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ABSTRACT

This paper deals with the problem of unsupervised image segmentation. Our goal is to propose a method

which is able to segment a color image without any human intervention. The only input is the observed

image, all other parameters are estimated during the segmentation process. Our method is model-based, we

use a �rst order Markov random �eld (MRF) model (also known as the Potts model) where the singleton

energies derive from a multivariate Gaussian distribution and second order potentials favor similar classes in

neighboring pixels. The most di�cult part is the estimation of the number of pixel classes or in other words,

the estimation of the number of Gaussian mixture components. Reversible jump Markov chain Monte Carlo

(MCMC) is used to solve this problem. These jumps enable the possible splitting and merging of classes.

The algorithm �nds the most likely number of classes, their associated model parameters and generates a

segmentation of the image by classifying the pixels into these classes. The estimation is done according to

the Maximum A Posteriori (MAP) criteria. Experimental results are promising, we have obtained accurate

results on a variety of real color images.
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1. Introduction

Image segmentation is an important early vision task where pixels with similar features

are grouped into homogeneous regions. Many high level processing tasks (surface de-
scription, object recognition, content based indexing and retrieval for example) is based

on such a preprocessed image. Our approach consists in building a Bayesian pixel clas-

si�cation model and �nding the most likely labeling of pixels (ie. segmentation). To
do so, we need to de�ne some probability measure on the set of all possible labelings.

In real scenes, neighboring pixels usually have similar properties. In a probabilistic
framework, such regularities are well expressed by MRF's. Another reason for dealing

with MRF models is that such a modelization is the one which requires the less a priori
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information on the world model. As a matter of fact, the simplest statistical model for

an image consists of the probabilities of pixel classes. The knowledge on the dependen-

cies between nearby pixels is much more powerful, and imposes few constraints. In a

way, it is di�cult to conceive a more general model, even if it is not easy to determine

the values of the parameters which specify a MRF. If each pixel class is represented by

a di�erent model then the observed image may be viewed as a sample from a realization

of an underlying label �eld. Unsupervised segmentation can therefore be treated as an

incomplete data problem where the color values are observed, the label �eld is missing

and the associated class model parameters, including the number of classes, need to be

estimated.

Color image segmentation in a Markovian framework has been addressed by several

researchers [1, 2, 3, 4, 5]. In these approaches, the color di�erence of neighboring pixels

is used in the MRF model. The �rst question, when dealing with color images, is how

to measure quantitatively color di�erence between any two arbitrary color [6]. Exper-

imental evidence suggests that the RGB tristimulus color space may be considered as

a Riemannian space [7]. Due to the complexity of determining color distance in such
spaces, several simple formulas have been proposed. These formulas approximate the
Riemannian space by a Euclidean color space yielding a perceptually uniform spacing

of colors [6, 8]. Some examples of these formulas, that we use herein, are L�u�v� [7],
LAB [7, 9] or LHS [7] color spaces. Another advantage of these color metrics is that

luminance and chroma information is separated.
Due to the di�culty of estimating the number of pixel classes (or clusters), unsuper-

vised algorithms often suppose that this parameter is known a priori [10, 11, 12, 13, 14].

When the number of pixel classes is also being estimated, the unsupervised segmen-
tation problem may be treated as a model selection problem over a combined model

space. Basically, there are two approaches to this problem in the literature.
One of them is an exhaustive search of the combined parameter space[15, 16]. In [15],

segmentation and parameter estimation are obtained via an iterative algorithm by

alternately sampling the label �eld based on the current estimates of the parameters.
Then the maximum likelihood estimates of the parameter values are computed using
the current labeling. This process is repeated over di�erent model-dimensions. The

resulting estimates are then applied to a model �tting criteria to select the optimum
number of classes. A similar approach is used in [16] where the EM algorithm [17]

is used to estimate parameters. The optimum model order is then selected by �tting

the function of increasing likelihood against increasing model dimension to a rising
exponential model.

The second approach consists of a two step approximation technique [2, 3, 18, 19]:
the �rst step is a coarse segmentation of the image into the most likely number of

regions. The parameter values are estimated from the resulting segmentation and the

�nal result is obtained via a supervised segmentation. A multi-resolution approach
is presented in [2]. where a scale space �lter (SSF) is used to determine signi�cant

peaks in the histogram. Then, the histogram clustering information is used to perform
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a coarse segmentation of the image. The �nal segmentation is then obtained trough

an MRF model de�ned over a quad-tree structure. The MRF model is used in [2]

to control a split and merge algorithm. A similar model is presented in [3] but they

use a monogrid MRF model and the �nal segmentation is obtained trough simulated

annealing. In [18, 19], the image is divided into windows. Then parameters are es-

timated and closely related windows are merged. The resulting segmentation is used

to obtain �nal estimates for a supervised segmentation which is carried out via a re-

laxation algorithm. In [4], an unsupervised segmentation algorithm is proposed which

uses MRF models for color textures. These models are de�ned in each color plane with

interactions between di�erent color planes. The segmentation algorithm is based on

agglomerative hierarchical clustering but it also aims at maximizing the conditional

pseudo-likelihood of the image given the regions and the MRF parameters. The algo-

rithm consists of a region splitting phase followed by a conservative merging. Finally,

a stepwise optimal merging process based on a global performance function is used to

complete the segmentation.

