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Depending on the nonlinear equation of motion and on the initial conditions, different regions of
a front may dominate the propagation mechanism. The most familiar case is the so-called pushed
front, whose speed is determined by the nonlinearities in the front region itself. Pushed dynamics is
always found for fronts invading a linearly stable state. A pushed front relaxes exponentially in time
towards its asymptotic shape and velocity, as can be derived by linear stability analysis. To calculate
its response to perturbations, solvability analysis can be used. We discuss, why these methods and
results in general do not apply to fronts, whose dynamics is dominated by the leading edge of the
front. This can happen, if the invaded state is unstable. Leading edge dominated dynamics can
occur in two cases: The first possibility is that the initial conditions are ”flat”, i.e., decaying slower in
space than e−λ∗x for x→∞ with λ∗ defined below. The second and more important case is the one
in which the initial conditions are ”steep”, i.e., decay faster then e−λ∗x. In this case, which is known
as “pulling” or “linear marginal stability”, it is as if the spreading leading edge is pulling the front
along. In the central part of this paper, we analyze the convergence towards uniformly translating
pulled fronts. We show, that when such fronts evolve from steep initial conditions, they have a
universal relaxation behavior as time t → ∞, which can be viewed as a general center manifold
result for pulled front propagation. In particular, the velocity of a pulled front always relaxes

algebraically like v(t) = v∗ − 3/(2λ∗t)
(
1−

√
π/

(
(λ∗)2Dt

))
+ O(1/t2), where the parameters v∗,

λ∗, and D are determined through a saddle point analysis from the equation of motion linearized
about the unstable invaded state. This front velocity is independent of the precise value of the
amplitude which one tracks to measure the front velocity. The interior of the front is essentially

slaved to the leading edge, and develops universally as φ(x, t) = Φv(t)

(
x−

∫ t
dτ v(τ )

)
+ O(1/t2),

where Φv(x−vt) is a uniformly translating front solution with velocity v. We first derive our results
in detail for the well known nonlinear diffusion equation of type ∂tφ = ∂2

xφ + φ − φ3, where the
invaded unstable state is φ = 0, and then generalize our results to more general (sets of) partial
differential equations with higher spatial or temporal derivatives, to p.d.e.’s with memory kernels,
and also to difference equations occuring, e.g., in numerical finite difference codes. Our universal
result for pulled fronts thus also implies independence of the precise nonlinearities, independence
of the precise form of the dynamical equation, and independence of the precise initial conditions,
as long as they are sufficiently steep. The only remainders of the explicit form of the dynamical
equation are the nonlinear solutions Φv and the three saddle point parameters v∗, λ∗, and D of the
linearized equation. As our simulations confirm all our analytical predictions in every detail, it can
be concluded that we have a complete analytical understanding of the propagation mechanism and
relaxation behavior of pulled fronts, if they are uniformly translating for t → ∞. An immediate
consequence of the slow algebraic relaxation is that the standard moving boundary approximation
breaks down for weakly curved pulled fronts in two or three dimensions.
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I. INTRODUCTION

A. Outline of the problem

In this paper we address the rate of convergence or “re-
laxation” of the velocity and profile of a front that propa-
gates into an unstable state. The particular fronts we an-
alyze separate two nonequilibrium homogeneous states,
one of which is stable and one of which is unstable, and
are such that the asymptotic front solution is a uniformly
translating one. We assume that the unstable state is
initially completely unperturbed in a large part of space,
and that thermal and other noise are negligible. Exam-
ples of such situations arise in one form or another in
physics [1–29], chemistry [29–35], and biology [30,32,36].
If the unstable state domain is not perturbed by im-
perfect initial conditions or thermal noise, it can only
disappear through invasion by the stable state domain.
We analyze the propagation of fronts formed in this pro-
cess, in particular the temporal convergence towards an
asymptotic front shape and velocity, and show, that it
is characterized by a universal power law behavior in the
so-called pulled regime. We concentrate on planar fronts,
which thus can be represented in one spatial dimension,
but our results for these and for the dynamical mecha-
nism have important implications [37] for the derivation
of moving boundary approximations [38,39] for weakly
curved fronts in higher dimensions, as well as for the eval-
uation of the effects of noise on fronts [40–45], especially
the effect of multiplicative noise [46].

The problem of front propagation into an unstable
state has a long history, which dates back [47] to the pio-
neering work by Kolmogoroff, Petrovsky and Piscounoff
(= KPP) [48] and by Fisher [49] on the nonlinear diffu-
sion equation

∂tφ = ∂2
xφ + f(φ) , (1.1)

where f(φ) is such that it has a homogeneous stable state
φ = 1 and a homogeneous unstable state φ = 0. Both
of these papers [48,49] were motivated by the biological
problem of gene spreading in a population. Since this
work, the nonlinear diffusion equation (1.1), in particu-
lar the one with a simple nonlinearity of the type

f = fKPP(φ) = φ− φk , k > 1, e.g., k = 2 or 3 , (1.2)

has become a standard problem in the mathematical lit-
erature [30,32,36,50–54]. For the F-KPP equation de-
fined by (1.1) and (1.2), there exist dynamically stable
uniformly translating front solutions φ(x, t) ≡ Φv(x−vt)
for every velocity v ≥ v∗ = 2

√
f ′(0), and hence every one

of these solutions is a possible attractor of the dynam-
ics for long times t. The resulting dynamical behavior or
“velocity selection” depends on the initial conditions and
has been investigated by a variety of methods [48–50,52]
and essentially all its relevant properties have been de-
rived rigorously [50]. E.g., following the lines of KPP [48],

Aronson and Weinberger proved rigorously [50], that ev-
ery initial condition, that decays spatially at least as fast
as e−λ∗x (λ∗ = v∗/2) into the unstable state for x→∞,
approaches for large times the front Φv∗(x − v∗t) with
the smallest possible velocity v∗. Most of the rigorous
mathematical methods can, however, not be extended to
higher order equations [55].

In physics, the interest in front propagation into un-
stable states initially arose from a different angle. Since
the late fifties, the growth and advection of linear per-
turbations about a homogeneous unstable state has been
analyzed through an asymptotic long time analysis of the
Green’s function of the linear equations [56–58]. Only
ten to fifteen years ago did it become fully clear in the
physics community [59–69], that there was actually an
empirical but deep connection between the rigorous re-
sults for the second order equations and some aspects of
the more general and exact but nonrigorous results for
the growth of linear perturbations. This has given rise to
a number of reformulations and intuitive scenarios aimed
at understanding the general front propagation problem
into unstable states [60,61,63,65–69].

Although our results bear on many of these ap-
proaches, our aim is not to introduce another intuitive
or speculative scenario. Rather, we will introduce what
we believe to be the first systematic analysis of the rate of
convergence or “relaxation” of the front velocity and pro-
file in the so-called “linear marginal stability” [63,65] or
“pulled” [59,68,69] regime. In this regime the asymptotic
front velocity is simply the linear spreading speed deter-
mined by the Green’s function of the linearized equations.
Quite surprisingly, our analysis even yields a number of
new and exact results for the celebrated nonlinear diffu-
sion equation (1.1), but it applies equally well to (sets
of) higher order partial differential equations that admit
uniformly translating fronts, to difference equations, or
to integro-differential equations. After a general discus-
sion, we will illustrate this explicitly on
1) the extended Fisher-Kolmogoroff (EFK) equation
[64,65,70]

∂tφ = −γ∂4
xφ + ∂2

xφ + f(φ) for 0 < γ < 1/12 , (1.3)

where it generates uniformly translating fronts,
2) an example of coupled differential equations, namely
those for planar negative streamer fronts,

∂tσ = D∂2
xσ + ∂x(σE) + |E|e−1/|E| , σ(x� 1, t) = 0 ,

∂tE = −D∂xσ − σE , E(x� 1, t) = E+ < 0 , (1.4)

describing the coupled electron density σ and electric
field E in a dielectric discharge [15],
3) a difference-differential equation (see, also [71])

∂tCi(t) = −Ci + C2
i−1 , C0(t) = 0 , Ci�1(t) = 1 ,

(1.5)

which occurs in the calculation of the Lyapunov expo-
nent in kinetic theory [17],
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4) the extension of the nonlinear diffusion equation with
a second temporal derivative,

τ2
∂2φ

∂t2
+

∂φ

∂t
=

∂2φ

∂x2
+ φ− φ3 , (1.6)

5) an extension of the nonlinear diffusion equation with
a memory kernel,

∂tφ(x, t) = ∂2
xφ(x, t) +

∫ t

0

dt′K(t− t′)φ(x, t′)− φk(x, t) ,

(1.7)

6) and discretized versions of the nonlinear diffusion
equation as they arise in numerical finite difference codes

∂φ(x, t)
∂t

−→ φi(t + ∆t)− φi(t)
∆t

etc. (1.8)

For all these equations, the results have a remarkable
degree of simplicity and universality: as summarized in
Sect. I C and Table I below, pulled fronts always converge
in time with universal power laws and prefactors that are
independent of the precise form of the equations and in-
dependent of the precise initial conditions as long as they
obey a certain steepness criterion. All these predictions
are fully confirmed by extremely precise numerical sim-
ulations. Taken together, these results therefore yield
the understanding of the pulled front mechanism that so
many authors [8,61,63–65,67–69,72] have sought for.

The asymptotic long time behavior can be worked out
in detail and to high orders for the F-KPP equation (1.1),
(1.2) in an asymptotic expansion in 1/

√
t. These re-

sults are presented in detail in this paper. Once we will
have laid out the structure of this expansion by our de-
tailed analysis, it is clear that essentially the same ex-
pansion can be applied to other more complicated types
of equations, provided that they admit a family of uni-
formly translating front solutions in the neighborhood
of the asymptotic “pulled” velocity v∗. Moreover, from
the structure it becomes transparent that the two lowest
order equations in the 1/

√
t expansion suffice to calcu-

late the universal convergence, and that the structure
of these equations is virtually independent of the pre-
cise form of the dynamical equation. For the other type
of equations, like higher order partial differential equa-
tions, we limit the discussion of our method to the mo-
tivation and analysis of these two equations. Although
we will give some discussion of the assumptions that un-
derly the expansion (like the one that there is a nearby
family of moving front solutions), a full analysis of these
as well as of the extension to nonuniformly translating

fronts, such as those arising in the EFK equation (1.3)
for γ > 1/12, in the Swift-Hohenberg equation [73], or in
the complex Ginzburg-Landau equation [66], will be left
to future publications [74–76].

Previous work on the rate of convergence of moving
pulled fronts appears to be quite limited. For Eq. (1.1)
with nonlinearity (1.2), Bramson [77] proved rigorously
that the convergence to the asymptotic velocity v∗ is
v(t) = v∗ − 3/(2λ∗t) uniformly, i.e., independent of the
amplitude φ whose position one tracks. Here, as before,
λ∗ = v∗/2 =

√
f ′(0). The factor 3/2 in this expres-

sion has often been considered puzzling, since the linear
diffusion equation with localized initial conditions yields
v(t) = v∗−1/(2λ∗t). In [65], it was argued that the factor
3/2 in this result applies more generally to higher order
equations as well, but a systematic analysis or an argu-
ment for why the convergence is uniform, was missing.
Apart from this and a recent rederivation [72] of Bram-
son’s result along lines similar in spirit to ours1 and a few
papers similar in spirit to that of Bramson [52,79,80], we
are not aware of systematic investigations of this issue.
Even for the convergence of the velocity in the nonlinear
difusion equation, our results go beyond those of Bram-
son.

Our results are not only of interest in their own right,
but they have important implications as well. Since the
asymptotic convergence towards the attractor Φ∗ is al-
gebraic in time, the attractor alone might not give suf-
ficient information about the front after long but finite
times, since algebraic convergence has no characteristic
time scale. In particular, there is no time beyond which
convergence can be neglected. Such slow convergence
means that in many cases, experimentally as well as the-
oretically, one observes transients and not the asymptotic
behavior. In fact, in the very first explicit experimental
test of front propagation into unstable states in a pat-
tern forming system [2], viz. Taylor-Couette flow, the
initial discrepancy between theory and experiment was
later shown to be related to the existence of slow tran-
sients [16]. The slow convergence is important for the-
oretical studies as well: it is a common experience (see,
e.g., [12,64,81]) that when studying front propagation in
the “pulled” regime numerically, the measured front ve-
locity is often below v∗, even though the asymptotic front
speed can never be below v∗, because no slower attractor
of the dynamics exists. This observation finds a natural
explanation in our finding that the rate of convergence is
always power law slow, and that the front speed is always
approached from below.

1The main focus of the work by Brunet and Derrida [72] is actually the correction to the asymptotic velocity if the function
f(φ) has a cutoff h such that fh(φ) = 0 for φ < h. The method the authors use to derive this, is actually closely related to the
one they use to rederive Bramson’s result, and to our approach. See in this connection also the recent paper by Kessler et al.
[78].
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A second important implication of the absence of an
intrinsic time scale of the front convergence is the follow-
ing. When we consider the propagation of such fronts
in more than one dimension in which there is a coupling
to another slow field (as, e.g., in the phase field mod-
els [39,82,83]), the front dynamics does not adiabatically
decouple from the dynamics of the other field and from
the evolution of the curvature and shape of the front it-
self. This implies that the standard moving boundary
approximation [38,39,84] (which actually rests on the as-
sumption that the convergence on the “inner scale” is
exponential) can not be made. Though this is intuitively
quite obvious from the power law behavior of the front
convergence process, the connection between the conver-
gence and the breakdown of a moving boundary approx-
imation also emerges at a technical level: the divergence
of the solvability integrals that emerge when deriving a
moving boundary approximation turns out to be related
to the continuity of the stability spectrum of pulled fronts
[37]. The break-down of the solvability analysis for per-
turbations of the asymptotic front in the pulled regime
also has consequences for the evaluation of multiplicative
noise in such equations [37].

B. Pushed versus pulled fronts, selection and
convergence

Let us return to the well understood nonlinear diffu-
sion equation (1.1) and discuss to which nonlinearities
f(φ) our prediction of algebraic convergence applies and
why. If f ′(0) < 0, the invaded state φ = 0 is linearly sta-
ble, and the construction of a uniformly translating front
φ(x, t) = Φv(x−vt) poses a nonlinear eigenvalue problem.
The solution with the largest eigenvalue v is the unique
stable and dynamically relevant solution (unique up to
translation invariance, of course). It is also well known
and rederived in Section II, that any initial front, that
separates the (meta)stable state φ = 0 at x → ∞ from
another stable state at x→ −∞, will converge exponen-
tially in time to this front solution Φv, which is unique
up to translation. However, whenever f ′(0) > 0, φ = 0 is
unstable, and there is not a unique asymptotic attractor
Φv, but a continuous spectrum of nonlinear eigenvalues v,
which constitute the velocities of possible attractors Φv.
The existence of a continuum of attractors of the dynam-
ics poses a so-called selection problem: From which initial
conditions will the front dynamically approach which at-
tractor? The attractor with the smallest velocity plays a
special role, as its basin of attraction are all “sufficiently
steep” initial conditions, as defined in Section II. It there-
fore will be refered to as the selected front solution.

When we concentrate on these “sufficiently steep” ini-
tial conditions and analyze the dependence from the non-
linearity f in (1.1), the transition from exponential to al-
gebraic convergence does not coincide with the transition
from stability to instability of the invaded state φ = 0,
but with the transition between two different mechanisms

of front propagation into unstable states. Indeed, it is
known (see also Sect. II), that for f ′(0) > 0, there are
also two different possibilities depending on f of how the
selected front Φsel and its speed vsel are determined. Ei-
ther Φsel is found by constructing a so-called strongly
heteroclinic orbit for Φv from the full nonlinear equation.
This case is known as case II [61] or nonlinear marginal
stability [63,65], or as pushing [59,68,69]. Or, the se-
lected velocity vsel is determined by linearizing about
the unstable state φ = 0, which case is known as case
I or linear marginal stability, or as pulling. We hence-
forth will use the terms “pushing” and “pulling” for the
two different propagation mechanisms of a selected front,
since they very literally express the different dynamical
mechanisms.

In a pushed front just like in a front propagating into
a (meta)stable state, the dynamics is essentially deter-
mined in the nonlinear “interior part” of the front, where
φ varies from close to φ = 0 to close to the stable
state. The construction of the selected front as a strongly
heteroclinic orbit in the pushed case continuously ex-
tends into the construction of the heteroclinic orbit of
the unique attractor, if the invaded state is (meta)stable
(f ′(0) < 0). For both pushed fronts and fronts propa-
gating into linearly stable states, the spectrum of linear
perturbations is bounded away from zero, so that con-
vergence towards the asymptotic front is exponential in
time.

In a pulled front, the dynamics is quite different: As
we shall see, it is determined essentially in the region
linearized about the unstable state. We call this region
the leading edge of the front. Eq. (1.1) is appropriate for
analyzing the front interior. We will see in Section II D,
that a stability analysis performed in this representation
is not able to capture the convergence of a steep initial
condition towards a pulled front. Rather the substitution

ψ = φ eλ∗ξ , ξ = x− v∗t , (1.9)

which we shall term the leading edge representation,
transforms (1.1) into

∂tψ = ∂2
ξψ + f̄(ψ, ξ) , (1.10)

f̄ ≡ eλ∗ξ
[
f

(
ψe−λ∗ξ

)
− f ′(0) ψe−λ∗ξ

]
= O

(
ψ2 e−λ∗ξ

)
.

This equation will turn out to be appropriate for analyz-
ing a leading edge dominated dynamics. Note that f̄ is at
least of order ψ2 with an exponentially small coefficient
as ξ →∞. For large ξ, the dynamics is purely diffusive.
If the nonlinearity obeys f(φ)−f ′(0)φ < 0 for all φ > 0 —
which is known as a sufficient criterion for pulling — the
nonlinearity f̄ is always negative. Then f̄ purely damps
the dynamics in the region of smaller ξ. The dynamics
evolving under (1.10) is equivalent to simply linearizing
(1.1) about the unstable state in the large ξ region —
there is only one subtle but important ingredient from
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the requirement that the dynamics in the linear region
crosses over smoothly to the nonlinear front behavior at
smaller ξ, that actually enters our leading edge analysis
in the form of a boundary condition. In the leading edge
representation (1.10), this is brought out by the presence
of the sink-type term f̄ which is nonzero in a localized
region behind the leading edge. With this small caveat2,
we can conclude that the leading edge of the front “pulls
the rest of the front along”, and that this is precisely
the mechanism that gives rise to the universal algebraic
convergence behavior. In a pushed front, in contrast,
the nonlinearity “pushes the leading edge forward” and
convergence is exponential.

To illustrate this discussion by a concrete example, we
note that when the function f(φ) in the nonlinear diffu-
sion equation is of the form

f = fε(φ) = εφ + φn+1 − φ2n+1 , n > 0 . (1.11)

we can rely on known analytic solutions for Φv. In this
case, the state φ = 0 is (meta)stable for ε < 0. For
0 < ε < (n + 1)/n2, the selected front is pushed, and for
ε > (n + 1)/n2, it is pulled (see Appendix A).

At this point, a brief explanation of our use of the word
“metastable” may be appropriate. For systems with a
Lyapunov function, the word metastable is often used
in physics to denote a linearly stable state, which does
not correspond to the absolute minimum of the Lyapunov
function (in analogy with the free energy). A domain wall
or front between the absolutely stable and a metastable
state then moves into the metastable domain; one may
therefore loosely call a linearly stable state “metastable”,
if it is invaded by another “more stable” state through
the motion of a domain wall or front.

The understanding of the two different dynamical
mechanisms of pushing and pulling in the nonlinear diffu-
sion equation (1.1) lays the basis for the analysis of equa-
tions (1.3) – (1.8). The essential step towards a general-
ization of the leading edge representation (1.10) is done
by a saddle point analysis, that identifies which Fourier
modes of linear perturbations of the unstable state will
dominate the long time dynamics. This analysis yields
the parameters v∗, λ∗, the diffusion constant D and pos-
sible higher order terms required for the leading edge
representation.

C. Sketch of method and results on front relaxation
in the pulled regime

Bramson’s method [77] to calculate algebraic conver-
gence is specifically adapted to equations of type (1.1).
It is based on a representation of the diffusion equation

by Brownian processes, which are evaluated probabilisti-
cally. Instead, we construct the asymptotic convergence
trajectory towards a known asymptotic state by solving
the differential equations in a systematic asymptotic ex-
pansion which, though nonrigorous, extends immediately
to higher order equations. Our approach leads to exact
results, since the expansion parameter are inverse powers
of the time t, so these terms become arbitrarily small in
the asymptotic regime.

The idea of the method is that in a pulled front, the
speed is essentially set in the leading edge, where lin-
earization of the equation of motion about the unstable
state is justified. This leading edge has to be connected
to what we will refer to as the interior part of the front,
defined to be the region where we have to work with the
full nonlinear equation. For the interior, we use the fact
that for large times the shape of the converging front will
resemble the asymptotic front, and thus can be expanded
about it. We also explicitly make use of the fact that the
initial state φ(x, 0) for large x is steeper than Φ∗ = Φv∗

in the leading edge, i.e., φ(x, 0) eλ∗x → 0 as x→∞, and
that the final state is Φ∗. The structure of the problem
then dictates that we have to expand in 1/

√
t.

The structure of the expansion in 1/
√

t is the only real
input of the analysis; its selfconsistency becomes clear a
posteriori and it can be motivated from the earlier work
on the long time expansion of the Green’s function of the
linearized equations, or, equivalently, from the observa-
tion that the equation governing the convergence towards
the asymptotic front profile (1.10) reduces essentially to a
diffusion equation in the leading edge of the front. Based
on this ansatz, we derive the following exact results:

For equations such, that the selected front is a uni-
formly translating pulled front, and for sufficiently steep
initial conditions such that limx→∞ φ(x, 0) eλ∗x = 0, we
derive that the asymptotic velocity convergence is given
by the universal law

v(t) = v∗ + Ẋ ,

Ẋ = − 3
2λ∗t

(
1−

√
π

(λ∗)2Dt

)
+ O

(
1
t2

)
. (1.12)

The three constants, the velocity v∗, the inverse length
λ∗ and the diffusion constant D, are in general obtained
from a saddle point expansion [58] for the equation of mo-
tion linearized about the unstable state. To write these
results, define ω(k) as the dispersion of a Fourier mode
e−iωt+ikx of the equations linearized about the unsta-
ble state into which the front propagates. In a frame
moving with velocity v∗, the quickest growing mode
k∗ is identified by the complex saddle point equation
∂k [ω(k)− v∗k]|k=k∗ = 0. In the more usual decompo-
sition into real functions this implies, that [56,61,63,65]

2Note though, that this subtle point is quite important — as we shall see, the saddle point or pinch point analysis gives
precisely the wrong prefactor for the leading 1/t convergence term because this boundary condition is not satisfied.

7



∂Im ω

∂Im k

∣∣∣∣
k∗

= v∗ ,
∂Im ω

∂Re k

∣∣∣∣
k∗

= 0 . (1.13)

The speed of the frame is asymptotically the same as the
speed of the front, if

Im ω(k∗)
Im k∗

= v∗ . (1.14)

For the uniformly translating fronts that we will analyze
here, we have

Im k∗ ≡ λ∗ > 0 , Re k∗ = 0 , Re ω(k∗) = 0 , (1.15)

and a real positive diffusion coefficient D

D =
i∂2ω

2∂k2

∣∣∣∣
k∗

=
∂2Im ω

2∂λ2

∣∣∣∣
k∗

. (1.16)

For equations (1.1), (1.2) we simply have v∗ = 2,
λ∗ = D = 1, and the first term in (1.12) then reduces to

the result of Bramson. The general form of this term was
conjectured earlier by one of us [65]. We confirm this con-
jecture, identify the 1/t term as the first non-vanishing
term in our asymptotic expansion in 1/

√
t, and explicitly

calculate the 1/t3/2 term which is new even for equation
(1.1). The 1/t2 term will depend on initial conditions,
and is thus non-universal.

Of course, while the velocity of a front is converging,
so is the profile shape. Note that v(t) (1.12) does not
depend on the “height” φ = h, which is being tracked.
In fact, if we define the velocity vφ of the fixed amplitude

φ = h through φ
(
x +

∫ t
dτ vφ(τ) , t

)
= h, then up to

order 1/t2 the velocity vφ(t) = v∗ + Ẋ is independent of
the “height” φ = h. Moreover, it is determined solely by
properties of the equation linearized about the unstable
state, as Eqs. (1.13)–(1.16) show. In this sense, we can
indeed speak of pulling of the front by the leading edge
of the front.

165 170 175 180 185 190 195 200
0.0

0.5

1.0

φ

x

φ φ φφ

t=0 t=5 t=10 t=15

Φ∗(ξ) Φ∗(ξ)Φ∗(ξ)

FIG. 1. Illustration of the fact, that even though the shape of a front profile is quite close to Φ∗, the position of a front is
shifted logarithmically in time relative to the uniformly translating profile Φ∗(ξ).
Solid lines: evolution of some initial condition φ(x, 0) of the form (4.4) under ∂tφ = ∂2

xφ + φ−φ3 at times t = 5, 10, 15. Dotted
lines: evolution of φ(x, t) = Φ∗(ξ), ξ = x− 2t, at times t = 5, 10, 15. Φ∗ is placed such, that the amplitude φ = 1/2 coincides
with that of φ(x, t) at time t = 5. The logarithmic temporal shift is indicated by the fat line.

The shape convergence is also obtained explicitly from
our analysis. The crucial input for the analysis is the
right frame and structure to linearize about. At first
sight, a natural guess would be that for large times, the
actual shape of the front φ(x, t) should be linearizable
about the shape of the asymptotic front Φ∗(x − v∗t).
However, the algebraic velocity convergence (1.12) im-
plies, that if a converging front profile φ is close to the
asymptotic uniformly translating front profile Φ∗(x−v∗t)
at some time t0, the distance between the actual pro-
file and Φ∗ will diverge at large times t as X(t) =
−(3/2λ∗) ln(t/t0) + . . .. This result, which is illustrated
in Fig. 1, implies that if we want to linearize φ about
Φ∗ at all times, we have to move Φ∗ along with the non-
asymptotic velocity v(t) (1.12) of the converging front.
A crucial step for the analysis is thus to linearize about
Φ∗(ξ) in a coordinate system

(ξX , t) , ξX ≡ ξ −X(t) = x− v∗t−X(t) , (1.17)

moving with the converging front. If we expand φ about
Φ∗(ξ) with ξ from (1.17) and then resum, we find that
the interior shape of the front is given by

φ(x, t) = Φv(t)(ξX + x0) + O

(
1
t2

)
(1.18)

for ξX �
√

4Dt. x0 expresses the translational degree
of freedom of the front. The uniformly translating front
Φv(ξ) is a solution of the ordinary differential equation
for the uniformly translating profile φ(x, t) = Φv(x− vt)
but with v replaced by the instantaneous value v(t) of the
velocity. E.g., for the nonlinear diffusion equation (1.1),
Φv(ξ) is the solution of

−v∂ξΦv(ξ) = ∂2
ξΦv(ξ) + f(Φv(ξ)) . (1.19)

Eq. (1.18) also confirms that to leading order the interior
is slaved to the slow dynamics of the leading edge. The
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transient profiles Φv(t) in (1.18) propagate with velocity
v(t) smaller than v∗, according to (1.12).

