068 0.0003 0.0000
0.0048 0.2226 0.2895 0.0224 0.1726 0.0004 0.0101 0.0172 0.0030 0.0007 0.0030 0.0009
0.0002 0.0180 0.0590 0.2217 0.0400 0.0000 0.0008 0.1870 0.1386 0.0000 0.1386 0.0990
0.0265 0.3121 0.3136 0.0276 0.4389 0.0052 0.0539 0.0215 0.0033 0.0098 0.0033 0.0009
0.1161 0.0069 0.0005 0.0000 0.0036 0.1574 0.0846 0.0000 −− 0.1308 −− −−
0.0963 0.0403 0.0127 0.0004 0.0371 0.0831 0.1968 0.0008 0.0000 0.1035 0.0000 0.0000
0.0002 0.0115 0.0417 0.1723 0.0287 0.0000 0.0016 0.1982 0.1326 0.0001 0.1326 0.0964
0.0000 0.0013 0.0147 0.2558 0.0088 −− 0.0001 0.2655 0.3264 0.0000 0.3264 0.3456
0.2904 0.0209 0.0022 0.0000 0.0170 0.3225 0.2596 0.0001 0.0000 0.3164 0.0000 −−
0.0000 0.0013 0.0147 0.2558 0.0088 −− 0.0001 0.2655 0.3264 0.0000 0.3264 0.3456
−− 0.0000 0.0008 0.0367 0.0005 −− 0.0000 0.0388 0.0694 −− 0.0694 0.1116


Γ2(Γ2M2 · Γ2M2)



0.9973 0.0002 0.0001 0.0000 0.0002 0.9973 0.9973 0.0000 −− 0.9973 −− −−
0.0000 0.0002 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 −− 0.0000 −− −−
0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 −− 0.0000 −− −−
−− 0.0000 0.0000 0.0000 0.0000 −− −− 0.0000 0.0000 −− 0.0000 0.0000

0.0000 0.9995 0.9996 0.0000 0.9995 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 −− 0.0000 0.0000 0.0000 −− −− 0.0000 −− −−
0.0000 0.0000 0.0000 −− 0.0000 0.0000 0.0000 −− −− 0.0000 −− −−
−− 0.0000 0.0000 0.0000 0.0000 −− −− 0.0000 0.0000 −− 0.0000 0.0000
−− 0.0000 0.0000 0.5000 0.0000 −− −− 0.5000 0.5000 −− 0.5000 0.5000

0.0027 0.0000 0.0000 −− 0.0000 0.0027 0.0027 −− −− 0.0027 −− −−
−− 0.0000 0.0000 0.5000 0.0000 −− −− 0.5000 0.5000 −− 0.5000 0.5000
−− −− 0.0000 0.0000 −− −− −− 0.0000 0.0000 −− 0.0000 0.0000


(Γ2 ◦ Squaring) iterated six times on M



1.0000 −− −− −− −− 1.0000 1.0000 −− −− 1.0000 −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− 1.0000 1.0000 −− 1.0000 −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.5000 −− −− −− 0.5000 0.5000 −− 0.5000 0.5000
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.5000 −− −− −− 0.5000 0.5000 −− 0.5000 0.5000
−− −− −− −− −− −− −− −− −− −− −− −−


M∞
mcl

Figure 8: Iteration of (Γ2 ◦ Squaring) with initial iterand M defined in Figure 7.

These matrices were computed by an implementation of the MCL algorithm. Entries marked ‘−−’ are either zero
because that is the exact value they assume (this is true for the first two matrices) or because the computed value fell
below the machine precision (which is true for the last two matrices). Entries equal to ‘0.0000’ are greater than zero
but smaller than the precision with which these matrices are printed, i.e. 10−4.

5. Formal description of the MCL algorithm 16



0.5000 0.3333 −− −− −− −− −−
0.5000 0.3333 0.3333 −− −− −− −−
−− 0.3333 0.3333 0.3333 −− −− −−
−− −− 0.3333 0.3333 0.3333 −− −−
−− −− −− 0.3333 0.3333 0.3333 −−
−− −− −− −− 0.3333 0.3333 0.5000
−− −− −− −− −− 0.3333 0.5000


Initial iterand T1 =M



0.3221 0.2393 0.0493 0.0028 0.0000 −− −−
0.6138 0.6120 0.2664 0.0420 0.0021 0.0000 −−
0.0606 0.1275 0.4259 0.2165 0.0383 0.0010 0.0000
0.0035 0.0200 0.2159 0.4662 0.2143 0.0200 0.0034
0.0000 0.0011 0.0403 0.2259 0.4311 0.1282 0.0607
−− 0.0000 0.0022 0.0436 0.2652 0.6116 0.6137
−− −− 0.0000 0.0029 0.0490 0.2392 0.3220


Intermediate iterand T5 (k equals 2)



0.0284 0.0280 0.0191 0.0015 0.0000 0.0000 0.0000
0.9647 0.9631 0.8226 0.1205 0.0016 0.0000 0.0000
0.0066 0.0082 0.0768 0.1362 0.0087 0.0000 0.0000
0.0003 0.0006 0.0686 0.4309 0.0673 0.0006 0.0003
0.0000 0.0000 0.0109 0.1677 0.0863 0.0088 0.0069
0.0000 0.0000 0.0020 0.1414 0.8173 0.9627 0.9644
0.0000 0.0000 0.0000 0.0018 0.0187 0.0280 0.0284


Intermediate iterand T9 (k equals 4)



−− −− −− −− −− −− −−
1.0000 1.0000 1.0000 0.5000 −− −− −−
−− −− −− −− −− −− −−
−− −− −− −− −− −− −−
−− −− −− −− −− −− −−
−− −− −− 0.5000 1.0000 1.0000 1.0000
−− −− −− −− −− −− −−


Stable limit T∞mcl

Figure 9: MCL run on a line–graph on 7 nodes

5. Formal description of the MCL algorithm 17

G is a weighted directed void–free graph.
ei ∈ IN, ei > 1, i = 1,

MCL (G, e(i), r(i)) { # ri ∈ IR, ri > 0, i = 1,

T1 = TG; # Create associated Markov graph.
according to Definition 5

for k = 1 . . .∞) {
T2k = expand (T2k−1, ek);
T2k+1 = inflate (T2k, rk);

status = stopcriterion(Information(MCL, k));

if (status ≡ IDEMPOTENT) break; # See Theorem 1 and Definition 12.
elif (status ≡ PERIODIC) exit; # Exceptional cases, see Sections 7, 9.
elif (status ≡ WAITING) ;

}
clustering = interpret(T2k+1);

}

proc expand(T ,n) { # Matrix T is square column stochastic.
n ∈ IN,n > 1.

R = Expn(T);
return R;

}

proc inflate(T , r) { # Matrix T is square column stochastic.
r ∈ IR, r > 0.

R = Γr (T);
return R;

}

proc stopcriterion(information) {
Recognizes convergence towards equilibrium states.

}

proc information(MCL, k) {
Has access to a subset of all information generated up until the kth step.
Returns a subset of this subset.

}

proc interpret(T) {
T is a nonnegative void–free idempotent matrix.
Return the associated clustering according to Definition 12.

}

Figure 10: A general setup for theMCL algorithm

5. Formal description of the MCL algorithm 18

An MCL process for stochastic matrices of fixed dimension d× d is written

(·d×d , e(i), r(i)) (5.2)

An MCL process with input matrix M, where M is a stochastic matrix, is determined by two rows e(i),
r(i) as above, and by M. It is written

(M, e(i), r(i)) (5.3)

Associated with an MCL process (M, e(i), r(i)) is an infinite row of matrices T(i) where T1 = M, T2i =
Expei (T2i−1), and T2i+1 = Γri (T2i), i = 1, . . . ,∞. �

In practice, the algorithm iterands converge nearly always to a doubly idempotent matrix. A suffi-
cient property for associating a (possibly overlapping) clustering with a nonnegative void–free matrix
is that the matrix is idempotent under matrix multiplication. The following theorem characterizes
the structural properties of nonnegative void–free idempotent matrices. Using this theorem, Defini-
tion 12 establishes a mapping from the class of nonnegative void–free idempotent matrices to the set
of overlapping clusterings. Nonnegative doubly idempotent matrices do not have stronger structural
properties than matrices which are idempotent under matrix multiplication only. A further charac-
terization of doubly idempotent column stochastic matrices is given in Theorem 2. The following
theorem can easily be derived from the decomposition of nonnegative idempotent (not necessarily
void–free) matrices given in [1]. However, I choose to give a proof along different lines here, which is
inspired more by graph–theoretical considerations.

Theorem 1 Let M be a nonnegative void–free idempotent matrix of dimension N, let GM be its
associated graph. For s, t, nodes in GM , write s → t if there is an arc in GM from s to t. By definition,
s → t ⇐⇒ Mts ≠ 0. Let α,β, γ be nodes in GM . The following implications hold.

(α→ β)∧ (β→ γ) =⇒ α → γ (5.4)

(α→ α)∧ (α→ β) =⇒ β→ α (5.5)

α → β =⇒ β→ β (5.6)

Proof The first statement follows from the fact that Mγα = (M2)γα ≥MγβMβα > 0. Suppose the second
statement does not hold. Denote by Vα the set of nodes which reach α, denote by Vβ the set of nodes
reachable from β. Then Vα ≠∅ because α → α, and Vβ ≠∅ because M is void–free. It is furthermore
true that Vα ∩ Vβ = ∅ and that there is no arc going from Vβ to Vα, for this would imply β → α
and β→ β by 5.4. For u,w ∈ Vα,v ∈ V , the property u→ v →w implies v ∈ Vα. For u,w ∈ Vβ, v ∈ V ,
the property u → v → w implies v ∈ Vβ. It follows that for all 2–step paths between node pairs
respectively lying in Vα and Vβ only indices lying in the same node set Vα, respectively Vβ, need be
considered. Reorder M and partition the matrix such that its upper left block has the form(

A11 A12

A21 A22

)

where the indices of the diagonal block A11 correspond with all the elements in Vα, and the indices of
the diagonal block A22 correspond with all the elements in Vβ. It follows from the construction of Vα
and Vβ that all entries of A21 are positive, since for all u ∈ Vα,v ∈ Vβ, it is true that u → α → β → v.
Similarly, A12 = 0. The observation made on 2–step paths with beginning and ending in Vα, resp. Vβ,
implies that A11 = A11

2 and A22 = A22
2. Furthermore, the inequality A21 ≥ A21A11 + A22A21 holds.