Our approach consists of building a Bayesian color image model using a �rst order
MRF (also known as the Potts model [20]) where the external �eld (ie. the observed im-
age) is represented by a mixture of multivariate Gaussian distributions while inter-pixel

interaction favors similar labels at neighboring sites. In a Bayesian framework [21], We
are interested in the posterior distribution of the unknows given the observed image.

The unknows comprise the hidden label �eld con�guration, the Gaussian mixture pa-
rameters, MRF hyperparameter and the number of mixture components (or classes).
Then a MCMC algorithm is used to sample from the whole posterior distribution in or-

der to obtain a MAP estimate via simulated annealing [22]. However, classical MCMC
methods are restricted to problems where the dimensionality of the parameter vec-

tor is �xed. Therefore, the estimation of the number of mixture components is not
possible. Recently, a new method, called Reversible Jump MCMC (RJMCMC), has
been proposed by Peter Green in [23]. This method makes it possible to construct

reversible Markov chain samplers that jump between parameter subspaces of di�erent
dimensionality. RJMCMC allows the direct sampling of the whole posterior distribu-
tion de�ned over the combined model space thus reducing the optimization process to

a single simulated annealing run. Another advantage is that no coarse segmentation
neither exhaustive search over a parameter subspace is required.

We also refer to two papers [24, 25], that are closely related to our work. In [24],

RJMCMC has been applied to univariate Gaussian mixture identi�cation while in [25],
it is applied to intensity based unsupervised image segmentation with a modelization

similar to [21, 26].
The main contribution of this paper consists in formulating the RJMCMC algorithm

in a more general context than in [25]. Observations are taken from a higher dimension

space and classes are represented by multivariate Gaussian distributions. Although we
present the model in the case of 3 dimension observations, it is straightforward to

extend it to higher dimensions.
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The remainder of the paper is organized as follows: In the next section, we de�ne

the segmentation model. Section 3 describes the RJMCMC algorithm which is then

applied to our model in Section 4 and Section 5. We formulate a simulated annealing

algorithm in Section 6 which aims at �nding the MAP estimate of the unknowns.

Parallelization methods are also discussed. Finally experimental results of a sequential

implementation are presented.

2. Color Image Segmentation Model

Our approach consists of building a probabilistic pixel classi�cation model using Markov

random �elds. The classes are represented by a multi-variate Gaussian distribution.

A global smoothing constraint (parameterized by �) is introduced trough a �rst order

MRF, also known as the Potts model [20]. Let us suppose that the observed image

F = f~f sjs 2 S; 8i : 0 < ~f
i

s < 1g consists of three spectral component values at

each pixel s denoted by the vector ~f s. The segmentation is done by assigning a label

!s 2 � = f1; 2; : : : ; Lg to each site s. ! 2 
 denotes a labeling (or segmentation), 


is the set of all possible labelings.
Basically, we regard our image as a sample drawn from an unknown Gaussian mixture

distribution. The goal of our analysis is inference about the number L of components,

the component parameters � = f81 � � � L : �� = (~��;��)g, the components
weights p�(1 � � � L), summing to 1, the clique potential (or inter-pixel interaction
strength) � and the segmentation !.

The joint distribution of the variables L; p; �; !;�;F is given by:

P (L; p; �; !;�;F) = P (!;F j �; �; p; L)P (�; �; p; L) (2.1)

In our context, it is natural to impose conditional independences on (�; �; p; L) so that

their joint probability reduces to the product of priors:

P (�; �; p; L) = P (�)P (�)P (p)P (L) (2.2)

Let us concentrate now on the posterior distribution of (F ; !) which may be expressed:

P (!;F j �; �; p; L) = P (F j !;�; �; p; L)P (! j �; �; p; L) (2.3)

Before further proceeding, let us examine the above factorization. As we declared

earlier, pixel classes are represented by a multivariate Gaussian distribution and the
underlying MRF label process follows a Gibbs distribution de�ned over a �rst order

neighborhood system (see Figure 1). Thus we can impose further conditional indepen-

dences yielding:

P (F j !;�; �; p; L) = P (F j !;�) =

=
Y
s2S

 
1p

(2�)3 j �!s j
exp

�
�
1

2
(~f s � ~�!s

)��1
!s
(~f s � ~�!s

)T
�!

(2.4)
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Cliques:

Coding sets:

Figure 1: First order neighborhood sys-
tem with cliques. Horizontal and vertical

cliques are called doubletons. Cliques con-
taining a single pixel are called singletons.

Figure 2: Coding sets in the case of a �rst
order neighborhood system.