For the special case of Eq. (1.1) it is well known (see
also Section II), that when constructing a front Φv start-
ing from Φv = 1 at ξ → −∞, it eventually will become
negative for finite ξ whenever v < v∗, and that globally
such fronts either do not exist or are dynamically un-
stable, depending on the properties of f for negative φ.
However, only the positive part of Φv(t) from ξ → −∞
up to ξ �

√
t plays a role as a transient. That the con-

vergence trajectory is approximately given by Φv(t), was
already observed numerically in equations of type (1.1)
by Powell et al. [67]. Our analytical derivation of this
result actually holds for a larger class of equations, but
at the same time we find that it only holds up to a cor-
rection term of order 1/t2. This non-universal correction
is always non-vanishing.

For ξX �
√

4Dt, the transient crosses over to

φ(x, t) = αξX e−λ∗ξX −ξ2
X/(4Dt) (1.20)

×
(

1 + O

(
1√
t

)
+ O

(
1

ξX

))
.

The analytical expression for the universal correction of
order 1/

√
t is given in Eqs. (5.39) or (5.69) below, while

the correction of order 1/t will depend on initial condi-
tions, and is thus non-universal.

A crucial insight implemented above is, that the front
consists of different dynamical regions, which have to be
matched to each other. The situation is sketched in Fig.
2. For a pulled front, the Gaussian region (1.20) of the
leading edge essentially determines the velocity, while the

front interior (1.18) is slaved to leading order. The Gaus-
sian region might be preceeded by a region of “steepness”
λ being conserved in time, which for sufficiently steep
initial conditions λ > λ∗ has no dynamical importance
(where the steepness λ is defined in Eq. (2.6) below).
Likewise, for flat initial conditions, the dynamics is dom-
inated by the conserved λ region, while pushed dynam-
ics is dominated by the front interior. In both of these
cases, the intermediate Gaussian region is absent. For
the nonlinear diffusion equation (1.1), the different cases
are discussed in Section II and summarized in Table III.

Our results (1.12) – (1.20) are universal in three ways:
• The predicted convergence behavior is independent of
the precise initial conditions, provided they decay quicker
than e−λ∗|x| far in the unstable regime.
• The leading edge behavior (1.12) and (1.20) is inde-
pendent of the precise nonlinearities. For Eq. (1.1), the
constants v∗, λ∗ and D depend on f ′(0) only. For the
more general equations, these constants are completely
determined by the saddle point expansion in the equa-
tion linearized about the unstable state.
• If we analyze general equations like (1.3) – (1.8), also
our prediction for the interior part of the front (1.18)
stays unchanged, as long as the front speed stays deter-
mined by the linearization about the unstable state, i.e.,
the front stays pulled, and as long as the state behind the
front stays homogeneous. The effect of the nonlinearities
just gets absorbed in appropriate functions Φv.

The results summarized in this Subsection are the most
central new results of this paper. They are summarized,
for easy reference in Table I.

interior

φ ∼ Φv(t)(ξX) φ ∼ e-λ(x-v(λ))t

φ

x

φ ∼ ξ e
-λ

∗
ξ e-ξ

2
/4Dt

conserved λ regionGaussian region

leading edge:

FIG. 2. Sketch of a front with the different dynamical regions: interior = nonlinear region, leading edge = region linearized
about the unstable state. Depending on the initial conditions, the leading edge might still consist of two different regions: a
Gaussian region and a region of conserved steepness λ.
The most familiar case is the interior dominated or “pushed” front (Cases I and II in Table III). To such fronts, standard tools
of perturbation theory like linear stability analysis apply, as we discuss in Section II. Leading egde dominated fronts can either
be governed by the conserved λ region (Case III), if they start with “flat” initial conditions, or by the Gaussian region (Case
IV), if the initial conditions are “sufficiently steep”. The Case IV fronts are also called “pulled”. Their universal algebraic
relaxation is analyzed for the nonlinear diffusion equation in Sections III and IV, and for general equations in Section V.
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Height independent velocity:
v(t) = v∗ + Ẋ

= v∗ − 3
2λ∗t

(
1−

√
π

(λ∗)2Dt

)
+ O

(
1
t2

)
,

where the saddle point analysis of the
linearized equation yields v∗, λ∗, D,

cf. Table IV.

⇒ Use the coordinate: ξX = x− v∗t−X(t) .

Front for ξX �
√

4Dt (front interior) :

φ(x, t) = Φv(t)(ξX) + O

(
1
t2

)
,

= Φ∗(ξX) + Ẋ ηsh(ξX) + O

(
1
t2

)
,

where Φv(ξ) solves φ(x, t) = Φv(x− vt) ,

and ηsh(ξ) = δΦv(ξ)/δv|v∗ .

Front for ξX �
√

4Dt (leading edge) :

φ(x, t) = αξX e−λ∗ξX e−ξ2
X/(4Dt) + . . . .

Table I: The central results on the universal algebraic relaxation towards uniformly translating pulled fronts,
see also Fig. 2. These results apply to steep initial conditions in the nonlinear diffusion equation in the pulled
regime (Case IV of Table III, see Sections III and IV) and to more general equations (see Section V).

D. Organization of the paper

Before embarking on our explicit calculation of the ve-
locity and shape convergence in the pulled regime, we re-
view in Section II a number of properties of propagating
fronts in the nonlinear diffusion equation. Most of these
are well known, but they either play a role in the later
analysis or in the motivation thereof: (i) The existence
of a family of fronts is essential for the convergence in the
inner front region, as Eq. (1.18) illustrates already. (ii)
The stability analysis illustrates that pushed fronts con-
verge exponentially, but that the convergence of pulled
fronts does not follow simply from the stability analysis.
(iii) For completeness, we point out that the convergence
of fronts emerging from initial conditions that are not
sufficiently steep (both in the pushed and pulled regime)
can be understood to a large extent from the stability
calculation. (iv) Many of the arguments that were previ-
ously made partially intuively [63,65] for the connection
between front stability and selection, are reformulated in
a more precise way in this Section. (v) The connection
between the front convergence and the breakdown of the
standard moving boundary approximation arises through

the properties of the stability operator. Some of the re-
sults collected Section II therefore lay the basis for the
discussion of these connections in a later paper.

Readers who are familiar with most of the results of
Section II or who want to focus right away on the conver-
gence calculation can, after skimming Section II A pro-
ceed to Section III, where the detailed analysis of pulled
front relaxation in the the nonlinear diffusion equation
(1.1) is given. The detailed numerical simulations that
confirm our analytical predictions are presented in Sec-
tion IV. In Section V we then extend our analysis to
more general equations, discuss the example equations
(1.3) – (1.8), and present numerical results, again in ex-
cellent agreement with our analytical predictions. We
then close the main body of the paper with a summary
and outlook in Section VI.

Since this is a long paper with a large number of de-
tailed results of various types, and since we have made an
attempt to make our results accessible for readers from
different fields, we introduce Table II as a “helpdesk” for
the reader who wants to focus on a particular aspect of
the front propagation problem only, or who wants to get
only an idea of the essential ingredients of our approach
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and the main results.
We finally note that a brief sketch of our results can

be found in [85], while the lecture notes in [86] provide

further background information and insight into how the
convergence analysis presented here arose from the study
of moving boundary approximations.

THE READER’S HELPDESK

If...... Then our advice is......

you do not want to study the stability calcu-
lation or are not interested in the connection
between stability and front selection

if you know what is meant with the “pulled”
velocity v∗ you can start with Section III
immediately; if not, read Section II E, II F
and possibly Section VC1 first

you are already familiar with previous ideas
concerning front selection in the physics lit-
erature, but want to get an idea of our
change of emphasis and of the new detailed
results of this paper

to skim Section II A for notation and terms,
to then read Section II E 2 and II F, to check
Table III and then to proceed to Section III

you (mainly) want to read about the con-
nection between stability, selection and
relaxation

to read Section II with Table III and for
the generalization Sections VB and VC with
their appendices

you only want to get an idea of the concep-
tual basis of the algebraic convergence

to read Section III A and possibly Sec-
tions VC–VE for the arguments concerning
higher order partial differentiel equations or
other types of equations

you are unfamiliar with the concept of pulled
velocity v∗ for higher order equations and
want to know how it is determined

to read Sections III A and VC1 (and possi-
bly parts of Sections VD and VE)

you just want to see the numerical support
for the algebraic relaxation prediction from
Tables I and IV

read Section IV on the nonlinear diffusion
equation and Section VF for higher order
and coupled equations

you just want a toolkit for when to apply the
predictions from Tables I and IV

to read Section VI E

Table II: A guide through the paper for the reader who is not interested in every detail of the work presented
in this paper.
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II. STABILITY, SELECTION AND
CONVERGENCE IN THE NONLINEAR

DIFFUSION EQUATION

In this Section, we first review a number of results
on the multiplicity and stability of uniformly translating
front solutions of the nonlinear diffusion equation in Sec-
tions II A – II C. In Sec. II D, we discuss to which extent
the linear stability analysis of these uniformly translat-
ing fronts allows us to solve the selection problem, i.e.,
to determine the basins of attraction of these solutions
in the space of initial conditions. We also address the
question to what extent it enables us to determine the
convergence mechanism and convergence rate.

Though several elements of the analysis have appeared
in one form or another at scattered places in the litera-
ture [36,38,53,61,65–69,87–94], the aim of this Section is
is (i) to define the concept of the steepness of a front
in the leading edge and show that this concept plays a
central and ordering role in the discussion of stability,
selection and convergence: We define “sufficiently steep”
initial conditions as all initial conditions, that for large
times approach the so-called selected front. (ii) to dis-
cuss the two distinct propagation mechanisms, namely
the interior dominated dynamical regime, and a leading
edge dominated dynamics. The dynamics of initial con-
ditions, that are very flat in the leading edge, will always
be dominated by this leading edge. The dynamics of
steep initial conditions can be dominated by either the
interior (pushed) or the leading edge (pulled). We re-
serve the names “pushed” and “pulled” to the interior
or leading edge dominated convergence of steep initial
conditions towards the selected front. (iii) to show why
convergence towards pulled fronts can not be obtained
by means of a linear stability analysis. (iv) to introduce
the “leading edge representation” and demonstrate its
predictive power. (v) to lay the ground for the calcula-
tion of Section III as well as for our future discussion of
the breakdown of moving boundary approximations for
pulled fronts.

A. Notation and statement of problem

In Sections II – IV, we analyze the nonlinear diffusion
equation

∂tφ(x, t) = ∂2
xφ + f(φ) , (2.1)

where f(φ) is assumed to be continuous and differen-
tiable. For studying front propagation into unstable
states, it is convenient to take

f(0) = 0 = f(1) , f ′(0) = 1 ,

f(φ) > 0 for all 0 < φ < 1 . (2.2)

so that in the interval [0, 1] f(φ) has one unstable state
at φ = 0 and only one stable state at φ = 1. Eq. (2.2)

implies, that f ′(1) < 0. Note, that we here have defined
f(φ) only on the interval 0 ≤ φ ≤ 1. It can be shown by
comparison arguments [50,95] that an initial state with
0 ≤ φ(x, 0) ≤ 1 for all x, conserves this property in time
under the dynamics of (2.1), (2.2).

For a nonlinearity like (1.11), a general equation of the
form

∂τϕ = D∂2
yϕ + Fε(ϕ) , Fε(0) = 0 = Fε(ϕs) ,

F ′ε(0) = ε , ϕs > 0 , (2.3)

results. It allows ε to take either sign. For ε < 0, the
state φ = 0 is linearly stable, for ε > 0, it is unstable.
Fronts propagating into metastable states (ε < 0) will be
discussed briefly in Section II D for comparison. If ε > 0,
(2.3) transforms to the normal form (2.1) as

t = ετ , x =
√

ε/D y , φ = ϕ/ϕs , f(φ) =
F (ϕ)
ε ϕs

.

(2.4)

Accordingly, velocities transform as dx/dt =
[dy/dτ ] /

√
Dε.

The front propagation problem can now be stated
as follows. Suppose, that some initial condition 0 ≤
φ(x, 0) ≤ 1 with

lim
x→∞

φ(x, 0) = 0 , φ(x, 0) > 0 for some x , (2.5)

is inserted into the equation of motion (2.1) with (2.2).
Which shape will the resulting front approach asymptot-
ically as time t → ∞, if any? How quick will the con-
vergence to this asymptotic front be? Can we identify
the mechanisms that generate such dynamical behavior?
Can we rephrase it such, that we can generalize results to
equations other than (2.1)? These questions essentially
concern the nature of the front selection mechanism.

As is well known [32,38,48–50,61,63,65,66,68,69,72],
the answers to these questions depend on more specific
properties of the initial condition as well as of the non-
linearity f(φ). Our discussion of these results will focus
more than earlier work on the central and unifying role
of the steepness λ of the leading edge of a front, defined
as the asymptotic exponential decay rate:

φ(x, t) x→∞∼ e−λx ⇔ λ = − lim
x→∞

(
∂ lnφ

∂x

)
. (2.6)

When φ(x, t) decays faster than exponential as x → ∞,
this implies λ =∞.

We will call an initial condition sufficiently steep, if

lim
x→∞

eλsteepx φ(x, 0) = 0 , (2.7)

otherwise we call it flat. How λsteep is determined by
f(φ), will be discussed in Section II D. We will see, that
always 0 < λsteep ≤ 1 for Eq. (2.1), and, in particular,
that for pulled fronts λsteep = 1 and for pushed fronts
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λsteep < 1. The criterion (2.7) for steepness includes
all initial conditions with bounded support or, e.g., the
initial condition φ(x, 0) = θ(−x) with θ the step func-
tion. Why all such sufficiently steep initial conditions
lead to a sharp selection of a front with velocity vsel for
t → ∞ (in the sense as explained in the introduction),
will be reviewed later in this Section. In contrast, a flat
exponentially decaying initial condition whose steepness
is smaller than λsteep,

φ(x, 0) x→∞∼ e−λx , λ < λsteep , (2.8)

evolves under the dynamics into a uniformly translating
front with a constant velocity v(λ) > vsel, as we shall
discuss.

Another important distinction that we wish to bring to
the forefront in our discussion below is that between lead-
ing edge dominated or interior dominated dynamics. The
purest form of leading edge dominated dynamics results
from flat exponential initial conditions (2.8) with finite
steepness λ. In this case, the asymptotic front speed is
just the speed v(λ) = λ+1/λ with which the exponential
tail e−λx propagates according to the dynamical equation

∂tφ = ∂2
xφ + φ + o(φ2) . (2.9)

This equation is obtained by linearizing about the un-
stable state φ = 0, and is appropriate in the leading
edge region. Also the convergence towards v(λ) is in this
case determined by the dynamics in the leading edge —
see Sections II D and II E. The more important lead-
ing edge dominated dynamics occurs, however, for suffi-
ciently steep initial conditions (2.7) converging to a pulled
front. As already mentioned, for pulled fronts the asymp-
totic front speed is just the linear spreading velocity v∗

of the leading edge. It occurs when the nonlinearities in
f(φ) are mostly saturating so that they slow down the
growth. A well-known sufficient criterion for pulling is

f ′(0) = sup
0<φ<1

f(φ)
φ

. (2.10)

(We briefly rederive this criterion with the help of our
leading edge transformation in Appendix A, since this
form of a proof is generalizable to other equations.)
Pulled fronts are actually at the margin of leading edge
domination: although the linearized equation (2.9) is suf-
ficient to determine vsel = v∗ = 2, the convergence to-
wards this velocity is governed by a nontrivial interplay
of dominating leading edge and “slaved” interior. This
algebraic and universal convergence we discuss in Sec-
tions III and IV and then for more general equations in
Section V, building on concepts developed in the present
Section.

Leading edge dominated dynamics contrasts with in-
terior dominated dynamics, which occurs when the non-
linear function f(φ) is such that steep initial conditions
give rise to pushed fronts. For interior dominated or
pushed dynamics, vsel is associated with the existence of a

strongly heteroclinic orbit in the phase space associated
with Φv(ξ) (see Section II B below). This means that
the whole nonlinearity f(φ) is needed for constructing
vsel. The linear stability analysis leads to the amoung
physicists well-known Schrödinger problem reviewed in
Section II C. As a consequence, convergence towards the
asymptotic solution is exponential in time, as discussed
in Section II D. This type of dynamics extends smoothly
towards fronts propagating into metastable states, i.e.,
towards ε < 0 in (2.3).

While in this Section we consider the nonlinear diffu-
sion equation (2.1), (2.2) only, many of our results can
be generalized rather straightforwardly to a more general
class of spatially second order nonlinear diffusion equa-
tions. We refer to Appendix B for an explicit analysis
of the transformation that maps the resulting stability
problem onto the one discussed here.

B. Uniformly translating fronts:
candidates for attractors and transients

In this Section, we recall some well known proper-
ties [48–50,61,63,65,69] of uniformly translating front so-
lutions of the nonlinear diffusion equation (2.1), (2.2),
which play a role in the subsequent analysis. The prop-
erties of uniformly translating fronts can be derived by
standard methods [96–98]. We transform to a coordinate
system moving with uniform velocity v: (x, t) → (ξ, t),
ξ = x − vt. The temporal derivative then transforms
as ∂t

∣∣
x

= ∂t

∣∣
ξ
− v∂ξ

∣∣
t
. For a front φ(x − vt) = Φv(ξ)

translating uniformly with velocity v, the time derivative
vanishes in the comoving frame ∂t

∣∣
ξ
Φv = 0, and so Φv(ξ)

obeys the ordinary differential equation

∂2
ξΦv + v∂ξΦv + f(Φv) = 0 . (2.11)

In view of the initial condition (2.5), we focus on the
right-moving front and so we impose the boundary con-
ditions

Φv(ξ)→ 1 for ξ → −∞ ,

Φv(ξ)→ 0 for ξ = ξ̄ , (2.12)

where ξ̄ is either finite or ∞. Note that a more detailed
discussion of ξ̄ requires to eliminate the translation in-
variance Φv(ξ)→ Φv(ξ + ξ0) from the problem.

Close to the stable state φ = 1, the differential equa-
tion can be linearized about φ = 1 and solved explicitely.
The general local solution is a linear combination of
e−λ̃±ξ with

λ̃± =
v ±

√
v2 − 4f ′(1)

2
. (2.13)

According to (2.2), f ′(1) is negative. Thus for any real v,
λ̃+ is positive and λ̃− is negative. With the convention
(2.12), only the negative root is acceptable. So
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Φv(ξ) = 1± e−λ̃−(ξ−ξ0) + o(e−2λ̃−ξ) for ξ → −∞ .

(2.14)

The free integration constant multiplying e−λ̃−ξ here has
been decomposed into a sign ± and a free parameter ξ0

accounting for translation invariance. Apart from trans-
lation invariance, there are two solution for Φv close to
φ = 1 distinguished by ±.

A global view of the nature and multiplicity of solu-
tions can be obtained with a well known simple particle-
in-a-potential analogy. This analogy has of course been
exploited quite often in various types of approaches
[61,99–101], and only works for the nonlinear diffusion
equation, not for equations with higher spatial deriva-
tives; for these, we have to rely on a construction of so-
lutions as trajectories in phase space as sketched around
Eq. (2.22). The particle-in-a-potential analogy is based
on the identification of equation (2.11) with the equation
of motion of a classical particle with friction in a poten-
tial. One identifies Φv with a spatial coordinate, ξ with
time, v with a friction coefficient, and f with the negative
force, f = −force = ∂φV (φ) derived from the potential
V (φ) =

∫ φ
dφ′ f(φ′). The potential has a maximum

at φ = 1 and a minimum at φ = 0. The construction
of Φv is equivalent to the motion of a classical particle
with “friction” v in this potential, where at “time” −∞
the particle is at rest at the maximum of V . Obviously
for any positive “friction” v > 0, the particle will never
reach the minimum at φ = 0, if it takes off from the
maximum at φ = 1 towards φ > 1. It will always reach
φ = 0, if it takes off towards φ < 1. We conclude that
for every v > 0, there is a unique uniformly translating
front (unique up to translation invariance), that starts as
(2.12) and reaches φ = 0 monotonically. Close to φ = 1,
it is given by the − branch in Eq. (2.14).

Let us be more specific on how φ = 0 is approached. If
the “friction” v is sufficiently large, the motion of the par-
ticle will be overdamped, when it first approaches φ = 0,
and it will reach φ = 0 only for “time” ξ → ∞. The
critical value of the “friction” where this behavior starts,
defines the critical velocity vc. If v < vc, the particle
will reach φ = 0 at a finite “time” ξ and cross it. What
then happens, depends on f(φ) for negative arguments.
If f ′(0) = 1 also on approach from negative arguments
φ as in the case of the nonlinearities (1.2) or (1.11), the
particle might oscillate a finite or an infinite number of

times through φ = 0 and reach φ = 0 asymptotically
for ξ → ∞3. We will see in Sect. II C, that a uniformly
translating front Φv is dynamically stable, if and only if
v ≥ vc.

The critical velocity vc is the smallest velocity at which
Φv(ξ) monotonically reaches Φv(ξ)→ 0 at ξ →∞. It can
be determined by two different mechanisms which will
turn out to distinguish pushed or pulled fronts. These
different mechanisms are determined by the nonlinearity
f(φ) or the “potential” V (φ), resp. To see this, let us
linearize about the unstable state, and let us assume for
simplicity, that f ′(0) = 1 from either side. The general
solution close to φ = 0 is

Φv(ξ) =

 Av e−λ−ξ + Bv e−λ+ξ for v > 2 ,
(αξ + β) e−λ∗ξ for v = v∗ = 2 ,
Cv e−λ0ξ cos k(ξ − ξ2) for |v| < 2 ,

(2.15)

where

λ±(v) = λ0(v)± µ(v) (v > 2) , λ0(v) =
v

2
(all v) ,

(2.16)

µ(v) =
√

v2 − 4
2

(v > 2) , k(v) =
√

4− v2

2
(v < 2) ,

(2.17)
λ∗ = λ0(v∗) = λ±(v∗) = 1 (v = v∗ = 2) . (2.18)

The special value v∗ = 2 thus is determined by lineariza-
tion about the unstable state. At this value of the ve-
locity, the two roots λ+ and λ− coincide; as a result,
at this point the asymptotic profile is not the sum of
two exponentials, but an exponential times a first order
polynomial in ξ. The solution (2.15) of the linearized
equation for every v contains two free parameters. These
parameters are determined by the unique approach of the
front Φv from φ = 1 and will in general be non-vanishing.
The fact that α 6= 0 in (2.15) generically, will turn out
to have important consequences for the convergence of
pulled fronts, as we shall see in Section III.

From (2.15) we can conclude immediately, that fronts
with velocity v < v∗ = 2 will cross φ = 0 at a finite value
of ξ. So the critical value of v is certainly vc ≥ v∗ = 2.
Whether vc = v∗ or vc > v∗, depends on the nonlin-
earities. Suppose first that upon lowering v the front
solutions Φv remain monotonic till v = v∗. In this case,

3Note that for, e.g., the modification f(φ)=|φ|
(
1− φk−1

)
, k > 1, of the nonlinearity φ−φk (1.2), and for v < vc, the trajectory

will be the same for positive φ, but will not reach φ = 0 for ξ → ∞, as the potential V then only has an inflection point at
φ = 0, not a minimum. For our analysis of the velocity convergence in the nonlinear diffusion equation, we do not need the
behavior of the fronts for negative φ, so in that case it does not matter for our fronts between φ = 0 and φ = 1, whether the
nonlinearity is, e.g., φ−φk or |φ|

(
1− φk−1

)
. For the linear stability analysis (Sec. IIC), Φv does need to be defined, of course,

on the whole interval from −∞ to +∞, so then the behavior of f(φ) for negative φ needs to be specified when analyzing fronts
Φv with v < vc. Also, for higher order equations, it is not guaranteed that negative values of the field do not play a role in the
convergence behavior.
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vc = v∗. A second possibility is the following. At very
large v, the front solution is certainly monotonic, as in
the particle-on-the-hill analogy, the particle slowly creeps
to the minimum of the potential for large “friction” v.
Hence Av in (2.15) is positive for large v. Now, upon
lowering v, it may, depending on the nonlinearities, hap-
pen that at some velocity v = v†, Av† = 0. In this case,
the front is nonmonotonic for v < v† as Av will be nega-
tive for v < v†. Hence in this case, vc = v†.

For uniformly translating pulled fronts we will use the
short hand notation Φ∗ ≡ Φv∗ . For large ξ they are
asymptotically

Φ∗(ξ) ≡ Φv∗(ξ)
ξ→∞∼ ξ e−ξ , (2.19)

since in general the coefficient α in (2.15) is nonzero. For
fronts with velocity v > v∗, the smaller λ will dominate
the large ξ asymptotics, so generically

Φv(ξ)
ξ→∞∼ e−λ−ξ . (2.20)

However, for a front solution with velocity v†, we have
Av† = 0, and so

Φ†(ξ) ≡ Φv†(ξ)
ξ→∞∼ e−λ+ξ . (2.21)

More mathematically, a construction of front solutions of
Eq. (2.11) is equivalent to a construction of trajectories
in a phase space (Φv, Ψv ≡ ∂ξΦv) in which the flow is
given by

∂ξ

(
Φv

Ψv

)
=

(
Ψv

−vΨv − f(Φv)

)
. (2.22)

Front solutions correspond to trajectories between the
fixed points (Φv, Ψv) = (1, 0) and (0, 0). These are thus
heteroclinic orbits in phase space. Coming out of the
(1, 0) fixed point there are according to (2.14) two tra-
jectories. When we follow the one for which Φv decreases
for increasing ξ, its behavior near the (0, 0) fixed point
is given by (2.15). Now, since the flow depends continu-
ously on v, so will Av and Bv in (2.15). For large v, Av is
positive, and from the construction of the flow in phase
space, one sees that Av may change sign on lowering v.
The largest v with Av = 0 determines the change from
monotonic to non-monotonic fronts. At this v = v†, the

trajectory flows into the stable (0, 0) fixed point along
the most strongly contracting eigendirection — this is
precisely what is expressed in (2.21). For this reason,
the solution Φ† is referred to as a strongly heteroclinic
orbit [104]. In [66], this solution was referred to as “the
nonlinear front solution”.

In summary, the main results of the preceding analysis
are:
• For every v ≥ vc, there is a uniformly translating front
Φv with velocity v, which monotonically connects φ = 1
at ξ → −∞ to φ = 0 at ξ → ∞. All Φv with these
properties are uniquely determined by v up to transla-
tion invariance.
• For every 0 < v < vc, there is a unique front solution
Φv, that translates uniformly with velocity v, and that
monotonically connects φ = 1 at ξ → −∞ to φ = 0 at
some finite ξ = ξ̄.
• Depending on the nonlinearities, the change from
monotonic to nonmonotonic behavior can either occur
at the velocity v∗, with v∗ = 2 for (2.1) and (2.2), or at a
larger velocity v†: vc = max[v∗, v†]. If v† exists, it is the
largest velocity at which there is a strongly heteroclinic
orbit.

The results for invasion into either metastable (f ′(0) <
0) or unstable states (f ′(0) > 0) and for vc = v† > v∗

and vc = v∗ are summarized in v(λ) plots in Fig. 3,
which show the multiplicity of stable uniformly trans-
lating fronts Φv parametrized by either v or λ.

The results of this subsection play a role in the subse-
quent analysis:
(i) There are important connections [61] between the
properties of the uniformly translating front solutions
and the stability of these fronts (see Section II C). In
particular front solutions with velocity v ≥ vc are dy-
namically stable and possible attractors of the long time
dynamics. Fronts with velocity v < vc either do not exist
or are unstable.
(ii) The results for front selection can be easily for-
mulated in terms of the properties of these uniformly
translating solutions [61,63,65]: for sufficiently steep ini-
tial conditions the dynamically selected velocity coincides
with vc: vsel = vc. If vsel = v†, we speak of the pushed
regime, while if vsel = v∗ we speak of pulled fronts.
(iii) We will see in Section III, that the front solutions
with v < v∗ play a role in the convergence behavior in
the interior region of the pulled fronts.