Multiplying both sides on the left with A22 and on the right with A11, the inequality A22A21A11 ≥

5. Formal description of the MCL algorithm 19

2A22A21A11 results. The fact that A21 is positive, and the fact that A11 contains one positive row, i.e.
the row corresponding with α, imply that A21A11 is positive too. Since A22 is nonzero, this implies
that the product A22A21A11 is nonnegative, leading to a contradiction. The third statement follows
by observing that there must be a path of infinite length going from α to β in GM , that is, a path
containing a circuit. If this were not the case, there would exist a k ∈ IN such that (Mk)βα = 0,
whereas Mβα ≠ 0. The existence of such a circuit implies by 5.5 and 5.6 that β→ β. �

Definition 11 Let GM = (V,w) be the associated graph of a nonnegative void–free idempotent matrix
of dimension N, where V = {0, . . . , N − 1}. The node α ∈ V is called an attractor if Mαα ≠ 0. If α is
an attractor then the set of its neighbours is called an attractor system. �

By Theorem 1, each attractor system in GM induces a weighted subgraph in GM which is complete.
Theorem 1 furthermore provides the means to formally associate an overlapping clustering with each
nonnegative void–free idempotent matrix. Let M be an arbitrary nonnegative idempotent matrix,
let GM = (V,w) be its associated graph. Denote by Vx the set of attractors of GM. Denote the ‘arc
from · to ·’ relationship in G by (· → ·). The first two statements in Theorem 1 imply that → is
transitive and symmetric on Vx, and → is reflexive on Vx by definition of Vx. Accordingly, → induces
equivalence classes on Vx. Denote the set of equivalence classes by {E1, . . . , Ed}. The definition below
requires the input of a void–free matrix, in order to be able to distribute the elements of V\Vx over
the classes Ei.

Definition 12 Let M be a nonnegative void–free idempotent matrix. Let GM = (V,w) be its asso-
ciated graph, let → be the arc relation associated with GM. Let Vx be the set of attractors in GM ,
let E = {E1, . . . , Ed} be the set of equivalence classes of → on Vx. Define a relation ν on E × V
by setting ν(E,α) = 1 if ∃β ∈ E with α → β, and ν(E,α) = 0 otherwise. The overlapping cluster-
ing CLM = {C1, . . . , Cd} associated withM, defined on V , has d elements. The ith cluster Ci, i = 1, . . . , d
is defined by Equation 5.7.

Ci = {
v ∈ V | ν(Ei, v) = 1

}
(5.7)

�

Note that the number of clusters is equal to the number of strongly connected components in the
directed graph GM . The inclusion Ei ⊂ Ci implies that each cluster has at least one element which is
unique for this cluster. All this is in line with the procedures followed while studying the example in
the previous section. It should be noted that there is in general a very large number of nonnegative
void–free idempotent matrices which yield the same overlapping clustering according to Definition
12. This is caused by the fact that the number of attractors and the distribution of the attractors
over the clusters may both vary without resulting in different clusterings. E.g., printing attractors in
boldface, the clustering {{0,1}, {2,3,4}} results from all 21 possible combinations of the distributions
{0,1}, {0,1}, and {0,1} for the first cluster, and the distributions {0,1,2}, {0,1,2}, {0,1,2}, {0,1,2},
{0,1,2}, {0,1,2}, and {0,1,2} for the second cluster. Another example may show the extent to which
complicated structure can be present in nonnegative idempotent matrices. The matrix

5. Formal description of the MCL algorithm 20



1/3 1/3 1/3 0 0 0 0 0 0 0 1/3 1/6 0 0 1/5
1/3 1/3 1/3 0 0 0 0 0 0 0 1/3 1/6 0 0 1/5
1/3 1/3 1/3 0 0 0 0 0 0 0 1/3 1/6 0 0 1/5
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 1/4 1/4 1/4 1/4 0 0 0 0 0 1/7 0 0
0 0 0 0 0 0 0 1/2 1/2 0 0 1/6 1/7 1/2 1/5
0 0 0 0 0 0 0 1/2 1/2 0 0 1/6 1/7 1/2 1/5
0 0 0 0 0 0 0 0 0 1 0 1/6 1/7 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(5.8)

is nonnegative idempotent and gives rise to the set Vx = {0,1,2,3,4,5,6,7,8,9}, to the equiva-
lence classes {0,1,2}, {3,4,5,6}, {7,8}, {9}, and to the overlapping clustering {0,1,2, 10,11,14},
{3,4,5,6,12}, {7,8,11,12,13,14}, {9,11,12}. This matrix is also doubly idempotent and column
stochastic. The MCL algorithm converges for nearly all input graphs to a doubly idempotent column
stochastic limit. For fixed dimension t, the class of doubly idempotent column stochastic matrices
is finite, but extremely large. The fact that it is finite is easy to see: There is only a finite number
of values that each matrix entry can assume, namely the set of rationals {0,1,1/2, . . . ,1/t}. The set
of doubly idempotent column stochastic matrices of dimension t can equivalently be characterized in
the following terms.

Theorem 2 Fix t ∈ N, t > 0. Let V = {0, . . . , t − 1} be a set of indices of cardinality t. Let Vx be
a non–empty subset of V , let ε be an equivalence relation on Vx, inducing equivalence classes
E = {E1, . . . , Ed}. Let ν be a relation defined on E × V such that ν(E,α) = 1 for all E ∈ E, α ∈ E,
and ν(E,α) = 0 for all E ∈ E, α ∈ Vx\E, and such that for all α ∈ V\Vx there exists at least one E ∈ E
with ν(E,α) = 1.

For fixed t ∈ N, the set of 4–tuples (V, Vx, ε, ν) is isomorphic to the set of doubly idempotent column
stochastic matrices of dimension t.

Proof By Theorem 1 one can construct Vx, ε, and ν, given a nonnegative void–free doubly idem-
potent matrix M, analogous to Definition 12. The fact that M is void–free gives the desired prop-
erty that ν(E,α) is not identical to zero for fixed α ∈ V\Vx and varying E. Vice versa, given a
tuple (V, Vx, ε, ν), a doubly idempotent column stochastic matrix M can be constructed as follows.
Define N(β) = ∑E∈E ν(E, β) · |E|, that is ‘N(β) equals the sum of the size of the attractor spaces to
which it is attracted’. Define M by setting

Mαβ =
1/N(β) if ∃E ∈ E with α ∈ E ∧ ν(E, β).

0 otherwise.
(5.9)

A straightforward calculation verifies that M is doubly idempotent and column stochastic. �

The results in this section, especially Definition 12, which uses Theorem 1, establish a clear rela-
tionship between nonnegative void–free idempotent matrices and overlapping clusterings. In practice
as observed so far, the equivalence classes E1, . . . , Ed (see Definition 12) tend to be singleton sets,
and overlap in the setting of undirected graphs has been observed only for graphs having certain
symmetries. This is discussed in Section 9.

6. Mathematical properties of the Γ operator 21

6. Mathematical properties of the Γ operator

The Γ operator preserves the majorization relationship between a probability vector and its image.
This is stated in Lemma 3. Concerning just Γ , this is a nice property. However, it does not give enough
foothold by itself for describing the intricate interaction of the Γ operator with the Exp operator.
This subject will be discussed in greater detail in a forthcoming paper. The Γ operator furthermore
distributes over the Kronecker product of matrices, which is stated in Theorem 3. Combined with the
distributivity of normal matrix exponentiation over the Kronecker product, this yields the result that
for each MCL process the Kronecker product of the respective iterands corresponding with two input
matrices A and B, is equal to the iterands corresponding with the input matrix which is the Kronecker
product of A and B. This property is used in Section 7 to show the existence of certain periodic limits
of the MCL process.

Following [10], if z denotes a real vector of length n, then z[0] ≥ z[1] ≥ . . . ≥ z[n−1] denote the
components of z in decreasing order. The vector z↓ = (z[0], z[1], . . . , z[n−1]) is called the decreasing
rearrangement of z.

Definition 13 Let x,y be real nonnegative vectors of length n. The vector x is said to majorize the
tuple y if 6.1 and 6.2 hold. This is denoted by x ≺ y.

x[0] + x[1] + . . .+ x[k] ≤ y[0] +y[1] + . . .+y[k] k = 0, . . . , n− 2 (6.1)

x[0] + x[1] + . . .+ x[n−1] = y[0] +y[1] + . . .+y[n−1] (6.2)

�

The relationship ≺ entails a rather precise mathematical notion of one vector being more “spread
out” than another vector. It turns out that the inflation operator Γr widens probability vectors for
values r > 1, and contracts probability vectors for values r < 1, which is stated in Lemma 3. This
lemma follows from the fact that the vectors π and Γrπ satisfy the conditions of Lemma 4. The latter
lemma, which can be found in [10], is proven.

Lemma 3 Let π be a probability vector, let r be a real number, r > 0. The two inequalities 6.3, 6.4,
are implied by the fact that π and Γrπ satisfy the conditions of Lemma 4. The two equalities 6.5, 6.6
are obvious.

π ≺ Γrπ r > 1 (6.3)

π � Γrπ r < 1 (6.4)

π = Γrπ r = 1 (6.5)

π = Γrπ π is homogeneous (6.6)

Lemma 4 ([10], page 179) If ai > 0, i = 0, . . . , n − 1, b0 ≥ b1 ≥ . . . ≥ bn−1 > 0, and b0/a0 ≤ b1/a1 ≤
. . . ≤ bn−1/an−1, then (a/

∑
a) � (b/∑b).

Proof The hypothesis implies a0 ≥ . . . ≥ an−1 > 0. We need to prove for k = 0, . . . , n− 2,

k∑
j=0

aj /
n−1∑
l=0

al ≥
k∑
j=0

bj /
n−1∑
l=0

bl

6. Mathematical properties of the Γ operator 22

This follows from

k∑
j=0

aj
n−1∑
l=0

bl −
k∑
j=0

bj
n−1∑
l=0

al =
k∑
j=0

aj
n−1∑
l=k+1

bl −
k∑
j=0

bj
n−1∑
l=k+1

al

=
k∑
j=0

n−1∑
l=k+1

ajal(
bl
al
− bj
aj
) ≥ 0

�

Theorem 3 Let A,B be nonnegative matrices of respective dimensions s1×t1 and s2×t2, let r ∈ IR be
greater than zero. Denote the Kronecker product by (· ⊗ ·). Equation 6.7 holds.

Γr (A⊗ B) = ΓrA⊗ Γr B (6.7)

Proof Use the following notation for the Kronecker product of matrices. Let (A⊗ B)i,j,k,l denote the
entry (A⊗ B)is2+k,jt2+l), which is by definition equal to AijBkl. Here i = 0, . . . , s1 − 1, k = 0, . . . , s2 − 1,
j = 0, . . . , t1 − 1, and l = 0, . . . , t2 − 1. I prove identity 6.7 by proving that the ratios between two
entries in the same column is the same on both sides of Equation 6.7. Let i, j, k, l be as above and let
i′, k′ be additional indices within the same bounds as respectively i and k. The indices j, l, identify
the (jt1 + l)th column on both sides of 6.7. The two index pairs (i, k) and (i′, k′) identify two row
entries in this column.