P (! j �; �; p; L) = P (! j �; p; L)

=
1

Z(�; p; L)
exp(�U(! j �; p; L)) , where (2.5)

U(! j �; p; L) =
X
s2S

� log(p!s) + �
X

fs;rg2C

�(!s; !r) (2.6)

U(! j �; p; L) is called the energy function. �(!s; !r) = 1 if !s and !r are di�erent
and �1 otherwise. Z(�; p; L) =

P
!2
 exp(�U(! j �; p; L)) denotes the normalizing

constant (or partition function). Furthermore C denotes the set of cliques and fs; rg is

a doubleton (see Figure 1) containing the neighboring pixel sites s and r. We note that
the whole posterior distribution can also be derived from a Gibbs distribution where

the Gaussian distribution is taken into account in the energy of the external �eld:

U(F j !;�) = � log(P (F j !;�)) =

=
X
s2S

�
ln
�p

(2�)3 j �!s j
�
+
1

2
(~f s � ~�!s)�

�1
!s
(~f s � ~�!s)

T

�
(2.7)

Since the partition function Z(�; p; L) is not tractable [27, 14], the comparison of the
likelihood of two di�ering MRF realizations from Equation (2.5) is unfeasible. However,
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we can compare their Pseudo-Likelihood [28, 14]:

P (! j �; p; L) �
Y
s2S

p!s exp

0@�� X
8r:fs;rg2C

�(!s; !r)

1A
X
�2�

p� exp

0@�� X
8r:fs;rg2C

�(�; !r)

1A (2.8)

Using Equation (2.1), Equation (2.2), Equation (2.4), Equation (2.8) and the fact that

P (F) is constant for a given image, we can now easily approximate the posterior density

P (L; p; �; !;� j F) = P (L; p; �; !;�;F)=P (F):

P (L; p; �; !;� j F) � P (F j !;�)P (! j �; p; L)P (�)P (�)P (p)P (L)

�
Y
s2S

 
1p

(2�)3 j �!s j
exp

�
�
1

2
(~f s � ~�!s

)��1
!s
(~f s � ~�!s

)T
�!

�
Y
s2S

p!s exp

0@�� X
8r:fs;rg2C

�(!s; !r)

1A
X
�2�

p� exp

0@�� X
8r:fs;rg2C

�(�; !r)

1A
�P (�)P (L)

Y
�2�

P (~��)P (��)P (p�) (2.9)

Concerning the priors, we will follow [24, 25] and chose uniform reference priors for L,
~��, ��, p� (� 2 �).

3. Sampling from the Posterior Distribution

Herein, we shall construct an MCMC sampler which is used to sample from the posterior
distribution of our segmentation model in Equation (2.9). Classical MCMC methods,
however, can not be used cause of the changing dimensionality of the parameter space.

Recently, MCMC methods for varying dimension problems have been discussed [29, 23].

A promising approach, called Reversible Jump MCMC (RJMCMC), is proposed in [23]

and has been applied to the analysis of univariate normal mixtures in [24]. Let us denote
the set of unknowns fL; p; �; !;�g by � and let �(�) be the target probability measure

(the posterior distribution, in our context). A broadly used tool to sample from �(�)

is the Metropolis-Hastings method [30, 31]. When the current state is � than a new

state �0 is drawn form an essentially arbitrary joint distribution q(�; �0). Then the

new state is accepted with probability

A(�; �0) = min

�
1;
�(�0)q(�; �0)

�(�)q(�0; �)

�
(3.1)
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When we have multiple parameter subspaces of di�erent dimensionality, it is necessary

to devise di�erent move types between the subspaces [23]. These will be combined

in a so called hybrid sampler [32] by random choice between available moves at each

transition. Let us denote these move types bym 2 M = f1; 2; : : : ;Mg and let qm(�; �0)

be the probability of proposing the move type m and state �0 when the current state is

�. We note that not all move types are necessarily available from all starting state, so

for each �, qm(�; �) might be 0 for some m. Furthermore, qm(�; �) is a sub-probability

measure on m and �0. ThusX
m2M

qm(�; �) � 1: (3.2)

The proposed state is then accepted with probability

Am(�; �0) = min

�
1;
�(�0)qm(�; �0)

�(�)qm(�0; �)

�
(3.3)

For more details about a rigorous de�nition of the above ratio of measures, see [23].
Roughly speaking, the existence of such a measure is ensured by a dimension matching

condition on qm(�0; �) that matches the degrees of freedom of joint variation of the

current state � and the proposal �0 as the dimension changes with L. We remark that
for a move type which does not change the dimensionality of the parameter space,

Equation (3.3) reduces to the usual Metropolis-Hastings acceptance probability (see
Equation (3.1)). For dimension-changing moves, suppose that a move type m is pro-
posed from � to a state �0 in a higher dimensional space. Then the dimension matching

can be implemented by drawing a vector of continuous random variables u and setting
�0 to be some invertible deterministic function  (�; u) of � and u. The reverse move
from �0 to � can be accomplished by using the inverse transformation  �1(�0) so that

the proposal is deterministic. The acceptance probability is then given by [23, 24]

Am(�; �0) = min

�
1;

�(�0)rm(�0)

�(�)rm(�)q(u)

���� @�0

@(�; u)

����� (3.4)

where rm(�) is the probability of choosing the move type m when in state � and

q(u) is the density function of u. The last term is the absolute value of the Jacobian
determinant of transformation  .