15



-0.3
0.0

-0.3
0.0

-0.3
0.0

v(λ)

λ

v(λ)

λ

v(λ)

λ

v
+

λ+(v
+
)

v
+

λ+(v
+
) λ∗

v
∗

λ∗

a) f’(0)<0

v
∗

b) f’(0)>0, vc=v
+
>v

∗  c) f’(0)>0, vc=v
∗

λ−(v
+
) λ−(v

+
)

FIG. 3. Steepness λ (2.6) versus velocity v(λ) = λ+f ′(0)/λ with solid line for real λ and dotted line for real part of complex
λ. v† is the pushed velocity derived from global analysis, v∗ the linear spreading velocity. A fat line or point on the axes
denotes the possible attractors Φv(x − vt) of the dynamics, parametrized either by velocity v or by steepness λ. a) The case
f ′(0) < 0 corresponding to front propagation into a (meta)stable state. In this case, there is a unique attractor with velocity
v† and steepness λ+(v†). b) and c) The case f ′(0) > 0 corresponding to front propagation into an unstable state. In this case
there is a continuum of attractors parametrized by v ≥ vc. b) The pushed regime: vc = v† > v∗. The steepness λ+(v†) of the
steepest attractor is isolated just as in case a). c) The pulled regime: vc = v∗. The steepness λ∗ of the steepest attractor is at
the margin of the λ-continuum.

C. Linear stability analysis of moving front solutions

Having constructed uniformly translating fronts as
possible attractors of the long time dynamics, we now
turn to the stability of these moving front solutions. In
Section II C 1 we recall the transformation of the lin-
ear stability problem to the eigenfunction and eigenvalue
problem of a Schrödinger equation [88,36,61,98], a prob-
lem well known to physicists (for earlier as well as more
mathematical approaches, see [88–93,54]). We then ar-
gue, that this space of eigenfunctions in general will be
insufficient to discuss the general linear stability prob-
lem or the whole basin of attraction of a given uniformly
translating front Φv. We then in Section II C2 extend the
linear stability analysis to functions outside the Hilbert
space associated with the Schrödinger problem. The dis-
cussion of these perturbations follows concepts outlined
in the Appendix of [63]. As will be discussed in Section
II D, this extended space of linear perturbations gives an
essentially complete picture of the basins of attraction of
uniformly translating fronts and of the rates of conver-
gence. However, we will see, that even after extending
linear stability analysis beyond the Hilbert space, it is not
possible to derive the convergence of pulled fronts with
this tool of analysis.

To study the linear stability of a uniformly translating
front Φv, we linearize about it in the frame ξ = x − vt
moving with the constant velocity v, by writing

φ(ξ, t) = Φv(ξ) + η(ξ, t) . (2.23)

Inserting (2.23) into (2.1), we find to linear order the
equation of motion for η(ξ, t)

∂tη = Lvη + O(η2) (2.24)

with the linear operator

Lv = ∂2
ξ + v∂ξ + f ′

(
Φv(ξ)

)
. (2.25)

Lv is not self-adjoint, so left and right eigenfunctions
will differ. The trouble is caused by the linear derivative
v∂ξ. It can be removed by the following transformation
[88,61]:

ψ = evξ/2 η , (2.26)

Hv = − evξ/2 Lv e−vξ/2 . (2.27)

so that Hv becomes the linear operator

Hv = −∂2
ξ + V (ξ) , V (ξ) = v2

4 − f ′
(
Φv(ξ)

)
. (2.28)

The equation of motion (2.24) then becomes

−∂tψ = Hvψ + O
(
ψ2 e−vξ/2

)
. (2.29)

Transformation (2.26) from η to ψ increases the weight of
the leading edge (ξ →∞) by a factor evξ/2, while it en-
hances convergence at ξ → −∞. Note that the so-called
leading edge representation of the equation of motion al-
ready mentioned in (1.10) and further discussed in Sec-
tions II E, III and V is based on a similar transformation.
However, we there will transform the complete function
φ, and not only the linear perturbation η = φ− Φv.

Let us return to (2.29). Since Hv is self-adjoint, we
can decompose functions, that lie in the Hilbert space
of Hv, into the orthonormal set of eigenfunctions of Hv.
Eigenfunctions in this Hilbert space form a complete set.
However, it is obvious that not all linear perturbations
with |η| � 1 are in this space: Only perturbations with
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lim
ξ→∞

|η| e λ0(v) ξ <∞ with λ0(v) =
v

2
(2.30)

can lie in the Hilbert space (which consists of square in-
tegrable functions and of solutions proportional to plane
waves eikξ as ξ → ±∞).

1. Schrödinger stability analysis

The general properties of the spectrum and eigenfunc-
tions of Hv within the Hilbert space can be immedi-
ately obtained from a few well known results which to
physicists are known from quantum mechanics (see, e.g.,
[102]), since Hv is the Hamiltonian operator for a (quan-
tum) wave in a potential in one dimension. The potential
is asymptotically lower on the right than on the left, since

V (∞) = v2

4 − f ′(0) < v2

4 − f ′(1) = V (−∞) , (2.31)

according to (2.2). If we write the temporal behavior of
an eigenfunction as ψ̃σ(ξ) e−σt, one finds that the spec-
trum of

Hvψ̃σ = σψ̃σ (2.32)

is continuous for σ ≥ V (∞), and that the eigenfunctions
are distributions, i.e., essentially plane waves eikξ with
k = ±

√
σ − V (∞) as ξ → ∞. One immediately con-

cludes, that a front Φv with velocity v < v∗ = 2
√

f ′(0)
will be unstable against the continuous spectrum of linear
perturbations with “energies” V (∞) < σ < 0.

For a front Φv with velocity v ≥ v∗ = 2
√

f ′(0), there
still might be a point spectrum of bound and square in-
tegrable states with σ < 0. Bound states have a finite
number of nodes, and there is a one-to-one correspon-
dence between the number of nodes and the eigenvalue
of the bound state “wavefunction” ψσ: the eigenfunction
with the lowest eigenvalue σ is nodeless (if it exists), the
eigenfunction corresponding to the next largest bound
state eigenvalue has one node, etc. Therefore, the point
spectrum is bounded from below by the “energy” σ of
the nodeless eigenfunction, if it exists. Now, one eigen-
function is known: the translation mode ψ̃0 clearly has
σ = 0. The translation mode can be generated by an
infinitesimal translation of Φv:

ψ̃0 = eλ0(v)ξ ∂ξΦv , Hvψ̃0 = 0 . (2.33)

If Φv is monotonic, ψ̃0 will be nodeless. If Φv is non-
monotonic, ψ̃0 will have nodes.

From this, one might be tempted to immediately
draw conclusions on the stability of monotonic or non-
monotonic front solutions. However, this is only possi-
ble, if ψ̃0 is in the Hilbert space! Comparison with (2.15)
shows, that this is the case, if either v = v∗ and α = 0,
or if v > v∗ and Av = 0, i.e., for one of the strongly
heteroclinic orbits.

If a front Φv obeys one of these conditions and if it
is monotonic, then ψ̃0 is the eigenfunction in the Hilbert
space with the lowest “energy” σ = 0. Therefore all other
eigenfunctions will have σ > 0 and will decay in time as
e−σt. An arbitrary linear perturbation in the Hilbert
space can be decomposed into the complete set of eigen-
functions, and therefore it will decay, too — where spe-
cial attention will have to be payed to the nondecaying
translation mode ψ̃0.

If such a front Φv is non-monotonic, it will have n ex-
trema, with n > 0 some integer. The translation mode
then has n nodes, and hence there are then n bound
eigenfunctions ψ̃σ with negative σ. The front profile
is then linearly unstable with respect to these modes.
Since any generic initial condition will have a nonvanish-
ing contribution from these destabilizing modes, a non-
monotonic Φv will generically not be approached for long
times. Such a Φv is called dynamically unstable.

The analysis of the spectrum and eigenfunctions of the
Schrödinger operator in the Hilbert space therefore yields
the following results:

1) A front Φv with velocity v < v∗ is intrinsically un-
stable against a continuous band of linear perturbations
from the Hilbert space. Such a front generically will not
be approached under the dynamics.

2) A front Φ∗ with velocity v = v∗ and α = 0 is un-
stable against perturbations from the Hilbert space, if
it is non-monotonic, and it is stable, if it is monotonic.
There is a continuous band of linear perturbations with
σ ≥ 0, that continuously extends down to σ = 0. Accord-
ingly, there is no gap in the excitation spectrum, which
already hints at the non-exponential convergence towards
a monotonic Φ∗.

3) A strongly heteroclinic orbit Φv with v > v∗ and
Av = 0, if it exists, is unstable against perturbations from
the Hilbert space, if it is non-monotonic, and it is stable,
if it is monotonic. If strongly heteroclinic orbits exist,
by construction (see Section II B), only the one with the
largest velocity v = v† is monotonic, and the front Φ∗
with velocity v = v∗ < v† is non-monotonic and thus
unstable. So only for Φ†, the spectrum of linear pertur-
bations is purely positive: σ ≥ 0. For Φ†, there is at best
a discrete spectrum of linear perturbations in the Hilbert
space in the range 0 < σ < V (∞) = (v†2 − v∗2)/4, and
the continuous spectrum begins at σ ≥ V (∞). Conver-
gence of all perturbations in the Hilbert space will thus
be exponential in time like e−σt, with σ the smallest pos-
itive eigenvalue.

Note the restrictions of this analysis:
(a) Up to now, we have no predictions for fronts with

velocity v ≥ v∗, whose translation mode ψ̃0 (2.33) is out-
side the Hilbert space. We will see, that the equivalence
of stability and monotonicity extends beyond the Hilbert
space analysis.

(b) The analysis of general initial conditions might re-
quire linear perturbations, that lie outside the Hilbert
space, even if ψ̃0 is in the Hilbert space.
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2. Linear perturbations outside the Hilbert space

The mapping to the Schrödinger problem is a power-
ful method for perturbations η about a front Φv, that lie
within the Hilbert space, because we then can work with
a complete set of orthogonal functions. However, this
space of perturbations needs to be completed by func-
tions from outside the Hilbert space.

To see this, consider for simplicity an initial condition,
that is close to some Φv with v ≥ v∗, but steeper than
this asymptotic front: limx→∞ φ(x, 0)/Φv(x) = 0. Then
the steepness in the leading edge of η = φ − Φv will be
dominated by Φv, and

ψ = η eλ0(v)ξ ξ→∞∼


αξ + β for v = v∗

e−µ(v)ξ for v = v† or generally
for v > v∗ and Av = 0

e µ(v)ξ for v > v∗ and Av 6= 0

(2.34)

with µ(v) =
√

v2/4− 1 > 0 from (2.15). Accordingly,
only for a pushed front propagating with velocity v = v†

(or more generally for a strongly heteroclinic orbit with
v > v∗ and Av = 0) or for a pulled front with veloc-
ity v∗ and α = 0, the linear perturbation η eλ0(v)ξ is in
the Hilbert space of Hv. The decay of the zero mode ψ̃0

(2.33) is asymptotically the same as that of ψ in (2.34).
So a treatment of linear perturbations outside the Hilbert
space is clearly called for.

A perturbation η, that we want to decompose, in gen-
eral obeys

lim
ξ→±∞

|η(ξ, t)| � 1 . (2.35)

This is required for the linearization of φ about Φv in
(2.24). We aim at a decomposition of η(ξ, t) into eigen-
functions ησ(ξ) e−σt. We therefore return to the eigen-
value equation for such an eigenmode, which according
to (2.24) and (2.25) is given by[

∂2
ξ + v∂ξ + f ′

(
Φv(ξ)

)
+ σ

]
ησ = 0 . (2.36)

Our previous analysis in the Hilbert space already has
identified many of these eigenmodes, in fact all those,
which obey (2.30). This criterium on ησ is too strict at
ξ → ∞, so we now need to additionally analyze pertur-
bations with e−λ0(v)ξ < |ησ(ξ)| < 1 as ξ → ∞, which
lie outside the Hilbert space. On the other hand, for
ξ → −∞, Eq. (2.30) is less restrictive than (2.35). This
gives us the freedom to impose only |ησ(ξ)| <∼ eλ0(v)|ξ| as
ξ → −∞, since such a divergence can be compensated for
by perturbations from inside the Hilbert space, where we
make use of its completeness. We therefore now impose
the boundary conditions

lim
ξ→∞

|ησ(ξ)| <∞ , lim
ξ→−∞

eλ0(v)ξ|ησ(ξ)| <∞ , (2.37)

where perturbations that additionally obey
e−λ0(v)ξ|ησ(ξ)| < ∞ as ξ → ∞, are in the Hilbert space
of Hv.

First of all, we note, that the translation mode η0(ξ) =
∂ξΦv(ξ) (2.33) now is always included in the larger space
(2.37) of perturbations.

Second, solve (2.36) for ξ →∞ and find in analogy to
(2.15), that

ησ(ξ) = Aσe−Λ−ξ + Bσe−Λ+ξ , (2.38)

with

Λ±(σ, v) =
v

2
±

√
v2

4
− f ′(0)− σ . (2.39)

For brevity of notation, we here allowed Λ±(σ, v) to
be complex. In Fig. 4 we plot Λ± versus σ, both for
the case of a front propagating into an unstable state
(f ′(0) > 0), and for the case of a front between a stable
and a metastable state (f ′(0) < 0), and for f ′(0) > 0,
we furthermore distinguish between v > v∗ and v = v∗.
The leading edge solution (2.38), of course, precisely co-
incides with the leading edge behavior of the Hilbert
space functions, except that one case was excluded from
the Hilbert space: A leading edge with Aσ 6= 0 and
σ ≤ V (∞) = v2/4 − f ′(0) does not obey the boundary
condition (2.30). It does obey the boundary condition
(2.35), if σ ≥ −f ′(0). Let us therefore now focus on the
additional perturbations with

−f ′(0) < σ ≤ V (∞) =
v2

4
− f ′(0) . (2.40)

If Aσ 6= 0, such perturbations are outside the Hilbert
space, but they do obey (2.37).

Are there such perturbations for a given σ, and how
many? For answering this question, we need to analyze
ησ globally, in close analogy to the global analysis of the
Φv as a function of v in Section II B. Solving (2.36) at
ξ → −∞ yields two exponents

Λ̃±(σ, v) =
v

2
±

√
v2

4
− f ′(1)− σ (2.41)

= λ0(v)±
√

V (−∞)− σ ,

in analogy with (2.13) and (2.14). Since V (−∞) > V (∞)
(2.32), for σ ≤ V (∞) we certainly have V (−∞)− σ > 0.
The coefficient of e−Λ̃+(σ,v)ξ therefore needs to vanish for
ησ to obey (2.37). Behind the front for ξ → −∞, we
therefore find that

ησ(ξ) = ±e−Λ̃−(ξ−ξ0) + o
(
e−2Λ̃−ξ

)
, (2.42)

for an ησ obeying (2.37) and (2.40). Eq. (2.42) deter-
mines ησ uniquely, because the arbitrary constant coeffi-
cient ±eΛ̃−ξ0 can be scaled out of a linear equation like
(2.36). Such a linear equation can always be integrated
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towards ξ → ∞, where it uniquely determines the co-
efficients Aσ and Bσ in (2.38). Accordingly, Aσ and Bσ

generically are non-vanishing, in complete analogy to the
argument for Av and Bv in (2.15) to be generically non-
vanishing in Φv.

What do we gain with these extra solutions? The
eigenfunctions in the Hilbert space had a continuous
spectrum for σ ≥ V (∞) = (v2 − v∗2)/4 ≥ 0 and at best
a discrete spectrum defined by Aσ = 0 for σ < V (∞).
Adding the solutions, that obey (2.37), we extend the
continuous spectrum down to σ ≥ −f ′(0) = V (∞) −
v2/4 < 0 and find at best a discrete spectrum defined
by Aσ = 0 for σ < −f ′(0). These discrete solutions for
σ < −f ′(0) all lie in the Hilbert space.

Let us now look at the steepness in the leading edge
of the solutions outside the Hilbert space. They have a
σ from the interval (2.40), and Aσ 6= 0. For these we
observe (cf. Fig. 4) that

Λ−(σ, v) > λ−(v) for σ > 0 (decaying) ,

Λ−(σ, v) < λ−(v) for σ < 0 (destabilizing) , (2.43)
Λ−(0, v) = λ−(v) for σ = 0 (marginal) ,

with λ−(v) from (2.14). This means, that these linear
eigenmodes ησ of Φv will decay (σ > 0), if they are
steeper than e−λ−(v) ξ, and that they will destabilize a
front Φv, if they are flatter. Note that the spectrum of
decaying modes is continuous down to zero, as σ ↓ 0 as
Λ− ↓ λ−.

It is tempting to conclude here immediately, that a
front Φv(ξ) with velocity v ≥ v∗ will be stable against
all perturbations, which are steeper in the leading edge
than e−λ−(v)ξ. However, the possible existence of the
discrete set of solutions with Aσ = 0 and σ < 0 requires
special attention, since these perturbations are steeper
than e−λ0(v)ξ, but destabilizing (σ < 0). Now, if Φv is
strongly heteroclinic (Av = 0), we already found in Sec-
tion II C 1, that such destabilizing perturbations exist, if
and only if Φv is non-monotonic. We now need to show
that this argument also holds for fronts Φv with v > v∗

and Av 6= 0 or for fronts Φ∗ with velocity v∗ and α 6= 0.
The following five steps (i)–(v) prove this: (i) Impose
(2.42) at ξ → −∞. This defines a unique solution of
equation (2.36) for ησ for every σ < V (−∞). In fact, we
only need to analyze σ < V (∞), since we know the spec-
trum for larger σ. (ii) Integrate (2.36) forward towards
ξ → ∞ for a very large negative σ. The variation of
f ′(Φv(ξ)) in space then can be almost neglected. There-
fore at ξ → ∞, we will find (2.38) with |Aσ/Bσ| � 1.
For our further construction it is crucial to observe, that

such a perturbation for sufficiently large negative σ will
be nodeless. It does not matter, on the other hand, that
this solution typically will not obey our bound (2.37),
since we only use it as a means for constructing the solu-
tions with Aσ = 0, which will not only obey (2.37), but
even lie inside the Hilbert space. (iii) Upon increasing
σ continuously, at discrete values of σ < V (∞), ησ will
gain an extra node. Since the generation of every new
node is associated with a change of sign of the perturba-
tion at ξ →∞, if the sign at ξ → −∞ is kept fixed, the
appearance of an additional mode can only occur at a σ,
where the sign of Aσ changes. (iv) We know the number
of nodes of the zero mode η0. It is identical to the num-
ber of extrema of Φv. We therefore know the number of
particular perturbations with Aσ = 0 and σ < 0. (v)
From this it follows that if Φv is monotonic, there are no
particular perturbations with Aσ = 0 and σ < 0. If Φv

is non-monotonic, there are such perturbations.
Summarizing the Schrödinger analysis and the present

results, we can conclude immediately:
1) Non-monotonic fronts are intrinsically unstable, and

generically will not be approached by any initial condi-
tions.

2) Monotonic fronts propagating with velocity v are
stable against perturbations steeper than e−λ−(v)ξ. The
role of the zero mode η0 will require special attention.

As to the formal derivation of these results let us re-
mark:

(i) In Section II B, we have counted the multiplicity
of front solutions Φv as a function of v. Here we have
counted the multiplicity of perturbations ησ of a front
Φv as a function of σ. This counting was based on the
proper asymptotics of the solutions at ξ → ±∞, which is
of the same structure for both Φv and ησ, so the counting
argument follows exactly the same lines in both cases.

(ii) Although the particle-on-a-hill analogy for Φv or
the mapping onto the Schrödinger equation for ησ are
insightful and very efficient ways to arrive at our results
for existence and stability of uniformly translating front
solutions, the analysis by no means relies on these. In
fact, much of the phase space analysis can easily be gen-
eralized to higher order equations as, e.g., Eq. (1.3) —
see Section V.

(iii) In the stability analysis of non-monotonic fronts,
the discrete set of solutions with Av = 0 or Aσ = 0
plays a particular role. For equations like (1.3) – (1.8),
monotonicity ceases to be a criterium, but conditions like
Av = 0 defining so-called strongly heteroclinic solutions
continue to play a central role in the stability analysis,
as is discussed in Appendix F to Sect. V.
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FIG. 4. Steepness Λ(σ, v) (2.39) versus decay rate σ of linear perturbations ησ (2.36), (2.37) of a given front Φv with velocity
v ≥ v∗. The solid curve denotes real Λ, the dotted curve the real part of complex Λ. λ±(v) and λ∗ are the steepnesses of Φv and
of the zero mode η0 = ∂ξΦv . They are marked by circles on the Λ axis. The generic steepness of a front Φv with v > v∗ is λ−(v),
while in the particular case of Av = 0, it is λ+(v). The continuous spectrum of σ is denoted by a fat solid line on the σ-axis, the
interval in which there may be discrete eigenvalues σ by the fat dotted line. The continuous spectrum within the Hilbert space
of Hv exists only at v2/4 − f ′(0) ≤ σ. The continuous spectrum for −f ′(0) < σ < v2/4 − f ′(0) is on the Λ−-branch. There
might be discrete solutions characterized by Aσ = 0. They lie on the Λ+-branch, might exist for all σ < v2/4− f ′(0), and need
to be constructed. a) The front Φv propagates into a metastable state (f ′(0) < 0). Its steepness is λ+(v). It is stable against all
linear perturbations with Λ < λ+(v). The discrete spectrum of steep perturbations with Λ > λ+(v) needs to be investigated.
b) The front propagates into an unstable state (f ′(0) > 0) with velocity v > v∗. It is stable against all linear perturbations with
λ−(v) < Λ < λ+(v), it is unstable against the continuous spectrum of very flat perturbations with 0 < Λ < λ−(v), which might
be excluded by the initial conditions. The discrete spectrum of steep perturbations with Λ > λ+(v) needs to be investigated.
c) The front propagates into an unstable state (f ′(0) > 0) with velocity v = v∗. The discussion is as for (b) after identifying
λ±(v∗) = λ∗.

D. Consequences of the stability analysis for
selection and rate of convergence

Suppose now, that we insert an initial condition φ(x, 0)
into the nonlinear diffusion equation (2.1) with a given
nonlinearity f(φ), and then study the ensuing dynamics.
In this Section, we address the question what the linear
stability analysis tells us about the asymptotic (t→∞)
state and the rate of convergence. To answer this ques-
tion, we will need to complement the picture we devel-
oped so far — even after extending the analysis of linear
perturbations beyond the Hilbert space — with a sepa-
rate analysis of the leading edge dynamics. We will do
this in Section II E, but here already anticipate one re-
sult from this Section, namely: If initially at t = 0 the
steepness λ defined in (2.6) is nonzero (finite or infinite),
then at any finite time t <∞ the steepness is conserved:

φ(x, 0) x→∞∼ e−λx =⇒ φ(x, t) x→∞∼ e−λx for all t <∞ .

(2.44)

Note that the limits x→∞ and t→∞ do not commute.
We characterize the initial condition by its steepness λinit

defined by

φ(x, t = 0) x→∞∼ e−λinitx . (2.45)

As a consequence of (2.44), we can use λinit to character-
ize not only the initial conditions but also the profile at
any later time 0 ≤ t <∞, when the front velocity might
be already close to its asymptotic value.

We now study the temporal development of some ini-
tial condition φ(x, 0) under the nonlinear diffusion equa-
tion with some nonlinearity f(φ). Anticipating that

φ(x, t) approaches a uniformly translating front solution
Φv(ξ) for t → ∞, we may wish to consider φ(x, t) as
some asymptotic front profile Φv plus some decaying lin-
ear perturbation. If the initial condition has steepness
λinit, and we linearize it about an asymptotic front with
steepness λasympt, the resulting perturbation η(x, t) =
φ(x, t)−Φv(x−vt) will in view of (2.44) then have steep-
ness

λη = min [λinit, λasympt] . (2.46)

Let us now explore what the stability analysis implies for
the decay rate of the perturbation.

1. Pushed regime: vc = v†

We first consider equations with the nonlinearity f(φ)
such, that the slowest stable front is a strongly hetero-
clinic orbit in phase space with Av† = 0 in (2.15). We
have denoted this asymptotic front with Φ† and its ve-
locity with v†. Its steepness is λ+(v†) = λ0(v†) + µ(v†),
cf. (2.21). There is a continuous family of stable front so-
lutions Φv with velocity v > v† which are all flatter than
λ−(v†) = λ0(v†) − µ(v†). Their steepness λ = λ−(v†) is
related to their velocity v through

v(λ) = λ +
1
λ

, (2.47)

as can be obtained by inverting (2.16).
CASE I: Consider an initial condition with steepness

λinit > λ0(v†). We let φ evolve some time, and then
linearize it about Φ†. According to (2.46), the perturba-
tion η will have steepness λη > λ0(v†). It then is in the
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Hilbert space analyzed in Section II C 1. We can decom-
pose the perturbation into the known eigenperturbations.
The spectrum of decay rates has no negative eigenvalues,
one eigenvalue zero and then a gap above zero. A con-
tribution from the zero mode can be made vanishing by
adjusting the position of the subtracted asymptotic front
Φv, by making use of the translational freedom of Φv.
The perturbation then can be decomposed into Hilbert
space functions ησ with σ all positive and bounded away
from zero. Thus, for large times, the perturbation will
decay exponentially. This means, that an initial condi-
tion with λinit > λ0(v†) will converge to Φ† exponentially
in time, generically with e−σ1t, where σ1 is the smallest
positive eigenvalue.

CASE II: If the initial steepness is λ−(v†) < λinit ≤
λ0(v†), the perturbation of φ about Φ† will not be in the
Hilbert space. However, we do know from the results il-
lustrated in Fig. 4 that there is an eigenmode ησ of the
linear stability operator of Φ† with the proper steepness
λinit = λη, that will decay exponentially in time, see
Section II C 2. The remaining linear perturbation η − ησ

might lie in the Hilbert space, in which case we are back
to Case I. If it does not, we have to identify the sublead-
ing λ, its corresponding eigenmode ησ etc. The iteration
of this construction leads us to conclude, that the per-
turbation indeed will decay exponentially in time. (Ex-
amples of exponential convergence towards pushed fronts
which is dominated by such modes can be found in Fig.
19 of [65].) Another way of putting the argument is, that
only perturbations with λ < λ−(v†) can grow in time,
but these cannot be involved in the decomposition of a
perturbation with λη > λ−(v†). A more elegant way of
analyzing this case and the following ones will be dis-
cussed in Section II E.

CASE III: If the initial steepness is λinit < λ−(v†),
and we linearize φ about Φ†, there is a perturbation
ησ with steepness λη = λinit, that is growing in time
(σ < 0). So such an initial condition cannot approach
Φ† or any other asymptotic front Φv with steepness
λasympt > λinit. If we linearize φ about the asymptotic
front Φv with the same steepness λinit = λasympt, the
remaining perturbation will be steeper, so contributions
from the zero mode are excluded by construction, and the
perturbation can be decomposed into eigenperturbations
of Φv, which all decay in time.