(
Γr (A⊗ B)

)
i,j,k,l(

Γr (A⊗ B)
)
i′ ,j,k′,l

=
(
(A⊗ B)i,j,k,l
(A⊗ B)i′,j,k′,l

)r
=

(
AijBkl
Ai′jBk′l

)r

=
(
Aij
Ai′j

)r (Bkl
Bk′l

)r
=

(
ΓrA

)
ij(

ΓrA
)
i′j

(
Γr B

)
kl(

Γr B
)
k′l

=

(
ΓrA⊗ Γr B

)
i,j,k,l(

ΓrA⊗ Γr B
)
i′,j,k′,l

�

Theorem 4 Let A,B, be square column stochastic matrices with no further restrictions imposed on
their respective dimensions. Let K = A ⊗ B be their Kronecker product. Suppose all three are input
to the same MCL process (·, e(i), r(i)). Denote the respective iterand pairs by (A2i, A2i+1), (B2i, B2i+1),
(K2i, K2i+1), i = 1, . . . ,∞. Identity 6.8 holds.

Kj = Aj ⊗ Bj j = 2, . . . ,∞ (6.8)

Proof The theorem follows from the observation that both matrix exponentiation and Γ distribute
over the Kronecker product. �

7. Equilibrium states of the MCL process 23

7. Equilibrium states of the MCL process

In order to characterize the equilibrium states of the MCL process, I make two extra assumptions on
the input rows r(i) and e(i). These are

i) ri = c eventually, c ∈ IR, c > 1.

ii) ei = 2 eventually.

The main purpose of these requirements is to study for specific parameters whether matrices exist
corresponding with periodic limits. This question will be answered affirmatively below. The first
requirement implies that the process differs genuinely from the usual Markov process. It is necessary
to require ri > 1 eventually in order to ensure that the limit of the corresponding MCL process can in
principle have structural properties which are different from the original input graph in terms of the
number and distribution of the (strongly) connected components. Consider a regular ergodic input
graph (all example graphs in the figures except G3 in Figure 6 are regular and ergodic). The structural
properties of all intermediate iterands are identical, and positive entries can thus only tend to zero
eventually, they can not become equal to zero eventually. It is true only for the limit of the process
that it may differ structurally from the input graph.

The implementation with which experiments were carried out so far uses rows r(i) and e(i) which
have even much simpler structure. The rows are allowed to have a prefix of the same length N, in
which each row is constant. Both rows may assume another constant on the postfix of infinite length
starting at position N + 1. The examples in Section 9 use such input rows.

An equilibrium state corresponds with an MCL process (M, e(i), r(i)) with e(i)
c= 2, and r(i)

c= c > 1, for
which the associated row of matrix pairs (T(2i), T(2i+1)) is periodic. A periodic row of objects is a row
consisting of a finite list of objects repeated infinitely many times. The period of a periodic row is the
minimum cardinality of such a finite list, the period of a constant row is 1. An equilibrium state can
be associated with the input matrix M, with the infinite row (T(2i), T(2i+1)) generated by M, and with
a finite list of matrices constituting a cycle of period p in (T(2i), T(2i+1)). A priori, I distinguish three
different types Li (i = 1, . . . ,3) of equilibrium states for the MCL process with column stochastic input
matrix M, input row r(i)

c= c > 1, and input row e(i)
c= 2. A matrix M is said to be of type Li if its

associated output row is of type Li. In order of decreasing strength of properties, the types Li are:

L1 M is doubly idempotent, implying that all matrices T2i and T2i+1 are equal.

L2 The row of pairs (T2(i), T2(i)+1) has period 1. Even iterands are (Exp2 ◦ Γc)–id, odd iterands are
(Γc ◦ Exp2)–id, and T2i ≠ T2i+1.

L3 The row of pairs (T2(i), T2(i)+1) has period p > 1, that is, T2i = T2(i+p) and T2i+1 = T2(i+p)+1. The
even iterands T2i are idempotents under p iterations of the operator (Exp2◦Γc), the odd iterands
T2i+1 are idempotents under p iterations of the operator (Γc ◦ Exp2).

L3a As above, where the matrix T1 is the Kronecker product of a column homogeneous column
stochastic cyclic matrix P with odd period and a matrix A which is of type L2 or L1. An example
of such P is a permutation matrix containing cycles of odd period only.

Each of the classes L1, L2, and L3 is non–empty. The most important class of equilibrium states
is the large class L1 of doubly idempotent matrices. These matrices are invariant under arbitrary
MCL processes. For dimensions 2,3,4,5 a few matrices of L2 type for c = 2 can be found quickly

7. Equilibrium states of the MCL process 24

(
1− p p
p 1− p

) 1− 2p p p
p 1− 2p p
p p 1− 2p




1− 2p − q p q p
p 1− 2p − q p q
q p 1− 2p − q p
p q p 1− 2p − q




1− 2p − 2q p q q p
p 1− 2p − 2q p q q
q p 1− 2p − 2q p q
q q p 1− 2p − 2q p
p q q p 1− 2p − 2q



General form for (Γ2 ◦Exp2)–id matrices in dimensions 2,3,4, and 5. Explicit solutions for the resulting equations are
given below.

R2a =
(
.77184 .22816
.22816 .77184

)
p = 2

3 − 3√v + 1
18 3√v ,

v = 17
216 +

1
72

√
33

R3a =

2/3 1/6 1/6
1/6 2/3 1/6
1/6 1/6 2/3

 p = 1
6

R4a =


0.60205 0.13265 0.13265 0.13265
0.13265 0.60205 0.13265 0.13265
0.13265 0.13265 0.60205 0.13265
0.13265 0.13265 0.13265 0.60205

 q = p, p = 5
18 − 3√v + 1

162 3√v
v = 67

23328 +
1

2592
√

57

R4b =


0.38592 0.11408 0.38592 0.11408
0.11408 0.38592 0.11408 0.38592
0.38592 0.11408 0.38592 0.11408
0.11408 0.38592 0.11408 0.38592

 q = 1
2 − p, p = 1

3 − 3√v + 1
72 3√v

v = 17
1728 + 1

576
√

33

R4c =


0.59594 0.17610 0.05205 0.17610
0.17610 0.59594 0.17610 0.05205
0.05205 0.17610 0.59594 0.17610
0.17610 0.05205 0.17610 0.59594

 q = p − 4p2, p = 1
3 − 3√v + 18

3√v
v = 13

864 + 1
288

√
57

R5a =


0.5568 0.1108 0.1108 0.1108 0.1108
0.1108 0.5568 0.1108 0.1108 0.1108
0.1108 0.1108 0.5568 0.1108 0.1108
0.1108 0.1108 0.1108 0.5568 0.1108
0.1108 0.1108 0.1108 0.1108 0.5568


q = p, p = 13

60 − 3√v + 11
3600 3√v

v = 233
216000 + 1

36000
√

1545

R5b =


0.5346 0.2087 0.0239 0.0239 0.2087
0.2087 0.5346 0.2087 0.0239 0.0239
0.0239 0.2087 0.5346 0.2087 0.0239
0.0239 0.0239 0.2087 0.5346 0.2087
0.2087 0.0239 0.0239 0.2087 0.5346

 Values are numerically found roots of a polynomial
of degree 8 which is irreducible over the rationals.

Figure 11: (Γ2 ◦ Exp2)–id matrices, computed in Maple.

8. Stability of equilibrium states 25

by algebraic computation. They are depicted in Figure 7. The general graph forms on n nodes,
n = 2, . . . ,5, which were used to derive these examples, are invariant under the automorphism group
of the ring–graph3 of order n. Note that the matrix R4b is the Kronecker product of the matrices
1/2J2 and R2a, where J2 is the all–one matrix of dimension 2. It seems likely that higher dimensional
versions of the forms in Figure 7 have solutions as well. The only clusterings suiting ring graphs
are the two extreme clusterings. Slight perturbations of either the MCL process parameters or the
input graphs lead the MCL algorithm to converge towards a limit of the L1 type, corresponding with
one of the two extreme clusterings. For example, setting p = 101/601 in the 3–dimensional matrix
form in Figure 7 leads the algorithm to convergence to the identity matrix, setting p = 99/601 leads
the algorithm to converge to 1/3 J, where J is the all–one matrix. The same behaviour results after
respectively setting c = 201/100 and c = 199/100. For the latter settings, it is in line with heuristic
considerations that a slight increase in inflation leads the algorithm to converge towards a matrix
corresponding with the top extreme partition (i.e. {V}), and that a slight decrease in inflation leads
the algorithm to converge to a matrix corresponding with the bottom extreme partition (i.e. {V}).

These observations suggest that the class L2 consists of equilibrium states which are very instable by
nature. The image of the column vectors under either Γ2 or Exp2 is very different from the original
vector. For this class, expansion and inflation act as each others inverse. A slight perturbation of the
MCL process parameters or the equilibrium state leads to one of the two getting the upper hand.

So far, all limits resulting from inputting undirected graphs were of the L1 type. If the condition
e(i)

c= 2 is relaxed to e(i)
c= k, where k ∈ IN is a constant, examples of the L3a type can be found as well

by selecting bipartite graphs, setting ei = 3, and refraining from adding loops. This is not surprising,
since in bipartite graphs paths of odd length always go from one of the two node sets to the other.
As was the case with ring–graphs, the relationship between parameter choice, expected behaviour,
and observed behaviour fully agree, so this is an agreeable situation.

The class L3 is nonempty for rows e(i)
c= 2 as well. It is easy to construct matrices of the L3a type,

by taking the Kronecker product of L1– or L2–type matrices and permutation matrices containing odd
permutations only, illustrating the use of Theorem 3. Denote by Lx\Ly the class of matrices satisfying
the Lx constraints but not satisfying the Ly constraints. It is an open question whether matrices of
the type L3\L3a exist. If they exist, I expect them by all means to be as sensitive to perturbations of
parameter settings and matrix values as are the matrices of the L2 type. While the L3 and L2 classes
are of interest for studying the MCL process, they do not form a weak spot of the MCL algorithm. If a
graph constructed from some application such as a thesaurus or a database leads to an MCL process
which at any stage approaches an L2 or L3 type matrix, the input graph must be considered unsuited
for clustering purposes.

8. Stability of equilibrium states

In this section the stability of the equilibrium states in L1 is considered. The setting is as follows.
Let M be the associated matrix of an equilibrium state in L1, let ε be a perturbation matrix such
that M + ε is stochastic. For various types of perturbation ε the limit or set of possible limits of the
perturbed MCL process (M + ε, e(i) c= 2, r(i))

c= 2 is investigated. The states in L1 which are stable in
every respect correspond with doubly idempotent matrices which have precisely one nonzero entry
(equal to 1) in each column. This is stated in Theorem 5. A doubly idempotent matrix M corresponds
with an instable equilibrium state if it has columns with more than one nonzero entry. Two cases can
be distinguished: the case where all columns with multiple entries correspond with nodes which are
attracted to or are part of a single attractor system having more than one attractor (Lemma 6), and
the case where p is not an attractor and is attracted to two different attractor systems (Lemma 7). For

3See Definition 15 for the precise definition of a ring graph.

