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ABSTRACT
We consider the numerical integration of problems modelling phenomena in shallow water in 3 spatial
dimensions. If the governing partial differential equations for such problems are spatially discretized, then
the righthand side of the resulting system of ordinary differential equations can be split into terms f1, f2,
f3 and f4, respectively representing the spatial derivative terms with respect to the x, y and z directions,
and the interaction terms. It is typical for shallow water applications that the interaction term f4 is
nonstiff and that the function f3 corresponding with the vertical spatial direction is much more stiff than
the functions f1 and f2 corresponding with the horizontal spatial directions. The reason is that in shallow
seas the gridsize in the vertical direction is several orders of magnitude smaller than in the horizontal
directions. In order to solve the initial value problem (IVP) for these systems numerically, we need a stiff
IVP solver, which is necessarily implicit, requiring the iterative solution of large systems of implicit
relations. The aim of this paper is the design of an efficient iteration process based on approximate
factorization. Stability properties of the resulting integration method are compared with those of a number
of integration methods from the literature. Finally, a performance test on a shallow water transport
problem is reported.

1991 Mathematics Subject Classification:  65L06
Keywords and Phrases: numerical analysis, partial differential equations, iteration methods, approximate
factorization, parallelism.
Note. The investigations reported in this paper were partly supported by the Dutch HPCN Program.

1. Introduction

We consider initial-boundary value problems modelling phenomena in shallow water in 3 spatial

dimensions, such as the transport of pollutants in shallow seas including the mutual chemical

interactions of these species. In [16] a full description of the partial differential equations (PDEs)

describing various shallow water applications can be found (see also Section 4 of this paper for a

model transport problem with chemical interactions). The systems of ordinary differential equations

(ODEs) obtained by spatial discretization of these PDEs (method of lines) can be written in the form

(1.1)
dy(t)

dt   = f(t,y(t)),  f(t,y) := f1(t,y) + f2(t,y) + f3(t,y) + f4(t,y),     y, fk ∈  RN,

where f1, f2 and f3 contain the spatial derivative terms with respect to the x, y and z directions,

respectively, f4 represents the forcing terms and/or reaction terms, and N is a large integer

proportional to the number of spatial grid points used for the spatial discretization. It is typical for

shallow water applications that the function f4 is nonstiff and that the function f3 corresponding with

the vertical spatial direction is much more stiff than the functions f1 and f2 corresponding with the

horizontal spatial directions. As a consequence, the spectral radius of the Jacobian matrix ∂f3/∂y is

much larger than the spectral radius of ∂f1/∂y and ∂f2/∂y. The reason is that in shallow seas the

vertical gridsize is several orders of magnitude smaller than the horizontal gridsize.
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In order to solve the initial value problem (IVP) for the system (1.1) numerically, we need a stiff IVP

solver, because the Lipschitz constants with respect to y associated with the functions f1, f2 and f3
become increasingly large as the spatial resolution is refined. Stiff IVP solvers are necessarily

implicit, requiring the solution of large systems of implicit relations. We distinguish two basic types

of implicit IVP solvers, viz. partially implicit methods and fully implicit methods (see Section 2). The

aim of this paper is the design of an iteration process for use in fully implicit methods such that

shallow water problems can be solved more efficiently than by partially implicit methods. Section 3

focuses on iteration processes based on factorization of the system matrix in the Newton method

according to the splitting in (1.1). A detailed discussion of the convergence of the iteration process

and the stability of the resulting integration method is presented. A performance evaluation of this

integration method for a shallow water transport problem is presented in Section 4.

Finally, we remark that all plots and many of the formulas appearing in this paper were obtained using

the software package Maple [12].

2. Implicit IVP solvers

We briefly discuss the suitability of partially implicit methods and fully implicit methods in shallow

water applications. In particular, we discuss the stability properties of these methods. Ignoring the

nonstiff interaction term f4, we consider stability with respect to the linear test equation y' = Jy,

where J = J1 + J2 + J3 with Jk denoting an approximation to the Jacobian matrix of fk at tn, and where

the matrices Jk are assumed to share the same eigenspace, the usual assumption if a normal mode

analysis is applied. This equation will be referred to as the stability test equation. Writing

zk = ∆tλ(Jk), the region S in the (z1, z2, z3)-space is called the stability region if the integration

method is stable with respect to all test equations y ' = Jy  with the eigenvalue triples

(∆tλ(J1), ∆tλ(J2), ∆tλ(J3)) in S. Since in shallow water applications many of the eigenvalues of Jk

are close to the imaginary axis, we are interested in the most critical case where the eigenvalues of Jk

are purely imaginary, i.e. ∆tλ(Jk) = iyk with yk real-valued. Furthermore, the spectral radius of ∆tJ1

and ∆tJ2 is much smaller than that of ∆tJ3, so that we want stability in regions of the form

(2.1a) S := { (y1,y2,y3): | yk|   ≤ β,  k = 1, 2; | y3|   ≤ ∞} ,

where the stability boundary β is not too small. The corresponding timestep condition is then given by

(2.2) ∆t ≤   
β

max { ρ(J1),ρ(J2)}
 .

It may happen that the value of β is determined by a small set of critical y3-values, that is, ignoring

these critical values on the y3-axis would lead to substantially greater values of β. To get insight into

this situation, we introduce for a given value of y3 the stability boundary β(y3) which is such that the

method is stable in a region of the form
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(2.1b) S(y3) := { (y1,y2): | yk|   ≤ β(y3),  k = 1, 2} .

Evidently, β = min
y3

 β(y3) and S = ∩
y3

 S(y3) for | y3|   ≤ ∞.

2.1. Partially implicit methods

We confine our considerations to the so-called implicit-explicit methods which recently got renewed

attention (see e.g. [1], [2] and [7]), the stabilizing corrections method of Douglas [4], and the

approximating corrections method of Yanenko [17].

2.1.1. Implicit-explicit methods. Implicit-explicit methods arise if in a fully implicit method the

'implicit' righthand side evaluations are split into an explicit and an implicit part. A typical example is

the implicit-explicit version of the two-step backward differentiation formula (BDF), advocated in [7]

and [15]. When applied to (1.1) and taking into account that we want to treat the f3 term implicitly,

this method becomes

y
(0)
n+1 = 2yn  -  yn-1,

(2.3)

yn+1 =  4
3
 yn -  1

3
 yn-1 +  2

3
 ∆t (f(tn+1,y

(0)
n+1) - f3(tn+1,y

(0)
n+1) + f3(tn+1,yn+1)).

Here, ∆t is the stepsize tn+1 - tn and yn represents the numerical approximation to y(tn). The method

(2.3) is second-order accurate and requires the solution of one one-dimensionally implicit system per

step. This system can be solved by Newton iteration using a band solver to handle the linear Newton

systems. Hence, from a computational point of view, the costs per step are quite modest.

Applying (2.3) to the stability test equation defined above, we obtain a linear two-step recursion

whose characteristic equation is given by

(1 -  2
3
 z3)w2 -  4

3
 (1 + z1 + z2)w  +  1

3
 (1 + 2z1 + 2z2) = 0.