Let us summarize so far: All initial conditions with
λinit > λ−(v†) converge exponentially in time to the
“selected” front with velocity vsel = v† and steepness
λsel = λ+(v†). Initial conditions with λinit < λ−(v†)
will converge to a quicker asymptotic front with steepness
λasympt = λinit and velocity v(λinit) given by (2.47).

In Section II A, we have termed an initial condition
sufficiently steep (λinit > λsteep), if it approached the
“selected” front for large times. We have denoted the
steepness of the selected front with λsel. In the pushed
regime, one can thus identify these parameters with

λsteep = λ−(v†) =
v†

2
− µ(v†) , (2.48)

λsel = λ+(v†) =
v†

2
+ µ(v†) , µ(v†) =

√
v† 2 − 4

4
,

vsel = v† .

2. Fronts into metastable states

The only difference between a pushed front propagat-
ing into an unstable state, i.e., with a nonlinearity f such
that f ′(0) > 0 and vc = v† > v∗, and a front propagating
into a metastable state, i.e., with f ′(0) < 0, is the sign
of λ−(v): For a front into a metastable state, we have

µ(v) =

√
v2 − 4f ′(0)

4
>

v

2
for f ′(0) < 0 , (2.49)

so λ−(v) < 0 and λ+(v) > 0 for all v > 0 (the sign of
λ0(v) is the same as the sign of v). Suppose, that the
selected front still travels with positive speed vsel = v†

(otherwise reverse x). Because now λ−(v) < 0,

λsteep = 0 , (2.50)

so all initial conditions are sufficiently steep and converge
to Φ†. The continuous spectrum of asymptotic solutions
Φv with λasympt < λsteep ceases to exist, and the asymp-
totic front Φ† therefore now is unique.

For the convergence of an initial condition φ towards
Φ† we still need to distinguish, whether λinit is larger
or smaller than λ0(v†) = v†/2. If λinit > λ0(v†), the
perturbation about Φ† lies in the Hilbert space, while for
λinit < λ0(v†), it does not. This corresponds to the Cases
I and II for vc = v† above, which apply literally, because
the spectrum of eigenperturbations of Φ† is continuous
and because the steepness of these modes extends down
to λ = 0 — see Fig. 4. In both cases, the initial condi-
tions converge to Φ† exponentially in time. Case III does
not occur for fronts into metastable states.

3. Pulled regime: vc = v∗

At the transition from fronts propagating into
metastable towards fronts into unstable states, f ′(0)
changes sign, and so does λ−(v). At this point a contin-
uum of possible attractors Φv of the dynamics comes into
existence, but the convergence behavior of sufficiently
steep initial conditions is completely unchanged. In other
words: Cases I and II are completely unchanged, and
only Case III needs to be considered additionally for ini-
tial conditions with λinit < λsteep.

A qualitative change in the convergence behavior of
sufficiently steep initial conditions λinit > λsteep only
takes place at the transition from the pushed to the
pulled regime. This happens for f changing such that
v† approaches v∗. Then
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λsteep = λ0(v∗) = λsel . (2.51)

This transition leaves the multiplicity of possible attrac-
tors unchanged, but the resulting changes in the spec-
trum have deep consequences for the convergence behav-
ior of sufficiently steep initial conditions.

We now need to distinguish but two Cases for the ini-
tial condition, namely λ ≥ λ∗ and λ < λ∗, where we use
the short hand notation λ∗ = λ0(v∗) = λ±(v∗) = v∗/2.

For flat initial conditions λinit < λ∗, the arguments
from Case III above apply literally. Such an initial condi-
tion will approach a front Φv with velocity v(λinit) > v∗

given by (2.47) and with steepness λasympt = λinit. Suf-
ficiently steep initial conditions, however exhibit a new
behavior:

CASE IV: Consider a sufficiently steep initial con-
dition with λ > λ∗. As before, we linearize the profile
φ(x, t) after a sufficient evolution time about the selected
front Φ∗. The corresponding perturbation η = φ − Φ∗
then decays like Φ∗ (2.19), because the steepness of
φ(x, t) remains larger than that of Φ∗ at any finite time
t, cf. Eq. (2.46). As a result, η is just outside the Hilbert
space in the generic case of α 6= 0 (2.15), just like the
zero mode (2.33). The Hilbert space has a continuous
spectrum for all decay rates σ > 0, and there are no
growing perturbations with σ < 0. The perturbation η
can be written as a multiple of the zero mode η0 plus a
remainder inside the Hilbert space. From this we might
be tempted to argue, that the perturbation will decay,
and that we only can not tell how quickly — probably
non-exponential, because the spectrum is gapless. How-
ever, in contrast to Cases I – III, there is no way to get
rid of the zero mode, because no matter at which position
ξ0 one places the subtracted Φ∗(ξ − ξ0), Φ∗ will always
dominate the large ξ behavior, and therefore the coeffi-
cient of the zero mode in the decomposition of the per-
turbation will always be non-vanishing. A convergence
argument based on simply neglecting the contribution
from the zero mode is bound to be wrong: In the very
same way we could argue, that a steep initial condition
converges to Φv with just any v ≥ v∗. Strictly speak-
ing, the linear stability analysis does not even allow us
to conclude, that sufficiently steep initial conditions ap-
proach Φ∗ at all. We only can reason, that there is no
steeper attractor than Φ∗, and that one therefore expects
that the pulled front solution Φ∗ is selected from steep
initial conditions. The different analytical tools that we
will develop in Section II E to analyze the convergence
behavior, will confirm this.

E. The dynamics of the leading edge of a front

In this Section, we reconsider the dynamics in the lead-
ing edge in more detail, first to demonstrate the conser-
vation of steepness expressed by (2.44), second to clarify
the dynamics that ensues from flat initial conditions, and
third to lay the basis for the quantitative analysis of Case
IV in Section III.

1. Equation linearized about φ = 0

When we analyze the leading edge region of the front,
where |φ| � 1, we to lowest order can neglect o(φ2) in
(2.9) and analyze

∂tφ = ∂2
xφ + φ . (2.52)

We first explore the predictions of this equation, before
exploring the corrections due to the nonlinearity f in
Section II E 2.

(2.52) is a linear equation, so the superposition of so-
lutions again is a solution. A generic solution is, e.g., an
exponential e−λx. It will conserve shape and propagate
with velocity v(λ) = λ + 1/λ (2.47):

φ(x, t) ∼ e−λ [x−v(λ)t] . (2.53)

The minimum of v(λ) is given by v∗ = v(λ∗ = 1) = 2.
Consider now a superposition of two exponentials

c1 e−λ1x + c2 e−λ2x. Without loss of generality,
we can assume that the maximum velocity vmax =
max[v(λ1), v(λ2)] = v(λ1). In the coordinate system
ξ1 = x− v(λ1)t the temporal evolution then becomes

φ(x, t) = c1 e−λ1ξ1 + c2 e−λ2ξ1 e−σt , (2.54)

σ = λ2

(
v(λ1)− v(λ2)

)
> 0 . (2.55)

Clearly, the contribution of λ2 decays on the time scale
1/σ, and so for large times� 1/σ, the velocity of a point
where φ = const. > 0 will approach v(λ1) and the pro-
file will converge to e−λ1ξ1 (see [78] for a similar type of
analysis). The steepness of the leading edge at ξ → ∞,
on the other hand, will be given by λmin = min[λ1, λ2]
for all times t <∞.

This simple example already backs up much of our dis-
cussion of Cases II and III in Section II D:
1) The limits ξ →∞ and t→∞ do not commute.
2) The steepness λ = mini[λi] is a conserved quantity at
x→∞ and t <∞.
3) The velocity of a constant amplitude φ = const. > 0
will be governed by the quickest mode present v =
maxi[v(λi)] at large times t� 1.

Let us now analyze initial conditions steeper than any
exponential. Quite generally, an initial condition φ(x, 0)
evolves under (2.52) as4

4Eliminate the linear growth term by the transformation φ = etφ̄, solve the diffusion equation ∂tφ̄ = ∂2
xφ̄, and transform back.
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φ(x, t) =
∫ ∞
−∞

dy φ(y, 0)
e−

[
(x−y)2−4t2

]
/(4t)

√
4π t

. (2.56)

Assume for simplicity, that the initial condition φ(y, 0)
is strongly peaked about y = 0, so that for large times,
we can neglect the spatial extent of the region where
φ(y, 0) 6= 0 initially. Upon introducing the coordinate
ξ = x ∓ 2t moving either to the left or to the right, we
get

φ(x, t) ∝ e∓ξ−ξ2/(4t)

√
t

for t� 1 . (2.57)

This general expression leads to three important obser-
vations:
1) The steepness of the leading edge characterized by
λ = ∞ at ξ →∞ indeed is conserved for all finite times
t <∞.
2) At finite amplitudes φ = const. > 0 and large times
t, the steepness of the front propagating towards ξ →∞
approaches λ∗ = 1 and the velocity approaches v∗ = 2.
3) Eq. (2.57) furthermore implies, that a steep initial con-
dition like φ(y, 0) approaches the asymptotic velocity v∗

as

v(t)lin = v∗ + ξ̇h = 2− 1
2t

+ O

(
1

t3/2

)
, (2.58)

where we defined the position ξh(t) of the amplitude h in
the comoving frame ξ = x− 2t as φ(ξh(t), t) = h.

This algebraic convergence is consistent with the gap-
less spectrum of linear perturbations, and as such it iden-
tifies the missing part in the discussion of Case IV in
Section II D. However, Bramson’s work [77] shows, that
the qualitative prediction of convergence as 1/t is right,
but the coefficient of 1/t is wrong. In fact, the mathe-
matical literature [52] has established (2.58) as an upper
bound for the velocity of a pulled front in a nonlinear dif-
fusion equation. The algebraic convergence clearly comes
from the 1/

√
t prefactor characteristic of the fundamental

Gaussian solution of the diffusion equation — this qual-
itative mechanism will be found to be right in Section
III.

We finish our discussion of solutions of the linearized
equation (2.52) with another example, that we find illus-
trative. After the discussion of the solution (2.53) one
might be worried about initial conditions with λ � 1.
Such an initial condition is steep according to our def-
inition, so it should approach the velocity v∗. But ac-
cording to (2.53), it approaches the larger velocity v(λ).
However, even in the framework of the linearized equa-
tion, this paradox can be resolved: An initial condition
e−λx on the whole real axis is, of course, unphysical, and
we in fact only want this behavior at x � 1, where φ
is small. Let us therefore truncate the exponential for
small x by writing, e.g., φ(x, 0) = θ(x) e−λx, with θ the
step function. Insertion into (2.56) yields the evolution

φ(x, t) = e−λ[x−v(λ)t]
1 + erf x−2λt√

4t

2
, (2.59)

where erf x = 2π−1/2
∫ x

0 dt e−t2 is the errorfunction. For
t� 1, the crossover region where x ≈ 2λt separates two
different asymptotic types of behavior:

φ(x, t) ≈
{

e−λ[x−v(λ)t] for x� 2λt
e−(x−2t)−(x−2t)2 /4t
√

4πt λ(1−x/(2λt))
for x� 2λt

(2.60)

In the region of x � 2λt, we find our previous solution
(2.53) with conserved leading edge steepness and veloc-
ity v(λ), while in the region of x � 2λt, we essentially
recover (2.57), with ξ = x− 2t.

Considering the three different velocities — v(λ) for
the leading edge region, v∗ = 2 for the “Gaussian” re-
gion behind, and 2λ for the crossover region between the
two asymptotes — the distinction between flat and steep
initial conditions now comes about quite naturally:
a) For flat initial conditions, we have λ < 1, and an or-
dening of velocities as 2λ < v∗ < v(λ). The crossover
region then moves slower than both asymptotic regions,
so for large times the region of finite φ will be dominated
by e−λ[x−v(λ)t].
b) For steep initial conditions, we have λ > 1, and the
velocities order as v∗ < v(λ) < 2λ. The crossover region
then will move quicker than both asymptotic regions, and
the region of finite φ will be dominated by e−ξ−ξ2/4t/

√
t,

where ξ = x− 2t.
We finally note that the above results can also be rein-

terpreted in terms of the intuitive picture advocated in
[63,65]: The group velocity vgr(λ) = dv(λ)/dλ of a near
exponential profile in the leading edge is, according to
(2.47), negative for λ < 1 and positive for λ > 1. In this
way of thinking, the region with steepness λ in the case
considered above expands when λ < 1 since the crossover
region moves back in the comoving frame [case (a)], and
it moves out of sight towards ξ →∞ for λ > 1 [case (b)],
since the crossover region moves faster than the local co-
moving frame.

2. Leading edge representation of the full equation

Just as the linear stability analysis of the front was
insufficient to cover the full dynamical behavior of the
nonlinear diffusion equation (2.1), and in particular the
dynamics of the leading edge, so is the linearized equa-
tion (2.52). In Section III we will see, that only through
joining these complementary approaches, we can gain a
quantitative understanding of the convergence of steep
initial conditions towards a pulled front Φ∗, the Case IV.

The shortcomings of the linearized equation (2.52) be-
come quite clear by confronting it with what we will call
the leading edge representation of the full equation (2.1):

∂tψ = ∂2
ξψ + f̄(ψ, ξ) , (2.61)
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where we transformed with

ψ = φ eλ∗ξ , ξ = x− v∗t . (2.62)

The parameters are λ∗ = v∗/2 =
√

f ′(0). This transfor-
mation eliminates the terms of order ψ and ∂ξψ from the
linear part of the equation. The nonlinearity is

f̄(ψ, ξ) = eλ∗ξ
(
f

(
ψ e−λ∗ξ

)
− f(0)− f ′(0) ψ e−λ∗ξ

)
= O

(
ψ2 e−λ∗ξ

)
. (2.63)

This transformation is quite comparable to the transfor-
mation of a linear perturbation η into the Schrödinger
picture as in (2.25), (2.26). However, we here transform
the full nonlinear equation, and not only the linearization
about some asymptotic solution.

For, e.g., f(φ) = φ−φ3 we have f̄ = −ψ3 e−2ξ. When
we neglect f̄ in (2.61), the equation is equivalent to the
linearization about φ = 0 (2.52). The linearization is cor-
rect for ξ � 1, but the presence of the crossover towards
a different behavior for smaller ξ has important conse-
quences for the solutions of the full nonlinear diffusion
equation.

Let us illustrate this on the fact, that for the lead-
ing edge of a pulled front Φ∗ ∼ (αξ + β) e−ξ (2.15), we
generically find α 6= 0 and accordingly the leading edge
behavior (2.19). This leading edge behavior will play a
central role in Section III. In Section II B we derived
α 6= 0 from the uniqueness of the trajectory in phase
space, i.e., from the construction of the whole front from
φ = 0 up to φ = 1. We now will give a different argument
for α 6= 0 from the analysis of (2.61), that does not rely
on constructing the whole solution up to φ = 1.

The front Φ∗ propagates uniformly with velocity v∗ =
2, so in the frame ξ = x− 2t it is stationary. Ψ∗ = Φ∗eξ

then solves

∂2
ξΨ∗ + f̄(Ψ∗, ξ) = 0 . (2.64)

The boundary conditions (2.12) for Φ∗ become for Ψ∗:

Ψ∗(ξ) ∼
{

αξ + β for ξ →∞
0 for ξ → −∞ (2.65)

The solution Ψ∗ = αξ + β for ξ → ∞ can directly be
derived from (2.64) and the condition, that Φ∗ vanishes
at ξ →∞. Now integrate (2.64) over the real ξ axis, and
find

α = −
∫ ∞
−∞

dξ f̄ (Ψ∗, ξ) . (2.66)

The integral on the right hand side is well-defined, since f̄
vanishes exponentially, both for ξ → −∞ and for ξ →∞.
Clearly, a nonlinearity f̄ 6= 0 generically implies α 6= 0
and hence the leading edge behavior (2.19) for a pulled
Φ∗ front. Only for particular nonlinearities f , we occa-
sionally find α = 0 (see (3.67) and Appendix C). Having
α = 0 is obviously only possible if f̄ has terms of op-
posite sign, so that its spatial average vanishes. For the

nonlinearity of form f = φ − φk with k > 1 (1.2), we
find α 6= 0 always, and in this case the term f̄ acts like a
localized sink term in the diffusion equation (2.64) for ψ.
This interpretation is especially useful for the discussion
of the non-uniformly translating fronts [74,76].

F. Summary of selection and relaxation mechanism;
“Marginal stability”; interior and edge dominated

dynamics

With the analysis and discussion in this Section, we
have attempted to bring out the connection between the
stability properties of the uniformly translating solutions
and the selection mechanism. In addition, we emphasized
the role that the conservation of steepness plays in this.
The main results from our discussion are summarized in
Table III.

Our analysis confirms the idea that the selected front
— the one which emerges under the dynamics starting
from sufficiently steep initial conditions — is the steep-
est front which is not unstable. When the front solutions
Φv are viewed as a function of the steepness λ, (2.6) there
is always a change in stability at the selected front (v†
in the pushed regime, v∗ in the pulled regime) so the
selected front is also marginally stable. This is the rea-
son that the selection mechanism was refered to as the
marginal stability selection mechanism in [61,63,65].

With our present discussion we have put more empha-
sis than in earlier formulations on the central role of the
steepness and its conservation, and we have been much
more precise and detailed about the stability properties
of the front solutions. This discussion also leads us to dis-
tinguish between interior dominated dynamics and lead-
ing edge dominated dynamics: The relaxation of pushed
fronts is typically dominated by modes with such a large
weight in the interior front region that they are localized
in the front interior region in the leading edge represen-
tation ψ. The relaxation of pulled fronts, on the other
hand, is dominated by the dynamics in the leading edge
— the relevant stability modes are extended in the lead-
ing edge representation. Note that the dynamics associ-
ated with fronts emerging from “flat” initial conditions is
always leading edge dominated, but we reserve the terms
pushed and pulled for the front selection associated with
steep initial conditions, as the selected front speeds v†

and v∗ are defined intrinsically by the partial differential
equation under study.

The “marginal stability” viewpoint also has an impor-
tant shortcoming, however. In line with the fact that the
rate of convergence to the pulled velocity is difficult to
understand in terms of the linear stability spectrum, it
does not give much insight into the dynamics that actu-
ally leads to the selection of v∗. The leading edge domi-
nated dynamics that underlies the pulling mechanism is
actually much better understood by the analysis of Sec-
tion III, which builds rather on exploiting the leading
edge representation than on stability considerations of
the asymptotic profile.
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NONLINEARITY f(φ)

INITIAL CONDITION
φ(x, 0) ∼ e−λinitx metastable (f ′(0) < 0): unstable (f ′(0) > 0), unstable (f ′(0) > 0),

as x→∞ pushed regime: pulled regime:
vsel = v† > 0 vsel = v† > v∗ vsel = v∗

v∗ = 2
√

f ′(0) > 0 v∗ = 2
√

f ′(0) > 0

Case I: Case I: Case IV:
steep: pushed dynamics, pushed dynamics, pulled dynamics,

λinit > λ0(vsel) λ −→ λ+(v†) λ −→ λ+(v†) λ −→ λ∗

(including λ =∞) v(t) = v† + O(e−σt) v(t) = v† + O(e−σt) v(t) = v∗ + O(1/t)

Case II: Case II:
steep: pushed dynamics, pushed dynamics, not applicable, since

λ−(vsel) < λinit < λ0(vsel) λ −→ λ+(v†) λ −→ λ+(v†) λ±(v∗) = λ0(v∗) = λ∗

v −→ v† v −→ v†

generically: generically:
v(t) = v† + O(e−σt) v(t) = v† + O(e−σt)

Case III: Case III:
leading edge leading edge

flat: not applicable, since dominated dynamics, dominated dynamics,
0 < λinit < λ−(vsel) λ−(v†) < 0 λ −→ λ < λ−(v†) λ −→ λ < λ∗

v −→ v(λ) > v† v −→ v(λ) > v∗

generically: generically:
v(t) = v(λ) + O(e−σt) v(t) = v(λ) + O(e−σt)

Table III: Table of initial conditions and nonlinearities, resulting in relaxation cases I – IV from Section
II D. Fronts at all times t are characterized by their steepness λ (2.6) in the leading edge, and an arrow
−→ indicates the evaluation of the quantity for t→∞. The nonlinearity only enters through the existence
of a strongly heteroclinic orbit Φv(x− vt) with vsel = v† > v∗ (see Section II B) or its non-existence (then
vsel = v∗). vsel determines λ±,0(vsel) as in (2.16), which in turn classifies the initial conditions. Pushed or
pulled dynamics are special cases of interior or leading edge dominated dynamics for steep initial conditions.
Cases I – III are treated in Section II with stability analysis methods and generically show exponential
relaxation. Case IV is not amenable to stability analysis methods. It shows algebraic relaxation and is
treated from Section III on.
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III. UNIVERSAL PULLED CONVERGENCE OF
STEEP INITIAL CONDITIONS IN THE
NONLINEAR DIFFUSION EQUATION

In the previous Section, we successfully analyzed the
basins of attraction of the asymptotic fronts in the space
of initial conditions, and we calculated the rate of conver-
gence of the initial conditions towards the attractors in
Cases I, II, and III. For Case IV of sufficiently steep initial
conditions (φ(x, t = 0) < e−λ∗x as x →∞) evolving un-
der an equation of motion with an f such that vc = v∗, we
have seen, however, that neither the linear stability anal-
ysis nor the leading edge representation alone are able
to give us the convergence rate of such pulled fronts. In
fact, Section II does not even contain a precise argument,
that such an initial condition does converge towards the
solution Φ∗ = φ(x− v∗t) with asymptotic velocity v∗ at
all.

In the present Section, we will combine our under-
standing of the dynamics of the leading edge and of the
interior of a front into one consistent analytical frame,
that allows us to deal with Case IV of steep initial con-
ditions converging to a pulled front. The different dy-
namical regions of such a front are sketched in Fig. 2.
We match an expansion in the interior, that resembles
features of the linear stability analysis, to an expansion
of the leading edge. Both expansions are asymptotic ex-
pansions in 1/

√
t. This approach not only shows the

convergence of steep initial conditions towards a pulled
front with velocity v∗, but it even allows us to derive
the ensuing power law convergence towards Φ∗. This
convergence is universal in leading and subleading order,
and we calculate all universal convergence terms analyt-
ically. For clarity, we present the detailed calculation for
the nonlinear diffusion equation in this Section first, and
then discuss the generalization — the result of which was
summarized in Section I C — in Section V.

A. Observations which motivate our approach

1. Asymptotic steepness of leading edge determines rate of
convergence

Our calculation of the spreading of the leading edge
under the linearized equation in Section II E gave qual-
itatively the right results, but failed to reproduce the
quantitative results for the nonlinear equation: Insert-
ing sufficiently steep initial conditions (2.7) into the lin-
earized equation (2.9), we found that the asymptotic
shape (2.57) approaches e−ξ times a Gaussian for t→∞
and ξ � 1 and that this implies for the asymptotic con-
vergence that v(t)lin = 2 − 1/(2t) + . . . (2.58). For the
nonlinear equation, we know, that the asymptotic front
profile Φ∗ behaves as Φ∗ ∼ ξ e−ξ for ξ � 1 (2.19) and
Bramson has derived with probabilistic methods, that
v(t) = 2−3/(2t)+ . . . independent of the height at which

the velocity is measured [77]. Thus the actual front is
slightly flatter for t→∞, and convergence is slower than
in the linearized equation. We will argue below, that the
shape Φ∗ in the leading edge and the quantitative rate
of convergence are intimately related. It is intuitively
quite reasonable, that a leading edge pulling the interior
part of the front along has a flatter shape Φ∗ which, of
course, needs to be consistent with its o.d.e. (2.11), so it
has α 6= 0 in (2.15). In fact, this idea can be made math-
ematically sound at least for nonlinearities, which obey
(2.10), as we showed in Section II E. This argument can
be generalized to higher order equations [74,75].

How the exact result of Bramson [77] comes out
naturally and generally, is brought out quite clearly
by rephrasing an argument of [65] as follows (see also
[72,85]).

Let us work in the leading edge representation (2.61),
(2.62), and let us from here on use the co-moving vari-
able ξ specifically for the frame moving with the pulled
velocity v∗ = 2,

ξ = x− v∗t = x− 2t . (3.1)

The fundamental similarity solution of (2.61) in the re-
gion, where the nonlinearity can be neglected, is, of
course, the Gaussian

ψ0(ξ, t) =
e−ξ2/(4t)

√
4πt

. (3.2)

It reproduces our solution (2.57) for φ. But also any
derivative of the Gaussian ψn = ∂n

ξ ψ0 solves (2.61) for
ξ � 1. The ψn/ψ0 are simply Hermite polynomials
[102,103]. In particular, the dipole solution

ψ1(ξ, t) = ∂ξψ0 ∝
ξ e−ξ2/(4t)

t3/2
(3.3)

also solves the diffusion equation (2.61) for ξ � 1 and
has the proper asymptotics Φ eξ ∝ ξ for t→ ∞. Trans-
forming (3.3) back to φ, we find

φ(x, t) ∝ (x− 2t) e−[x−2t+(3/2) ln t] e−(x−2t)2/(4t) . (3.4)

If we now trace the position 2t + Xh(t) of the point
where φ reaches the amplitude h, we find by solving
φ(2t + Xh, t) = h from (3.4) for Xh(t)�

√
4t

v(t) = 2 + Ẋh = 2− 3
2t

+ . . . , (3.5)

in agreement with Bramson’s result. This indicates that
for large times t � 1 and far in the leading edge ξ � 1,
the converging front is approximately given by (3.3), if
α 6= 0 in (2.15). We will see indeed that (3.3) does emerge
as the dominant term in a systematic asymptotic expan-
sion in the leading edge region. For reasons explained
below, it is, however, more convenient to formulate this
expansion in a slightly different frame.
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2. Interior follows leading edge: uniform convergence

The above argument shows that the leading −3/(2t)
velocity correction is due to the diffusion-type dynamics
in the leading edge. Why would the convergence to the
asymptotic profile be uniform, i.e., be independent of the
height h whose position is tracked? The answer to this
question is intuitively quite simple. As Ẋh ' −3/(2t),
Xh ' −3/2 ln t. Now, if we compare the position Xh1 of
a height h1 in the leading edge (h1 � 1) with a position
Xh2 of a height h2 in the interior (h2 = O(1)) where the
dynamics of φ is described by the nonlinear equation, we
will have Xh2 = Xh1 −W (h1, h2), where W is the width
of the front between these two heights. Now, if W ap-
proaches a finite value for long times, we need to have
also Xh2 ' 3/2 ln t in dominant order as t → ∞, and
hence also Ẋh2 = −3/(2t) + · · ·. But that W = O(1)
for large times, is quite evident from the equation of mo-
tion (1.1), and our analysis will confirm this expectation.
In other words, the leading order velocity correction as
−3/(2t) is set by the dynamics of the leading edge, and
because of the finite asymptotic width of the front, the
convergence is uniform, i.e., independent of h.