8. Stability of equilibrium states 26

both cases, it is of interest in which respects the associated clustering of a limit resulting from the
perturbed MCL process may differ from the associated clustering of M.

In the first case, the equilibrium state is shown to be stable on a macroscopic scale which corresponds
with the cluster structure derived from M (Theorem 7). A perturbation ε of M may thus lead the
MCL process (M+ε, e(i), r(i)) to converge towards a different equilibrium state. Theorem 7 guarantees
that this new equilibrium state yields a cluster interpretation which is identical to or a refinement of
the associated clustering of M. For a restricted class of perturbations ε, Theorem 8 guarantees that
the new equilibrium state yields a cluster interpretation which is identical to the associated clustering
of M. These are perturbations only affecting the principal submatrices M[α], where α is any index
set describing an attractor system in M. In words, Theorem 8 states that for such a perturbation an
attractor system cannot split into a number of smaller attractor systems. The proof of the theorem is
elegant and gives confidence that the result extends to arbitrary perturbations (a proof is not given
nor known however).

In the second case, if a perturbation of column p is unevenly spread over the attractor systems
towards which p is attracted, then the process (M, e(i), r(i)) will converge towards a state in which p is
attracted to just one of those systems. This means that the phenomenon of cluster overlap is instable
in nature (Lemma 7).

In a forthcoming paper it will be shown that intermediate iterands of a MCL process have structure,
comparable to but more general than the structure of doubly idempotent matrices as described by
Theorem 1. This structure enables one to associate several overlapping clusterings with each iterand
in the process. Besides giving extra insight in the MCL process and in the interaction of Expk and Γr ,
this gives the means to detect cluster overlap (and consequently graph symmetries) at earlier stages,
which is partial consolation for the instability of the phenomenon of overlap.

The following theorem identifies the equilibrium states in L1 for which the associated matrix M is
attractor for all input matrices M + ε with regard to the MCL process (M + ε, e(i) c= 2, r(i)

c= 2), for ε
small enough.

Theorem 5 The MCL process with standard parameters (·, e(i) c= 2, r(i)
c= 2), converges quadrati-

cally in the neighbourhood of each nonnegative idempotent column stochastic matrix for which every
column has one entry equal to 1 and all the other entries equal to 0.

The formulation of this theorem is rather non–technical. What I shall prove is Lemma 5.

Lemma 5 Let M ∈ IR≥0
n×n be a nonnegative idempotent column stochastic matrix for which every

column has one entry equal to 1 and all other entries equal to 0. Let xi be the row index such that
Mxii = 1. Let f > 0 be a real number and let ε be a matrix in IRn×n, the columns of which add to zero,
such that M + ε is column stochastic and nonnegative, and such that [M + ε]xii ≥ 1 − f . Define the
matrix δ by Γ((M + ε)2) =M + δ.

For f ≥ 1/4 the inequality maxi,j |δij| ≤ 8f 2 holds.

Proof The structure of nonnegative idempotent matrices as described in Theorem 1 implies the
equality xxi = xi, by the implication i → xi =⇒ xi → xi. It furthermore follows from the def-
inition of ε that maxi,j |εij| ≤ f . Consider the entry [M + ε]2xii. The inequalities [M + ε]2xii ≥
[M + ε]2xixi[M + ε]2xii ≥ (1 − f)2 ≥ 1 − 2f hold. Now consider the entry [Γ(M + ε)]xii. It is true
that

∑
k (M + ε)ki2 ≥ (1 − f)2. Furthermore,

∑
k≠xi (M + ε)ki ≤ f and thus

∑
k≠xi (M + ε)ki2 ≤ f 2. It

8. Stability of equilibrium states 27

follows that
∑
k≠xi[Γ(M + ε)]ki ≤ f 2/(1 − f)2, and consequently [Γ(M + ε)]ki ≥ 1 − f 2/(1 − f)2. For

f < 1/4) the inequality 1−f 2/(1−f) ≥ 1−2f 2 holds. Combining this inequality and the previous one
yields the desired result. �

Theorem 6 The equilibrium states of the MCL process in L1 for which the associated doubly idempo-
tent matrices have one or more columns with more than one nonzero entry are instable.

Two cases are distinguished in proving this theorem, namely the case in which a column with more
than one nonzero entry corresponds with an attractor, and the case in which it corresponds with a
non–attractor. Both cases are illustrated with simple examples which generalize in a straightforward
manner to higher dimensional and more complex cases.

Lemma 6 Let M, εf and L be the matrices

M =
(

1/2 1/2
1/2 1/2

)
εf =

(
f f
−f −f

)
L =

(
1 1
0 0

)

For each f > 0 the MCL process (M + εf , e(i) c= 2, r(i)
c= 2) converges towards L.

Proof The matrix M + εf is idempotent under matrix multiplication for arbitrary f , as it is a rank–1
stochastic matrix. Direct computation shows that [Γ(M + εf)]11 equals (1/4 + f 2 + f)/1/2 + 2f =
1/2 + 2f/(1 + 4f 2). Thus Γ(M + εf) can be written as M + ε2f/(1+4f 2). For small f , the deviation of
Γ(M + εf) from M is nearly twice as large as the deviation of M + εf from M. The lemma follows. �

The proof of the following lemma is nearly identical.

Lemma 7 Let M, εf and L be the matrices

M =

1 0 1/2
0 1 1/2
0 0 0

 εf =

0 0 f
0 0 −f
0 0 0

 L =

1 0 1
0 1 0
0 0 0


For each f > 0 the MCL process (M + εf , e(i) c= 2, r(i)

c= 2) converges towards L. �

The previous results do not imply that the MCL algorithm is built on quicksand. The instability of the
phenomenon of cluster overlap cannot be helped, if only the limit of the MCL process is taken into
account. As mentioned before, there is a cure for this by looking at the specific structure which is
present in all iterands of the process. This issue will be dealt with in a forthcoming paper.

The instability of attractor systems consisting of more than one element is not a serious issue if only
regarding clustering purposes. If one is interested in graph symmetries which may be exhibited by
such larger attractor systems then the remarks in the previous paragraph hold here as well. Below it
is shown that perturbation of doubly idempotent matrices M by a matrix ε for which the associated
clustering C does not have overlap, lead the iterands of the MCL process (M + ε, e(i) c= 2, r(i)

c= 2)
to stay within a class of matrices the block structure of which only admits a clustering which is a
refinement of C. These statements are assembled in Theorem 7, which is preceded by two more
technical lemmas. This result is extended by Theorem 8, which demonstrates that for a specific class
of perturbations the notion ‘a refinement of’ in Theorem 7 can be strengthened to ‘identical to’.

8. Stability of equilibrium states 28

If a diagonal block structure can be mapped onto part of a column stochastic matrix M such that
the mass of the columns in this part is highly concentrated in the blocks, then the entries outside
the diagonal blocks tend to zero quadratically in the MCL process (M, e(i)

c= 2, r(i)
c= 2). If it is

moreover assumed that the mass of the columns in the remaining part is (for each column separately)
concentrated in a set of rows corresponding to at most one diagonal block, then the entries not
belonging to these rows tend to zero as well. Conceptually, the proof is very similar to that of Lemma
5. The more complicated setting requires substantial elaboration.

Let M be a column stochastic matrix of dimension n, let f > 0 be a real number. Assume that there is
a strictly increasing row of indices k0, . . . , kl with k0 = 0 and kl ≤ n such that the mass of the columns
in each principal submatrixM[ki . . . ki+1−1], i = 0, . . . , l−1 is greater than or equal to 1−f (Remember
that M is indexed from 0 to n− 1). It is convenient to denote the set of indices {kx, . . . , kx+1 − 1} by
αx, indicating the xth diagonal block.

Lemmas 8 and 9 hold, and are preparatory to Theorem 7. The corresponding statements for ma-
trices which are permutation–similar to a matrix with the required block structure are omitted and
easily seen to be true, since both matrix multiplication and inflation distribute over simultaneous
permutation of rows and columns.

Lemma 8 Let f , M and k0, . . . , kl be as above. Let T2i and T2i+1 be the iterands of the MCL process
(M, e(i)

c= 2, r(i)
c= 2), where T0 = M. Let αx be the range of indices {kx, . . . , kx+1 − 1} and let q be

an index in αx. For f small enough, the entries (Ti)jq tend to zero for all j with j 6∈ αx as i goes to
infinity.

Proof Suppose that kl < n. Thus, the block diagonal structure (the blocks of which have large mass)
does not fully cover M, as the last block is indexed by the range kl−1 . . . kl − 1. This is the more
general case where nothing is assumed about the remaining columns kl . . .n − 1. The proof where
kl = n simplifies and will be omitted. Let αx and q be as in the lemma, so q ∈ αx. Let p be any index,
0 ≤ p < n.

Consider the pth entry of the qth column of M2. Consider first the case where kl ≤ p < n. The identity
M2

pq =
∑n−1
i=0 MpiMiq holds. Split the latter sum into the parts

∑
i∈αx MpiMiq and

∑
i 6∈αx MpiMiq. For

i ∈ αx the inequality Mpi ≤ f holds. Since
∑
i∈αx Miq ≤ 1, the first sum is smaller then or equal to f .

By similar reasoning it is found that the second sum is smaller than or equal to f 2.

Now consider the case where p ∈ αy,y ≠ x. Write the entry M2
pq in three parts:

∑
i∈αx MpiMiq,∑

i∈αy MpiMiq, and
∑
i 6∈αx∪αy MpiMiq. For the first part, Mpi ≤ f and the entries Miq sum to less than

one. For the second part, the entries Mpi sum to less than |αy | and Miq ≤ f . For the third part,
Mpi ≤ f and the entries Miq sum to less than f . Combining these results yields that the full sum is
smaller than or equal to f + |αy |f + f 2. So after multiplication, the combined mass of all entries in
column q which are not in αx is bounded from above by n(n+ l)(f + f 2), which is of order f .