The method (2.3) will be called stable if this  equation has its roots on the unit disk. According to the

boundary locus method, the boundary of the stability region in the (y1,y2,y3)-space is defined by

4(y1 + y2)sin(φ) + 2y3sin(2φ) = 4cos(φ) - 3cos(2φ)  - 1,

0 ≤ φ ≤ 2π.

2(y1 + y2)(1 - 2cos(φ)) - 2y3cos(2φ) = 4sin(φ) - 3sin(2φ),

Solving this system for y1 + y2 and y3 yields the solution

y1 + y2 = 
1 - cos(φ)

2sin(φ)
 ,    y3 = 3 

1 - cos(φ)

2sin(φ)
 .

Hence, the boundary of the stability region is given by the plane 3y1 + 3y2 - y3 = 0, so that the

stability boundary β(y3) introduced in (2.1b) is given by β(y3) = 1
6
  y3 . Hence, we have stability in
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regions of the form (2.1a) with β = 0, showing that the implicit-explicit BDF is less suitable for

shallow water problems.

2.1.2. Douglas and Yanenko methods. In [9], where a number of splitting methods for three-

dimensional transport in shallow water were compared, the second-order methods from the family of

stabilizing corrections methods of Douglas and of approximating corrections methods of Yanenko

turned out to be the most efficient ones. When applied to (1.1), these families are given by

y
(0)
n+1 = yn +  ∆t f(tn,yn),

(2.4) y
(k)
n+1 = y

(k-1)
n+1  + θ∆t(fk(tn+1,y

(k)
n+1) - fk(tn,yn)),   k = 1, ... , 4,

yn+1 = y
(4)
n+1

and

y
(0)
n+1 = yn,

(2.5) y
(k)
n+1 = y

(k-1)
n+1  + θ∆t fk(tn+θ∆t,y

(k)
n+1),   k = 1, ... , 4,

yn+1 = yn + ∆t f(tn+θ∆t,y
(4)
n+1),

where θ is a positive parameter. The implicit relations for y
(k)
n+1, k = 1, 2, 3, are of the same type as in

the implicit-explicit BDF (2.3). Note, however, that the LU-decompositions needed in the Newton

process can be computed in parallel, but all forward-backward substitutions have to be done

sequentially. Since the reaction term f4 is nonstiff, y
(4)
n+1 can be solved by fixed point iteration.

For θ = 1
2
 the methods are second-order accurate, otherwise first-order accurate. Furthermore, for all

θ, the Douglas method (2.4) has stage order 1 (i.e. the order of the stage values y
(k)
n+1 equals one),

whereas the Yanenko method (2.4) has zero stage order. This stage order property is important,

because it improves the actual accuracy of the method (this was confirmed by the experiments in [9]).

In order to specify the stability properties of (2.4) and (2.5), we apply them to the stability test

equation, to obtain the recursion

(2.6) yn+1 = R(∆tJ1, ∆tJ2, ∆tJ3) yn,  R(z1,z2,z3) := 1 +  
z1 + z2 + z3

(1 − θz1) (1 − θz2) (1 − θz3)
  .

The methods (2.4) and (2.5) are stable if |R(z1,z2,z3)| ≤ 1 with zk running through the eigenvalues of

∆t λ(Jk). Hundsdorfer [11] showed that |R(z1,z2,z3)| ≤ 1 on the infinite wedge |arg(-zk)| ≤ π
4

 ,

k = 1, 2, 3. However, since we assumed that the eigenvalues of Jk are purely imaginary, we are more

interested in stability in regions of the form (2.1a). Unfortunately, requiring |R(iy1,iy2,iy3)| ≤ 1 in

S yields β = 0 for θ ≤ 1
2
  and quite small β - values for θ > 1

2
 . We also looked at plots for the stability

boundary β(y3) introduced in (2.1b). For θ = 1
2
  we found that β(0) = ∞ and β(y3) = 0 for |y3| > 0.

This makes the (θ = 1
2
 ) - method unsuitable for shallow water applications. More interesting are the

plots for θ > 1
2
 . Figure 2.1a presents a plot for θ = 

3
5  (this value turned out to be almost optimal as far

as stability is concerned). Details in the neighbourhood of the origin are given in Figure 2.1b.

Evidently, the (θ = 
3
5 ) - method possesses considerably better stability properties than the (θ = 1

2
 ) -
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method. This is also reflected by the values of βε defined by requiring |R(iy1,iy2,iy3)| ≤ 1 + ε in the

region S given in (2.1a). Here, ε is a small positive parameter, so that |R| ≤ 1 + ε implies a very mild

form of instability. It can be shown that for θ =  1
2

(2.7a) βε = √2ε  (1  +  1
2
 ε  +  O(ε2)).

For example, for ε = 10-5 we obtain βε ≈ 0.0045 which is of course unacceptably small. However,

the (θ = 
3
5 ) - method yields

(2.7b) βε =  5
3
 √

6
ε
10

  (1 -  √
3

ε2

10
   +  O(ε)),

so that we obtain for ε = 10-5 the quite reasonable value βε ≈ 0.167. Nevertheless, we do not

recommend the (θ = 
3
5 ) - method for shallow water applications.

2.2. Fully implicit methods

We consider fully implicit IVP solvers that fit into the wide class of General Linear Methods

introduced by Butcher in 1966 (see [3, p. 335] for a detailed discussion). These methods are given by

(2.8) Yn+1 - ∆t(A⊗ I)F(etn + c∆t,Yn+1) = (B⊗ I)Yn + ∆t(C⊗ I)F(etn-1 + c∆t,Yn),  n ≥ 0.

Here A, B and C denote s-by-s matrices, I is the identity matrix whose order equals that of the system

(1.1), e is an s-dimensional vector with unit entries, c = (ci) is an s-dimensional abscissae vector,

and ⊗  denotes the Kronecker product, i.e. if A = (aij), then A⊗ I denotes the matrix of matrices

(aij I). Furthermore, for any vector Yn = (yni), F(etn-1 + c∆t,Yn) contains the derivative values

(f(tn-1 + ci∆t,yni)). The s vector components yn+1,i of Yn+1 represent numerical approximations to

the s exact solution vectors y(tn + ci∆t). The quantities Yn are usually called the stage vectors and

their components yni the stage values.  We assume that the step point value yn is defined by the last

component of Yn, i.e. yn := (esT⊗ I)Yn, where es is the sth unit vector.

Each step by the method (2.8) requires the solution a nonlinear system. Let us define the residue

function

(2.9) R(Y) := Y - ∆t(A⊗ I)F(etn + c∆t,Y) - (B⊗ I)Yn - ∆t(C⊗ I)F(etn-1 + c∆t,Yn)

and consider the Newton-type iteration process for solving Y from R(Y) = 0:

(2.10) M(Y(j) - Y(j-1)) = - R(Y(j-1)),    j = 1, 2, ... ,

where M is an approximation to the Jacobian matrix of the stiff part of R(Y), i.e.