3. Choose proper frame and subtraction for the interior

The above observations have another important conse-
quence. After the front has evolved for some time, we will
find it selfconsistent to assume, that its shape will resem-
ble the asymptotic shape Φ∗. If we want to understand
the interior part of the front, it might at first sight seem
appropriate to linearize the converging front φ about the
asymptotic front Φ∗. However, the profile Φ∗ propagates
uniformly with velocity 2, while as we saw above, the
transient profile φ propagates with velocity v∗ − 3/(2t).
Thus, if the interior regions of the φ- and the Φ∗-fronts
are at about the same part of space at time t0, their dis-
tance will diverge as (3/2) ln(t/t0) as t grows! This was
already illustrated in Fig. 1. Hence, linearization of φ
about the asymptotic profile Φ∗ during the whole time
evolution requires to move Φ∗ along with the velocity
2 − 3/(2t) + . . . of φ and not with its proper velocity 2.
Our expansion is therefore based on writing φ as

φ(ξ, t) = Φ∗(ξX) + η(ξX , t) , (3.6)

where

ξX = ξ −X(t) = x− 2t−X(t) . (3.7)

With this Ansatz, we anticipate that we need to shift
the profile Φ∗ an appropriate “collective coordinate”

X(t) ∝ ln t of the front, and that with a proper choice of
X(t), η becomes a small and decaying perturbation.

4. Choose proper expansions and match leading edge to
interior

We will need two different expansions for the leading
edge and for the interior, which will have to be matched
together. The expansions have to be chosen such that
they can be matched in overlapping intervals through re-
summation of the expansions.

Since we use the coordinate system (3.7) in the in-
terior, we also should use it in the leading edge. The
leading 1/t contribution from the leading edge suggests
to expand the interior in powers of 1/t times functions
of ξX , and we shall see indeed that such a form emerges
automatically from the ansatz (3.6). The appropriate
variable for ξX �

√
t in the leading edge, on the other

hand, is the similarity variable of the diffusion equation

z =
ξ2
X

4t
, (3.8)

as suggested by (3.2) – (3.4). Expressing ξX by z and
t introduces a dependence on 1/

√
t. We find, that it

is actually consistent to expand the interior in powers
of 1/

√
t (instead of 1/t) times functions of ξX , and the

leading edge also in powers of 1/
√

t times functions of z.
The structure of these expansions is essentially our

only input. Given this structure, the leading and sub-
leading order universal terms of the expansions then are
uniquely determined.

B. Expansion in the interior region

We first analyze the interior part of the front, where φ
varies from close to 0 to close to 1. We work in the co-
moving frame ξX = x− v∗t−X(t) of (3.7), where X will
have to be determined. We expand φ about Φ∗(ξX) (3.6).
Because of translation invariance, we have the freedom
to fix the position of Φ∗ and the zero of the coordinate
system by imposing

φ(0, t) =
1
2

and Φ∗(0) =
1
2
⇒ η(0, t) = 0 . (3.9)

Furthermore Φ∗ is defined as limξ→−∞Φ∗(ξX) = 1. We
assume, that also φ approaches 1 for ξX → −∞. This
results in the second condition on η

lim
ξX→−∞

η(ξX , t) = 0 . (3.10)

5 Throughout this paper, we shall suppress the index X on partial derivatives with respect to ξX for notational convenience.
Since ∂ξX |t = ∂ξ|t, this does not lead to any ambiguities.
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We insert φ into the equation of motion (1.1), trans-
form x to the coordinate ξ (3.7) and find for η the
equation5

∂tη = ∂2
ξη + v∗∂ξη + Ẋ∂ξΦ∗ + f(Φ∗ + η)− f(Φ∗) .

(3.11)

If η is small enough, because time has evolved suffi-
ciently long, f(Φ∗+ η) can be expanded in η and we find

∂tη = L∗η + Ẋ ∂ξΦ∗ + Ẋ ∂ξη +
f ′′(Φ∗)

2
η2 + O(η3) ,

(3.12)

where

L∗ = ∂2
ξ + v∗∂ξ + f ′(Φ∗(ξX)) (3.13)

is the linearization operator (2.25) for v = v∗.
In Sections II E 1 and III A 1 we have argued, that one

expects Ẋ(t) = O(t−1). Asymptotic balancing in (3.12)
then requires, that the leading order term of η is of the
same order η = O(t−1). We therefore try to expand as
η = η1(ξX)/t+ . . .. We have argued, that connecting the
interior expansion to the leading edge expansion requires
an ordening in powers of 1/

√
t. So we make the ansatz

Ẋ =
c1

t
+

c3/2

t3/2
+

c2

t2
+ . . . , (3.14)

η(ξX , t) =
η1(ξX)

t
+

η3/2(ξX)
t3/2

+ . . . . (3.15)

Substitution of the above expansions into (3.13) and or-
dering in powers of 1/

√
t yields a hierarchy of o.d.e.’s of

second order:

L∗η1 = −c1∂ξΦ∗ , (3.16)
L∗η 3

2
= −c 3

2
∂ξΦ∗ , (3.17)

L∗η2 = −η1 − c1∂ξη1 − c2∂ξΦ∗ − f ′′(Φ∗)η2
1/2 , (3.18)

L∗η 5
2

= − 3
2η 3

2
− c1∂ξη 3

2
− c 3

2
∂ξη1 − c 5

2
∂ξΦ∗

−f ′′(Φ∗)η1η 3
2

etc., generally: (3.19)

L∗ηn
2

= − n− 2
2

ηn−2
2
−

n−2∑
m=2

cm
2
∂ξηn−m

2
− cn

2
∂ξΦ∗

−
∞∑

k=2

f (k)(Φ∗)
k!

(∑
mk

ηmk

)k
∣∣∣∣∣∣∑

k
mk= n

2

. (3.20)

It is important to realize that we do not need to drop
nonlinear terms, but that the expansion of f(Φ∗ + η) in
powers of η is also ordered in powers of 1/

√
t. So the

higher order terms ηn find their natural place as inho-
mogeneities in the equations for ηi for i ≥ 2. The hi-
erarchy of o.d.e.’s is such, that the differential equation
for ηi contains inhomogeneities, that depend only on ηj

with j < i. The equations therefore can be solved suc-
cessively by going up in the hierarchy. Each ηi solves a
second order differential equation, and the two constants
of integration are fixed by the two conditions (3.9) and
(3.10)6.

Note also, that the time dependent collective coordi-
nate X(t) in ξX = ξ−X(t) only enters Eqs. (3.16)-(3.20)
in the form of the constants cn/2, which at this point
are still undetermined, and that the functions ηn/2 obey
o.d.e.’s.

Let us now compare η = φ − Φ∗ to the variations of
the profile shape with velocity v,

δ = Φv∗+Ẋ − Φ∗ = Ẋ ηsh +
Ẋ2

2
η
(2)
sh + . . . , (3.21)

where ηsh ≡ δΦv/δv|v∗ is a “shape mode”, which gives
the change in the profile under a change in v. By consid-
ering variations of v in the o.d.e. for the profile Φv, we
find that ηsh and η

(2)
sh obey

L∗ηsh + ∂ξΦ∗ = 0 , (3.22)

L∗η(2)
sh + 2∂ξηsh + f ′′(Φ∗) (ηsh)2 = 0 . (3.23)

Upon comparing (3.22) – (3.23) with (3.16) – (3.18),
we can identify

η1 = c1ηsh , (3.24)
η3/2 = c3/2ηsh , (3.25)

η2 = c2ηsh +
c2
1

2
η
(2)
sh + c1ρ , (3.26)

with ρ a correction term, that solves the equation

L∗ρ + ηsh = 0 . (3.27)

In these differential equations, ηsh, η
(2)
sh and ρ obey the

conditions

ηsh(0) = 0 , η
(2)
sh (0) = 0 , ρ(0) = 0 , (3.28)

ηsh(−∞) = 0 , η
(2)
sh (−∞) = 0 , ρ(−∞) = 0 , (3.29)

cf. (3.9) and (3.10).
ρv is the first nonvanishing term that indicates the dif-

ference between the transient profile φ(x, t) and the uni-
formly translating front solution with the instantaneous
velocity

v(t) = v∗ + Ẋ . (3.30)

as resummation of φ yields

6Had we introduced an η1/2, we had found the equation L∗η1/2 = 0 with the unique solution η1/2 = 0.
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φ(ξX , t) = Φv(t)(ξX) +
c1

t2
ρ(ξX) + (3.31)

+
t0
t2

ηsh(ξX) + O

(
1

t5/2

)
.

This equation confirms that up to order 1/t2, the profile
shape is given by the solution Φv(t) of the o.d.e. with the
instantaneous velocity v(t).

Now some remarks on these results are in place:
1) We see, that the dynamics in the front interior is

slaved to the evolution of v(t) imposed by the leading
edge, as we anticipated in Section III A 3.

2) Based on numerical data, Powell et al. [67] have con-
jectured, that φ converges along the trajectory in func-
tion space formed by the Φv’s with v < v∗. We here have
derived this result analytically, and identify the velocity
v of the transients Φv with the actual instantaneous ve-
locity v = v∗ + Ẋ of the front. We find a non-vanishing
correction of order 1/t2 to φ ≈ Φv∗+Ẋ .

3) The transients Φv have always v < v∗ at late times,
since we will find that c1 = −3/2, in accord with the
discussion of Section III A 1. Note that as discussed in
Section II B, such Φv are positive from ξX → −∞ up to
a finite value of ξX only (How they continue for larger
ξX , where they go negative, depends on the definition of
f(φ) for negative arguments). For the transient (3.31) we
need only the positive part of Φv. The transient (3.31)
crosses over to a different functional form, before Φv goes
negative.

4) There is a non-universal contribution of order 1/t2

to (3.31). It is non-universal, because it depends on ini-
tial conditions: The structure of our expansion (3.14),
(3.15) is an asymptotic expansion about t → ∞, that
does not fix t = 0. We thus can expand in 1/(t− t0) =
1/t+ t0/t2 +O(1/t3) just as well as in 1/t. This allows us
to add an arbitrary multiple of ηsh/t2 to φ in Eq. (3.31).
The order 1/t2 term in (3.31) is thus always non-zero,
because ρ in (3.32) is non-vanishing, but its precise value
will depend on initial conditions.

5) The expansion is an asymptotic expansion [105].
Thus, when we will have determined the coefficients c1

and c3/2 in (3.14) later, these are the exact prefactors if
we expand the velocity and shape in inverse powers of t
in the limit t → ∞, but the expansion will not have a
finite radius of convergence in 1/

√
t.

C. Interior shape expanded towards the leading edge

We now will see, that for ξX ≥ O(
√

t) the structure
of our expansion (3.15) breaks down. We then have to
resum the terms and use a different expansion7.

Let us calculate the contributions ηi from (3.16) –
(3.20) explicitly in the leading edge region, where ξX � 1
and φ, Φ∗ � 1. In this region L∗ (3.13) and Φ∗ (2.15)
are

L∗ = ∂2
ξ + 2∂ξ + 1 , Φ∗ = (αξX + β) e−ξX . (3.32)

Again we transform the exponential away through

L∗ = e−ξX ∂2
ξ eξX , ηn

2
= e−ξX ψn

2
, φ = e−ξX ψ .

(3.33)

The differential equations determining the ψn
2

are explic-
itly

∂2
ξψ1 = c1(αξX + γ) , γ = β − α , (3.34)

∂2
ξψ 3

2
= c 3

2
(αξX + γ) ,

∂2
ξψ2 = [−1 + c1(1− ∂ξ)]ψ1 + c2(αξX + γ) ,

∂2
ξψ 5

2
= [− 3

2 + c1(1− ∂ξ)]ψ 3
2

+ c 3
2
(1− ∂ξ)ψ1 +

+c 5
2
(αξX + γ) ,

etc., generally:
∂2

ξψn
2

= [−n−2
2 + c1(1− ∂ξ)]ψn−2

2

+
n−2∑
m=3

cm
2
(1− ∂ξ)ψn−m

2
+ cn

2
(αξX + γ) ,

where we have omitted exponentially small corrections
of order e−ξX in the inhomogeneities on the r.h.s. of the
equations. The conditions (3.9) and (3.10) on η do not
influence the solution in the leading edge.

The equations (3.34) are easily solved. For ψ = eξX φ
we find in the region ξX � 1

ψ = eξX Φ∗ +
∞∑

n=2

ψn
2

tn/2
= (3.35)

α ξX + β +

+
c1α ξ3

X

3! t
+

c1γ ξ2
X

2! t
+ O

(
ξX

t

)
+

c 3
2
α ξ3

X

3! t3/2
+ O

(
ξ2
X

t3/2

)
+

c1(c1 − 1)α ξ5
X

5! t2
+

c1[(c1 − 1)γ − c1α] ξ4
X

4! t2
+ . . .

+
c 3

2
(2c1 − 3

2 )α ξ5
X

5! t5/2
+ . . .

+
c1(c1 − 1)(c1 − 2)α ξ7

X

7! t3
+ . . .

7Actually, the interior expansion also breaks down for ξX → −∞. There too, a different expansion can be used, and this
expansion can be matched to the one we introduced for the interior region. We will not discuss this further here, as it is of no
further consequence.
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Obviously, for ξX ≥
√

t, the expansion is not properly or-
dered in powers of 1/

√
t anymore, since, e.g., ξ3

X/t even-
tually will become larger than ξX . A quick inspection of
(3.35) shows, that we can continue to work in an 1/

√
t

expansion, if we use the variable z = ξ2
X

4t (3.8) instead of
ξX . (3.35) can be identified with

ψ =
√

t α

(
(4z)1/2 +

c1(4z)3/2

3!
+

c1(c1 − 1)(4z)5/2

5!

+
c1(c1 − 1)(c1 − 2)(4z)7/2

7!
+ . . .

)
+ t0

(
β +

c1(β − α)(4z)
2!

+
c 3

2
α(4z)3/2

3!
+ O(z2)

)
+ O(1/

√
t) (3.36)

Already this expansion hints at the fact that this re-
summed expansion crosses over to a different expansion
for ξX , t � 1, z = ξ2

X/4t = O(1), and that the require-
ment that this latter expansion is well behaved for large
z, fixes the coefficients c1, etc. To see this, note that if
we take c1 = −3/2, then the first combination of terms
reduces to α

√
4zt e−z = ξXe−ξ2

X/4t, which is, in domi-
nant order, the behavior already anticipated in Section
III A 1.

Instead of resumming the interior expansion explicitly,
it turns out to be much more transparent to write an
expansion directly in terms of powers of 1/

√
t and the

similarity variable of the diffusion equation, z. This ap-
proach, which amounts to a matching procedure, is the
subject of the next subsection.

D. Analysis of the leading edge

We now take up the analysis of the leading edge re-
gion in the case that the initial conditions are sufficiently
steep, so that, for ψ = φ eξX

lim
ξX→∞

ψ(ξX , t) = 0 . (3.37)

Note that according to the discussion of Section II E, this
condition holds at any finite time, if it is obeyed initially
at t = 0.

We have already argued in Sections II E and III A 1
that the asymptotic profile of the leading edge might be
expected to be somewhat like a Gaussian in ξX and t
times a Hermite polynomial. Also the resummation of
the interior front solution suggests such a form for large
ξX . We now investigate this expansion more systemati-
cally, and will show that it actually takes the form of a
Gaussian times a generalization of Hermite polynomials,
namely confluent hypergeometric functions [103].

In passing, we stress that only to lowest order the ar-
guments from III A 1 can be compared directly to our cal-
culation here, because we now work with the coordinate

z = (x− 2t−X(t))2/(4t), while we presented our earlier
intuitive arguments in the coordinate z∗ = (x−2t)2/(4t).
Of course, one can also set up a systematic expansion in
the latter coordinate z∗, but this requires the introduc-
tion of logarithmic terms for a proper matching to the
interior part of the front. Working throughout in the
shifted frames ξX = x− 2t−X(t) or z, resp., avoids this
altogether.

In the coordinates ξX and t, the equation of motion
for ψ in the leading edge region is (Recall that the earlier
leading edge representation in (2.61) was in the frame
ξ = x− 2t)

∂tψ = ∂2
ξψ + Ẋ(∂ξ − 1)ψ + o(e−ξX ) . (3.38)

The differential operators transform under change of
coordinates to z = ξ2

X/(4t) and t as

∂t

∣∣
ξ

= ∂t

∣∣
z
− z

t
∂z

∣∣
t

, ∂ξ

∣∣
t
=

√
z

t
∂z

∣∣
t

. (3.39)

Motivated by the form (2.57) and the discussion of Sec-
tion III A 1, we extract the Gaussian e−ξ2

X/(4t) = e−z

from ψ:

ψ(ξ, t) = e−z G(z, t) , z =
ξ2
X

4t
. (3.40)

This extraction also allows us to make contact later with
functions tabulated in [103]. The dynamical equation
(3.38) is equivalent to the equation for G:[

z∂2
z +

(
1
2
− z

)
∂z −

1
2
− t∂t − c1

]
G =

=
[
(Ẋt− c1) + Ẋ

√
t
√

z(1− ∂z)
]

G . (3.41)

The equation is organized such, that the differential op-
erators of order t0 are on the l.h.s. of the equation, while
the r.h.s. has the operators of order t−1/2 and smaller.

In analogy to our earlier expansion (3.15), we now
make an ansatz for G in powers of 1/

√
t times functions

of z. A glimpse at the form of the interior shape ex-
panded towards the leading edge (3.36) tells us, that the
expansion should start with the order

√
t. We write

G(z, t) =
√

t g−1
2

(z) + g0(z) +
g 1

2
(z)
√

t
+ . . . . (3.42)

Insertion of this ansatz into (3.41) again results in a hi-
erarchy of ordinary differential equations, that can be
solved successively:[

z∂2
z +

(
1
2
− z

)
∂z − 1− c1

]
g−1

2
= 0 , (3.43)

[
z∂2

z +
(

1
2
− z

)
∂z −

1
2
− c1

]
g0 = (3.44)

=
[
c 3

2
+ c1

√
z(1− ∂z)

]
g−1

2
,
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[
z∂2

z +
(

1
2
− z

)
∂z − c1

]
g 1

2
= (3.45)

=
[
c2 + c 3

2

√
z(1− ∂z)

]
g−1

2

+
[
c 3

2
+ c1

√
z(1− ∂z)

]
g0 ,

etc. The general solution of the homogeneous equations
with two constants of integration kn

2
and ln

2
can be found

in [103], they are confluent hypergeometric functions.
How to find a special solution gsp

n
2

of the inhomogeneous
equation is discussed in general in Appendix D. The ap-
proach of the appendix leads to integral expressions for
the special solutions, rather than to the series expansions
used here. We write the general solution as

gn
2
(z) = gsp

n
2

(z) + kn
2

M

(
c1 +

1− n

2
,
1
2
, z

)
+ ln

2

√
z M

(
c1 +

2− n

2
,
3
2
, z

)
, (3.46)

where the functions M(a, b, z) can be expressed by the
Kummer series [103]

M(a, b, z) = 1 +
a z

b
+

a(a + 1) z2

b(b + 1) 2!
+ . . . +

(a)nzn

(b)nn!
+ . . . ,

with (a)n =
n∏

k=1

(a + k − 1) =
Γ(a + n)

Γ(a)
. (3.47)

Just as in the integration of the interior shape in Sec-
tion III B, there are two constants of integration to be
determined in every solution gn

2
. In addition, however,

the ci are not just parameters of the equations as in Sec-
tion III B, but they now have to be determined also. The
conditions we use to determine these three constants per
equation, are now (3.36) and (3.37) in analogy to the two
conditions (3.9) and (3.10) for the ηn

2
: (i) The solution

gn
2

has to agree with the expansion of the interior towards
the leading edge (3.36) for small z. Then the coefficients
of z0 and z1/2 in (3.36) determine the constants of inte-
gration kn

2
and ln

2
. (ii) The transients at any finite time

have to be sufficiently steep in the sense that they obey
(3.37) at any finite time t. Because of the form the ex-
pansions (3.41) and (3.43), we require that each term g in
the expansion diverges for large z at most as a power law
of z, not exponentially as ez. In addition, they have to
stay consistent with the structure of the expansion (3.15)
for η. This gives another condition on the constants of in-
tegration, that can be obeyed only for a particular choice
of cn+3

2
. With these choices of the constants, the small z

expansion of ψ = e−zG from (3.40) and (3.42) becomes

identical with the interior shape expanded towards the
leading edge (3.36).

We will solve the first two equations (3.43) and (3.44)
explicitly, since they determine the universal terms of
the velocity correction Ẋ . In particular, the solution for
g−1

2
(3.43) will connect to our qualitative discussion of

the leading 1/t velocity convergence term (3.5) in Sec-
tion III A 1. Eq. (3.44) will give the universal subleading
term8 of order 1/t−3/2.

Let us now start with the solution of the homogeneous
leading order equation (3.43), where gsp

−1
2

(z) = 0. The

constants of integration are fixed by (3.36) as k−1
2

= 0
and l−1

2
= 2α. Therefore g−1

2
(z) is after matching to the

interior

g−1
2

(z) = 2α
√

z M

(
c1 +

3
2
,
3
2
, z

)
. (3.48)

In order to analyze, how c1 is determined by the match-
ing and the requirement that all transients are steeper for
ξX → ∞ than the asymptotic profile, we first recall the
large z behavior of Kummer functions M(a, b, z) [103]:
For b not zero nor a negative integer (−b /∈ N0), each
term of the series (3.47) is finite. For a not zero nor
a negative integer, the series is infinite. For a zero or
a negative integer a = −n, the series is finite, since all
terms from order zn+1 on contain the factor (a + n) = 0.
For b = 1/2 or 3/2, these finite polynomials are Hermite
polynomials. The large z asymptotics for the two cases
of a’s and for −b /∈ N0 is:

M(a, b, z) z→∞∼


Γ(b)
Γ(a) za−b ez for − a /∈ N0 ,
(a)|a|z

|a|

(b)|a|(|a|)! for − a ∈ N0 .
(3.49)

Now insert (3.48) into (3.49) and find for ξX �
√

t

φ ∝ e−ξX

{
ξ2c1+1
X t−c1 −c1 − 3/2 /∈ N0

ξ−2c1−2
X tc1+3/2 e−ξ2

X/(4t) −c1 − 3/2 ∈ N0
.

(3.50)

For c1 + 3/2 not zero nor a negative integer, we need
c1 ≤ 0 to make the transient profile steeper than Φ∗ at
any finite time t. Then the exponent −c1 of t becomes
positive and our ordering in powers of 1/

√
t from (3.15)

is destroyed. (For c1 = 0, φ has the asymptotic profile
already and no convergence takes place.) Accordingly, as
explained above, for sufficiently steep initial conditions
that obey (3.37) for and consistency with (3.15), c1 +3/2
has to be zero or a negative integer. Possible solutions
consistent with (3.37) and (3.15) are

8Don’t confuse the expansion in 1/
√

t of the velocity in (3.5) or (3.14) with the denominators in (3.2) and (3.3). These powers
of 1/

√
t in the ξ∗-representation are absorbed into the X(t) of ξ in the ξ-representation, as is sketched in (3.4).
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c1 = −3
2 , g−1

2
(z) = 2α

√
z ,

c1 = −5
2 , g−1

2
(z) = 2α

√
z

(
1− 2z

3

)
,

c1 = −7
2 , g−1

2
(z) = 2α

√
z

(
1− 4z

3 + 4z2

15

)
,

(3.51)

etc., with the g−1
2

given by Hermite polynomials. Now,
there are two ways to argue, why generically c1 = −3/2
will be observed, one for non-negative initial conditions
and one for more general initial conditions. (a) If the ini-
tial condition is always non-negative, e.g., because φ is a
density, the transient may not have nodes, so c1 = −3/2
is the only possible solution. (b) Starting from an ini-
tial condition with nodes, the general solution will be a
superposition of the solutions (3.51). The solution with
c1 = −3/2 propagates quickest, so the other contribu-
tions will be convected to the back, and c1 = −3/2 will
dominate at large times [106]. This argument coincides
with the argument from Section II C, that fronts with
nodes generically are not attractors for the long time dy-
namics for the nonlinear diffusion equation (1.1). Fur-
thermore we have checked various initial conditions with
nodes numerically and we have found, that either the
node gets stuck behind the evolving front or moves away
to ξ → ∞ with higher velocity than v∗, leaving in both
cases a leading edge of the front behind, that develops
with c1 = −3/2. We thus find for initial conditions (3.37)
steeper than Φ∗ generically

c1 =
−3
2

, g−1
2

(z) = 2α
√

z . (3.52)

This solution is identical with the order
√

t of ψez with
ψ from (3.36). For φ we find in the region ξX � 1 lin-
earizable about the unstable state in leading order

φ = αξX e−ξX−ξ2
X/(4t)

(
1 + O(ξ−1

X ) + O(t−1/2)
)

(3.53)

ξX = x− v∗t +
3
2

ln t + O(1/
√

t) , (3.54)

consistent with the arguments from Section III A 1.
Integration of g0 now gives the subleading universal

terms, which are O(1/
√

t) in (3.53) and (3.54). Insertion
of (3.52) into (3.44) results in[

z∂2
z +

(
1
2
− z

)
∂z + 1

]
g0 = 2α

(
3
4

+ c 3
2

√
z − 3

2
z

)
.

(3.55)

We now can follow Appendix D for the general solution
of the inhomogeneous equation, or we rather can guess a
special solution of the inhomogeneous equation by noting
that the function

FN (z) =
∞∑

n=N

(1)n−2 zn(
1
2

)
n

n!
(3.56)

is proportional to a truncated Kummer series
M(−1, 1

2 , z) (3.47) and solves

[
z∂2

z +
(

1
2
− z

)
∂z + 1

]
FN (z) =

zN−1(
1
2

)
N−1

(N − 1)
,

(3.57)

By further inspection, we find the special solution of the
inhomogeneous equation (3.55)

gsp
0 (z) = 2α

(
3
4

+ 2c 3
2

√
z − 3

4
F2(z)

)
. (3.58)

Upon comparing (3.56) to (3.47) and (3.49), one finds

gsp
0 (z) z→∞∼ − 3

2
α
√

π z−3/2 ez . (3.59)

The general solution (3.46) of (3.55) is thus

g0(z) = gsp
0 (z) + k0 (1− 2z) + l0

√
z M

(
−1
2

,
3
2
, z

)
z�1=

(
3α

2
+ k0

)
+

(
4αc 3

2
+ l0

)√
z + O(z) (3.60)

z→∞∼ −
(

3
2

α
√

π +
l0
4

)
z−3/2 ez , (3.61)

where we have used (3.49) and (3.59) for the large z
asymptotics. Compare now the small z expansion (3.60)
to (3.36). One obviously has to identify

3α

2
+ k0 = β , 4αc 3

2
+ l0 = 0 . (3.62)

If g0 would decay asymptotically as z−3/2 ez for large
z (3.61), the subleading contribution of order 1/

√
t in φ

(3.53) would not decay like a Gaussian e−ξ2
X/(4t) as the

leading order term does, but it would decay algebraically
like ξ−3

X (4t)3/2. This would destroy the ordering of our
expansion (3.42) as well as the structure of the expansion
(3.15). We therefore have to make the coefficient of the
leading order term z−3/2 ez in g0 (3.61) vanish:

3
2

α
√

π +
l0
4

= 0 . (3.63)

(3.62) and (3.63) fix all constants k0, l0 and c 3
2
. The

velocity correction of order 1/t3/2 is

c 3
2

=
3
√

π

2
, (3.64)

and the analytic solution for g0(z) is

g0(z) = β (1− 2z) + 3α

(
z − F2(z)

2

)
(3.65)

+ 6α
√

π z

(
1−M

(
−1
2

,
3
2
, z

))
,

with α and β the coefficients of the asymptotic leading
edge shape Φ∗(ξ) = (αξ + β) e−ξ for Φ∗ � 1. Note, that
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the subleading term β contributes only the rather trivial
(1− 2z) term, while the coefficient of the leading α con-
tains all nontrivial terms. The result (3.64) and (3.65)
reproduces the order t0 in (3.36) identically.