Estimate the entry [Γ(M)]pq as follows. The sum of squares
∑n−1
i=0 Miq

2 is bounded from above by 1/n.
For p 6∈ αx the inequality Mpq

2 ≤ f 2 holds and thus [Γ(M)]pq ≤ nf 2. The combined mass of all entries
in column q which are not in αx is thus bounded from above by the (crude) estimate n2f , which is of
order f 2. Combination of this with the result on multiplication yields the following. If f is viewed as
the error with which M deviates from the block structure imposed by the index sets αx (in the index
range 0 . . . kl − 1), then application of Γ ◦ Exp2 to M yields a matrix for which the new error is of order
f 2. This proves the lemma. �

8. Stability of equilibrium states 29

Lemma 9 Let f , M and k0, . . . , kl be as in Lemma 8. Assume moreover that kl < n and that for each
q ≥ kl there exists a block indexed by αx = {kx, . . . , kx+1 − 1} such that the mass in the submatrix
M[αx|q] (which is part of column q) is bounded from below by 1 − f . Let Ti be the iterands of the
MCL process (M, e(i)

c= 2, r(i)
c= 2). Then, for f small enough, all entries (Ti)pq tend to zero for p 6∈ αx

as i goes to infinity.

Proof The proof is very similar to that of Lemma 9. Consider the pth entry of the qth column of M2.
First consider the case where kl ≤ p < n. The identity M2

pq =
∑n−1
i=0 MpiMiq holds. Split the latter sum

into the parts
∑
i∈αx MpiMiq and

∑
i 6∈αx MpiMiq. As in the proof of Lemma 9 it is found that the two

parts are respectively bounded from above by f and f 2.

Now consider the case where p ∈ αy,y ≠ x. Writing the entry M2
pq in three parts:

∑
i∈αx MpiMiq,∑

i∈αy MpiMiq, and
∑
i 6∈αx∪αy MpiMiq, it is found that these parts are respectively bounded by f , |αy |f ,

and f 2. After multiplication, the combined mass of all entries in column q which are not in αx is
bounded from above by n(n+ l)(f + f 2), which is of order f .

The entry [Γ(M)]pq is estimated as before, yielding [Γ(M)]pq ≤ nf 2, and bounding the combined mass
of the entries [Γ(M)]pq, q 6∈ αx by n2f . Viewing f as the error with which column q deviates from the
structure imposed by αx gives that applying Γ ◦ Exp2 to M yields a matrix for which the new error is
of order f 2. This proves the lemma. �

Theorem 7 is a general result on perturbation of equilibrium states for which the associated matrix
M may have columns with more than one nonzero entry. It states that the associated clustering of
any idempotent limit resulting from the perturbed process must be a refinement of the clustering
associated with M. The proof of the theorem is a direct consequence of Lemmas 8 and 9.

Theorem 7 Let M be a doubly idempotent matrix in IR≥0
n×n for which the associated clustering C is

free of overlap. Let f > 0 and let ε be a matrix in IRn×n, the columns of which sum to zero and for
which maxi,j |εij| ≤ f . The iterands Ti of the MCL process (M+ε, e(i) c= 2, r(i)

c= 2), for f small enough,
have the property that (Ti)pq tends to zero as i goes to infinity, if q 6→ p in the associated graph of
M. Consequently, an idempotent limit resulting from the process (M + ε, e(i) c= 2, r(i)

c= 2) corresponds
with a clustering which is identical to or a refinement of C. �

The following theorem extends this result for a restricted class of perturbations, namely those that
only affect the principal submatrices of the doubly idempotent matrix M which correspond to an
attractor system in the associated clustering of M. Theorem 1 implies that such a submatrix has the
form 1

kJk, where Jk is the all one matrix of dimensions k × k. Theorem 8 is concerned with limits

which may possibly result from the MCL process (1
kJk + ε, e(i)

c= 2, r(i)
c= 2), where ε is as before.

It appears that for small perturbations ε it is guaranteed that the iterands of the process approach
arbitrarily close towards the set of rank 1 stochastic matrices, without actually pinpointing a particular
limit point. This implies that an idempotent limit of the perturbed process (M + ε, e(i) c= 2, r(i)

c= 2),
where M is doubly idempotent and ε only affects the attractor systems of M, is guaranteed to yield
an associated clustering which is the same as that of M, except for the cases where overlap occurs.

Theorem 8 Let M be a doubly idempotent matrix in IR≥0
n×n for which the associated clustering C is

free of overlap. Let f > 0 and let ε be a matrix in IRn×n, the columns of which sum to zero, for which
maxi,j |ε|ij ≤ f , and for which εkl ≠ 0 =⇒ k and l are attractors in the same attractor system in M.
That is, ε only affects the diagonal blocks of M corresponding with its attractor systems.

8. Stability of equilibrium states 30

An idempotent limit resulting from the process (M + ε, e(i) c= 2, r(i)
c= 2), has an associated clustering

which is identical to C.

This theorem is a consequence of the following lemma. Note that the diagonal blocks of M corre-
sponding with its attractor systems are of the form 1

kJk.

Lemma 10 Let f > 0 be a real number, let J be an arbitrary rank 1 column stochastic matrix in
IR≥0

n×n, let ε ∈ IRn×n be a matrix the columns of which sum to zero and for which maxi,j |ε|ij ≤ f . For
f small enough, the matrix Γ2[(J+ ε)2] can be written as J′ +δ, where J′ is rank 1 column stochastic,
the columns of δ sum to zero and maxi,j |δ|ij ≤ cf 2, where c > 0 is a constant independent from J, ε,
and f .

Proof Consider (J + ε)2. This product can be written as J2 + Jε + εJ + ε2. The identities J2 = J and
Jε = 0 hold. Furthermore, the sum J + εJ is a rank 1 column stochastic matrix. Thus the product
(J + ε)2 can be written as the sum of a rank 1 column stochastic matrix and ε2. It is easy to show that
maxi,j |ε2|ij ≤ nf 2, which is of order f 2.

Now consider the result of applying Γ2 to J+ε, and compare this with Γ2J. First compute the renormal-
ization weight for the lth column of Γ2(J + ε). This equals

∑
i(Jil + εil)2. Split this sum into the parts∑

i Jil2, 2
∑
i εilJil, and

∑
i εil2. Then 2|∑i εilJil| ≤ 2f , and

∑
i εil2 ≤ nf 2. It follows that

∑
i(Jil + εil)2

can be written as
∑
i Jil2 + δd, where |δd| ≤ 2f +nf 2 (and the d stands for denominator).

Observe that (Jkl + εkl)2 = Jkl2 + 2Jklεkl + εkl2 can be written as Jkl2 + δe, where |δe| ≤ 2f + f 2. It
follows that [Γ2(J + ε)]kl can be estimated as below.

Jkl − δe∑
i Jil2 + δd

≤ (Jkl + εkl)2∑
i(Jil + εil)2

≤ Jkl + δe∑
i Jil2 − δd

Now let a/b be a positive fraction less than or equal to one, let x and y be real numbers. Observe
that

a− x
b+y = a

b
− x + ay/b

b +y ≥ a
b
− |x| + |y|

b+y
a+ x
b−y = a

b
+ x + ay/b

b −y ≤ a
b
+ |x| + |y|

b−y
Finally,

[Γ2J]kl − |δe| + |δd|∑
i Jil2 + |δd|

≤ [Γ2(J + ε)]kl ≤ [Γ2J]kl + |δe| + |δd|∑
i Jil2 − |δd|

Since
∑
i Jil2 ≥ 1/n it follows that the difference |[Γ2(J + ε)]kl − [Γ2J]kl| can be bounded by cf , where

c > 0 is a constant depending on n only. This, combined with the result on (J+ε)2 proves the lemma.
�

Remark For the proof of Theorem 8 one needs also consider the behaviour of columns in M, the
associated nodes of which are not attractors. It is an easy exercise to show that such columns
exhibit the same behaviour as the columns of the attractor systems to which they are attracted. This
concludes a first series of results on the stability and instability of the equilibrium states in L1 in both
the usual sense and a ‘macroscopic’ sense .

Remark In the next section experimental results are discussed. In many cases the phenomena of
overlap and attractor systems of cardinality greater than one occur. Current evidence suggests that

9. Cluster properties of the MCL algorithm 31

Parameter Meaning Default setting
–a Loop weight 0
–r Initial inflation constant 2
–e Initial expansion constant 2
–l Initial prefix length 0
–R Main inflation constant 2
–E Main expansion constant 2

Figure 12: MCL implementation legend.

the MCL process converges so fast that idempotence can be recognized long before instability of
overlap and attractor systems begin to play a role. This is certainly related to the fact that the
examples given here concern small graphs. However, the crucial property is that the natural cluster
size is not too large. Thus, large graphs G for which the natural cluster size is relatively small may
also lead the MCL process (TG, e(i), r(i)) to converge towards idempotence before instability starts
to play a role. For further discussion of this subject see the considerations in Section 10 regarding
scalability of the MCL algorithm.

9. Cluster properties of the MCL algorithm

The current implementation in use at the CWI (henceforth called (CWI) implementation) with which
experiments are carried out was mentioned briefly in Section 7. Its legend will be used here in order
to describe the results of several MCL–runs on various test–graphs for various parametrizations. The
implementation allows input rows e(i), r(i) which have very simple structure. The default setting is
that both rows are constant. Optionally, both rows may assume another constant on a prefix of
length l, where l can be specified as well. This amounts to five parameters related to the input rows
specifying MCL process parameters. The sixth parameter indicates whether loops are added to an
input graph G. If this parameter assumes a value c ∈ IR≥0, the MCL implementation takes the graph
G+ cI as actual input. The parameters of the MCL implementation must somehow be specified. Here
I will use the customary UNIX notation in which parameters are indicated by strings starting with a
hyphen, followed by the value which the parameter must assume. The six parameters, their meaning,
and default setting are found in Figure 9. The length l of the initial prefix is indicated by ‘–l’, the
constant values assumed by e(i) resp. r(i) on the initial prefix by ‘–e’ and ‘–r’, the constant values on
the infinite postfix by ‘–E’ and ‘–R’, and the loop weight by ‘–a’ (stemming from auto–nearness).

The parameter setting –a 2 –r 1.5 –e 2 –l 10 –R 2.5 thus corresponds with an MCL process for which
ei = 2 and ri = 1.5, i = 1, . . . ,10, and ei = 2 and ri = 2.5, i = 11, . . . ,∞. An input graph G will further-
more have loops of weight 2 added to each node. The parameter setting –a 1 –R 1.7 corresponds with
an MCL process for which e(i)

c= 2 and r(i)
c= 1.7 with loops of weight 1 added to the input graph. The

default setting corresponds with an MCL process for which e(i)
c= 2 and r(i)

c= 2 and no loops added.