4. Hybrid Sampler

For our image segmentation model outlined in Section 2, we shall make use of �ve move

types:

1. sampling the labels ! (ie. re-segment the image)

2. sampling Gaussian parameters � = f(~��;��)j� 2 �g;
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3. sampling the mixture weights p�(� 2 �);

4. sampling the MRF hyperparameter �;

5. sampling the number of classes L (splitting one mixture component into two, or

combining two into one).

We note that the only randomness in scanning these move types is the random choice

between splitting and merging in move (5). One iteration of the hybrid sampler, also

called a sweep, consists in a complete pass over these moves. The �rst four move types

are conventional in the sense that they do not alter the dimension of the parameter

space. Hereafter, we derive the sampling equations from Equation (2.9) for these move

types. Concerning the �fth move type, the reversible jump mechanism is needed (see

Section 3). We will discuss the equations of the split and combine move later, in

Section 5.

4.1 Image Segmentation

This move type consists in a classical image segmentation with known parameters.
Since the parameters L; p; �;� are set to their estimates bL, bp, b�, b�, Equation (2.9)

reduces to the following form:

P (L; p; �; !;� j F) � P (F j !; b�)P (! j b�; bp; bL)
�

Y
s2S

0@ 1q
(2�)3 j b�!s j

exp

�
�
1

2
(~f s �

~b�!s)
b��1
!s
(~f s �

~b�!s)
T

�1A
�
Y
s2S

bp!s exp
0@�b� X

8r:fs;rg2C

�(!s; !r)

1A (4.1)

Note that in this case there is no need to compute the partition function Z(�; p; L) =

Z(b�; bp; bL) as it is constant over 
. Furthermore, the sub-chain can be sampled by a

Gibbs sampler [21] since ! is discrete taking values from the �nite set �.

4.2 Estimating Gaussian Parameters

The goal of this type of move is to estimate the mean vector and covariance matrix of

the pixel classes. Setting variables L; p; �; ! to their estimates bL; bp; b�; b!, Equation (2.9)
reduces to the following form:

P (L; p; �; !;� j F) � P (F ; b! j �)P (�) =Y
�2�

Y
s:b!s=�

P (~f s j ~��;��)P (~��)P (��) =

=
Y
�2�

1

((2�)3 j �� j)
jS�j=2

exp

 
�
1

2

X
s:b!s=�

(~f s � ~��)�
�1
� (~f s � ~��)

T

!
�
Y
�2�

P (~��)P (��)P (p�) (4.2)
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where j S� j is the number of sites labeled by �.

4.3 Sampling Mixture Weights

This move type aims at estimating the mixture weights p. These weights are incor-

porated into the Gibbs distribution of the underlying label process ! as the external

�eld strength. Furthermore, we require that the weights be normalized by imposing

the following constraint:X
�2�

p� = 1 (4.3)

In this way, it becomes possible to maintain a balance between the external and internal

�eld strength. This makes it also possible to set the hyperparameter � a priori [25],

an important point outlined in the next section. Using the above condition and setting

variables L; �; !;� to their estimates bL; b�; b!; b�, we get:
P (L; p; �; !;� j F) � P (b! j b�; p; bL)P (p) =
=

Y
�2�

P (p�)

0BB@ p�X
�2�

p�

1CCA
jS�jY

s2S

exp

0@�b� X
8r:fs;rg2C

�(b!s; b!r)
1AX

�2�

p�

X
�2�

p� exp

0@�b� X
8r:fs;rg2C

�(�; b!r)
1A

=
Y
�2�

P (p�)p
jS�j

�

Y
s2S

exp

0@�b� X
8r:fs;rg2C

�(b!s; b!r)
1A

X
�2�

p� exp

0@�b� X
8r:fs;rg2C

�(�; b!r)
1A (4.4)

4.4 Sampling Hyperparameter �

In this case, L; p; !;� are set to their estimates bL; bp; b!; b�. Equation (2.9) reduces to

the following form:

P (L; p; �; !;� j F) � P (b! j �; bp; bL)P (�) =
=

Y
s2S

exp

0@�b� X
8r:fs;rg2C

�(b!s; b!r)
1A

X
�2�

p� exp

0@�b� X
8r:fs;rg2C

�(�; b!r)
1AP (�) (4.5)

Unfortunately, due to the consequences of approximating the likelihood by the pseudo-

likelihood, the posterior density of � will not be proper under particular label con�g-

urations [25]. Here, we will follow [25] and �x � a priori.
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5. Estimating Number of Classes

Herein, we shall discuss the split and combine move. Recall, that this move type

involves changing L by 1 and making necessary corresponding changes to !;� and

p. We remark that at this move type, basically the whole posterior distribution in

Equation (2.9) is sampled. Only � can be set to his estimate b� yielding the following

distribution:

P (L; p; �; !;� j F) � P (F j !;�)P (! j b�; p; L)P (�)P (p)P (L)
�

Y
s2S

 
1p

(2�)3 j �!s j
exp

�
�
1

2
(~f s � ~�!s

)��1
!s
(~f s � ~�!s

)T
�!