We summarize the results obtained from the analysis
of the leading edge: The appropriate coordinate system is
ξX = x−v∗t−X(t), and the universal velocity correction
is given by

Ẋ = − 3
2t

(
1−

√
π

t

)
+ O

(
1
t2

)
. (3.66)

The shape in the leading edge, where φ� 1, is given in
terms of the variables ξX and t by

φ(ξX , t) = e−ξX−ξ2
X/(4t) G

(
ξ2
X

4t
, t

)
(3.67)

= e−ξX−ξ2
X/(4t)

(
αξX + g0

(
ξ2
X

4t

)
+ (3.68)

+
1√
t

g 1
2

(
ξ2
X

4t

)
+ . . .

)
,

with g0(z) from (3.65).
Eqs. (3.65) – (3.67) is the second part of our final re-

sult, valid in the leading edge of the front, where φ� 1.
It complements our earlier result (3.31), valid in the in-
terior of the front, with functions κv from (3.22) and ρv

from (3.27).
Let us end this section by putting these analytical re-

sults into perspective:
1) The requirement that the leading edge remains

steeper than the asymptotic profile Φ∗ at any finite time,
together with the requirement of consistency with our in-
terior expansion (3.15), determines the velocity conver-
gence constants cn

2
. These constants are thus determined

in the leading edge by the initial conditions. They are
just parameters in the equations for the interior (3.16) –
(3.20).

2) The leading order velocity correction c1 reproduces
Bramson’s result [77], which he derived through solv-
ing the (nonlinear) diffusion equation with probabilistic
methods. The universal subdominant 1/t3/2 is new, how-
ever.

3) According to our discussion in connection with the
interior expansion, g 1

2
and c2 should be termed non-

universal, because the change from 1/
√

t to 1/
√

t− t0
in the asymptotic expansion about t→∞ changes these
terms. As for (3.31), we conclude, that at least parts of
these terms depend on initial conditions and are therefore
non-universal.

4) Again, the expansion is only asymptotic in 1/
√

t:
the results of the prefactors of the 1/t and the 1/t3/2

terms are exact, but as the expansion will not converge
at any finite time, there should in principle be an optimal
truncation of the expansion for every t.

5) The leading edge expansion is an intermediate
asymptotics in z, valid for 1� z �

√
t or
√

t� ξX � t,
resp. Above, we extensively made use of the cross-over to
the interior expansion for z � 1. Let us now look into the
break-down for z ≥ O(

√
t), i.e., for ξX ≥ O(t). This sec-

ond break down immediately follows from inserting into
(3.42) our results g−1

2
(z) = O(

√
z) and g0(z) ≥ O(z) (in

fact g0(z) = O(z ln z) according to Appendix D). This
new crossover actually needs to exist in view of our dis-
cussion in Section II E 1: The steepness λ is conserved
for x → ∞ for all times t < ∞. It will retain the infor-
mation about the precise initial condition. This region of
conserved steepness at ξX > O(t) crosses over to the uni-
versal Gaussian leading edge region for ξX < O(t), which
determines the universal relaxation behavior as discussed
above. The region of conserved stepness λ at ξX > O(t)
has no further consequence for the dynamics, if the ini-
tial steepness is only λ > λ∗. It will disappear towards
ξX → ∞ by outrunning the leading edge region with an
approximately constant speed. This scenario is sketched
in Fig. 2.

6) Our result is valid in the pulled regime but it does
not apply at the bifurcation point from the pulled to
the pushed regime. For nonlinearity (1.11) this means,
that the analysis applies for ε > 3/4 [65]. Only then
Φ∗(ξ) ∝ ξ e−ξ, which is one of the essential ingredients
of our asymptotic analysis. For ε < 3/4, the front is
pushed, and convergence is exponential, as discussed in
Sections II C and II D. For ε = 3/4, precisely at the
pushed/pulled transition, Φ∗(ξ) ∝ e−ξ. In this case, con-
vergence is still algebraic, but the analysis of this chapter
does not apply exactly. The convergence analysis, how-
ever, can be set up along the same lines. As shown in
Appendix E we then get instead of (3.66)

Ẋ = − 1
2t

(
1− 1

2

√
π

t

)
+ O

(
1
t2

)
. (3.69)

Note that the factor 3/2 of the 1/t term is replaced by 1/2
at the bifurcation point. Along the lines of the arguments
of Section III A 1 this can be understood simply from the
fact that at the bifurcation point the asymptotic behavior
of Φ∗ is as Φ∗(ξ) ∼ e−ξ, not as ξe−ξ, and hence that the
simple Gaussian leading edge solution t−1/2e−ξ−(ξ)2/4t

matches to the asymptotic front profile in leading order.

33



IV. SIMULATIONS OF PULLED FRONTS IN
THE NONLINEAR DIFFUSION EQUATION

In the previous section we analyzed the relaxation of
steep initial conditions towards a pulled uniformly trans-
lating front (Case IV in Table III) in the nonlinear diffu-
sion equation

∂tφ = ∂2
xφ + f(φ) . (4.1)

The results are summarized in Table I, where we have to
take v∗ = 2, and λ∗ = 1 = D. If the initial condition has
a finite steepness λ∗ < λinit <∞, the Gaussian region is
preceeded by a dynamically unimportant region of con-
served steepness λinit for all times t <∞, as is discussed
in Section II E 1 and sketched in Figure 2.

In this section, we present simulation data for the non-
linear diffusion equation, and compare these with our
analytical predictions. In particular, we thoroughly in-
vestigate fronts with the nonlinearity

f(φ) = φ− φ3 , (4.2)

which are certainly pulled. As an example of a nonlin-
earity allowing for both pushed and pulled fronts, we also
present data for

f(φ) = εφ + φ3 − φ5 . (4.3)

According to Appendix C, these fronts are pushed for
ε < 3/4 and pulled for ε > 3/4.

As an initial condition, we here always choose

φ(x, 0) =
1

1 + eλinit(x−x0)
→

{
e−λinit(x−x0) x→∞
1 x→ −∞ .

(4.4)

According to our analytical results, all initial conditions
with initial steepness λinit > λ∗ = 1 exhibit the same
universal relaxation behavior asymptotically as t → ∞,
and this we indeed do find in our simulations. We there-
fore only present simulations for the representative value
λinit = 10 below.

The section is organized into a discussion of the numer-
ical features of pulled fronts (Section IVA), the presen-
tation of the raw simulation data for nonlinearities (4.2)
and (4.3) (Section IVB), and a detailed comparison of
the simulations for nonlinearity (4.2) with the analytical
predictions (Section IVC).

A. Numerical features specific to pulled fronts

To integrate a given initial condition φ(x, 0) forward in
time t according to the equation of motion (4.1), we use
a semi-implicit algorithm, as explained in Section VF6,
Eq. (5.114). When running the program, we have to
choose a spatial and temporal discretization ∆x and ∆t,

a system size 0 ≤ x ≤ L, and a position x0 of the initial
condition within the system. Comparing results for dif-
ferent parameters ∆x, ∆t, L, and x0 to each other and to
the analytical predictions in the extreme precision of of-
ten better than 6 significant figures, we find two features
specific to the particular dynamic mechanism of pulled
fronts:

1. Effect of finite difference code

The numerical results of the simulation depend, of
course, on the step sizes ∆x and ∆t of the finite differ-
ence code. In fact, in Section VF6 we will have collected
all analytical tools to calculate the corrections to v∗ = 2,
λ∗ = 1 and D = 1, that depend on the numerical integra-
tion scheme and on the parameters ∆x and ∆t. All data
presented here are derived for ∆x = 0.01 = ∆t. For a
pulled front in a nonlinear diffusion equation solved with
a semi-implicit scheme, we find according to Eq. (5.116),
that v∗ = 2.000075, λ∗ = 0.999954, and D = 1.00035.

2. Effect of finite system size

In contrast to a pushed front, the final t → ∞ relax-
ation of a pulled front very sensitively depends on sys-
tem size L and front position x0. This effect is closely
related to the different pulled mode of propagation and
the breakdown of the linear stability analysis. Because
the half-infinite space x � 1 of the leading edge domi-
nates the dynamics, the very long time dynamics of the
front is sensitive to the region at x � 1, even if there
always φ � 1. More precisely, the diffusive spreading
of the linear perturbation as in Eq. (3.3) or (3.67), that
determines the speed, strongly depends on the boundary
conditions at ξX = x− v∗t−X(t) = O(

√
4Dt ).

For this reason, we shift the front back to its origi-
nal position x0 within the system after every time step
t2 − t1 = 1. This eliminates the x-interval 0 ≤ x ≤
xshift ≈ v∗ on the back side of the front from our
data, while a new x-interval L − xshift ≤ x ≤ L
has to be created. One might assume, that this pro-
cedure yields good results for integration times T up
T = O

(
(L− x0)2/(4D)

)
because of the diffusive na-

ture of the spreading. However, the precision notice-
ably breaks down earlier because of the arbitrariness of
the newly created x-interval L − xshift ≤ x ≤ L in
the shift process. Filling this region with the constant
φ(x) = φ(L− xshift) creates a flat initial condition, and
the front accelerates beyond v∗ for sufficiently long times.
We therefore use φ(x) ≡ 0 in this region. The observed
velocities vφ(t) for L < ∞ then always will stay below
those in the infinite system L → ∞. The simulations in
the finite system are close to those in the infinite system
up to times T = O

(
(L− x0)/v∗

)
.
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B. Simulation data

1. f(φ) = φ− φ3: pulled fronts

As an example, we will extensively discuss simulations
with the nonlinearity (4.2). We present data with initial
conditions (4.4) and λ = 10, where the initial condition is
located at x0 = 100 in a system of size L = 1000. Accord-
ing to our estimate above, the simulations then should
be reliable up to times t of order (L − x0)/2 = 450. We
present data up to t = 400. The data from this simulation
is evaluated in a sequence of figures showing increasing
detail and precision.

Fig. 1 already showed the temporal evolution of a steep
initial condition λ > λ∗ under the equation of motion
(4.1) and (4.2). It shows both, the total displacement
of the front, and the evolution of the front shape. We
now choose different presentations, that show these two
different aspects of the dynamics separately and more
clearly.

Let us first study the evolution of the front shape: In
Fig. 5, we present φ(ξX , t) as a function of ξX , where
ξX = x − v∗t − X(t), Eq. (3.7), is adjusted such that
φ(0, t) = 1/2 (3.9) for all times t. The remaining dynam-
ics in this frame is then the pure evolution of the shape
from its steep initial profile φ(ξX , 0) towards its flatter
asymptotic profile φ → Φ∗(ξX) as t → ∞. Fig. 5(a)
shows φ as a function of ξX on the interval −5 < ξX < 5.
One sees the interior or nonlinear part of the front. Fig.
5(b) shows log φ in the range 10−90 < φ < 1. This plot
is appropriate to show the development of the leading
edge, which here essentially determines the dynamics.

Accordingly, a very different range of ξX has to be plot-
ted, namely 0 < ξX < 190. As is sketched already in
Fig. 2, the leading edge here again consists of two re-
gions, namely the “Gaussian” region, through which the
asymptotic steepness λ∗ spreads in time towards larger
ξX , and the region of conserved steeness λ = λinit in front
of it. In fact, Fig. 5(b) shows, that the initial λinit = 10
on the level φ = 10−90 is still fully present for times
t = 1 and 2, while at later times it gradually approaches
λ∗ = 1. At higher levels, φ = 10−10 say, this process of
replacement of one steepness by the other is essentially
completed at time t = 70, while at level 10−90, it is not
completed even at time t = 400, where the simulation
stops.

In Fig. 6, we now focus on the second feature, namely
the displacement of the front. We here plot the velocity
vφ(t) of various amplitudes φ as a function of t. Ac-
cording to our previous definition, we identify v1/2(t) =
v∗ + Ẋ(t). For comparison, the predicted asymptotic
value v∗ is plotted as a dashed line. In Fig. 6(a), the non-
universal initial transients up to time t = 20 are shown,
which exceed even the large velocity range 0 < v < 3
plotted. In Fig. 6(b), the velocities are plotted up to
time t = 400 on the velocity interval 1.97 < v < 2. We
observe,
— that for fixed t, the velocity vφ(t) is the smaller, the
larger φ is. This is an immediate consequence of the
fronts becoming flatter in time, cf. Fig. 5.
— that the vφ(t) for large t approach a value largely in-
dependent of φ, that is still far from the asymptotic value
v∗. We will see below, that this is the signature of the
shape relaxation being vφ1(t) − vφ2(t) ∝ 1/t2 as t→∞,
while the overall relaxation is vφ(t)− v∗ ∝ 1/t.
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FIG. 5. Simulation of the evolution of the shape of a front under (4.1), (4.2) at the times denoted in the figure. The initial
condition is (4.4) with λ = λinit = 10. The comoving frame ξX is chosen such, that φ(ξX = 0, t) = 1/2 for all t. a) A plot of φ
versus ξX shows mainly the interior of the front. b) A plot of log φ versus ξX for sufficiently large ξX shows mainly the leading
edge of the front. Note the different scales of ξX .
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FIG. 6. The same simulation as in Fig. 5. Now the velocities vφ(t) of amplitudes φ = 0.99, 0.9, 0.7, 0.5, 0.3, 0.1, 0.05, 0.01,
0.001, and 0.0001 (solid lines) are shown as a function of time t. The asymptotic velocity v∗ is marked by the dashed line. a)
Initial transients for times 0 ≤ t ≤ 20. b) The same data plotted for longer times 0 ≤ t ≤ 400 and an enlarged scale of v. The
velocities vφ(t) become largely independent of the “height” φ, and together slowly approach v∗. We will explain this behavior
by universal algebraic relaxation.
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2. f(φ) = εφ + φ3 − φ5: pushed versus pulled fronts

A well-known example of a nonlinear diffusion equation
(4.1) exhibiting both pushed and pulled fronts is given by
the nonlinearity (4.3):

∂τϕ = ∂2
yϕ + εϕ + ϕ3 − ϕ5 . (4.5)

This equation for ε < 0 is often used as a phenomeno-
logical (Ginzburg-Landau type) mean field model for a
first order transition. Likewise, its extension to a com-
plex field is often used to model a subcritical bifurca-
tion in pattern forming systems. According to arguments
recalled in Appendix C, fronts of (4.5) are pushed for
ε < 3/4, and pulled for ε > 3/4.

The rescaling necessary to bring (4.5) to our standard
form (2.2) is discussed in (2.3) and (2.4), and yields

∂tφ = ∂2
xφ + φ +

1
ε̄

φ3 −
(

1 +
1
ε̄

)
φ5 , (4.6)

where ε̄ =
√

1 + 4ε− 1
2

, ϕ2
s = 1 + ε̄ . (4.7)

The critical ε̄, where the pushed/pulled transition occurs,
is ε̄c = 0.5.

We present data for the pushed front with ε̄ = 0.4
(ε = 0.56) and the pulled front with ε̄ = 0.6 (ε = 0.96).
The initial condition is as before. The system size is
L = 250, and the front is located at x0 = 50. The data

therefore should be reliable up to time of order 100, so
the data presented extend over 0 ≤ t ≤ 100.

In Fig. 7, we plot vφ(t) as a function of t for both values
of ε̄, in the same way as the plot of Fig. 6 for the other
nonlinearity (solid lines). The dashed lines denote the
asymptotic pulled velocity v∗ = 2 predicted for ε̄ = 0.6,
and the asymptotic pushed velocity (cf. Appendix C)

v† =
1 + 4ε̄√
3ε̄(1 + ε̄)

= 2.00594 for ε̄ = 0.4 . (4.8)

We observe, (i) that the simulated fronts in fact do ap-
proach the predicted asymptotic velocities, (ii) that up
to time t ≤ 10, both fronts show quite similar initial
transients, (iii) that for time t� 10, however, the relax-
ation towards the asymptotic velocity v† for ε̄ = 0.4 is
much more rapid than that towards v∗ for ε̄ = 0.6. This
very clearly illustrates the difference between pushed ex-
ponential and pulled algebraic relaxation.

We do not plot the figures of shape relaxation equiva-
lent to Fig. 5, since they look essentially the same: Fig.
5(a) anyhow essentially shows the initial transients in the
interior up to time t = 20. Also Fig. 5(b) looks rather
the same with the only difference, that for ε̄ = 0.4 the
conserved steepness λ = λinit at ξX � 1 is invaded by
the pushed steepness λ† determined by the front interior
rather than by the pulled steepness λ∗ determined by the
Gaussian region of the leading edge.
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FIG. 7. Plot of vφ(t) as a function of t as in Fig. 6(b), but now for nonlinearity (4.3). Simulations for ε̄ = 0.4 (ε = 0.56) and
ε̄ = 0.6 (ε = 0.96) are shown. The dashed lines denote the asymptotic pulled velocity v∗ = 2 of the front with ε̄ = 0.6, and
the asymptotic pushed velocity v† = 2.00594 of the front with ε̄ = 0.4. Note the quick exponential relaxation towards v† in
contrast to the slow algebraic relaxation towards v∗. Further away from the transition ε̄ = 0.5 (ε = 0.75) from pulled to pushed
front propagation, the relaxation in the pushed regime is even faster and the difference v† − v∗ is larger.
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C. Comparison of simulations and analytical
predictions

Let us return to our extensive simulation of the pulled
front formed by the F-KPP equation ∂tφ = ∂2

xφ+φ−φ3,
and let us compare the simulation data to our analytical
predictions from Table I (v∗ = 2, λ∗ = 1 = D).

1. Analysis of the velocity data

We first concentrate on the analysis of the velocity data
vφ(t) from Fig. 6. The prediction for the velocities vφ(t)
of the amplitudes φ is derived from the expressions in
Table I as vφ(t) = −∂tφ/∂xφ|φ fixed. The result is

vφ(t) = v∗ + Ẋ − Ẍ
ηsh

∂ξΦ∗

∣∣∣∣
φ fixed

+ O

(
1
t3

)
. (4.9)

Remember, that Ẋ is universal only till order 1/t3/2 and
will exhibit contributions in order 1/t2, that depend on
initial conditions. The difference vφ1(t) − vφ2(t), how-
ever, is universal up to order 1/t5/2. Let us now test this
prediction on the simulations in a series of plots with
growing precision in Figs. 8 – 10.

As the velocity correction Ẋ is 1/t in leading order,
we plot vφ(t) as a function of 1/t in Fig. 8, for the time
range 5 < t < 400 in Fig. 8(a), and for 100 < t < 400 in
Fig. 8(b). The dashed lines present the predicted asymp-
totes v∗ + Ẋ = 2 − Ẋ1(t) (the lower dashed line), and
v∗ + Ẋ = 2− Ẋ3/2(t) (the upper dashed line), where we
define

Ẋ1(t) = − 3
2t

, Ẋ3/2(t) = − 3
2t

(
1−

√
π

t

)
. (4.10)

First of all, in comparing Figs. 8(a) and 8(b), we rec-
ognize the asymptotic nature of the 1/

√
t expansion:

whether the Ẋ1 or the Ẋ3/2 asymptote gives the bet-
ter prediction, depends on the time scale: If we neglect
the upper three solid lines with velocities vφ(t) for the
very small amplitudes φ = 0.01, 0.001, and 0.0001, the
asymptote 2 − Ẋ1 clearly fits mutch better in Fig. 8(a)
for times 5 < t < 400 — while the asymptote 2−Ẋ3/2 es-
sentially coincides with v0.001(t), an observation, we have
no analytical explanation for. For times 100 < t < 400
in Fig. 8(b), however, the coincidence with 2 − Ẋ3/2 is
excellent for all φ, and 2− Ẋ1 very clearly is “far off” on
this very detailed scale. Therefore, we below will work
with the asymptote 2− Ẋ3/2(t), and we present data for
the time regime 20 < t < 400 in Figs. 9 and 10.

Let us now further zoom in on the φ dependent velocity
corrections (4.9) to Ẋ . Fig. 9(a) shows vφ(t)−2−Ẋ3/2 as
a function of Ẍ3/2 = 3/(2t2)

(
1 − (3/2)

√
π/t

)
. Accord-

ing to the prediction (4.9), the plot for small values of
Ẍ3/2 → 0 should show essentially straight φ-dependent
lines, all approaching vφ(t)− 2− Ẋ3/2 → 0 as Ẍ3/2 → 0,
and in fact, that is what they do.

Fig. 9(b) shows one further step of precision aiming
now at the precise value of v∗: (4.9) predicts

vφ(t)− v∗ − Ẋ

Ẍ
= − ηsh

∂ξΦ∗

∣∣∣∣
φ fixed

+ O

(
g(φ)

t

)
. (4.11)

However, the evaluation of this expression with Ẋ3/2

(4.10) yields φ-independent corrections of order 1/
√

t:

vφ(t)− v∗ − Ẋ

Ẍ
= (4.12)

=
vφ(t)− v∗ − Ẋ3/2 − c2

t2 −
c5/2

t5/2 + O
(

1
t3

)
3

2t2

(
1− 3

2

√
π
t

)
+ O

(
1
t3

) =

= −
(

ηsh

∂ξΦ∗

∣∣∣∣
φ

+
2c2

3

)(
1 +

3
2

√
π

t

)
−

2c5/2

3
√

t
+ O

(
1
t

)
.

Remember, that the constants c2, c5/2 etc. depend on the
initial conditions. If we plot

(
vφ(t)−v∗−Ẋ3/2

)
/Ẍ3/2 as a

function of 1/
√

t, we expect these functions to approach
a φ-dependent constant as 1/

√
t→ 0.

Fig. 9(b) shows, that they in fact do so — but only if we
choose the correct value of v∗! The dotted lines show the
function for v∗ = 2, the fat solid lines for v∗ = 2.000075.
The latter value is the analytical prediction of v∗ taking
the finite gridsize corrections of the numerical code into
account, as explained in Sections IVA1 and VF6. The
two values of v∗ differ in the 6th significant figure. Fig.
9(b) is an extremely precise demonstration of the correct-
ness of our analytical arguments from both Sections III
and V, since it clearly confirms our predictions to more
than 6 significant figures!

Our test in Fig. 9(b) is so sensitive, because we divide
in Fig. 9(b) by the small quantities Ẍ3/2, which are of
order 10−5. Without this division, the difference of the
v∗’s in Fig. 9(a) is not yet visible. The plot therefore
shows, that we fully understand the numerical features
of pulled front solutions, both the effect of the finite dif-
ference code and of the finite system size, as discussed
above in Sect. IVA.

We can eliminate v∗ and the nonuniversal corrections
−c2/t2 etc. by plotting (vφ(t)−v0.5(t))/Ẍ3/2(t) as a func-
tion of 1/t. Now (4.9) predicts

vφ(t)− v0.5(t)
Ẍ3/2

= − ηsh

∂ξΦ∗

∣∣∣∣
φ

+ O

(
1
t

)
. (4.13)

Fig. 10 shows this plot with the solid lines for φ = 0.99,
0.5, 0.01, and 0.0001. The crosses on the axis are not(!)
extrapolated from the curves, but they mark the pre-
dicted asymptotes − ηsh/∂ξΦ∗|φ for φ = 0.99, 0.5, 0.01,
and 0.0001. The necessary data on ηsh(ξ) and Φ∗(ξ) are
derived from the numerical solution of the appropriate
o.d.e.’s, and completely independent from the numerical
integration of the p.d.e. for the initial value problem. The
coincidence of the extrapolated p.d.e. data with the ana-
lytically predicted, but also numerically evaluated o.d.e.
asymptote is most convincing.
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t term, that depends
on the initial conditions. The crosses result from solving the o.d.e.’s for Φ∗ and ηsh numerically and plotting −ηsh/∂ξΦ

∗
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for

φ = 0.99, 0.5, 0.01, and 0.0001. Eq. (4.13) predicts, that the lines should extrapolate to the crosses. Since they do, and since
Ẍ(t) is of order 10−5 at the latest times, these data confirm our predictions with extreme precision.
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2. Analysis of the shape data

We now leave the analysis of the velocity data, and
come back to the shape data from Fig. 5. Table I imme-
diately yields

φ(ξX , t)− Φ∗(ξX)
Ẋ ηsh(ξX)

= 1 + O

(
1
t

)
. (4.14)

This gives the clue on how to rewrite the shape data
φ(ξX , t) at different times as a function of ξX . The so-
lutions of the o.d.e.’s for ηsh and Φ∗, that are needed
for evaluating (4.14), are derived numerically. They have
been used for generating the crosses in Fig. 10, and are
now also used in Fig. 11.

Plotting the l.h.s. of Eq. (4.14) allows us to combine
the information about the interior from Fig. 5(a) and
the information about the leading edge from Fig. 5(b)
into one plot. In Fig. 11(a), we do not divide by Ẋ , but

present the data at the small times t = 1, 2, 3, 5, 7,
10, and 20 as −(φ− Φ∗)/ηsh over ξX . In Fig. 11(b), the
data at the large times t = 20, 40, 70, 100, 140, 200, 300,
and 400 are shown as (φ − Φ∗)/(Ẋηsh) over ξX , where
we use again the approximation Ẋ = Ẋ3/2 (4.10). For
comparison, both plots also show Φ∗(ξX) and ξX = 0 as
dashed lines. Also Fig. 11(b) has the large time predic-
tion (φ− Φ∗)/Ẋηsh → 1 as t→∞ as a dotted line.

Fig. 11(a) shows how the interior of the front rapidly
relaxes. Fig. 11(b) demonstrates, (i) that with Ẋ = Ẋ3/2

(4.10), we indeed have chosen the correct asymptote, (ii)
how the predicted asymptotic value (φ−Φ∗)/(Ẋηsh)→ 1
as t→∞ is approached from above in the interior of the
front, and from below in the leading edge.

Note, that in Fig. 11(b) all lines approximately cross
one point of height unity far in the leading edge. We
have no intuitive or analytical understanding of this ob-
servation.
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FIG. 11. In this figure, the shape data from Fig. 5 are represented differently, using data from the numerical solution
of the o.d.e.’s for Φ∗ and ηsh. a) −(φ − Φ∗)/ηsh (solid) as a function of ξX for times t = 1, 2, 3, 5, 7, 10, and 20. b)
(φ − Φ∗)/(Ẋ3/2ηsh) (solid) as a function of ξX for times t = 20, 40, 70, 100, 140, 200, 250, 300, 400. Dotted line: predicted

asymptote (φ− Φ∗)/(Ẋηsh)→ 1 as t→∞. Dashed lines in (a) and (b) give Φ∗(ξX) and ξX = 0 for orientation.
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V. GENERALIZATION OF PULLING TO
HIGHER ORDER (SETS OF) EQUATIONS

A. Introduction

In the last fifteen years, it has become clear that
many of the observations and intuitive notions concern-
ing the behavior of front solutions of the nonlinear diffu-
sion equation (1.1) generalize to higher order equations
or systems of coupled p.d.e.’s. First of all, taking the
spreading velocity v∗ of a linear perturbation of the un-
stable state [Eqs. (1.13) and (1.14)] as the generalization
of v∗ = 2

√
f ′(0) for (1.1), we observe that there are

numerous examples [9,12,17,22,61,64–66] of fronts whose
asymptotic velocity approaches the pulled value v∗ given
by (1.14). So there is no doubt that the mechanism of
fronts “being pulled along” by the leading edge gener-
alizes to a large class of equations. Second, there is
also quite a bit of evidence for the existence of a pushed
regime in more complicated equations. In a number of
cases, the pushed regime was again found to be related
to the existence of a strongly heteroclinic solution with
velocity v† > v∗. An example of a non-monotonic but
still uniformly translating pushed front solution in the
EFK equation is shown in Fig. 8 of [65]. In the quintic
complex Ginzburg Landau equation, it has turned out
to be possible to solve for a strongly heteroclinic front
profile exactly, and in numerical simulations it was em-
pirically found that this solution does play the same role
in the front selection process as the pushed front Φ† in
the nonlinear diffusion equation [66]. Pushed fronts also
emerge in coupled amplitude equations for chaotic do-
main boundary motion [21]. For extensions of the Swift-
Hohenberg equation there are numerical and perturba-
tive indications that both pulled and pushed regimes oc-
cur, and that one can tune the front velocity from one
regime to the other with one of the nonlinear terms in
the equation [65].