Attractors
In practice, for input graphs constructed from real applications for the purpose of clustering (and
thus with no strong symmetries present), the equivalence classes E1, . . . , Ed (see Definition 12) tend
to be singleton sets. In all situations observed so far where this is not the case, see e.g. the limit
matrix in Figure 8, the elements in an equivalence class of cardinality greater than one are the orbit
of a graph automorphism. For the graph in Figure 4, the nodes 8 and 10 share exactly the same
set of neighbours, and are for that reason indistinguishable with regard to structural properties of
the graph. The mapping on the node set of G2 which only interchanges the nodes 8 and 10 is an
automorphism of the graph G2. As a second example, consider the graph G1 in Figure 1. An MCL run
with parametrization –a 1 results in 4 clusters, each of which is a triangle in the graph, and where each
node is an attractor. Printing attractors in boldface, this is the clustering {{0,1,2}, {3,4,5}, {6,7,8},

9. Cluster properties of the MCL algorithm 32

{9,10,11}}. The cluster {0,1,2}, and likewise the other clusters, is the orbit of either of its elements
under rotation of G1 around the symmetry axis orthogonal to the plane spanned by 0,1, and 2.

Generally, attractors are located in local centra of density, which is best illustrated by large graphs
with clear islands of cohesion. If a graph fits the picture, so to speak, of a ‘gradient of density’, the
attractors are found in the thickest parts of the graph. This effect is to some extent illustrated by
the graph in Figure 14. For this graph, it interferes however with another phenomenon occurring
when a graph possesses borders. In that case, the return probabilities of nodes which lie just before
those borders, profit immediately and maximally after one exponentiation step from the ‘dead end’
characteristic of the border. The border of the graph in Figure 14 is the outline of the grid. This
explains why nearly all of the attractors in Figure 17 are nodes lying at distance one from the outline
of the grid.

Overlap
The phenomenon of overlap in the setting of undirected graphs has only been observed so far for
input graphs with specific symmetry properties. For these cases, if the MCL algorithm produces two
clusters C1, C2 with nonempty intersection, there exists an automorphism which transforms C1 into C2

while leaving the intersection invariant. An example is the line graph on 7 nodes the associated matrix
of which is found in Figure 4. The automorphism maps i onto 6 − i, i = 0, . . . ,6, which leaves the
intersection {3} invariant. Existence of such an automorphism means that the overlapping part forms
a subset of the graph from which the graph looks the same in different directions. If those different
directions correspond also with different islands of cohesion, it is rather nice if the overlapping part
is not arbitrarily divided among the resulting clusters. Another example of this phenomenon can
be found in Figure 17. Overlap occurs at several levels of granularity, and it always corresponds
with a symmetry of the graph. For undirected graphs, the amount of possible overlap tends to be
proportional to the amount of symmetry present. Naturally, any amount of overlap can be constructed
by taking directed input graphs which are variants of the graph associated with the matrix 5.8.

For a fixed MCL process, small perturbations in the input graph generally do not affect the output
clustering. An exception to this is the case where overlap occurs, as discussed in Section 7. If the
symmetry corresponding with the overlap is perturbed, the overlap disappears. Consider the line
graph on 7 nodes again. If the edge (3,2) is split into two arcs of different weights, namely the arc
2 → 3 with weight 1 and the arc 3 → 2 with weight 100/99, an MCL run with parametrization –a 1 and
otherwise default settings results in the partition (non–overlapping clustering) {{0,1,2}, {3,4,5,6}}.
This is explained by the fact that node 3 is now slightly more attracted to node 4 than it is to node 2.

The effect of adding loops
For small graphs and graphs with bipartite characteristics such as rectangular grids, adding loops
is a beneficial manoeuvre. The reason for this is the same as it was for k–path clustering. The
possible dependence of the transition probabilities on the parity of the simple path lengths in the
graph is removed. More generally, adding loops of weight c to a graph has the effect of adding c to
all the eigenvalues in its spectrum. Since negative eigenvalues correspond with periodic behaviour
of the associated matrix, this has the effect of opposing periodicity. The effect of adding loops on
the output clusterings of the MCL algorithm is that connectedness of the clusters in the graph is
promoted. For an MCL process with default settings, specifically –E 2, and an input graph G, the value
(T2k)αβ will be nonzero iff there is a path of length 2k going from β to α. Clustering the graph G2 with
default parameters (i.e. –a 0 –R 2 –E 2) yields the clustering {{0,4,9}, {1,5,6}, {2,3,7,8,10,11}}. The
fact that e.g. nodes 4 and 0 are now joined together, whereas nodes 4 and 1 are not, is explained by
observing that there are two paths of length 2 connecting the former pair, whereas the paths of even
length connecting 4 and 1 all have length at least 4. As a result, the transition probabilities (T2k)14

and (T2k)41 soon diminish in comparison with the transition probabilities (T2k)04 and (T2k)40.

9. Cluster properties of the MCL algorithm 33

0

1

2

3

4

5

6

7
8

9

10
11

Figure 13: Graph G4. Figure 14: Graph G5.

All example graphs in this section had loops added to them when they were input to the MCL al-
gorithm. For nearly all of them this was absolutely necessary in order to get output which makes
sense as a clustering. An exception is the halter shaped grid in Figure 17, which is explained by the
presence of many circuits of length 3, which reduce the parity dependence as discussed in Section 3.
The convergence of the MCL process is not notably affected by the presence or absence of loops.

The effect of inflation on cluster granularity
There is a clear correlation between the inflation parameter and the granularity of the resulting output.
The higher the parameter r , the more the inflation operator Γr demotes flow along long path distances
in the input graph. This is illustrated for the graph G5 in Figure 14. Figure 17 gives the result
of six MCL runs for G5 in which the inflation parameter is varied from 1.4 to 2.5, while all other
parameters are kept the same (i.e. –a 1 –E 2). Note that the corresponding overlapping clusterings
are strongly related to each other. The set of all clusterings excluding the one corresponding with
inflation parameter –R 1.4 is a set of nested overlapping clusterings. This is very satisfactory, as
one expects clusters at different levels of granularity to be related to each other. The clusterings
at the first three levels –R x, x ∈ {1.4,1.5,1.7}, have good visual appeal. It holds for all clusterings
that the sizes of the respective clusters are evenly distributed, except perhaps for the clustering with
parameter –R 2.0.

The second example in which the inflation parameter is varied while other parameters are kept the
same concerns the graph G4 in Figure 13. It is derived from the graph G1 in Figure 1 by replacing
each of the 12 nodes in G1 by a triangle. Note that G4 is a simple graph: The length of the edges
in the picture do not correspond with edge weights. Now G4 clearly allows two extreme clusterings
P1 = {singletons(V)} and P4 = {V}, a clustering P2 in which each of the newly formed triangles
forms a cluster by itself, and a clustering P3 with 4 clusters in which each cluster consists of the
9 nodes corresponding with 3 newly formed triangles. Clustering with parameters –a 1 –E 2 –R x,
where x varies, yields the following. Choosing x ∈ [1.0,1.2] results in the top extreme clustering P4,
choosing x ∈ [1.3,1.4] in the clustering P3, choosing x ∈ [1.4,3.0] in the clustering P2, and choosing
x ∈ [3.1,∞] results in the bottom extreme clustering P1. The range of x for which the clustering P3

results is small. This has to do with the fact that the clustering P3 is rather coarse. The dependencies
associated with Pk correspond with longer distances in the graph G4 than the dependencies associated
with P2. If the inflation parameter increases, the latter dependencies (in the form of random walks)
soon profit much more from the inflation step than the former dependencies. By letting expansion
continue a while before starting inflation, this can be remedied. Figure 13 shows several parameter
settings and the resulting clusterings.

9. Cluster properties of the MCL algorithm 34

Parametrization
–l –r –R Clustering
0 – 1.0− 1.2 P4

0 – 1.3− 1.4 P3

0 – 1.5− 3.0 P2

0 – 3.0−∞ P1

1 1 1.0− 1.3 P4

1 1 1.4− 1.7 P3

1 1 1.8− 5.3 P2

1 1 5.4−∞ P1

2 1 1.0− 1.4 P4

2 1 1.5− 2.4 P3

2 1 2.5− 6.8 P2

2 1 6.9−∞ P1

–a 1 set everywhere

Figure 15: MCL runs for the graph G4 in
Figure 13. The clusterings P1, . . . ,P4 are
defined in the accompanying text.

x –l –r –R
5 2 1.2 2.1− 3.2

2 1.0 2.1− 4.0
2 0.8 2.1− 5.3

6 2 1.2 2.1− 2.4
2 1.0 2.1− 2.8
2 0.8 2.1− 3.3

7 3 1.2 2.1− 2.7
3 1.0 2.3− 3.9
3 0.8 2.9− 6.4

8 3 1.2 2.1− 2.3
3 1.0 2.3− 2.9
3 0.8 2.9− 4.3

9 3 1.2 2.1
3 1.0 2.3− 2.5
3 0.8 2.9− 3.3

–a 1 set everywhere

Figure 16: Parametrizations for which the
MCL algorithm finds 10 clusters of size
x each for the input graph TORUS(10, x),
x = 5, . . . ,9.

The third example concerns the input graph G2 from Figure 4 and parameters –a 1 –R x. Choosing x ∈
[1.5,1.8] results in the clustering {{3,7,8,10,11}, {0,1,2,4,5,6,9}}, whereas choosing x ∈ [1.9,4.3]
results in the clustering {3,7,8,10,11}, {0,5,6,9}, {1,2,4}). This corresponds with the fact that lower
inflation parameters imply that longer path distance dependencies can influence the cluster distribu-
tion. In Section 3 it was indicated that the k–path clustering coefficient Z4,G2+I results at some level
in the clustering {{1,2,3,4,7,8,10,11}, {0,5,6,9}}. Note that the similarity coefficient Z4,G2+I is by
definition affected by path distances of length up to 4. For the k–path clustering, it seems as if the
relatively large and dense cluster {3,7,8,10,11} (which contains a complete graph as subgraph on the
four nodes 3,7,8,10) has gobbled up the neighbouring lighter–weight cluster {1,2,4}. It is remark-
able that the MCL clustering leads the latter cluster instead to be joined with the other lighter–weight
cluster {0,5,6,9}. This may indicate that heavy–weight islands of cohesion do not have an absorb-
ing quality with regard to the MCL algorithm. I think this is a desirable property, which promotes
clusterings being well balanced.

The last examples are rectangular torus–graphs. A k–dimensional rectangular torus graph generalizes
a ring graph in k dimensions. It is most conveniently defined as a sum of ring graphs, defined on the
Cartesian product of the respective node sets.

Definition 14 Let (Gi = (Vi,wi)), i = 1, . . . , n be an n–tuple of simple graphs. The sum graph S of
G1, . . . , Gn is defined on the Cartesian product V1× . . .×Vn. Two vertices (x1, . . . , xn) and (y1, . . . , yn)
are connected in S if exactly one of the pairs (xi, yi) is connected in Gi, and xi = yi for the remaining
n− 1 pairs.

Definition 15 The 1–dimensional torus graph or ring graph of cardinality t is the simple graph
defined on the integers modulo t: (0, . . . , t − 1), where there is an edge between i and j iff i ≡ j + 1(
mod t) or j ≡ i+ 1(mod t).