�
Y
s2S

p!s exp

0@�b� X
8r:fs;rg2C

�(!s; !r)

1A
X
�2�

p� exp

0@�b� X
8r:fs;rg2C

�(�; !r)

1A
�P (L)

Y
�2�

P (~��)P (��)P (p�) (5.1)

Since the dimensionality of the parameter space is altered, the reversible jump tech-
nique, outlined in Section 3, is needed for sampling from the posterior distribution.
First, we randomly choose between proposing to increment (split) or decrement

(merge) the number of classes L, with probability Psplit(L) and Pmerge(L) = 1�Psplit(L)
respectively. If we denote the maximum value allowed for L by Lmax and the minimum
value by Lmin than we set:

Psplit(L) =

8<:
0 if L = Lmax

1 if L = Lmin

0:5 otherwise
(5.2)

Pmerge(L) =

8<:
0 if L = Lmin

1 if L = Lmax

0:5 otherwise
(5.3)

5.1 Splitting One Class into Two

The split proposal begins by choosing a class � at random with a uniform probability

P split
select(�) = 1=L. Then L is increased by 1 and � is splitted into �1 and �2. In doing

so, a new set of parameters need to be generated. Recall from Section 3 that we have

to de�ne a deterministic function  (�; u) in order to satisfy the dimension matching

constraint on the proposal probability qm(�0; �). In our context, altering L changes
the dimensionality of the variables � and p. Thus we shall de�ne  as a function of

these Gaussian mixture parameters:

(�+; p+) =  (�; p; u) (5.4)
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where the superscript + denotes parameter vectors after increasing L. u is a set of

random variables having as many elements as the degree of freedom of joint variation

of the current parameters (�; p) and the proposal (�+; p+).

Generating New Parameters Herein, we de�ne  using a similar approach to the

one described in [24]: The new parameters are assigned by matching the 0th, 1th, 2th

moments of the component being splitted to those of a combination of the two new

components.

p� = p+�1 + p+�2 (5.5)

p�~�� = p+�1~�
+
�1
+ p+�2~�

+
�2

(5.6)

p�(~��~�
T
� +��) = p+�1(~�

+
�1
~�+T
�1

+�+
�1
) + p+�2(~�

+
�2
~�+T
�2

+�+
�2
) (5.7)

We remark that the above de�nition of  leaves unchanged the parameters of the

classes other than the class being splitted. Thus Equation (5.4) could be written as:

(�+
� ; p

+
� ) =  (��1;��2 ; p�1; p�2 ; u) (5.8)

There are 10 degrees of freedom in splitting � conforming to Equations (5.5){(5.7)
since covariance matrices are symmetric. Therefore we need to generate the following
set of random variables:

u1; ~u2 = [u2 1; u2 2; u2 3]; u3 =

2664
u3 1;1 u3 1;2 u3 1;3

u3 1;2 u3 2;2 u3 2;3

u3 1;3 u3 2;3 u3 3;3

3775 (5.9)

We can now compute the new parameter values:

p+�1 = p�u1 (5.10)

p�2 = p�(1� u1) (5.11)

�+�1;i = ��;i + u2 i

r
��;i;i

1� u1

u1
(5.12)

�+�2;i = ��;i � u2 i

r
��;i;i

u1

1� u1
(5.13)

�+
�1;i;j

=

8<: u3 i;i

�
1� u2 i

2
�
��;i;i

1

u1
if i = j

u3 i;j��;i;j

q�
1� u2 i

2
� �
1� u2 j

2
�
u3 i;iu3 j;j if i 6= j

(5.14)

�+
�2;i;j

= (5.15)8<: (1� u3 i;i)
�
1� u2 i

2
�
��;i;i

1

u1
if i = j

(1� u3 i;j) ��;i;j

q�
1� u2 i

2
� �
1� u2 j

2
�
(1� u3 i;i) (1� u3 j;j) if i 6= j
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The random variables are chosen from the interval (0; 1]. In order to favor splitting the

class into roughly equal portions, beta distributions are used:

u1 � beta(1:1; 1:1); u2i � beta(1:1; 1:1); u3i;j � beta(1:1; 1:1) (5.16)