Much of our understanding of the above general find-
ings has been intuitive and empirical, or based on con-
jectures. We shall now show that many of our results for
the second order nonlinear diffusion equation generalize
to other equations, not only to (sets of) partial differ-
ential equations of higher order, but also to other types
of equations like difference-differential equations [22,71],
or differential equations with memory kernels [107]. We
will concentrate here on equations whose relevant front
solutions are uniformly translating. For p.d.e.’s in this
class, essentially the whole classification of nonlinearities
and initial conditions φ(x, 0) in Table III applies, pro-
vided the uniformly translating fronts Φv, and in partic-
ular the fronts Φ∗ and Φ† exist. Again Cases I – IV need
to be distinguished, and again Case IV with its slow alge-
braic relaxation is not tractable by linear stability anal-
ysis methods. Instead, the calculation of Section III has
to be generalized. This generalization, that we will de-
velop below, leads to new and explicit predictions for the

front convergence in the pulled regime, as summarized in
Table I. The fact that these predictions for various ex-
amples are fully corroborated numerically in Section VF
makes us conclude that the velocity selection and relax-
ation of uniformly translating fronts is now essentially
understood.

While this paper was nearing completion, it was be-
coming increasingly clear that even though pattern form-
ing fronts — both fronts leading to regular periodic pat-
terns, as in the Swift-Hohenberg equation [73,60,65], and
fronts leading to chaotic patterns as in some parame-
ter ranges of the complex Ginzburg-Landau equation —
present additional complications, our most central re-
sult for the universal algebraic velocity relaxation carries
over even to these. We will leave a discussion of this to
the future, and focus here on p.d.e.’s whose asymptotic
pulled fronts are uniformly translating front solutions of
the type Φ∗(x − v∗t), just as in the nonlinear diffusion
equation.

In writing this section, we face the following dilemmas:

(i) The extension of both the stability considerations
of uniformly translating front solutions of section
II and of the relaxation analysis of pulled fronts
of section III depends quite crucially on two ingre-
dients: First, that the front propagation into un-
stable states is in the pulled regime, and, second,
that there is a family of uniformly translating front
around Φ∗(x−v∗t): Only then can the relaxation in
the front interior be along the manifold of front so-
lutions according to φ(x, t) = Φv(t)(ξX) + O(1/t2).
However, to our knowledge there is no general the-
ory concerning the conditions under which fronts
are pulled and concerning the multiplicity of front
solutions: For particular equations under study or
for some restricted classes of equations, one can of-
ten convince oneself that the front should be pulled
and that Φ∗ should be a member of a family of front
solutions, but a general theory is lacking.

(ii) An immediate jump to the most general (but ab-
stract) case is pedagogically not justified and more-
over would assume knowledge of the derivation of
the pulled velocity v∗ that most readers probably
do not have.

We have chosen to deal with this dilemma by simply
summarizing our main assumptions and our results con-
cerning the extensions of section II to more general equa-
tions below, relegating the details of the analysis to Ap-
pendices. Then, we proceed with the relaxation analysis
of pulled fronts in two steps. We first consider in Section
VC the analysis of a single p.d.e. which is of first order
in time but of arbitrary order in space. After that, the
extension to p.d.e.’s that are of higher order in time is
discussed in Section VD. The extension to even more
general classes of equations, including difference equa-
tions or integro-differential equations, e.g., with memory
kernels, is then immediate, as we discuss in Section V E.
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We there also discuss coupled equations. Section VF
contains the explicit analytical and numerical results for
the EFK equation (1.3), for the streamer equations (1.4)
as an example for coupled equations, and for an example
of a difference-differential equation, Eq. (1.5). We also
briefly discuss an extension of the F-KPP equation with
a second order temporal derivative (1.6) and with a mem-
ory kernel (1.7), and we present our analytical results
on finite difference schemes for the numerical solution of
nonlinear diffusion equations (1.8), that we already veri-
fied in the simulations of the previous section.

B. Basic assumptions underlying the relaxation
analysis of pulled fronts; generalization of Table III

We investigate nonlinear partial differential equations,
as well as difference or integro-differential equations and
the generalization to coupled equations under the as-
sumption that

A The front solutions are pulled, i.e., starting from
a steep initial condition the asymptotic front speed
vsel equals the linear spreading speed v∗ given by
Eqs. (5.16) and (5.17) below.

B The asymptotic front is uniformly translating , i.e.,
of the form Φ∗(x − v∗t), and it is a member of
a continuous family of uniformly translating solu-
tions Φv(x− vt), parametrized by v.

If the above assumptions hold, most of the results of
section II can be generalized:
• The family of solutions can be parametrized as well by
the steepness λ which gives the rate of exponential decay
of Φv(ξ) as ξ →∞.
• If there is one or more strongly heteroclinic solution
then at each velocity where such a solution exists, there
is a strongly heteroclinic mode of the linear stability oper-
ator which changes stability, i.e., which is such that the
mode is stabilizing for velocities larger than this value
and destabilizing for velocities less than this value. This
implies in particular that the pushed velocity v† is the
largest velocity at which there is a strongly heteroclinic
front solution Φ†v, and that front solutions with v < v†

are unstable (see Appendix G).
• The linear spreading velocity v∗, given by Eqs. (5.16)
and (5.17) below, is the pulled front speed and coincides
with the minimum of the velocities of uniformly trans-
lating fronts v(λ) (see Section VC2).
• If there are no strongly heteroclinic solutions with
v > v∗, all front solutions with v > v∗ are stable to
perturbations which are steeper than λ∗, while front so-
lutions with v < v∗ are unstable: the pulled front solution
is then the slowest and steepest solution which is stable.
• The fronts that dynamically emerge from steep ini-
tial conditions (falling off faster than e−λ∗x) converge to
pulled fronts propagating with speed v∗.

To put our general assumptions A and B into perspec-
tive, we finally note that for a given equation, the exis-
tence of a family of front solutions can often be demon-
strated by counting arguments. This is shown in Ap-
pendix F for p.d.e.’s of first order in time that are invari-
ant under space reflection. Such counting arguments also
lead one to expect that generically either Φ∗(x−v∗t) is a
member of a continuous family of front solutions, or there
is no uniformly translating front solution Φ∗ at all. For,
if there is a discrete set of front solutions (solutions Φv

exist at isolated values of the velocity), there is no par-
ticular symmetry reason to have one at v = v∗, since the
existence of an isolated solution depends on the full non-
linear behavior of the ordinary differential equation, not
just on the properties near one of the asymptotic fixed
points. We comment in Section VI on what might hap-
pen when there is no uniformly translating front solution,
even though the front dynamics is pulled.

C. Pulled front relaxation in single p.d.e.’s of first
order in time

In the present Section C, we discuss an arbitrary p.d.e.

F
(
φ, ∂xφ, . . . , ∂N

x φ, ∂tφ
)

= 0 . (5.1)

for a single field φ(x, t). We assume that F is analytic in
all its arguments, and that the equation admits homoge-
neous steady state solutions φ = 0 and φ = 1. Moreover,
we assume φ = 0 to be linearly unstable and φ = 1 to be
linearly stable, and we consider fronts connecting these
two asymptotic states as in (2.12). Also, according to
our assumption B, Eq. (5.1) admits a continuous fam-
ily of uniformly translating fronts φ(x, t) = Φv(x − vt),
which remain bounded so that Φv does not diverge. The
linearization of some front φ(x, t) about some Φv gener-
alizes from (2.23) – (2.25) to

φ(x, t) = Φv(ξ) + η(ξ, t) , ∂tη = Lv(ξ)η + O(η2) ,

(5.2)

where the linear operator is now

Lv(ξ) =
N∑

n=0

fn(ξ) ∂n
ξ + v ∂ξ , fn(ξ) =

−Fn(ξ)
FN+1(ξ)

.

(5.3)

Here Fn(ξ) denote the derivatives of F :

Fn(ξ) =
δF (φ(0), . . . , φ(N+1))

δφ(n)

∣∣∣∣ φ(m)=∂m
ξ Φv(ξ), m<N+1

φ(N+1)=−v∂ξΦv(ξ)

,

(5.4)

In order that the Fn have no singularities, FN+1 should
be of one sign; for convenience, we take FN+1(ξ) < 0
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for all ξ. and rescale time t such, that FN+1(∞) = −1
because it simplifies the notation in the Appendices. We
also assume, that FN (ξ) neither vanishes nor changes sign
for any ξ.

1. The pulled velocity v∗

In the pulled regime and with steep initial conditions,
the asymptotic front velocity equals the linear spread-
ing velocity v∗, i.e., the velocity with which a localized
perturbation spreads according to the linearized equa-
tions. Since the calculation of v∗ forms the basis of our
subsequent analysis, we summarize its derivation in the
context of our first order p.d.e. (5.1). The general formu-
lation in Section VE, which is necessary to treat differ-
ence equations or integro-differential equations, is closest
to the original “pinch point” analysis [56,58], from which
many of these ideas originally emerged.

In the rest frame (x, t), the equation linearized about
φ = 0 is

∂tφ = L0(∞)φ =
N∑

n=0

an∂n
x φ , (5.5)

which is the generalization of (2.52), and where we intro-
duced the short hand notation an = fn(∞). The disper-
sion relation ω(k) of a Fourier mode e ikx−iω(k)t is given
by

−iω(k) =
N∑

n=0

an (ik)n . (5.6)

Since we later will again characterize fronts by their ex-
ponential spatial decay rate λ = −ik, we already define
the growth rate s(λ) of the steepness λ as

s(λ) = Re (−iω(iλ)) = Re
N∑

n=0

an (−λ)n (5.7)

for later use. We restrict the analysis to equations, where
the temporal growth rate Re (−iω(k)) in (5.6) will be
negative for short wave length Fourier modes k, i.e.,
where

Re aN (±i)N ≤ 0 , (5.8)

since otherwise all smooth solutions will be unstable
against perturbations of arbitrarily short wave lengths.

An arbitrary initial condition φ(y, 0) will develop un-
der (5.5) as

φ(x, t) =
∫ ∞
−∞

dy G(x− y, t) φ(y, 0) , (5.9)

G(x, t) =
∫ ∞
−∞

dk

2π
eikx−iω(k)t . (5.10)

in generalization of (2.56).
For steep initial conditions, i.e., when φ(y, 0) in (5.9)

is sufficiently localized in y, the asymptotic behavior of
φ(x, t) can be obtained from the large-time asymptotics
of the Green’s function G. For large t, one can use a
saddle point integration [105] (also known as “steepest
decent approximation”) to evaluate the integral (5.10).
The result will depend on the frame of reference. In an
arbitrary coordinate system ξ = x − vt with v fixed, a
saddle point kn is a saddle of −iω(k) + ivk,

d

dk
(−iω(k) + ivk)

∣∣∣∣
kn

= 0 =⇒ dω(k)
dk

∣∣∣∣
kn

= v . (5.11)

A polynomial of degree N (5.6) generically has N − 1
saddle points kn, n = 1, . . . , N −1, (5.11) in the complex
k plane. Because of (5.8), we can be sure, that the inte-
gral (5.10) actually will be dominated by a saddle point
integral expanded about the saddle point k∗(v) with the
maximal growth rate:

Re (−iω(k∗) + ivk∗) = max
n

Re (−iω(kn) + ivkn) .

(5.12)

It will have

D(v) =
1
2

d2iω(k)
dk2

∣∣∣∣
k∗(v)

, Re D > 0 . (5.13)

The expansion of the integral (5.10) about the saddle
point k∗(v) can be performed in a frame with arbitrary
velocity v and yields

G(x, t) = eik∗ξ+
(
−iω(k∗)+ivk∗

)
t Iv(ξ, t) , ξ = x− vt .

(5.14)

The integral Iv(ξ, t) is expressed after substitution of
(k − k∗) = κ/

√
t as

Iv =
∫ ∞
−∞

dκ

2π
√

t
eiκξ/

√
t−Dκ2+O(D3κ3/

√
t)

=
e−ξ2/(4Dt)

√
4πDt

(
1 + O

(
D3ξ

D2t

))
(5.15)

for large t and arbitrary ξ. Obviously, D plays the role
of a diffusion coefficient. D3 is defined below in (5.28).

Generically, the growth (or decay) rate of the saddle
point mode Re (−iω(k∗(v)) + ivk∗(v)) will be nonvan-
ishing. We now define the particular linear spreading or
pulled velocity v∗ through Re (−iω(k∗) + iv∗k∗) = 0, or

v∗ =
Im ω(k∗)

Im k∗
=

s(−ik∗)
Im k∗

, k∗ = k∗(v∗) . (5.16)

This means, that in the frame moving with velocity v∗,
the absolute value of the Green’s function (5.14) neither
grows nor decays in leading order. v∗, k∗ and ω(k∗) are
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determined by (5.12), (5.16), and by Eq. (5.11) evaluated
at v∗:

dω(k)
dk

∣∣∣∣
k∗

= v∗ . (5.17)

In addition, the solution determines D = D(v∗) (5.14).
Note that the leading order large t result (5.14), (5.15)

for the Green’s function G in (5.9) is diffusive just like in
(2.57), despite the fact, that we are dealing here with an
equation with higher spatial derivatives. We shall see in
Sects. VD and VE that this even remains true for much
more general types of equations.

Note also that in our discussion of p.d.e.’s in this
and the next Section, we only take the spatial Fourier
transform of G(x, t), as in (5.10) above. However, the
most general formulation, which also applies to differ-
ence equations or integro-differential equations, is most
conveniently done by taking a Fourier transform in space
and a Laplace transform in time. In the present context,
the Green’s function G(k, ω) is then defined as

G(k, ω) =
∫ ∞

0

dt

∫ ∞
−∞

dx e−ikx+iωt G(x, t) =
1

S(k, ω)
,

where S(k, ω) = iω(k)− iω , (5.18)

and the long time asymptotics is determined by the dou-
ble roots of the characteristic equation S(k, ω(k)) = 0
(5.6). We defer this type of formulation, which closer
follows the “pinch point” analysis of [56,58], to Section
VE.

In practice, one first will drop condition (5.12) and
generically derive N solutions (k∗, v∗) from (5.16), (5.17)
for a given dispersion relation. This raises the question
of their physical nature, and of their relevance for the
long time dynamics. First of all, typically there are solu-
tions with λ∗ ≡ Imk∗ > 0 and v∗ > 0, which describe a
profile spreading to the right and solutions with λ∗ < 0
and v∗ < 0 describing the spreading to the left. These
solutions are related by symmetry, if the original p.d.e. is
symmetric under space reflection: if (5.6) only contains
even powers of k and if the an are real, then for every
solution (k∗, v∗) there is a solution (−k∗,−v∗). More-
over, there can be various nontrivial saddle point solu-
tions which are not related by symmetry, if the degree
N of spatial derivatives is sufficiently large. The saddle
point analysis as well as the arguments of Section II E 1
for the competition between different solutions of the lin-
earized equations clearly show that then the dynamically
relevant solution is the one with the largest velocity v∗.

However, choosing the saddle point with the largest v∗

might according to counting arguments (as in Appendix

F) be inconsistent with assumption B from Sect. VB of
the existence of a family of uniformly translating fronts,
since one expects the multiplicity of front solutions to be
different for every saddle point (v∗, k∗). The discussion of
this issue we defer to Section VI D, as for the applications
discussed in Sect. VF, this problem does not rise.

2. Uniformly translating solutions Φv

In the analysis of the nonlinear diffusion equation in
Sect. II, we saw that the uniformly translating solution
Φv decayed as e−λξ with λ real for v ≥ v∗. Here,
λ = λ−(v) (2.16) is the smallest root of v = s(λ)/λ,
where s(λ) (5.7) here equals s(λ) = λ2 + 1. v ≥ v∗

implied Re k = 0, λ = Im k > 0. These front solu-
tions were found to be stable to perturbations which are
steeper than the front solution Φv itself, provided there
is no pushed front solution vc = v†. The solutions with
v < v∗ had Re k 6= 0, Re ω 6= 0, and were unstable.

We will focus here on the immediate generalization of
these results, i.e., assume that fronts with v ≥ v∗ have
Re k = 0 , so that their asymptotic spatial decay is as
e−λξ. In particular, this gives for the pulled fronts

Re k∗ = 0 , Re ω(k∗) = 0 ,

λ∗ ≡ Im k∗ > 0 , s(λ∗) ≡ Im ω(k∗) > 0 , (5.19)

D =
1
2

d2s

dλ2

∣∣∣∣
λ∗

> 0, Im D = 0 .

With this assumption, we consider only the generic case,
that dynamically accessible, uniformly translating solu-
tions of real equations will be characterized by a real spa-
tial decay rate λ, and a real growth rate s, and that they
will leave a homogeneous state φ = 1 behind. This might
exclude some pathological cases of uniformly translating
front solutions, that are not characterized by a real λ9.

If the saddle point obeys (5.19), the expression for
t � 1 (5.14) and v = v∗ for the Green’s function G
reduces to

G(ξ, t) = e−λ∗ξ e−ξ2/(4Dt)

√
4πDt

(
1 + O

(
D3ξ

D2t

))
,

ξ = x− v∗t . (5.20)

Except for a rescaling of time and length scales with the
real constants λ∗ and D, this is precisely the functional
form of (2.57).

If we consider the velocity v(λ) of the family of front
solutions whose asymptotic spatial decay is as e−λξ with
real λ, then it is straight forward to see, that Φ∗ is the

9Elsewhere [75], we will discuss an extension of the notion of uniformly translating fronts, that allows to write pattern forming
fronts in the Swift-Hohenberg equation as uniformly translating solutions of a suitable set of complex amplitude-like modes,
and for these Re k 6= 0. Similar considerations hold for fronts in the complex Ginzburg-Landau equation itself [66].
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slowest of all these uniformly translating fronts: Accord-
ing to the linearized equation (5.5) the solution in the
leading edge is as e−λx−iω(iλ)t. The resulting velocity v
is

v(λ) =
−iω(iλ)

λ
=

s(λ)
λ

for all λ . (5.21)

The minimum of this curve is given by

0 =
∂v(λ)
∂λ

∣∣∣∣
λ∗

=
1
λ

(
∂s(λ)
∂λ

− s(λ)
λ

)∣∣∣∣
λ∗

. (5.22)

d2v(λ)
dλ2

∣∣∣∣
λ∗

=
2D

λ∗
> 0 . (5.23)

Taking into account that ω(k) is analytic, Eqs. (5.21)
and (5.22) are equivalent to Eqs. (5.16) and (5.17), be-
cause at a saddle of an analytic function, the maximum
as a function of real k coincides with a minimum as a
function of imaginary k.

The analysis of the stability of the uniformly trans-
lating solutions proceeds largely as in Section II C: the
existence of a family of front solutions implies, accord-
ing to counting arguments as given in Appendix F, that
there is at least a continuous spectrum of eigenmodes of
the stability operator. Indeed, if we again write the tem-
poral behavior of the stability eigenmodes as e−σt and
the steepness of the modes as Λ, and if we first focus on
the spectrum of perturbations, that is also continuous in
Λ, then we have for the front solutions with v(λ) ≥ v∗:
σ = −(s(Λ)− v(λ)Λ). Expanding the Λ of the perturba-
tion about the λ of the front, we then get

σ(Λ) ≈ −
(

∂s(λ)
∂λ

− v(λ)
)

(Λ− λ) ,

= −λ
∂v(λ)
∂λ

(Λ− λ) , (5.24)

using (5.21) in the second line. Since we showed above
that ∂v/∂λ < 0 for λ < λ∗ (v > v∗), σ(Λ) > 0 for
Λ > λ. This generalizes the result (2.43) for the non-
linear diffusion equation that the front solutions Φv are
stable to modes from the continuous spectrum which are
steeper than the front itself. In addition to the contin-
uous Λ spectrum, there again may be discrete perturba-
tion modes associated with the existence of pushed front
solutions.

We show in Appendix F that the existence of a strongly
heteroclinic front solution Φ† implies the existence of un-
stable strongly heteroclinic stability modes for v < v†,
again in parallel to the results for the nonlinear diffusion
equation. The central assumption of our further analysis
is, of course, that we are in the pulled regime, and hence
that such solutions are absent.

We finally note that the fact that v(λ) has a min-
imum for λ = λ∗, v = v∗, implies that for v < v∗

front solutions decay to zero in an oscillatory manner
for ξ → ∞ as they have Rek 6= 0. By expanding the

function v(λ) about the bifurcation point at v∗, λ∗, it is
easy to show that for small |v − v∗|, this branch of solu-
tions has Im(k − k∗) = λ− λ∗ ≈ (λ∗)2v′′′/(12D)|v− v∗|,
Rek ≈

√
λ∗|v − v∗|/D, where v′′′ = ∂3v(λ)

∂λ3 |λ∗ . One usu-
ally has v′′′ < 0 and then such solutions are unstable
according to a slight generalization of (5.24).

3. The leading edge representation

As in our analysis of the pulled dynamics of the nonlin-
ear diffusion equation, we will find it expedient to study
the large time asymptotics in the leading edge by using
the leading edge representation ψ. For uniformly trans-
lating fronts, the immediate generalization of the trans-
formation (2.62) from Section II is

ψ(ξ, t) = φ(x, t) eλ∗ξ , ξ = x− v∗t . (5.25)

The linearized dynamical evolution equation for the lead-
ing edge representation now generalizes (2.61) to

∂tψ = Dψ + o
(
ψ2 e−λ∗ξ

)
, (5.26)

where

D = e λ∗ξ Lv∗(∞) e−λ∗ξ =
N∑

n=2

Dn ∂n
ξ . (5.27)

A short calculation (Appendix H) reveals that the con-
stants Dn can be expressed in terms of the dispersion
relation ω(k) (5.6) as as

Dn =
1
n!

∂n

∂(−λ)n

(
− iω(iλ)− v∗λ

)∣∣∣∣
λ=λ∗

, (5.28)

=
1
n!

∂n

∂(−λ)n

(
s(λ) − v∗λ

)∣∣∣∣
λ=λ∗

.

Note, that in this generalized leading edge representation
(5.26) the coefficients of ψ and ∂ξψ again are vanishing.
This is an immediate consequence of the proper choice of
v∗ and λ∗. In fact, for uniformly translating fronts (5.19),
D0 = 0 is equivalent to the proper choice of the velocity
v∗ (5.16), and D1 = 0 is equivalent to the saddle point
equation (5.17) fixing λ∗ for given v∗. D2 is obviously
identical to D from (5.13). We will see below, that in the
leading edge, the contribution proportional to D2 = D
gives the dominant contribution, while D3 appears only
in the subdominant term, similar to what we already ob-
served in (5.15). We therefore will essentially recover the
results of the nonlinear diffusion equation (1.1), which
had the particular property of Dn = 0 for n > 2.
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4. The relaxation analysis

We have now laid the ground work for the extension
of the analysis of the relaxation of pulled fronts for our
more general equation (5.1) in the case of steep initial
conditions

lim
x→∞

φ(x, 0) eλ∗x = 0 . (5.29)

The analysis in Section III for the nonlinear diffusion
equation (1.1) was based on the following steps:

Step 1.
The proper choice of the comoving coordinate sys-
tem

ξX = x− v∗t−X(t) , Ẋ =
c1

t
+

c3/2

t3/2
+ . . . ,

(5.30)

allowing for a logarithmic shift X(t) ∝ ln t in com-
parison with to the asymptotic coordinate system
ξ = x− v∗t,

Step 2.
An expansion of φ in the nonlinear interior part of
the front about the asymptotic front profile Φ∗(ξX),
taken, however, not in the frame moving with veloc-
ity v∗, but in the one with velocity v(t) = v∗+Ẋ(t)

Step 3.
A resummation of this expansion of φ in the cross-
over region towards the leading edge, where the new
variable z = ξ2

X/(4t) is introduced for the region
with ξX ≥ O(

√
t).

Step 4.
An analysis of the leading edge in variables z and t,
where φ now is linearized about the unstable state
φ = 0, and not about Φ∗. The boundary condi-
tion that φ crosses over to the functional form of
Step 3 for z � 1, and that φ is steeper than Φ∗ for
z � 1, now determine both the functional form of
φ and the constants cn/2 in Ẋ. (We can think of
this as a matching procedure.) In this analysis, the
fact that the parameter α 6= 0 in the asymptotics
Φ∗(ξX) = (αξX + β)e−λ∗ξX is nonzero (see Section
II E 2) plays a central role.

The generalization of these steps to our equation (5.1)
which is of higher order in space, is actually quite straight
forward. We again use the general coordinate ξX (5.30)
with Ẋ(t) to be determined. The interior expansion
η(ξX , t) = φ − Φ∗(ξX) from Section III B applies liter-
ally, except that we now need to use the linear operator
L∗ = Lv∗(ξX) from (5.3). Accordingly, also the resum-
mation (3.31) again is valid, and we again have

φ = Φv(t)(ξX) + O

(
1
t2

)
, (5.31)

with Φv a uniformly translating solution of (5.1) with ve-
locity v. The correction O(1/t2) is again non-vanishing
and non-universal, in that it will depend on the precise
initial conditions.

The expansion of the interior shape towards the lead-
ing edge (3.36) depends on both the differential operator
L∗ for ξ →∞, and on the shape of the asymptotic front
Φ∗ (3.32). Here, in particular, α 6= 0 plays a central
role. Again, both the fact that the pulled velocity is
precisely defined through the condition that two roots of
the dispersion relation coincide (see the discussion in Sec-
tion VC2), and considerations similar to those in Section
II E 2 show that again

Φ∗(ξ) = (αξ + β) e−λ∗ξ , ξ � 1 , (5.32)

with, generally,

α 6= 0 , (5.33)

since a calculation resulting in a generalization of (2.66)
can be set up along similar lines: If there is a bounded
uniformly translating solution Φv(ξ), then upon going to
the leading edge representation and upon integrating the
equation for ψv(ξ) once over ξ, we find that α can be ex-
pressed in terms of the spatial integral over all nonlinear
terms.