(2.11) M =  I - ∆t A⊗ (J1 + J2 + J3),
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where J1, J2 and J3 are defined above. This expression shows that solving the linear Newton systems

(2.10) by a direct method is quite costly. It is the aim of this paper to reduce these costs by replacing

the matrix M by a suitable approximation based on the splitting of the righthand side function given in

(1.1).  A detailed analysis of the convergence of the resulting iteration process will be the subject of

Section 3. This analysis reveals that the magnitude of the spectral radius ρ(A) of the matrix A plays a

role. Convergence turns out to be faster as ρ(A) is smaller. For future reference, we specify the

method parameters and the ρ(A)-value for a few methods that are suitable in shallow water

computations, viz. the second-order trapezoidal rule, the second-order BDF, and the third-order

Radau IIA method, respectively given by:

(2.12) s = 1, c = 1, A =  1
2
 , B = 1, C =  1

2
 , ρ(A) = 1

2
 ,

(2.13) s = 2, c =   


 
0

1
, A =  1

3
  


 
0 0

0 2
, B =  1

3
  


 
0 3

-1 4
, C =  


 
0 0

0 0
, ρ(A) = 2

3
 ,

(2.14) s = 2, c =  
 



 

1

3

1

, A =  1
12

  


 
5 -1

9 3
 , B =   


 
0 1

0 1
, C =  


 
0 0

0 0
, ρ(A) = 1

6
 √ 6 .

These methods are all A-stable, that is, the eigenvalues of ∂f/∂y are allowed to be anywhere in the left

halfplane. Hence, there are no stepsize restrictions due to stability requirements. This property of

unconditional stability is particularly important in shallow water applications, because (as already

remarked) many of the eigenvalues of Jk, k = 1, 2, 3, are close to the imaginary axis. Furthermore,

the BDF (2.13) has the greatest ρ(A)-value, the Radau IIA method (2.14) the smallest. This raises the

question whether we can construct (A-stable) integration methods whose ρ(A)-values are as small as

possible. Although this topic is outside the scope of this paper, we want to illustrate by a simple

example that the construction of integration methods with reduced ρ(A)-values is certainly feasible.

Consider the one-parameter family of three-step, second-order BDF type methods

(2.15) yn+1 = (3 - 5
2
 b0)yn + (4b0 - 3)yn-1 + (1 - 3

2
 b0)yn-2 + b0∆tf(tn+1,yn+1).

When written in the form (2.8), the matrix A has zero entries except for its last diagonal entry which

equals b0. Hence, we are looking for the smallest value of b0 such that (2.15) is still A-stable (and

hence L-stable). However, firstly, we should impose the condition of zero-stability. This leads to the

condition 0 < b0 < 1. Next we consider the stability region of (2.15). Proceeding as in Section 2.1.1,

we apply (2.15) to the stability test equation and we use the boundary locus method to find that the

boundary of the stability region in the complex z-plane is defined by

z = z(φ,b0) :=  
1
b0

 (1 - (3 - 5
2
 b0)e-iφ - (4b0 - 3)e-2iφ - (1 - 3

2
 b0)e-3iφ),   0 ≤ φ ≤ 2π.

We have A-stability if Re(z(φ,b0)) ≥ 0 for 0 ≤ φ ≤ 2π. An elementary calculation reveals that this is

true if  3
5
 ≤ b0 < 1. Thus, the minimal A-stable and zero-stable value of b0 = ρ(A) equals 3

5
 . Although
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this is only 10% smaller than the BDF (2.13), it indicates that further reductions might be obtained by

considering more general linear multistep methods.

3. Iteration methods based on factorization

We shall construct and analyse iterative methods for solving the linear system (2.10) exploiting the

fact that the matrix M can be factorized using the splitting of the righthand side function in (1.1).

3.1. Approximate factorization

In [10], [13] and [14] we used the iteration process

∏ (Y(j) - Y(j-1)) =  - R(Y(j-1)),    j = 1, 2, ... , m,
(3.1)

∏ := (I - A⊗ ∆tJ1)(I - A⊗ ∆tJ2)(I - A⊗ ∆tJ3),

for solving the implicit relations resulting from the application of the backward differentiation and

Radau methods (2.13) and (2.14) to the three-dimensional chemistry-transport problem in shallow

water. In (3.1) the initial iterate Y(0) should be provided by some predictor formula and the number of

iterations m is assumed to be determined by some iteration strategy such that Y(m) may be considered

as the solution of Yn+1 of (2.8). The matrix ∏ can be seen as an approximate factorization of the

matrix M used in the full Newton process (2.10). Therefore, we shall call (3.1) approximate

factorization iteration, briefly, the AF process.

If the iterates Y(j) converge and if (2.8) has a unique solution Yn+1, then they can only converge to

Y n+1. Each iteration in (3.1) requires the solution of 3 linear systems with system matrices

I - A⊗ ∆tJk, k = 1, 2, 3, each of order sN. Note that the three LU-decompositions of these system

matrices can be done in parallel. Of particular interest is the case where the matrix A is diagonal (as in

(2.12) and (2.13)). Then, the LU-decompositions of I - A⊗ ∆tJk and the corresponding forward-

backward substitutions are relatively cheap, because the matrices Jk each correspond with a one-

dimensional differential operator. If A is a full matrix as in (2.14), then it is recommendable to replace

the matrix A in the iteration matrix ∏ by a diagonalizable matrix A*. This approach was considered in

[10] and [6]. The case of lower triangular A will be considered in a forthcoming paper [8]. In this

paper, it will from now on be assumed that A is diagonal with nonnegative diagonal entries.

In the following section we present convergence and stability results for the AF process.

3.1.1. Convergence results. Let us consider the AF iteration error ε(j) := Y (j) - Y n+1. From

(2.8), (2.9), (2.11) and (3.1) it follows that

ε(j) =  Z ε(j-1) + ∆t ∏-1(A⊗ I)(Φ1(ε(j-1)) + Φ2(ε(j-1)) + Φ3(ε(j-1)) + Φ4(ε(j-1))),

Z := I - ∏-1M,

Φk(ε) := Fk(etn + c∆t, Yn+1 + ε ) - Fk(etn + c∆t, Yn+1) - (I⊗ Jk)ε ,   k = 1, 2, 3,

Φ4(ε) := F4(etn + c∆t, Yn+1 + ε ) - F4(etn + c∆t, Yn+1).
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Here, the functions Fk are defined in a similar way as the function F. Evidently,

(3.2) Φk(ε) = Kkε + O(ε2),

where the matrices Kk are s-by-s block-diagonal matrices with blocks of the same dimension as the

matrix J. Hence, we obtain

(3.3) ε(j) = (Z + ∆t ∏-1(A⊗ I)(K1 + K2 + K3 + K4) ε(j-1) + O((ε(j-1))2).

The matrices Kk may be assumed to be of small magnitude. Hence, the error recursion (3.3) is

essentially given by

(3.3') ε(j) ≈ Z ε(j-1),  j = 1, 2, ... , m,

so that our first concern is the matrix Z. Part of the properties of Z given below were derived in [6]

and are reproduced here (without proof) for reference reasons.

Theorem 3.1. The amplification matrix Z in (3.3') satisfies Z = O((∆t)2). ♦

This theorem shows that we always have convergence if ∆t is sufficiently small, that is, the

convergence region is never empty. Furthermore, Theorem 3.1 indicates that the nonstiff error

components (corresponding with eigenvalues of Jk of modest magnitude) are rapidly removed from

the iteration error.