Reallocation of the Labels Once the new parameters for �1 and �2 have been com-

puted, we have to propose the reallocation of those sites s 2 S� where b!s = �. This

reallocation is based on the new parameters and has to be completed in such a way as

to ensure the resulting labeling !+ is drawn from the posterior distribution in Equa-

tion (4.1) with b� = �+, bp = p+ and bL = L + 1. At the moment of splitting, the

neighborhood con�guration at a given site s 2 S� is unknown thus the calculation of

the term P (!+ j b�; p+; L+ 1) is not possible. First, we have to provide a tentative la-

beling of the sites in S� then we can sample the posterior distribution in Equation (4.1)

using a Gibbs sampler. Of course, a tentative labeling might be obtained by allocating

�1 and �2 at random. In practice, however, we need a labeling !+ which has a relatively

high posterior probability in order to maintain a reasonable acceptance probability. To
achieve this goal, we use a few step (around 5 iterations) of ICM [28] algorithm to

obtain a suboptimal segmentation of S�. The resulting label map can be used to draw
a sample from Equation (4.1) using a one step Gibbs sampler. The obtained !+ has a
relatively high posterior probability since the tentative labeling was close the optimal

labeling.

5.2 Merging Two Classes

First of all, we have to decide which pair of classes has to be merged. A pair (�1; �2)
is chosen with probability relative to their distance:

Pmerge
select (�1; �2) =

d(�1; �2)X
�2�

X
�2�

d(�; �)
(5.17)

where d(�1; �2) is the combination of the Mahalanobis distance between the classes �1
and �2 de�ned in the following way:

d(�1; �2) = (~��1
� ~��2

)��1
�1
(~��1

� ~��2
) + (~��2

� ~��1
)��1

�2
(~��2

� ~��1
) (5.18)

The merge proposal is deterministic, once the choices of �1 and �2 have been made.

These two components are merged, reducing L by 1. As in the case of splitting,

altering L changes the dimensionality of the variables � and p. The new parameter
values ��; p� are obtained from Equations (5.5){(5.7). The reallocation is simply done

by setting the label at sites s 2 Sf�1;�2g to the new label �. The random variables u

are obtained by back-substitution into Equations (5.10){(5.15).

5.3 Acceptance Probability

The acceptance probabilities for the split or merge moves can be calculated from Equa-

tion (3.4). Let us �rst consider the probability for the split move. For the corresponding
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merge move, the acceptance probability is obtained as the inverse of the same expres-

sion with some obvious di�erences in the substitutions.

Asplit(L; bp; b�; b!; b�;L+ 1; p+; b�; !+;�+) = min(1; A) (5.19)

where

A =
P (L+ 1; p+; b�; !+;�+ j F)

P (L; bp; b�; b!; b� j F)

Pmerge(L+ 1)P
merge
select (�1; �2)

Psplit(L)P
split
select(�)Prealloc

(5.20)

�
1

Pbeta(1:1;1:1)(u1)

3Y
i=1

 
Pbeta(1:1;1:1)(u2i)

3Y
j=i

Pbeta(1:1;1:1)(u3i;j)

! ���� @ 

@(��; p�; u)

����
Prealloc denotes the probability of reallocating pixels labeled by � into regions labeled by

�1 and �2. It can be derived from Equation (4.1) by restricting the set of labels �+ to
the subset f�1; �2g and taking into account only those sites s for which !+s 2 f�1; �2g:

Prealloc �Y
8s:!+s 2f�1;�2g

0@ 1q
(2�)3 j �+

!+s
j
exp

�
�
1

2
(~f s � ~�+

!+s
)�+�1

!+s
(~f s � ~�+

!+s
)T
�1A

�
Y

8s:!+s 2f�1;�2g

p+
!+s

exp

0@�b� X
8r:fs;rg2C

�(!+s ; !
+
r )

1A (5.21)

The correspondence between Equation (3.4) and Equation (5.20) is fairly straightfor-
ward:

�(�0) = P (L+ 1; p+; b�; !+;�+ j F) (5.22)

�(�) = P (L; bp; b�; b!; b� j F) (5.23)

rmerge(�0) = Pmerge(L+ 1)Pmerge
select (�1; �2) (5.24)

rsplit(�) = Psplit(L)P
split
select(�)Prealloc (5.25)

q(u) = Pbeta(1:1;1:1)(u1)

3Y
i=1

 
Pbeta(1:1;1:1)(u2i)

3Y
j=i

Pbeta(1:1;1:1)(u3i;j)

!
(5.26)

The last factor is the Jacobian determinant of the transformation  :���� @ 

@(��; p�; u)

���� = ����@(�+
�1
; p+�1 ;�

+
�2
; p+�2)

@(��; p�; u)

���� =
= �w

3Y
i=1

 
�2
i;i

u1 (u1 � 1)

�
1� u2 i

2
�
(1� u3 i;i) u3 i;i

3Y
j=i

�i;j

u1 (u1 � 1)

!
(5.27)
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The acceptance probability for the merge move can now be easily derived with some

obvious di�erences in the substitutions as

Amerge(L; bp; b�; b!; b�;L� 1; p�; b�; !�;��) = min

�
1;

1

A

�
(5.28)