9. Cluster properties of the MCL algorithm 35

-a 1 -R 1.4 -a 1 -R 1.5

-a 1 -R 1.7 -a 1 -R 2.0

-a 1 -R 2.1 -a 1 -R 2.5

Figure 17: Clusterings resulting from the MCL algorithm for the graph in Figure 14. Dotted
nodes are attractors.

9. Cluster properties of the MCL algorithm 36

A graph is called a k–dimensional torus graph if it is the sum graph of k ring graphs. It can be
identified with a k–tuple (t1, . . . , tk), where ti is the cardinality of the node set of the ith ring graph.
The torus graph corresponding with this k–tuple is denoted TORUS(t1, . . . , tk). �

Here I will use only 2– and 3–dimensional simple torus graphs. A 2–dimensional torus graph TORUS(k, l)
can be thought of as a rectangular grid of width k and depth l, where nodes lying opposite on parallel
borders are connected. In Section 7 it appeared that periodic MCL limits exist which have the same
automorphism group as ring graphs. A two dimensional torus graph G = TORUS(k, l) where k = l
has the same homogeneity properties as ring graphs. It is interesting to see what happens if k > l.
Consider a node pair (u1, u2) lying on a ring of length l in G at a (shortest path) distance t ≤ l from
each other, and a node pair (v1, v2) in G, also lying at distance t from each other, but not lying on
such a ring. The transition probability associated with going in l steps from u1 to u2 is larger than
the transition probability associated with going in l steps from v1 to v2, because u1 can reach u2 in
two ways along the ring on which they both lie, while this is not true for v1 and v2. Is it possible
to find an MCL process in which this effect is boosted such that a clustering of G in k clusters of
size l each results? This is indeed the case, and it requires the usage of input rows r(i) which are
not constant everywhere. If l is very close to k, it is furthermore beneficial to use an initial inflation
parameter which is close to or smaller than 1. Without this, the return probability of each node grows
too large before paths of length l start to have influence, which is after dlog2(l)e exponentiation steps
(assuming e(i)

c= 2). Figure 9 shows parameter settings for which the MCL algorithm output divides
the graphs TORUS(10, x) in 10 clusters of cardinality x each, x = 5, . . . ,9. These are of course not
the only parametrizations achieving this, but among the parametrizations found they lead to fast
convergence of the MCL process.

The last example concerns the 3–dimensional torus graph TORUS(3,4,5). A priori it is to be expected
that the non–extreme clusterings which the MCL algorithm can possibly produce are the clustering
P2 corresponding with 20 subgraphs isomorphic to TORUS(3) and the clustering P3 corresponding
with 5 subgraphs isomorphic to TORUS(3,4). Denote the top and bottom extreme clusterings by
P1 = {singletons(V)} and P4 = {V} respectively. The table below gives four parameter ranges yielding
the four clusterings Pi.

Parametrization
–l –r –R Clustering
2 1.2 1.0− 2.3 P4

2 1.2 2.4− 3.3 P3

2 1.2 3.4− 6.4 P2

2 1.2 6.5−∞ P1

The torus examples illustrate the strong separating power of the MCL process. The clusterings shown
for the torus graphs, the tetraeder–shaped graphs in Figures 1 and 13, and the grid in Figure 14
illustrate that the MCL algorithm ’recognizes’ structure even if the node degrees in the input graph
are homogeneously distributed and the connectivity of the graph is high. The inflation parameter
clearly is the main factor influencing the granularity of the output clusterings. By all evidence, the
output clustering changes for specific values of the inflation parameter constant (either the prefix or
the postfix value), and stays the same for in–between intervals. By prolonging expansion, coarser
clusterings can be found.

10. Complexity and scalability 37

10. Complexity and scalability

The complexity of the MCL algorithm, if nothing special is done, is O(N3) where N is the number
of nodes of the input graph. The factor N3 corresponds to the cost of one matrix multiplication on
two matrices of dimension n. The inflation step can be done in O(N2) time. I will leave the issue
aside here of how many steps are required before the algorithm converges to a doubly idempotent
matrix. In practice, this number lies typically somewhere inbetween 5 and 20. The real bottleneck
of the algorithm is the exponentiation step. The CWI implementation has two different modes, cor-
responding with different approaches towards matrix multiplication. In the first or standard mode,
product matrices are computed by the standard matrix multiplication procedure, taking O(N3) time.
This mode is useful for testing the algorithm on graphs with up to several thousands of nodes. The
second or prune mode works a lot faster and somewhat more inaccurate. It allows handling of graphs
with up to a hundred thousand nodes, and this bound may well be further stretched. There are some
restrictions on the type of graphs fit for application of the prune mode. This is discussed at the end
of this section. Pruning reduces the complexity to O(Nnα, where n is small compared to N and α ≤ 3.

Column pruning and row pruning
In prune mode, it is not the exact product of two matrices which is computed, but a matrix very close
to it. The basic idea stems from the observation that MCL runs on sparse graphs yield limit matrices
which are extremely sparse, and intermediate matrices which are rather sparse. The columns of limit
matrices most often have just one positive element, perhaps only a few, whereas rows of a matrix
limit may have as many entries as the largest resulting cluster. The columns of intermediate iterands
generally have a few larger entries, several small entries, and many entries which are close to zero.

The prune mode uses the preceding in the following way. For every matrix iterand, the number
of positive entries any column can have is uniformly bounded by a constant n, where n can be
specified in advance. This is referred to as column pruning. A matrix product is computed by
successively computing each column of the product. All positive entries of a column are computed,
yielding possibly more than n entries. The n largest of these are kept, the rest is set to zero, and
the remaining (n largest) entries are rescaled to have sum 1 again. The larger n is, the closer this
approximate product will be to the actual product. With the right architecture, the complexity of
computing the approximate product is O(N2n) (see below). A second relaxation can reduce this
(depending on the value of n) further to O(Nnα),α ≤ 3. When computing the cth column of the
product (AB), under the condition that the columns of both A and B have at most n positive entries,
only those rows of A need be considered which have nonzero inner product with the cth column of B.
It is straightforward to see that there are at most n2 such rows. This yields a complexity of O(Nn3).

Now consider the cth column of (AB). It is computed by multiplying a given set of rows of A with
the cth column of B. An entry (AB)rc is the sum of the scalar products AriBic , i = 0, . . . , N − 1. In the
context of the MCL algorithm, the values Ari and Bic both have the interpretation ‘how much node i
(resp. c) is attracted to node r (resp. i). It is an option in the implementation to consider only rows r
for which at least one index i exists such that node c is ‘sufficiently’ attracted to node i, and node i is
‘sufficiently’ attracted to node r . Otherwise the entry (AB)rc is simply not computed and set to zero.
This selection scheme (further specified below) is referred to as row pruning. The motivation is that a
node can reach a new neighbour only if there is at least one 2–step path of sufficient weight to it. This
procedure is further justified by the fact that it is very probable that all rows thus disregarded, would
otherwise have been dismissed in the column pruning phase. The notion of sufficiency is defined in
terms of a cut value defined for probability vectors, separating larger transition probabilities from
smaller transition probabilities. The cut value is parametrized relative to the notion of mass center
defined for probability vectors. This notion is related to the behaviour of Γ . A slight digression in the
form of a definition and a lemma formalizing this follows below.

10. Complexity and scalability 38

Definition 16 Let π be a probability vector of dimension d, let r be a real number greater than one.
The mass center of order r of π is defined as

Ψrπ =
d−1∑
i=0

πir
 1
r−1

(10.1)

�

Lemma 11 Let π be a probability vector of dimension d. The indices i for which (Γrπ)i ≥ πi are
those indices for which πi ≥ Ψrπ .

Proof If πi ≥ Ψrπ holds then

(Γrπ)i
πi

= πir−1∑
πir

≥ (Ψrπ)r−1∑
πir

= 1

�

Given a probability vector π , the number Ψr (π) separates the transition probabilities which grow
under Γr from those which shrink under Γr . A logical candidate for the cut value mentioned above,
defined for probability vectors, is to define it as a function of their mass center, e.g. the mass center of
order 2. The CWI implementation essentially uses a slight refinement of this scheme. The combination
of column pruning and row pruning yields a complexity O(Nnα) for matrix multiplication, where α
varies from 3 during the early stages of the MCL algorithm to 2 and subsequently 1 during the middle
stages. When the iterands are very close to a sparse doubly idempotent matrix the complexity is
effectively O(N). This is achieved by an architecture for matrices and matrix multiplication in which
only non–zero elements are stored.

Applicability requirements on pruning
For large graphs, the range in which n can be chosen depends on the computing power available. In
general there will be some bound on n. This then affects the type of graphs which can be clustered.
The combination of column pruning and row pruning has been tested extensively for MCL processes
with constant expansion row e(i)

c= 2, and graphs with up to 60.000 nodes having an additional
density characteristic. The additional characteristic is that the natural size of the clusters occurring
in the graph is in the same order of magnitude as the pruning constant n. Detection of substantially
larger clusters requires prolonged expansion. The matrix iterands then become less sparse, the
iterand columns become more spread out, and convergence towards an equilibrium state will take up
much more time and memory. The fact that the columns become more spread out implies that the
degree in which pruning perturbs the MCL process is inversely proportional to the degree of expansion
prolongation and the size of clusters sought for. It follows that in the setting of large graphs the main
strength of the MCL algorithm lies in retrieving small to medium sized clusters. Column pruning and
row pruning can then be applied to speed up the algorithm.

Convergence in the setting of pruning
The convergence properties in the setting sketched above do not change noticeably, and the resulting
clusterings are still very satisfactory. Clusterings of graphs with up to a thousand nodes resulting
from both the standard mode and the prune mode with otherwise identical parametrizations were
compared. The respective clusterings sometimes differed slightly (e.g. a node moving from one
cluster to another) and were often identical. The parameter n can be chosen surprisingly low without

10. Complexity and scalability 39

causing deterioration of the output. Setting n = 50 for graphs with 60.000 nodes is very well possible.
An example of pruning is given in Figure 18. The equilibrium state and several matrix iterands are
given for the MCL process with input graph G2, and pruning constant n = 4. The iterand indices
correspond with the iterand indices in Figure 8. The clustering resulting from this adapted process is
the same as the clustering resulting from the standard process.

Benchmarking proposal
Many experiments were carried out for the MCL algorithm on several graph types with specific char-
acteristics, such as the graphs occurring throughout this report. In all these cases, the correlation
between input graphs, heuristic expectations and output clusterings is very satisfactory. A substan-
tial number of experiments was also done on graphs constructed from document–phrase databases
and thesaurus structures such as Roget’s thesaurus. These experiments are promising and indicate
that the MCL algorithm is suited for facilitating the tasks of finding semantic structure in such ob-
jects. This constitutes an interesting line of research. Meanwhile, support for the soundness of the
MCL process can come from two directions. Firstly, it is desirable to have a theoretical framework
answering some of the many questions accompanying the process. This is discussed in the next sec-
tion. The second possibility is the creation of a benchmarking package for graph clustering. Here I
present a proposal for such a package. A test graph for the purpose of sparse graph clustering must
be a graph with certain a priori known characteristics which may vary within certain bounds, which
can also be specified a priori. A candidate scheme for such test graphs is the following.