The following theorem provides information on the size of the convergence region, that is, the region

in the space ∆t(λ(J1),λ(J2),λ(J3)), where the amplification factors λ(Z) are within the unit circle. As

before, we consider the case where the Jacobian matrices Jk share the same eigensystem.

Theorem 3.2. Necessary and sufficient conditions for ρ(Z) < 1 are given by | arg(-λ(Jk)) | ≤  π
4

 ,

k = 1, 2, 3. ♦

Recalling that the eigenvalues of J1, J2 and J3 are often close to the imaginary axis, we need more

information on the amplification factors λ(Z) than provided by Theorem 3.2. We again consider the

most critical case where the eigenvalues of Jk are purely imaginary. Let us write ∆tλ(A)λ(Jk) = iζk

and λ(Z) = C(ζ1,ζ2,ζ3), where ζk is real-valued. Then |C| is given by

(3.4)  C(ζ1,ζ2,ζ3)  =  ( 
(ζ1 + ζ2)2ζ32 + ζ12ζ22(ζ32 + 1) + 2ζ1ζ2ζ3(ζ1 + ζ2)

(1 + ζ12)(1 + ζ22)(1 + ζ32)
)1/2

  .

This expression enables us to derive an upperbound for the amplification factors λ(Z) which is quite

accurate for the nonstiff λ(Z).
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Theorem 3.3. The amplification factors λ(Z) corresponding with eigenvalues λ(Jk) lying in the

interval i[-δ,δ] satisfy the estimate

|λ(Z)| ≤ 3ζ2√1 +   1
9
 ζ2,    ζ := ρ(A)δ∆t.♦

This theorem shows that the nonstiff amplification factors λ(Z), that is, amplification factors

corresponding with small values of δ, are quite small.

Next, we consider the overall convergence. Taking into account that we do not want to restrict the

magnitude of the eigenvalues λ(J3) on the imaginary axis, we are interested in the region in the

(ζ1,ζ2)-plane where the amplification factor

α(ζ1,ζ2) := max
-∞≤ζ3≤∞     C(ζ1,ζ2,ζ3)

is less than 1. If α (ζ 1,ζ 2) < 1 is satisfied for -γ < ζ k < γ, k = 1, 2, then in the imaginary

∆t(λ(J1), λ(J2), λ(J3)) - space the corresponding region of convergence of (3.1) is given by

(3.5a) CAF := { (y1,y2,y3):   | yk|   ≤ 
γ

ρ(A)
,  k = 1, 2; | y3|   ≤ ∞} ,

where γ will be called the convergence boundary. We found that α(ζ1,ζ2) is given by

α(ζ1,ζ2) = max {  C(ζ1,ζ2,0) ,  C(ζ1,ζ2,ζ±(ζ1,ζ2)) ,  C(ζ1,ζ2,∞) } ,

ζ±(ζ1,ζ2) := 
ζ1 + ζ2 ± √(ζ1 + ζ2)2 + 4ζ12ζ22

2ζ1ζ2
  .

It is easily verified that | C(ζ1,ζ2,0)| <  1 for all ζ1 and ζ2, and that | C(ζ1,ζ2,∞)| < 1 on the domain

ζ 1ζ 2 < 1
2
, which contains the square - 1

2
 √ 2  < ζ k  < 1

2
 √ 2, k = 1, 2. Furthermore,

| C(-ζ1,-ζ2,ζ+(ζ1,ζ2))| = | C(ζ1,ζ2,ζ -(ζ1,ζ2))|, so that we may confine our considerations to

| C(ζ1,ζ2,ζ-(ζ1,ζ2))| in the square - 1
2
 √ 2 < ζ k < 1

2
 √ 2, k= 1, 2.  Figure 3.1 shows the function

| C(ζ1,ζ2,ζ-(ζ1,ζ2))|. This picture indicates that this function increases most rapidly along the line

ζ1 = ζ2. Hence, the convergence boundary γ = min{  1
2
 √ 2, γ0},  where γ0 is the smallest positive root

of the equation α(ζ,ζ) = 1. This equation is given by 4ζ8 + 8ζ6 + 4ζ4 - ζ2 = 1, so that γ0 = 0.647... .

Theorem 3.4. Let the eigenvalues of Jk, k = 1, 2, 3, be purely imaginary. Then, a sufficient

condition for ρ(Z) < 1 is:

∆t ≤   
γ

ρ(A) max { ρ(J1),ρ(J2)}
 ,   γ = 0.647... . ♦

In order to get more detailed information on the actual region of convergence, we define for a given

value of y3 the region (compare the region S(y3) introduced in (2.1b))
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(3.5b) CAF(y3) := { (y1,y2):   | yk|   ≤ 
γ(y3)

ρ(A)
,  k = 1, 2} ,

where the convergence boundary γ(y3) is defined by the requirement that ρ(Z) < 1 in CAF(y3). We

verified that γ(y3) is determined on the line ζ1 = ζ2, that is, by the equation  C(ζ1,ζ1,ζ3)  = 1. This

equation can be reduced to 4ζ13ζ3 + 2(ζ32 - 1)ζ12 - ζ32 - 1 = 0. Hence, defining the function g(x) by

the relation 4xg3(x) + 2(x2 - 1)g2(x) - x2 - 1 = 0, it follows that (recall that A is diagonal with

nonnegative diagonal entries, so that λ(A) ≥ 0)

(3.5c) γ(y3) = ρ(A) min
λ(A)

  
g(λ(A) y3 )

λ(A)
 .

Figures 3.2 presents a plot of g(x) on the interval [0,50].

3.1.2. Stability results. Evidently, if AF iteration converges, then the stability is determined by

the stability of the underlying method (2.8). Hence, with respect to the stability test equation, the

stability region of the iterated method converges to the cross section of the convergence region and the

stability region of (2.8). Thus, the stability region is given by

(3.6) SAF := S0 ∩ CAF,

where S0 is the stability region of (2.8) and CAF is defined by (3.5a) with γρ-1(A) ≈ 0.647ρ-1(A) (see

Theorem 3.4). For A-stable integration methods, the stability region SAF equals the convergence

region CAF. Hence, the stability region SAF and the corresponding stability condition are therefore

respectively of the form (2.1a) and (2.2) with β = γρ−1(A). For example, for the trapezoidal, BDF

and Radau methods (2.12), (2.13) and (2.14), we find β ≈ 1.29, 0.97 and 1.58, respectively. Thus,

the stability of these AF iterated methods compares favourably with the stability of the implicit-explicit

BDF and the Douglas-Yanenko methods.

In (3.6) it is assumed that the AF process is iterated until convergence. However, by virtue of

Theorem 3.1, the order of the underlying integration formula is already reached after a few iterations.