6. Optimization According to the MAP Criteria

In this section, we shall build a MAP estimator that provide us with an optimal seg-

mentation b! and model parameters bL; bp; b�; b�. The estimation is done via a stochastic

relaxation algorithm. The MAP estimator of the unknowns is given by:

(b!; bL; bp; b�; b�)(MAP ) = arg max
L;p;�;!;�

P (L; p; �; !;� j F) (6.1)

with the following constraints:

! 2 
; (6.2)

Lmin � L � Lmax; (6.3)X
�2�

p� = 1; (6.4)

8� 2 � : 0 � ��;i � 1; (6.5)

8� 2 � : 0 � ��;i;i � 1;�1 � ��;i;j � 1 (6.6)

Equation (6.1) is a combinatorial optimization problem which requires special algo-

rithms such as simulated annealing [22]. In our case, simulated annealing can be
formulated in the following way:

Algorithm 1 (RJMCMC Segmentation)


1 Set k = 0, and initialize b�0, bL0, bp0, b�0, and the initial temperature �0.


2 A sample (b!k; bLk; bpk; b�k; b�k) is drawn from a slightly modi�ed posterior distribution

using the hybrid sampler de�ned in Section 4. The modi�cation consists in including

the temperature parameter �k:Y
s2S

 
1

((2�)3 j �!s j)
1=2�k

exp

�
�

1

2�k
(~f s � ~�!s)�

�1
!s
(~f s � ~�!s)

T

�!

�
Y
s2S

exp

0@ log(p!s)
�k

�
�

�k

X
8r:fs;rg2C

�(!s; !r)

1A
X
�2�

exp

0@ log(p�)
�k

�
�

�k

X
8r:fs;rg2C

�(�; !r)

1A
The modi�cation of the sub-chains' equations discussed in Section 4 and Section 5

is straightforward from the above equation. The sub-chains are then sampled via the

following move-types:
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1. b!k is drawn from the distribution in Equation (4.1),

2. b�k is obtained by sampling Equation (4.2),

3. bpk is drawn from Equation (4.4) and

4. sampling the MRF hyperparameter b�k from Equation (4.5);

5. bLk estimated using the reversible jump technique presented in Section 5.


3 Goto Step 
2 with k = k + 1 and Tk+1 until k < K.

There are di�erent methods to implement the above algorithm in parallel. The most

natural way is to explore data parallelism which permits the update of conditionally

independent variables at the same time:

� Moves (2) and (3) can be performed in parallel since (��; ~��) and p� are condi-

tionally independent given all other variables.

� For each �: ��, ~�� and p� can be sampled in parallel.

� ! can also be sampled in parallel using a partially synchronous scheme: update
only conditionally independent pixels at the same time. These pixels can be

grouped into a so called coding set [33, 28, 21, 34] (see Figure 2).

7. Experimental Results

The proposed algorithm has been tested on a variety of real color images We have
implemented the plain sequential version in C but the code has not been optimized.

Herein, we present a few examples of these results. First, the original images were
converted from RGB to LUV, LAB or LHS using the equations from [7]. The dynamic
range of all color components was normalized such that they take their values from

(0; 1).
Independently of the input image, we began the algorithm with two classes, each of

them having the following weight, mean vector and covariance matrix:bL0 = 2 (7.1)bp00 = bp01 = 0:5 (7.2)

c~�0

0
=

0@ 0:2

0:2
0:2

1A (7.3)

c~�1

0
=

0@ 0:7
0:7
0:7

1A (7.4)

c�0

0
= c�1

0
=

0@ 0:05 0:00001 0:00001

0:00001 0:05 0:00001

0:00001 0:00001 0:05

1A (7.5)
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Figure 3: Histogram, and the initial and �nal class parameters of image rose41

The hyperparameter � was �xed a priori. Therefore, move type (4) was not executed

in Step 
2 . In our experiments, we found that � = 2:5 gives good results on all of
the tested images. As usual, a logarithmic annealing schedule was chosen so that the
algorithm would converge after a reasonable number of iterations. (K was set to 200

in our experiments). The schedule is given by:

Tk+1 = 0:98Tk (7.6)

with an initial temperature �0 set to 6:0. The �nal parameters and segmentation is
then obtained trough the RJMCMC Segmentation algorithm. In proposing a split (see

Section 5.1), an ICM algorithm [28] has been used to reallocate the labels by executing
maximum 10 iterations. The label �eld ! was sampled by a Gibbs sampler [21] and
the other parameters by a Metropolis-Hastings sampler [30, 31]. The algorithm was

stoped after 200 iterations (�200 � 0:1). We note that small temperatures may cause
an over
ow in the computation of the posterior probability even when using double

precision numbers and working with logarithms. This is one of the reasons why we
only execute 200 iterations.
Figure 3 shows the histogram of the image in Figure 4 with the initial and �nal

Gaussian parameters. We can see that the clustering of the histogram is a rather

di�cult task, classes are quite close to each other. The segmentation (see Figure 4) is
accurate and the number of classes has been correctly diagnosed.