Definition 17 Let N,E be integers, let P = {P1, . . . , Pt} be a partition of the integers 1, N, . . . ,, let p
and q be fractions lying between 0 and 1, and let f and g be functions mapping the positive reals
to the positive reals. An undirected (N, E,P, p, q, f , g) testgraph G = (V,w) is an undirected graph
having the following properties,

• G has N nodes.

• G has E edges.

• The average within degree of each subset Pi is at least f(|Pi|) · (p2E/N), where 0 < p <= 1.

• The minimum within degree of each subset Pi is at least g(|Pi|) · (q2E/N), where 0 < q <= p <=
1.

Here the average within degree of a subset S ⊂ V is the average degree of the nodes in S in the
subgraph on S inherited from G. The notion of minimum within degree is defined analogously. �

The functions f and g have been introduced so that the density properties of the subsets Pi may
vary depending on the sizes |Pi|. If f and g are chosen constant 1, then the fractions p and q give
an indication of the number of edges that each node can choose outside the subset Pi to which it
belongs. Note that the number 2E/N is the average node degree in the graph G. Examples:

• The graph G1 is a (N = 12, E = 18,P =Q, p = 2/3, q = 2/3, f = g = 1) testgraph, where Q is the
clustering of G1 into four triangles.

• The graph G2 is a (N = 12, E = 20,P =Q, p = 3/5, q = 3/5, f = g = 1) testgraph, where Q is the
clustering {{0,5,6,9} {1,2,4}, {3,7,8,10,11} }.

10. Complexity and scalability 40



0.4048 0.0941 −− −− 0.0907 0.2945 0.2232 −− −− 0.3234 −− −−
−− 0.3763 0.2276 −− 0.1779 0.0192 −− −− −− −− −− −−
−− 0.2276 0.3763 0.0628 0.1779 −− −− −− −− −− −− −−
−− −− 0.0941 0.3419 −− −− −− 0.2078 0.1459 −− 0.1459 0.0828

0.0615 0.2276 0.2276 −− 0.4800 −− 0.0923 −− −− 0.0189 −− −−
0.1508 −− −− −− −− 0.2945 0.0923 −− −− 0.1858 −− −−
0.1204 0.0743 −− −− 0.0735 0.0972 0.3690 −− −− 0.1484 −− −−
−− −− 0.0743 0.1984 −− −− −− 0.3247 0.1459 −− 0.1459 0.0828
−− −− −− 0.1984 −− −− −− 0.2078 0.2928 −− 0.2928 0.2782

0.2625 −− −− −− −− 0.2945 0.2232 −− −− 0.3234 −− −−
−− −− −− 0.1984 −− −− −− 0.2078 0.2928 −− 0.2928 0.2782
−− −− −− −− −− −− −− 0.0519 0.1226 −− 0.1226 0.2782


Γ2M2 for MCL process with pruning.



0.4608 0.0659 −− −− 0.0645 0.4329 0.3760 −− −− 0.4360 −− −−
−− 0.2940 0.2561 −− 0.1863 0.0007 −− −− −− −− −− −−
−− 0.2411 0.3283 −− 0.1863 −− −− −− −− −− −− −−
−− −− 0.0393 0.2562 −− −− −− 0.1945 0.1446 −− 0.1446 0.1034

0.0216 0.3616 0.3476 −− 0.5254 −− 0.0443 −− −− 0.0098 −− −−
0.1188 −− −− −− −− 0.1559 0.0889 −− −− 0.1297 −− −−
0.0995 0.0374 −− −− 0.0376 0.0864 0.2147 −− −− 0.1072 −− −−
−− −− 0.0286 0.1975 −− −− −− 0.2104 0.1383 −− 0.1383 0.1004
−− −− −− 0.2641 −− −− −− 0.2817 0.3284 −− 0.3284 0.3463

0.2993 −− −− −− −− 0.3241 0.2761 −− −− 0.3173 −− −−
−− −− −− 0.2641 −− −− −− 0.2817 0.3284 −− 0.3284 0.3463
−− −− −− 0.0181 −− −− −− 0.0318 0.0603 −− 0.0603 0.1037


Γ2(Γ2(M2) · Γ2(M2)), for MCL process with pruning.



0.9973 0.0000 −− −− 0.0000 0.9973 0.9973 −− −− 0.9973 −− −−
−− 0.0000 0.0000 −− 0.0000 −− −− −− −− −− −− −−
−− 0.0000 0.0000 −− 0.0000 −− −− −− −− −− −− −−
−− −− −− 0.0000 −− −− −− 0.0000 0.0000 −− 0.0000 0.0000

0.0000 0.9999 0.9999 −− 0.9999 −− 0.0000 −− −− 0.0000 −− −−
0.0000 −− −− −− −− 0.0000 0.0000 −− −− 0.0000 −− −−
0.0000 0.0000 −− −− 0.0000 0.0000 0.0000 −− −− 0.0000 −− −−
−− −− −− 0.0000 −− −− −− 0.0000 0.0000 −− 0.0000 0.0000
−− −− −− 0.5000 −− −− −− 0.5000 0.5000 −− 0.5000 0.5000

0.0027 −− −− −− −− 0.0027 0.0027 −− −− 0.0027 −− −−
−− −− −− 0.5000 −− −− −− 0.5000 0.5000 −− 0.5000 0.5000
−− −− −− 0.0000 −− −− −− 0.0000 0.0000 −− 0.0000 0.0000


(Γ2 ◦ Squaring) iterated six times on M for MCL process with pruning



1.0000 −− −− −− −− 1.0000 1.0000 −− −− 1.0000 −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− 1.0000 1.0000 −− 1.0000 −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.5000 −− −− −− 0.5000 0.5000 −− 0.5000 0.5000
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.5000 −− −− −− 0.5000 0.5000 −− 0.5000 0.5000
−− −− −− −− −− −− −− −− −− −− −− −−


M∞
mcl

Figure 18: Iteration of (Γ2 ◦ Squaring) with initial iterand M defined in Figure 7. Pruning
with pruning constant n = 5 is applied throughout the process.

11. Conclusions and further research 41

• The graph G2 is also a (N = 12, E = 20,P =Q, p = 9/10, q = 3/4, f , g) testgraph, where Q is as
before and where f : x , 1− 1/x, and g = f .

The parameters p and q, in conjunction with the functions f and g, determine the density character-
istics of the graph G. High values of p and q imply that the partition P is a good partition clustering
of the graph G, since in that case there can be only few edges inbetween different partition ele-
ments. Lowering p and q corresponds with gradually clouding this clear picture. I intend to create a
benchmark package with which test graphs as defined here can be randomly generated. Testing the
MCL algorithm on such graphs will be a good testcase for its robustness and performance.

11. Conclusions and further research

The MCL algorithm described here seems very promising. Its design is simple, and is basically nothing
more than alternation of matrix expansion and matrix inflation. Alternation of these two operators
appears to be intrinsically related to cluster structure present in the input graph. A sensible inter-
pretation of the algorithm, which was in fact the heuristic leading to its formulation, is that flow is
simulated by iterated expansion and contraction. The algorithm is notable for its strong separating
power, as evidenced by the various experiments here described. Convergence of the algorithm is
fast. It was shown that the algebraic process employed by the algorithm converges quadratically in
the neighbourhood of its equilibrium states which correspond with doubly idempotent matrices. In
a forthcoming article the inflation operator will be shown to have a number of properties which give
the MCL algorithm a sound mathematical foundation. Below some further questions are listed which
seem both interesting and difficult.

Questions

• Does the input of an arbitrary nonnegative matrix always lead to a limit of one of the types L3,
L2, or L1?

• Do there exist matrices of the L3 type which are not of the L3a type?

• Do there exist matrices M which are not of L2 or L1 type that lead to a limit of one of these
types? That is, do such matrices M exist for which the basin of attraction is greater than just
the set {M}?

• For a fixed MCL process (·, e(i), r(i)), what can be said about the basins of attraction of the
MCL process. Are they connected?

What can be said about the union of all basins of attraction for all limits which correspond with
the same overlapping clustering (i.e., differing only in the distribution of attractors)?

• Can the set of limits reachable from a fixed nonnegative matrix M for all MCL processes
(M, e(i), r(i)) be characterized? Can it be related to a structural property of M?

• Under what conditions do the clusters in the cluster interpretation of the limit of a convergent
MCL process (M, e(i), r(i)) correspond with connected subgraphs in the associated graph of M?

References 42

References

1. Abraham Berman and Robert J. Plemmons. Nonnegative Matrices In The Mathematical Sciences.
Computer Science and Applied Mathematics. Academic Press, 1979.

2. Stijn van Dongen. Graph clustering and information structure. In Kraak and Wassermann [8],
pages 13–31.

3. Brian S. Everitt. Cluster Analysis. Hodder & Stoughton, third edition, 1993.

4. Michiel Hazewinkel. Classification in mathematics, discrete metric spaces, and approximation by
trees. Technical Report AM–R9505, National Research Institute for Mathematics and Computer
Science in the Netherlands, Amsterdam, April 1995.

5. Michiel Hazewinkel. Tree–tree matrices and other combinatorial problems from taxonomy. Tech-
nical Report AM–R9507, National Research Institute for Mathematics and Computer Science in the
Netherlands, Amsterdam, April 1995.

6. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

7. Nicholas Jardine and Robin Sibson. Mathematical Taxonomy. Wiley Series In Probabilistic And
Mathematical Statistics. John Wiley & Sons, 1971.

8. Esther Kraak and Renata Wassermann, editors. Proceedings Accolade 97. University of Amster-
dam, 1998.

9. Albert W. Marshall and Ingram Olkin. Inequalities: Theory of Majorization and Its Applications,
volume 143 of Mathematics In Science And Engineering. Academic Press, 1979.

10. Albert W. Marshall, Ingram Olkin, and Frank Proschan. Monotonicity of ratios of means and other
applications of majorization. In Shisha [14], pages 177–197.

11. Henryk Minc. Nonnegative Matrices. Wiley Interscience Series In Discrete Mathematics And Opti-
mization. John Wiley & Sons, 1988.

12. Boris Mirkin. Mathematical Classification and Clustering. KAP, 1996.

13. E. Seneta. Non–negative matrices and Markov chains. Springer, second edition, 1981.

14. Oved Shisha, editor. Inequalities. Academic Press, 1967.