Therefore, it is tempting to stop in each step the iteration process after two or three iterations, rather

than trying to solve (2.8). Unfortunately, after a fixed number of iterations, the stability of the iterated

method is still rather poor. In [6] it was shown that the AF iterated BDF (2.13) is stable in a region of

the form (2.1a) with β(m) ≈ 0.3 for m ≤ 4. Hence, in order to rely on the stability boundary valid for

the 'converged' method, one should not iterate with a fixed number of iterations, but employ some

form of iteration strategy which guarantees that sufficiently many iterations are performed to remain

close to the solution of (2.8). In practice, the averaged number of iterations per step will still be

modest (in the range of 2 until 4 iterations), but the iteration strategy serves to perform additional

iterations when necessary.
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Although AF iteration leads to stability regions of the form (2.1a) with reasonable values for β, it

would be desirable to have still larger stability boundaries. Therefore, we look for iteration methods

yielding larger stability regions than AF iteration.

3.2. Safety net iteration process

We shall consider an iteration strategy where we perform only a few AF iterations with (3.1) and

where we continue with a second iteration process subject to less severe convergence conditions than

AF iteration. Since by virtue of Theorem 3.1 we have Z = O((∆t)2), the first few iterations serve to

achieve an acceptable order of accuracy with respect to ∆t with an order constant of reasonable size.

The second iteration process should serve to achieve convergence in a larger eigenvalue domain, that

is, a less severe timestep restriction than the one given in Theorem 3.4. Thus, in a dynamic iteration

strategy, where the number of iterations is determined by for example the size of the residue term, this

second iteration process acts as a safety net that should ensure a more or less monotonic convergence.

Therefore, we shall call it a safety net iteration process, or briefly, SN iteration.

Let us define  ∏k3 := (I - A⊗ ∆tJk)(I - A⊗ ∆tJ3). Then, SN iteration is defined by

∏23(Y(j-1/2) - Y(j-1)) = - R(Y(j-1)) - ω∆t(A⊗ I)[F1(etn+c∆t,Y(j-1)) - F1(etn+c∆t,Y(m))],
(3.7)

∏13(Y(j) - Y(j-1/2)) = - R(Y(j-1/2)) - ω∆t(A ⊗ I)[F2(etn+c∆t,Y(j-1/2)) - F2(etn+c∆t,Y(m))]

for j = m+1, m+2, ... , m*. Here, Y(m) is the last iterate obtained by the AF method (3.1) and ω may

be considered as a relaxation parameter which is assumed in [0,1]. Note that the matrices ∏k3 are less

accurate factorizations of the matrix M than the matrix ∏ in the AF method.

If the iterates Y(j) converge to a vector Un+1 = Y(∞), then Un+1 is a zero of the new residue function

R*(Y). This function is obtained on substitution of Y(j-1) = Y(j) = Y into (3.7) and on elimination of

Y (j-1/2). Evidently, Un+1 depends on ω and Y (m). For ω = 0 we have Un+1 = Yn+1. For ω ≠ 0 we

have an iteration defect Un+1 - Yn+1. In the next section we shall derive an estimate for this defect.

Compared with the iterations in the AF method, the iterations in the SN method are more expensive

because in each iteration we have to solve four instead of three linear systems and to evaluate twice

instead of once a residue function. Moreover, it requires more storage, because F1(etn + c∆t,Y(m))
and F2(etn + c∆t,Y (m)) have to be saved. To be more precise, in the case of the two-species

application described in Section 4, the amount of storage increases by about 10% (the percentage of

additional storage increases to at most 25% as the number of species increases). Thus, when

compared with the AF process, the main drawback of the SN process is the relatively expensive

iteration cost. However, we shall see that  SN iteration converges much faster than AF iteration.

3.2.1. Convergence. In order to get insight into the convergence of SN iteration, we consider the

corresponding error recursion. Omitting second-order error terms, we find
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ε(j-1/2) = (Z
-

1(ω) + ∆t∏23-1(A⊗ I)((1 - ω)K1 + K2 + K3 + K4)) ε(j-1)

+ ω(Q1+ ∆t ∏23-1(A⊗ I)K1) ε(m),

(3.8) ε(j) = (Z
-

2(ω) + ∆t∏13-1(A⊗ I)(K1 + (1 - ω)K2 + K3 + K4)) ε(j-1/2)

+ ω(Q2+ ∆t ∏13-1(A⊗ I)K2) ε(m),  j > m,
where

Z
-

1(ω) := I - ∏23-1M - ωQ1, Z
-

2(ω) := I - ∏13-1M - ωQ2,

Q1 := ∆t ∏23-1(A⊗ J1), Q2 := ∆t ∏13-1(A⊗ J2).

Since the matrices Kk are of small magnitude, the error recursion (3.8) essentially behaves as

(3.8') ε(j) ≈ Z
-

(ω) ε(j-1) + ωQ(ω) ε(m),    Z
-

(ω) := Z
-

2(ω)Z
-

1(ω),  Q(ω) := Q2 + Z
-

2(ω)Q1,  j > m.

It is easily verified that Z
-

k(ω) = ∆t (A⊗ (1 - ω)Jk) + O((∆t)2), leading to the result (cf. Theorem 3.1):

Theorem 3.5. The amplification matrix Z
-

(ω) in (3.8') satisfies

Z
-

(ω) = (∆t)2((1 - ω)2 (A2⊗ J2J1) +  (1 - ω)O(∆t) + O((∆t)2)). ♦

Hence, for the nonstiff error components we always have O((∆t)2) convergence and even O((∆t)4)
convergence as ω → 1.

Next, we look at the region of convergence. A necessary and sufficient condition for convergence

requires the eigenvalues of Z
-

(ω) within the unit circle. Again, we write ∆tλ(A)λ(Jk) = iζk and

λ(Z
-

(ω)) = C(ζ1,ζ2,ζ3). Then,

(3.9)  C(ζ1,ζ2,ζ3)  =  ( 
((1-ω)2ζ12 + ζ32ζ22)((1-ω)2ζ22 + ζ32ζ12)

(1 + ζ12)(1 + ζ22)(1 + ζ32)2
  )1/2

 .

The analogue of Theorem 3.3 becomes

Theorem 3.6. The amplification factors λ(Z
-

(ω)) corresponding with eigenvalues λ(Jk) lying in the

interval i[-δ,δ] satisfy the estimate

|λ(Z
-

(ω))| ≤ ζ2 ((1-ω)2 +  ζ2),   ζ := ρ(A)δ∆t.♦

A comparison with Theorem 3.3 shows that the rate of convergence of SN iteration is considerably

larger than that of AF iteration, particularly as ω → 1. Since in the Theorems 3.3 and 3.6 δ refers to

an arbitrary large eigenvalue interval, this statement also applies to the stiff error components.

Next we define the amplification factor

α(ζ1,ζ2,ω) := max
-∞≤ζ3≤∞    C(ζ1,ζ2,ζ3) .
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If α(ζ1,ζ2,ω) < 1 is satisfied for -γ(ω) < ζk < γ(ω), k = 1, 2, then in the ∆t(λ(J1), λ(J2), λ(J3)) -
space the region of convergence of (3.7) is given by

(3.10) CSN(ω) := { (y1,y2,y3):   | yk|   < 
γ(ω)

ρ(A)
,  k = 1, 2; | y3|   ≤ ∞} .