We have obtained similar results in Figure 5, Figure 6 and Figure 7. The latter result
needs some explanation since the yellow region in the center of the postcard has not

been correctly segmented. This is due to the rather noisy nature of this region and the

relative small distance between the class parameters of green and yellow pixels. Where
green and yellow pixels are mixed, the homogeneity constraint forces the formation of

homogeneous regions and thus the misclassi�cation of the yellow pixels as green. A
more di�cult scene is segmented in Figure 8, the result is reasonably accurate.
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In the next set of images (Figure 9, Figure 10 and Figure 11), we can see that

di�erent color spaces may lead to slightly di�erent results. Figure 9 shows the results

obtained in the LUV and LHS color space. In Figure 11, results in the LUV and LAB

spaces are presented. Finally, Figure 10 shows the result using LAB and LHS color

metric.

In Figure 12, Figure 13, Figure 14 and Figure 15, some background-foreground style

segmentation is shown. Although the foreground is quite accurately detected, we get

more classes in the background that we would expect. The reason is that we can observ

slight variation in the background color so that this variation is spatially characterized.

For example, we can see in Figure 12 that the background is lighter in the middle of

the image than at the corners. Therefore, when the background class is splitted into

two, the reallocation process is able to form two homogeneous classes and the split is

accepted. This problem could be solved by executing more iterations or by introducing

an informative prior on the class parameters which favors well separated class mean

values.

8. Conclusion

In this paper, we have proposed an unsupervised color image segmentation algorithm.
We have established a Bayesian segmentation model using MRF modelization of the
underlying label �eld. Pixel classes are represented by multivariate Gaussian distribu-

tions. The number of classes, class model parameters, and pixel labels are all directly
sampled from the posterior distribution using an RJMCMC sampler. A single parame-
ter is de�ned a priori which de�nes the interaction strength of neighboring pixels. The

�nal estimates, satisfying the MAP criteria, are obtained trough simulated annealing.
Experimental results show that an accurate segmentation can be obtained on a variety

of real images.
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Image Size Num. Estim. of Segm. Estimation of Total

name classes ~�;�; p num. classes

LAB Color space

peonies 256 � 256 7 26 min. 14 min. 7 min. 49 min.


ower 256 � 256 4 18 min. 9 min. 9 min. 38 min.

Carafe0 128 � 128 4 3 min. 1 min. 3 min. 9 min.

LUV Color space

t2 432 � 666 8 117 min. 62 min. 46 min. 226 min.


ower 256 � 256 3 16 min. 8 min. 12 min. 36 min.

peonies 256 � 256 3 15 min. 8 min. 9 min. 33 min.

bird12 498 � 332 3 40 min. 20 min. 26 min. 87 min.

bleedhearts34 736 � 492 3 88 min. 44 min. 65 min. 199 min.

jellies75 217 � 404 3 19 min. 9 min. 20 min. 49 min.

seagull42 458 � 381 5 51 min. 27 min. 30 min. 109 min.

LHS Color space

t1 497 � 502 10 130 min. 69 min. 32 min. 232 min.

peonies 256 � 256 5 21 min. 12 min. 9 min. 43 min.

bird11 498 � 332 10 80 min. 42 min. 27 min. 150 min.

bleedhearts34 736 � 492 8 130 min. 72 min. 50 min. 253 min.

kodakBus93 735 � 492 9 158 min. 84 min. 62 min. 305 min.

rose41 734 � 486 3 70 min. 29 min. 111 min. 211 min.

Table 1: Computing times on a Silicon Graphics Origin 2000 server. The con�guration
consists of 16 R10000/250MHz CPU's, each with 4 MB secondary cache, a total main mem-

ory of 8 GB, and multiple (switched) system bus bandwith's of 1.6GB/sec, up to 4GB/sec

(sustained).

Original image Segmentation result (LHS color space)

Figure 4: Segmentation of image rose41.
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Original image Segmentation result (LAB color space)

Figure 5: Segmentation of image Carafe0.

Original image Segmentation result (LHS color space)

Figure 6: Segmentation of image t1.
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Original image Segmentation result (LUV color space)

Figure 7: Segmentation of image t2.
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Original image

Segmentation result (LHS color space)

Figure 8: Segmentation of image kodakBus93.
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Original image

Segmentation result (LUV color space)

Segmentation result (LHS color space)

Figure 9: Segmentation of image bleedhearts34
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Original image

Segmentation result (LUV color space)

Segmentation result (LHS color space)

Segmentation result (LAB color space)

Figure 10: Segmentation of image peonies
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Original image

Segmentation result (LUV color space)

Segmentation result (LAB color space)

Figure 11: Segmentation of image 
ower
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Original image Segmentation result (LUV color space)

Figure 12: Segmentation of image bird12.
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Original image Segmentation result (LUV color space)

Figure 13: Segmentation of image jellies75.
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Original image Segmentation result (LUV color space)

Figure 14: Segmentation of image seagull42.

Original image Segmentation result (LHS color space)

Figure 15: Segmentation of image bird11.