It turns out that

α(ζ1,ζ2,ω) = max { | C(ζ1,ζ2,0)|,  | C(ζ1,ζ2,ζ0(ζ1,ζ2,ω))|,  | C(ζ1,ζ2,∞)|} ,

   0 ≤ ω ≤ 1.

 ζ02(ζ1,ζ2,ω) :=   
ζ14 - 2(1-ω)2ζ12ζ22 + ζ24

ζ14 + ζ24
  ,

It can be verified that | C(ζ1,ζ2,0)| <  1 and | C(ζ1,ζ2,∞)| < 1 for all ζ1 and ζ2, provided 0 ≤ ω ≤ 1,

so that the convergence boundary γ(ω) is determined by the inequality | C(ζ1,ζ2,ζ0(ζ1,ζ2,ω))| < 1.

We also verified that the function | C(ζ1,ζ2,ζ0(ζ1,ζ2,ω))| increases most rapidly along the ζ1 and ζ2

axes for all ω in [0,1]. In Figure 3.3 this is illustrated for ω = 9
10

 . Hence, γ(ω) is determined by the

smallest positive root of the equation | C(ζ1,0,ζ0(ζ1,0,ω))| = 1. This leads to the following analogue

of Theorem 3.4:

Theorem 3.7. Let the eigenvalues of Jk, k = 1, 2, 3, be purely imaginary. Then, a sufficient

condition for ρ(Z
-

(ω)) < 1 is:

∆t ≤   
γ(ω)

ρ(A) max { ρ(J1),ρ(J2)}
 ,   γ(ω) = √2 + 2√1 + (1-ω)2

1 - ω
 .♦

For a few values of ω the convergence boundary γ(ω) is listed in Table 3.1. A comparison with the

convergence boundary γ ≈ 0.64ρ-1(A) for AF iteration given by Theorem 3.4 reveals that SN iteration

has considerably larger convergence boundaries.

Table 3.1. Values of γ(ω), ρmax(ωS(ω)) and ρaver(ωS(ω)).
------------------------------------------------------------------------------------------------

σ ω = 0 .1 .25 .50 .75 .90 1.0
------------------------------------------------------------------------------------------------

γ(ω) ≈ 2.19 2.40 2.82 4.11 8.06 20.0 ∞

[0,∞] ρmax(ωS(ω)) ≤ 0 0.66 1.85 5.25 14.4 40.0 ∞

10 ρaver(ωS(ω)) ≈ 0 0.04 0.09 0.20 0.35 0.50

20 ρaver(ωS(ω)) ≈ 0 0.02 0.06 0.12 0.21 0.31

40 ρaver(ωS(ω)) ≈ 0 0.01 0.03 0.07 0.13 0.19
------------------------------------------------------------------------------------------------

However, a drawback is that we have a nonzero iteration defect Un+1 - Yn+1, unless ω = 0. From

(3.8') we derive

(3.11) Un+1 - Yn+1 = Y(∞) - Yn+1 = ε(∞) ≈ ωS(ω)ε(m),  S(ω) := (I - Z
-

(ω))-1Q(ω).



1 4

We consider the effect of the SN method (3.7) on the error ε(m). Let us assume that the eigenvalues of

Jk are more or less equally distributed and that ρ(J1) = ρ(J2) = σ-1ρ(J3), where σ is the factor by

which the vertically discretized terms are more stiff than the horizontally discretized terms. Because

the meshsize along the vertical will be much smaller than the horizontal meshsizes, we have σ >> 1.

We define for given values of ω and σ the maximum and averaged values ρmax(ωS(ω)) and

ρaver(ωS(ω)) of the spectral radius of the matrix ωS(ω) in the domain

E(ω,σ) := { (ζ1,ζ2,ζ3):   | ζ1|   ≤ γ(ω),  | ζ2|   ≤ γ(ω), | ζ3|   ≤ σγ(ω)}.

Table 3.1 presents upperbounds for ρmax(σ,γ), irrespective the value of σ, computed for a grid in

E(ω,σ) with meshsizes ∆ζ1 = ∆ζ2 = 0.1 and ∆ζ3 = 0.1σ. These values are quite alarming. However,

it seems more realistic to look at the values of ρaver(σ,γ). These values are also listed in Table 3.1 and

indicate that for, say 0 < ω ≤ 1
2
 , we may expect a substantial reduction of the error ε(m) by applying

the SN iteration process (3.7), particularly for larger values of σ, so that the iteration defect

Un+1 - Yn+1 is expected to be quite small. For ω > 1
2
 , the iteration defect is expected to become

increasingly larger with ω. Similarly, if we look at the nonstiff components of the iteration defect, that

is, the components which correspond with eigenvalues λ(Jk) lying in the interval i[-δ,δ] with δ of

modest magnitude, then the nonstiff iteration defect increases about linearly with ω. This can be

concluded from the following estimate for the nonstiff eigenvalues of ωS(ω):

 λ(ωS(ω))  ≤ ωζ √1 + (10 - 6ω + ω2)ζ2 + O(ζ4),      ζ  := ρ(A)δ∆t.

Thus, the preceding considerations lead to the conclusion that the convergence of SN iteration

improves as ω → 1, but the iteration defect becomes worse.

Finally, we remark that by virtue of the above estimate for  λ(ωS(ω)) and by Theorem 3.1, the

order in ∆t of the nonstiff components of the iteration defect Un+1 - Yn+1 ≈ ωS(ω)Zmε(0) is given by

ωO((∆t)2m+q+1), where q is the order of ε(0) with respect to ∆t. Thus, even if we perform only a few

AF iterations, then we already achieve a high order with respect to ∆t. For example, if m = 3 and

Y (0) = (eesT⊗ I)Un, i.e. q = 1, then the nonstiff components of Un+1 - Yn+1 are ωO((∆t)8). This

implies that for all ω the smooth part of the final solution Un+1 is very close to the smooth part of the

solution Yn+1 of the underlying integration method (2.8).

3.2.2. Stability. We consider the linear stability properties of the sequence { Un} with respect to

the test equation y' = Jy. Let the predictor be given by Y (0) = (P⊗ I)Un, where P is the predictor

matrix. Furthermore,  since now Yn+1 is the solution of (2.9) with Yn replaced by Un, we obtain

Yn+1 = M-1NUn,   N := B⊗ I + ∆t(C⊗ J).

Using (3.11), we find that

Un+1 = Yn+1 + ε(∞) = Yn+1 + ωS(ω)Zm ε(0)

 = (I - ωS(ω)Zm)Yn+1 + ωS(ω)Zm(P⊗ I)Un = Rm(ω)Un,

Rm(ω) := (I - ωS(ω)Zm)M-1N +  ωS(ω)Zm(P⊗ I).
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We have stability if the stability matrix Rm(ω) has its eigenvalues on the unit disk. These eigenvalues

are given by the eigenvalues of the matrix

(3.12) R~m(ω) := (I - ωS 
~Z~m)M~-1N~ + ωS 

~Z~mP,

where

M~ = I - z A,   z = z1 + z2 + z3,   Z~ = I - (I - z1 A)-1(I - z2 A)-1(I - z3 A)-1 M~,

N~ = B + z C,   S ~ = (I - Z~2 Z
~

1)-1(Q~2 + Z~2Q
~

1),

Z~1 = I - (I - z2 A)-1(I - z3 A)-1(M~ + ωz1 A),  Z~2 = I - (I - z1 A)-1(I - z3 A)-1(M~ + ωz2 A),

Q~1 = z1 A (I - z2 A)-1(I - z3 A)-1,  Q~2 = z2 A (I - z1 A)-1(I - z3 A)-1.

Again confining our considerations to the most critical case where the eigenvalues of Jk are purely

imaginary without restrictions on the magnitude of the eigenvalues of J3 on the imaginary axis, the

corresponding stability region will contain a domain of the form

(3.13)    SSN(m,ω) := S0 ∩ CSN ∩ S(m,ω),  S(m,ω) := { (y1,y2,y3): | yk|   ≤ β* , k = 1, 2; | y3|   ≤ ∞} ,

where S0 is the stability region of (2.8), CSN is the convergence region of the SN method (3.7) given

by (3.10) and Table 3.1, and where S(m,ω) follows from the requirement ρ(R~m(ω)) ≤ 1. The

boundary β*  in S(m,ω) depends not only on m and ω, but also on the predictor matrix P and the

underlying integration method (2.8).

Table 3.2. Values of β* ,  γρ-1(A) and β for (2.13) with m = 3 and P := eesT.
-------------------------------------------------------------------------------------------------

ω 0 0.001 0.01 0.1 0.25 0.50 0.75 0.90 1.0
-------------------------------------------------------------------------------------------------

β* ∞ 3.3 0.8 0.9 0.4 0.9 1.2 3.1 78.9

γρ-1(A) 3.2 3.2 3.2 3.6 4.2 6.1 12.0 30.0 ∞
β 3.2 3.2 0.8 0.9 0.4 0.9 1.2 3.1 78.9

-------------------------------------------------------------------------------------------------

Let us consider the regions CSN and S(m,ω) associated with the second-order backward

differentiation formula (2.13) and the predictor matrix P := eesT. For m = 3 and a number of

ω - values, Table 3.2 lists approximations to the values of β* . Furthermore, we listed the values of

γρ-1(A) = 3γ/2 determining the convergence region CSN (note that the convergence region CSN is

much larger than the region S(3,ω), even for ω ≈ 0).

We are now in a position to compare the stability regions SAF and SSN(m,ω) associated with the AF

and AF-SN iteration processes. For A-stable integration methods, SSN(m,ω) and the corresponding

timestep condition are respectively of the form (2.1a) and (2.2) with β = min{ β* , γρ-1(A)} . For

example, for the second-order BDF (2.13), we find the values listed in Table 3.2. Since for AF

iteration we have β = γρ−1(A) = 0.97, we conclude that for ω ≈ 0 and ω ≥ 0.9, the AF-SN stability

boundary is substantially greater than the AF stability boundary. Note that the stability boundaries for

ω ≈ 0 and ω = 0.9 are comparable. However, for ω ≈ 0 it is essentially determined by the con-

vergence boundary, whereas for ω = 0.9 it is determined by the value of β* . Since convergence plays
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a role in each integration step and the value of β*  is connected with the propagation of errors through

the steps, it is expected that the (ω = 0.9) - method will show a more robust performance than the

(ω = 0) - method. This is confirmed by the numerical experiments reported in the next section.

4. Numerical experiments

For our numerical experiments we use a simple transport model for two interacting species proposed

in [13]. This problem consists of two PDEs in three spatial dimensions,

∂c1
∂t   + V.∇ c1 =  ε ∆c1 + g1(t,x,y,z) − k1c1c2,

(4.1)
∂c2
∂t   + V.∇ c2 =  ε ∆c2 + g2(t,x,y,z) − k1c1 + k2(1 − c2),

defined on D := {(x,y,z): 0 ≤ x, y ≤ Lh, −Lv ≤ z ≤ 0}, 0 ≤ t ≤ T with Lh, Lv, and T specified below.

Here V = (u, v, w)T denotes the velocity field, taken from the literature (see [5]), ε is a diffusion

constant, and k1, k2 are reaction constants. V is divergence free and given in analytical form by

u(t,x,y,z) = {    y~ + 3 (z~ + 1/2) [ (x~ − 1/6)2 + (y~ − 1/6)2 − p2] }  d(t),

(4.2) v(t,x,y,z) = {  − x~ + 3 (z~ + 1/2) [ (x~ − 1/6)2 + (y~ − 1/6)2 − p2] }  d(t),

w(t,x,y,z) = − 3 Lv z~ (z~ + 1) { (x~ − 1/6)/Lh + (y~ − 1/6)/Lh}  d(t),

where we used the scaled co-ordinates x~ := x/Lh, y~ := y/Lh, z~ := z/Lv, and d(t) = cos(2πt/Tp) with p

and Tp given constants. The Dirichlet boundary conditions, the initial condition and the functions g1

and g2 are chosen in accordance with a prescribed analytical solution, which is of the form

(4.3) ci(t,x,y,z) = exp{  z~ / i − fi(t) − γi [( x~ − r(t) )2 + ( y~ − s(t) )2 ]} ,  i =1, 2,

with f2(t) = t/(Tb + t), f1(t) = 4f2(t), r(t) =1/6 + cos(2πt/Tp)/40, and s(t) = 1/6 + sin(2πt/Tp)/40.
In our experiments, we take the following values for the various parameters (mks units):

ε = 0.5, k1 = k2 = 10−4, Lh = 20 000, Lv = 100, T = 36000,
(4.4)

p = 1/10, Tp = 43200, Tb = 32400, γ1 = 80, γ2 = 20.

The domain D was subdivided into four domains separated by the planes x~ := 1/3 and y~ := 1/3. The

above test problem was discretized on these four domains, each containing a spatial grid with

Nx = 61, Ny = 61 and Nz = 31 grid points in the x-, y- and z-direction, respectively. The resulting

ODE system consists of over 900 000 equations.

The semidiscrete system was integrated by the BDF (2.13). The implicit relations were approximately

solved by using two iteration strategies, viz. (i) only iterating with the AF iteration process (3.1), and

(ii) first performing 3 AF iterations and then continuing with the SN iteration process (3.7). The total

number of iterations is denoted by m*. To start the iteration, we use a 'trivial' prediction, i.e. Y(0) :=

Yn. This prediction proved to be more robust than using an extrapolation formula. The accuracy of

the numerical solution is measured by the number of correct digits in the end point t = T, that is, by
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cd := minimum (− 10log |absolute end point error|),

taken over all grid points and over both species. Notice that the numerical solution is compared with

the exact solution (4.3) of the PDE and hence comprises both spatial errors and temporal errors.

For various values of ∆t, Table 4.1 and 4.2 list the cd-values obtained by iterating the BDF (2.13)

with the AF process (3.1) and the AF-SN iteration process {(3.1),(3.7), m = 3}, respectively.

Our first concern is the convergence of the combined iteration process AF-SN for stepsizes that are

not determined by convergence and stability requirements, but only by accuracy requirements. Of

course, this property depends on the range of accuracies we are interested in. In shallow water

applications, a precision of about 1% is quite realistic, hence we are aiming at cd-values of about 2.

Table 4.1.   Values of cd by AF iterated BDF for problem (4.1) - (4.4).
-------------------------------------------------------------------------------------------------------------------

∆t Strategy m = 1 m = 2 m = 3 m = 5 m = 7 m = 9 m = 11 . . . m = 21
-------------------------------------------------------------------------------------------------------------------

60 min. AF 1.6 1.8 2.0 2.1 2.2 2.2 1.8 ... divergence

30 min. AF 2.0 2.2 2.4 2.7 2.9 3.0 2.3 ... overflow

15 min. AF 2.4 2.8 3.1 3.7 4.0 4.1 4.1 ... overflow

7.5 min. AF 2.7 3.5 4.1 4.7 4.7 4.7 4.7 ... 4.7

-------------------------------------------------------------------------------------------------------------------

Table 4.2. Values of cd by AF-SN iterated BDF with m = 3 for problem (4.1) - (4.4).
-------------------------------------------------------------------------------------------------

∆t Strategy ω m* = 4 m* = 5 m* = 6 m* = 7 . . . m* = 12
-------------------------------------------------------------------------------------------------

60 min. AF-SN 0 2.3 - 1.2 overflow

0.5 2.2 - 0.5 overflow

0.9 1.1 1.1 1.4 1.8 . . . 1.5

 1.0 0.8 0.7 0.7 0.7 . . . 0.7
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

30 min. AF-SN 0 3.1 3.5 overflow

0.5 2.9 2.9 2.9 0.8 ... overflow

0.9 2.6 2.6 2.6 2.6 ... 2.6

1.0 2.6 2.6 2.5 2.5 ... 2.3
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

15 min. AF-SN 0 4.1 4.1 4.1 4.1 ... 4.1

0.5 3.5 3.5 3.5 3.5 ... 3.5

0.9 3.3 3.3 3.3 3.3 ... 3.3

1.0 3.3 3.3 3.3 3.3 ... 3.3
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

7.5 min. AF-SN 0 4.7 4.7 4.7 4.7 ... 4.7

0.5 4.2 4.2 4.2 4.2 ... 4.2

0.9 4.0 4.0 4.0 4.0 ... 4.0

1.0 4.0 4.0 4.0 4.0 ... 4.0

-------------------------------------------------------------------------------------------------

The figures in Table 4.1 indicate that the AF process has the property of accuracy-dictated-stepsizes

only in the range of about 4 or more digits accuracy, whereas Table 4.2 shows that AF-SN iteration

with ω = 0.9 already has this property for accuracies of 1.5 digits. Note that the (ω = 0.9) - method
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behaves much more stably than the (ω = 0) - method, in spite of the fact that both methods

possess a comparable stability boundary (see Table 3.2). As already observed, this can be explained

by the better convergence properties of the (ω = 0.9) - method.

Secondly, we are interested in the monotony of the convergence of AF-SN iteration. Since SN

iteration should act as a savety net procedure in a dynamic iteration strategy, it would be desirable that

changing from AF to SN preserves the monotony of the convergence. In Figure 4.1 we have plotted

the maximum norm of Y(j) - Y(j-1) as a function of j for the AF and AF-SN iteration processes with

ω = 0.9 within a single step of 60 min. In this plot the AF process is described by the graph that

initially decreases and that starts to increase with the 10th iteration. The graph of the AF-SN process

shows a minor dismonotony at the third iteration. Apparently, the fourth AF-SN iteration is less

accurate than the fourth AF iteration. However, the fifth AF-SN iteration is already more accurate than

the fifth AF iteration. Continuing the iteration processes demonstrates increasing divergence for AF,

whereas SN (ω = 0.9) nicely converges to 0.

A third issue is the effect of ω on the accuracy of the solution. We recall that for ω = 0 the iterated

solution converges to the BDF solution (provided, of course, that the iteration process does not

diverge). For ω > 0, it will converge to a different solution. On the basis of the ρmax and ρaver values

listed in Table 3.1, we should be prepared that for larger stepsizes the difference with the BDF

accuracy may be considerable for ω > 0.5. This is confirmed in Table 4.2.

Summarizing, we conclude that for low accuracy computations (about 1 or 2 digits accuracy) and a

dynamic iteration strategy, we should use the AF-SN process with ω = 0.9. Also note that AF

iteration requires about 8 times smaller stepsizes in order to remain stable.

5. Conclusions

We conclude this paper by summarizing the main properties of the second-order integration methods

analysed in the preceding sections. For these methods, we have listed in Table 5.1 the order of

accuracy p, the stability boundary β occurring in the stepsize condition (2.2), the number of LU-

decompositions (LUDs) per update of the various Jacobian matrices (we recall that these LUDs can be

done in parallel on a parallel computer system), the number of forward-backward substitutions

(FBSs) per step, and the number of righthand sides (RHSs) per step in the case where the terms fk in

(1.1) are equally expensive. The parameter ε occurring in the stability boundary of the Douglas-

Yanenko methods denotes the stability defect introduced in Section 2.1.2. Furthermore, m and m*

denote the number of iterations used in the AF and AF-SN processes. The specification dynamic m or

dynamic m* means that the iteration process is stopped if some residual tolerance is reached.

Taking into account the size of the stability boundary, we may draw the conclusion that

(i) implicit-explicit BDF and Douglas-Yanenko are not suitable for  shallow water applications.

(ii) AF iterated BDF and AF-SN iterated BDF are both suitable for  shallow water applications.

(iii) AF-SN iterated BDF is by far superior to AF iterated BDF.
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Table 5.1. Properties of various numerical methods for integrating shallow water problems.
------------------------------------------------------------------------------------------------------------------------
                             Method p β LUDs FBSs RHSs
------------------------------------------------------------------------------------------------------------------------

Implicit-explicit BDF (2.3) 2 0 1 m 1
4
 (m + 4)

Douglas-Yanenko (2.4) - (2.5) with θ = 1
2
 2 √(2ε ) 3 3m 1 + m

AF-iterated BDF (2.13) - (3.1) with fixed m = 3 2 0.30 3 9 3

AF-iterated BDF (2.13) - (3.1) with dynamic m 20.97 3 3m m

AF-SN-iterated BDF { (2.13),(3.1),(3.7), ω = 0.9} 2 3.10 3 4m* - 3 2m* - 3

                                   with m = 3 and dynamic m*

------------------------------------------------------------------------------------------------------------------------
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Figure 2.1a. Overall view of β(y3) for the Douglas-Yanenko methods (2.4) - (2.5) with θ =  35 .
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Figure 2.1b. β(y3) at the origin for the Douglas-Yanenko methods (2.4) - (2.5) with θ =  35 .
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Figure 3.1. The function | C(y1,y2,ζ-(y1,y2))|.
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Figure 3.2. Overall view of the function g(x).
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Figure 3.3. The function | C(y1,y2,ζ0(y1,y2,ω))|.
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Figure 4.1. || Y(j) - Y(j-1) ||∞ as a function of j for AF and AF-SN iteration.