How does the dominating leading edge now develop un-
der inclusion of the higher spatial derivatives? First of all,
we observe, that the large-t-solutions (5.20) and (2.57) of
the linearized equation (5.5) are in leading order identi-
cal up to rescaling, i.e., the saddle point approximation
again renders the spreading around the asymptotic expo-
nential solution diffusive. This suggests that the leading
edge can be analyzed by the same type of similarity vari-
ables (z, t) as in (3.40). In fact, in our shifted coordinate
frame ξX (5.30), the leading edge representation is

φ(x, t) = e−λ∗ξX ψ(ξX , t) , (5.34)

∂tψ = Dψ + Ẋ (∂ξ − λ∗)ψ + o(e−λ∗ξX ) , (5.35)

with the differential operator D from Eq. (5.27). After a
rescaling with

ζY = λ∗ξX , τ = D2λ
∗2t , dn =

Dnλ∗n

D2λ∗
2 ,

Ẏ =
Ẋλ∗

D2λ∗
2 =

C1

τ
+

C 3
2

τ3/2
+ . . . ,

Cn = cnλ∗
(
D2λ

∗2
)n−1

, (5.36)

this equation takes the form

∂τψ =

(
∂2

ζ +
N∑

n=3

dn∂n
ζ

)
ψ + Ẏ (∂ζ − 1)ψ , (5.37)
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which is very analogous to Eq. (3.38) except that there
are now the higher derivatives ∂n

ζ . As we show explicitly
in Appendix I, the leading edge can be analyzed with the
same ansatz as in (3.40) and (3.42),

ψ(ζY , τ) = e−z G(z, τ) , z =
ζ2
Y

4τ
, (5.38)

G(z, τ) =
√

t g−1
2

(z) + g0(z) +
g 1

2
(z)
√

t
+ . . . ,

and in rescaled variables, one gets

C1 =
−3
2

, C 3
2

=
3
√

π

2
, g−1

2
(z) = 2α

√
z , (5.39)

g0(z) = β (1− 2z) + 3α(1 + d3)z − 2αd3z
2 − 3α

2
F2(z)

+ 6α
√

π z

(
1−M

(
−1
2

,
3
2
, z

))
.

In these variables, the result is identical with that for the
nonlinear diffusion equation in Section III, except for the
additional terms proportional to d3 in g0(z). In particu-
lar, the velocity parameters C1 and C3/2, and the leading
order contribution g−1

2
(z) are independent of the value

of d3, just like the subdominant term β from (5.32) only
enters g0(z), but not the other quantities. That for the
problem written in variables z and t, d3 can only con-
tribute in subleading order, is in fact immediately obvi-
ous after the transformation. It is surprising, however,
that the subleading velocity coefficient C3/2 is indepen-
dent of the value of d3. We will find it to be unchanged
even for much more general equations.

In terms of the unscaled variables, the universal alge-
braic convergence of the velocity is given by

v(t) = v∗ − 3
2λ∗t

(
1−

√
π

(λ∗)2Dt

)
+ · · · (5.40)

where v∗ and λ∗ are determined by the saddle point equa-
tions (5.16) and (5.17) together with (5.12), and where
the diffusion coefficient D (5.13) equals D2 from (5.28).
The central results of this analysis are summarized in
Table I.

D. Generalization to single p.d.e.’s of higher order in
time

We now proceed in two further steps of generalization.
In the present Section we first discuss partial differential
equations for a single field φ(x, t), which include higher
order temporal derivatives as well as mixed temporal and
spatial derivatives. These are of the form

F
(
φ, ∂xφ, . . . , ∂N

x φ, ∂tφ, . . . , ∂M
t φ,

∂t∂xφ, . . . , ∂M
t ∂N

x φ
)

= 0 , (5.41)

generalizing (5.1) to M ≥ 1. In Section VE, we then also
deal with difference or integro-differential equations and
coupled equations.

The extension to equations of type (5.41) presents no
conceptual difficulty — we will follow here a route that is
the immediate generalization of the discussion in the pre-
vious Section. The new elements in the discussion will
be the fact that higher order temporal derivatives and
mixed spatial and temporal derivatives are generated in
the dynamical equation for the leading edge representa-
tion ψ, but as we shall see, these turn out not to affect
the expression for the velocity relaxation and for the re-
laxation of the shape in the interior front region. The
notation in (5.48) – (5.54), which may strike the reader
at first sight as unnecessarily heavy, prepares for the dis-
cussion of even more general equations and sets of equa-
tions in VE, where finding a proper scalar leading edge
representation is less straight forward than here.

If we linearize (5.41) about φ = 0, we get an equation
of the form

M∑
m=0

N∑
n=0

amn ∂m
t ∂n

x φ(x, t) + o(φ2) = 0 . (5.42)

For solving the initial value problem in time, it is conve-
nient to Fourier-transform in space

φ(x, t) =
∫ ∞
−∞

dk

2π
eikx φ̃(k, t) . (5.43)

Below we will use the superscript ˜ to denote a quantity
Fourier transformed in space.

The Fourier transformation of (5.42) results in an
o.d.e. of order M for every Fourier mode φ̃(k, t):

M∑
m=0

Am(k) ∂m
t φ̃(k, t) = 0 , Am(k) =

N∑
n=0

amn(ik)n .

(5.44)

Obviously, we need M functions to specify the initial
conditions. We write these as an M -dimensional vector:

φ̃ = (φ̃, ∂tφ̃, . . . , ∂M−1
t φ̃) . (5.45)

The equation of motion (5.44) can now be written in
Fourier space as

∂t φ̃(k, t) = −T̃ (k) · φ̃(k, t) , (5.46)

with the M ×M matrix

T̃ (k) =


0 −1 0 · · · 0
0 0 −1 0

...
. . .

0 0 0 · · · −1
A0
AM

A1
AM

A2
AM

· · · AM−1
AM

 . (5.47)
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For later use, we here already define the matrix

Ŝ(k, ω) = AM (k)
(
T̃ (k)− iω 1

)
, (5.48)

which later will result from a Fourier-Laplace transforma-
tion as in (5.18). Here and below, we use the superscriptˆ
to denote a Fourier-Laplace transformed quantity, to dis-
tinguish it from spatially Fourier transformed quantities,
which are indicated with a tilde.

The M eigenvalues ωm(k) (m = 1, . . . , M) of the ma-
trix T̃ (k) are determined by the characteristic equation
S

(
k, ωm(k)

)
= 0, where S(k, ω) is the characteristic poly-

nomial

S(k, ω) = det Ŝ(k, ω) =
M∑

m=0

Am(k) (−iω)m

=
M∑

m=0

N∑
n=0

amn (−iω)m (ik)n . (5.49)

Defining the eigenvectors Ũ m(k) of the matrix T̃ (k)
through

T̃ (k) · Ũ m(k) = iωm(k) Ũ m(k) , (5.50)

and their adjoints through

Ũ
†
m(k) · Ũ n(k) = δmn , (5.51)

the matrix T̃ (k) can be written as

T̃ (k) =
M∑

m=1

iωm(k) Ũ m(k)× Ũ
†
m(k) , (5.52)

where × denotes the outer product.
Now (5.46) is easily integrated in time and the Fourier

transformation inverted. We find in generalization of
(5.9) and (5.10):

φ(x, t) =
∫

y

G(x− y, t) · φ(y, 0) , (5.53)

G(x, t) =
M∑

m=1

∫
dk

2π
eikx−iωm(k)t Ũ m(k)× Ũ

†
m(k) .

(5.54)

Obviously, the quickest growing mode Ũ m(k) — char-
acterized now by Fourier mode k and branch of solu-
tions m — again will be determined by a saddle point
(5.16), (5.17). We now have the choice from M × N
saddle points. As in (5.12), we again pick the one with
the largest velocity v∗ in the comoving frame and deter-
mine its k∗ = iλ∗, D etc. As before, we assume uniform
translation as in (5.19), so that k∗ and ω(k∗) are purely
imaginary. Suppose, that v∗ lies on the branch ω1(k).
We then find in the comoving frame ξ = x− v∗t for long
times t:

G(ξ, t) = e−λ∗ξ e−ξ2/(4Dt)

√
4πDt

Ũ 1(k
∗)× Ũ

†
1(k
∗) + . . . ,

(5.55)

in generalization of (5.20).
This result shows, that in the long time limit, the

Green’s function G projects onto the eigendirection
Ũ 1(k

∗). The result (5.55) is not restricted to the ex-
plicit form (5.47) of the matrix T , so it applies to sets of
coupled p.d.e.’s just as well, as they also can be written
in the form (5.46). Projection onto the eigendirection
Ũ 1(k

∗) then defines the scalar leading edge equation re-
sulting from coupled p.d.e.’s. We will further exploit this
property in the following section.

In the present section, we just use (5.55) to calculate v∗

and λ∗, and to demonstrate why the leading edge trans-
formation catches the relevant dynamics. Proceeding as
in earlier Sections, the scalar equation (5.42) now trans-
forms under the leading edge transformation with v∗ and
λ∗ to

φ(x, t) = e−λ∗ξ ψ(ξ, t) , ξ = x− v∗t , (5.56)

0 =
M∑

m=0

N∑
n=0

amn (∂t − v∗∂ξ + v∗λ∗)m (∂ξ − λ∗)n
ψ

=
M∑

m=0

M+N∑
n=0

bmn ∂m
t ∂n

ξ ψ(ξ, t) . (5.57)

Just as the amn from Eq. (5.42) can be written in terms
of derivatives of the characteristic polynomial S(k, ω)
(5.49) as

amn =
(i∂ω)m

m!
(−i∂k)n

n!
S(k, ω)

∣∣∣∣
(k=ω=0)

, (5.58)

so can the bmn in (5.61) be written as derivatives as well,
similar to (5.28). It simplifies the notation to use coor-
dinates expanded about the saddle point by introducing
the variables

Ω = ω − v∗k , q = k − k∗ = k − iλ∗ , (5.59)

and by defining

S∗(q, Ω) = S(k∗ + q, ω∗ + v∗q + Ω) , (5.60)
k∗ = iλ∗ , ω∗ = v∗k∗ .

When we will later consider the Fourier-Laplace trans-
form of ψ(ξ, t) in the frame ξ, the frequency in this frame
will turn out to be Ω and the wavenumer will turn out
to be q, since e−iωt+ikx = e−λ∗ξ(e−iΩt+iqξ). Accordingly,
the long time–small gradient expansion of ψ(ξ, t) will cor-
respond to a small Ω–small q expansion. Indeed, in line
with this interpretation, inspection of (5.57) shows that
the bmn are simply
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bmn =
(i∂ω)m

m!
(−i)n(∂k + v∗∂ω)n

n!
S(k, ω)

∣∣∣∣
(k∗,v∗k∗)

=
(i∂Ω)m

m!
(−i∂q)n

n!
S∗(q, Ω)

∣∣∣∣
(q=Ω=0)

. (5.61)

We will discuss the precise correspondence between the
formulation in terms of S and the dispersion relation
ω1(k) below, and just note here that the saddle point
equations that determine λ∗ and v∗ are expressed by

b00 = S∗(0, 0) = 0 , b01 = −i∂qS
∗(q, Ω)|q=Ω=0 = 0 .

(5.62)

After dividing the whole equation (5.57) by b10 and in-
troducing the notations

Dn = −b0n

b10
, w =

b11

b10
, τ1 =

b20

b10
, etc. , (5.63)

the terms with the lowest derivatives are(
∂t + τ1 ∂2

t + . . . −D2 ∂2
ξ −D3 ∂3

ξ + . . . (5.64)

+ w ∂t∂ξ + . . .
)

ψ + o(ψ2 e−λ∗ξ) = 0 .

This is the leading edge equation in its most general form.
Note, that after the leading edge transformation, the co-
efficient w may be nonzero, even if the coefficient a11 = 0
of ∂t∂xφ in the original equation of motion (5.44) van-
ishes.

To show the connection with our discussion of first
order equations in earlier Sections, it is instructive to an-
alyze the relation between S and the dispersion relation.
The various branches ωm(k) or Ωm(q) of the dispersion
relation are defined implicitly through the roots of

S(k, ωm(k)) = 0 ⇐⇒ S∗(q, Ωm(q)) = 0 , (5.65)

As before, let ω1(k) (Ω1(q)) be the branch on which the
saddle point determining v∗ lies. Upon differentiating
(5.65) once with respect to k or q and using Eqs. (5.61)
and (5.62), we get our familiar result

dω1(k)
dk

∣∣∣∣
k∗

= v∗ ⇐⇒ dΩ1(q)
dq

∣∣∣∣
q=0

= 0 . (5.66)

Likewise, by differentiating (5.65) twice, we get

d2Ω1(q)
dq2

∣∣∣∣
q=0

=
d2ω1(k)

dk2

∣∣∣∣
k∗

= −
∂2

qS(q, Ω)
∂ΩS(q, Ω)

∣∣∣∣∣
q=Ω1(0)=0

.

(5.67)

If we combine this with the expression D = −b02/b10, we
recover our familiar expression

D =
∂2

qS(q, Ω)
2i∂ΩS(q, Ω)

∣∣∣∣∣
q=Ω1(0)=0

=
id2Ω1(q)

2dq2

∣∣∣∣
q=0

,

=
id2ω1(k)

2dk2

∣∣∣∣
k∗

. (5.68)

For the case of an equation which is of first order in
time, one can easily check that our general expression
for Dn reduces to the one given before in (5.28), Dn =
(−i/n!)dnω/d(ik)n|k∗ .

Before we discuss the consequences of (5.64), we note
in passing that formally, we could have proceeded directly
from the linearized equation of motion (5.42) to the lead-
ing edge representation (5.57), and hence to (5.64), by
choosing the two parameters v∗ and λ∗ such, that the
two conditions b00 = 0 = b01 are obeyed. The detour
from this straightforward transformation via the saddle
point analysis was taken to bring out the physical origin
of the transformation in this context and to show why
one has to use the saddle point (v∗, λ∗) with the largest
v∗. In addition, it explicitly shows, how a particular “di-
rection” U1(k

∗) of the vector field φ corresponds to the
slow leading edge dynamics. We will see in the next sec-
tion, that for coupled equations, there is some freedom
in choosing the most physical projection in defining the
scalar leading edge variable.

Let us now analyze the implications of the leading edge
representation (5.64). First of all, we observe, that a uni-
formly translating pulled front Φ∗(ξ) = e−λ∗ξΨ∗(ξ) still
will have the form (5.32) Ψ∗(ξ) = (αξ + β), and that the
argument for α 6= 0 from Section II E 2 still does apply.

Can the extra terms τ1 ∂2
t ψ, w ∂t∂ξψ etc. change our

relaxation prediction from Section VC? A short inspec-
tion shows, that after rewriting the equation in variables
z and t, cf. (5.36) – (5.38) and (3.39), w ∂t∂ξψ will be
of the same subleading order in 1/

√
t as D3 ∂3

ξψ, while
both the terms τ1∂

2
t ψ and D4 ∂4

ξψ will be one order lower.
Also, when rewriting the equation in the variable ξX =
x − v∗t − X(t), higher temporal derivatives will create
terms like Ẍ and Ẋ2 from the exponential factor in the
leading edge transformation φ(ξX , t) = e−λ∗ξX ψ(ξX , t).
Since these are of order 1/t2, they do not influence the
leading and subleading terms.

We do not repeat the detailed calculation here, be-
cause it completely follows the lines of the earlier one.
We find, that the result again is given by (5.39), except
that the subleading g0(z) picks up another polynomial
contribution from w besides the one from D3, namely

g0(z) = g0(z)
(
(5.39)

)
+ 2α wλ∗

(
z2 − 3

4

)
. (5.69)

The uniform velocity relaxation is invariably

v(t) = v∗ − 3
2λ∗t

(
1−

√
π

(λ∗)2Dt

)
+ · · · , (5.70)

and the interior part of the front is again slaved to the
tip like
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φ(x, t) = Φv(t)(ξX) + O

(
1
t2

)
. (5.71)

So the predictions from Table I also apply to p.d.e.’s
with higher temporal derivatives like (5.40), if the front
is pulled.

Thus we reach the important conclusion that the uni-
versal power law convergence is not an artefact of the
diffusion-type character of the nonlinear diffusion equa-
tion: it holds generally in the pulled regime of uniformly
translating fronts, because the expansion about the saddle
point, which governs the dynamics of the leading edge
representation ψ, is essentially diffusive.

E. Further generalizations

We now complete the last step in our discussion, and
show that our results hold much more generally: even if
the original dynamical equation is not a p.d.e., the dy-
namical equation for the appropriate leading edge vari-
able ψ is still the same diffusion type equation (5.64),
and consequently, our results for the velocity and shape
relaxation from Table I do apply.

When we have a set of coupled equations, we can view
them as components of a vector field, using a notation as
in (5.46) with a different matrix T̃ (k). The main com-
plication we are facing in this case is that the leading
edge dynamics then not only “selects” a velocity v∗ in
the pulled regime, but also an associated eigendirection
Ũm(k) in this vector space — this eigendirection deter-
mines the relative values of the various fields in the lead-
ing edge of the front. The long time dynamics in the
frame moving with the pulled velocity v∗ is then asso-
ciated with a slow dynamics along this eigendirection,
while the dynamics along the other eigendirections is ex-
ponentially damped. The appropriate scalar leading edge
variable ψ will then turn out to be nothing but the pro-
jection of the dynamics along this slow direction.

The second complication is that we now consider equa-
tions, whose temporal dependence is not necessarily of
differential type ∂N

t : they may just as well be of dif-
ference type or contain memory kernels. To treat such
equations, we also perform a Laplace transformation in
time besides the Fourier transformation in space just as
in (5.18) by defining

φ̂m(k, ω) =
∫ ∞

0

dt eiωt φ̃m(k, t) . (5.72)

We thus consider dynamical systems that after the
Fourier-Laplace-transformation are of the form

M∑
m=1

Ŝnm(k, ω) φ̂m(k, ω) =
M∑

m=1

H̃nm(k) φ̃m(k, t = 0) ,

n = 1, . . . , M (5.73)

The terms on the right hand side generally arise upon
partial integration of temporal derivative terms, when

we take the Laplace transform. They contain the initial
conditions. Before exploring the implications of (5.73),
we first discuss in more detail the type of systems whose
linear dynamical equations can be written in the above
form.

Sets of p.d.e.’s: Single or coupled p.d.e.’s can gen-
erally be written in the matrix notation

(
∂t + T̃ (k)

)
·

φ̃(k, t) = 0, Eq. (5.44), and after Laplace transformation
immediately yield (5.73), with the matrices Ŝ(k, ω) =

AM (k)
(
T̃ (k)− iω 1̃

)
as before in (5.48), and H̃(k) =

AM (k) 1. The leading edge behavior of single p.d.e.’s,
where the matrix T̃ (k) has the explicit form (5.47), was
discussed in the previous section. For coupled p.d.e.’s,
the derivation of a scalar leading edge equation is not
as straight forward, and also leaves some freedom, as we
discuss below and for an example in Appendix J. Never-
theless, we will see that the results summarized in Table
I are robust, in that they do not depend on the particu-
lar choice made. We discuss examples of single p.d.e.’s in
Sects. VF1 and VF4, and an example of sets of p.d.e.’s
in VF2. Of course, if one has a p.d.e. for a single scalar
field φ, one can directly take the Fourier-Laplace trans-
form without writing φ as a vector field. This yields a
slight generalization of (5.73), the most important differ-
ence being that H then also depends on ω. Our results
can obviously also be obtained via this route – see Section
VE2 for further details.

Difference-differential equations: When we have dif-
ference equations in space, the equations can also be re-
duced to the above form — the only difference is that
upon Fourier transformation in space, the k-values can be
restricted to lie in a finite interval (the “Brillouin zone”,
in physics terminology). An example will be discussed
in Section VF3. Likewise, when we analyze a dynami-
cal equation with finite time difference, the Laplace in-
tegral can be replaced by a sum over integer times, but
the “frequency” remains a continuous variable. The only
difference is that upon Laplace inversion, the integral is
over a finite interval of ω values. Examples of difference
equations in both space and time, arising from numerical
schemes, can be found in VF6.

Equations with memory or spatial kernels: If the equa-
tion has memory and/or spatial kernels of the type∫

dx′
∫ t

0
dt′K(x − x′, t − t′)φ(x′, t′) [107,108], then upon

Fourier-Laplace transformation these just give rise to
terms of the form K̂(k, ω)φ̂(k, ω) in (5.73), as will be
illustrated with a simple example in Section VF5. The
only difference with the case of p.d.e.’s from this point
of view then is that the elements Ŝmn then are not poly-
nomials in ω and k, but more general functions of these
arguments.
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1. Long time asymptotics of the Green’s function via a
Fourier-Laplace transformation

We now return to the problem of extracting the
long time behavior of the dynamical equation (5.73) in
Laplace-Fourier representation. In analogy with our ear-
lier analysis of p.d.e.’s, and following [56,58], we intro-
duce the Green’s function10 G(k, ω) of the linear equa-
tions, defined by

Ĝ(k, ω) = Ŝ(k, ω)−1 . (5.74)

Ŝ
−1

is the inverse of the matrix Ŝ. Eq. (5.73) now im-
mediately can be solved as

φ̂(k, ω) = Ĝ(k, ω) · H̃(k) · φ̃(k, t = 0) . (5.75)

Now write the eigenvectors and eigenvalues of Ŝ in anal-
ogy to (5.50) – (5.52) as

Ŝ(k, ω) · Û m(k, ω) = um(k, ω) Û m(k, ω) . (5.76)

The determinant of Ŝ can now be written as

S(k, ω) = det Ŝ(k, ω) =
M∏

m=1

um(k, ω) . (5.77)

and the characteristic equation

um(k, ωm(k)) = 0 (5.78)

determines the dispersion relation ωm(k) of the mode
with eigendirection Û m(k, ω). Note that each eigenvalue
um(k, ω) may be a nonlinear function of k and ω. There-
fore it can happen that the equation um(k, ω) = 0 spec-
ifies more than one branch ω(k) of the dispersion rela-
tion. For simplicity, we will not distinguish this possi-
bility with our notation, but we stress, that our results
are generally valid. For equations of the form (5.46),
we can identify um(k, ω) = AM (k) (iωm(k)− iω) and
Û m(k, ω) = Ũ m(k).

Upon inverting the Fourier and the Laplace trans-
formation, where the Laplace inversion requires a suffi-
ciently large real γ, we now find for the Green’s function
in the comoving frame ξ = x− vt:

φ(ξ, t) =
∫

dy G(ξ − y, t) ·
∫

dy′ H(y − y′) · φ(y′, 0) ,

G(ξ, t) =
∫ −iγ+∞

−iγ−∞

dω

2π

∫ ∞
−∞

dk

2π
eikξ−i(ω−vk)t Ĝ(k, ω) ,

Ĝ(k, ω) =
M∑

m=1

Û m(k, ω)× Û
†
m(k, ω)

um(k, ω)
. (5.79)

The expression for G(ξ, t) is the immediate generaliza-
tion of (5.54). When we evaluate the Fourier-Laplace
inversion of G(ξ, t) in the long time limit, each term in
the sum (5.79) can be evaluated by a so-called “pinch
point” analysis [56,58] making use of expansions about
zeroes of um(k, ω). We then need to deform not only the
contour of k-integration, as in the saddle point analysis
in the previous sections, but also the contour of ω inte-
gration. The pinch point analysis is based on first eval-
uating the k-integral, and then the resulting ω-integral.
Alternatively, we can extract the long time dynamics by
first closing the ω-contour, and then performing the k-
integral. This last route is closer to the one of Sect. VD.
For a further discussion of both approaches, we refer to
Appendix K.

As always, there can in principle be several saddle
point or pinch point solutions, and if this happens, the
relevant one is the one corresponding to the largest ve-
locity v∗. If we again write u1(k, ω) for the eigenvalue on
which this solution lies and as before use a superscript
∗ for functions which are written in terms of the trans-
formed variable Ω and q as in (5.59) and (5.60), the saddle
or pinch point equations assume their familiar form

u1(k∗, ω∗) = 0⇐⇒ u∗1(0, 0) = 0 , (5.80)
(∂k + v∗∂ω)u1(k, ω)|k∗,ω∗ = 0⇐⇒ ∂qu

∗
1(q, Ω)|0,0 = 0 .

Note that since S is the product of all eigenvalues, cf.
Eq. (5.77), these equations are equivalent to those given
before in terms of S, Eqs. (5.62). Likewise, we get for
the long time asymptotics of the Green’s function the
immediate generalization of (5.55),

G(ξ, t) = (5.81)

e−λ∗ξ e−ξ2/(4Dt)

√
4πDt

Ũ 1(k
∗, ω∗)× Ũ

†
1(k
∗, ω∗)

i∂ωu1(k, ω)|(k∗,Ω∗)
+ . . . ,

which is our usual Gaussian expression again, with D
given by its familiar expression (5.68).

Our strategy in deriving the long–time front dynamics
is always to use the long–time evaluation of the Green’s
function just to show how the pulled velocity v∗ and
the dominant exponential behavior e−λ∗ξ emerge, and
to motivate why the leading edge variables ψ(ξ, t) have

10A different choice for the definition of the Green’s function is Ĝ(k, ω) = Ŝ(k, ω)−1 · Ĥ(k), which avoids the convolu-
tion of the initial condition with H(z) in (5.79), and also for equations of the form (5.44) leads to the easier expression

Ĝ(k, ω) =
(
T̃ (k)− iω 1̃

)−1
. The advantage of the choice (5.74) is that we consistently work with derivatives of S = det Ŝ. We

will discuss in Sect. VE4, that the choice of Ĝ and of possible projections actually does not change the universal results from
Table I.
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essentially slow, diffusive dynamics. The analysis of the
slow ψ dynamics and the matching to the front interior is
most properly done by going back to the p.d.e.(s) for the
spatio-temporal evolution of ψ. Switching back to the
space–time formulation for ψ comes out most directly
from Fourier-Laplace inversion of the small-q and small-
Ω expansion of the ψ-equation. Indeed, for ψ(ξ, t), the
appropriate Green’s function is eλ∗ξG(ξ, t), and accord-
ing to (5.79) we have

eλ∗ξ G(ξ, t) =
∫

dΩ
2π

∫
dq

2π
eiqξ−iΩt Ĝ

∗
(q, Ω) , (5.82)

which confirms that Ω and q are the proper Fourier-
Laplace variables of the leading edge variables ψ.

2. The case of a single field

In contrast to our earlier matrix notation, a single
equation for a single field φ(x, t) after Fourier-Laplace
transformation can also be written in a scalar form:

S(k, ω) φ̂(k, ω) = (5.83)

initial conditions
{
φ̃(k, 0), ∂tφ̃(k, t)|t=0, · · ·

}
.

The most common and direct way to arrive at the above
equation is by performing a Fourier-Laplace transforma-
tion on the original dynamical equation. In this case,
one immediately gets the characteristic function S(k, ω)
on the left hand side, while the partial integrations (or
partial summations in the case of difference equations,
where also the derivatives in the initial condition terms
are replaced by finite difference versions) of higher order
temporal derivatives yield ω-dependent initial condition
terms on the right in (5.83). Of course, we can also arrive
at this equation via the route of Section VD, where we
introduced a vector notation for a scalar p.d.e. of higher
order in time, so that the dynamical equation is of matrix
form (5.73). Indeed, when we then calculate detS(k, ω)

with S(k, ω) = AM (k)
(
T̂ (k)− iω1̂

)
by developing the

determinant along the last row of the matrix, one easily
sees that one just retrieves the above result.

Of course, the asymptotic analysis of φ(ξ, t) paral-
lels the earlier discussion of Section VD, irrespective of
whether or not the equation is written in vector form.
Again, the asymptotic spreading speed is given by a sad-
dle point of S(k, ω). However, as we have seen, for an-
alyzing the proper front dynamics, we want to return
to the dynamical equation for the leading edge variable
ψ. For the case of a p.d.e., this can be done simply by
transforming the original equation for φ to the leading
edge representation ψ(ξ, t) = eλ∗ξφ(ξ, t), but for differ-
ence equations or equations with memory terms, addi-
tional steps are clearly necessary. The general analysis is
based on the observation that in the leading edge repre-
sentation, the dynamical equation is of the form

S∗(q, Ω) ψ̂(q, Ω) = initial condition terms. (5.84)

If we expand S∗ in q and Ωm and perform an inverse
Fourier-Laplace transform, we immediately arrive at the
p.d.e. (5.57) for ψ(ξ, t) with coefficients bmn given in
terms of the derivatives of S∗ according to (5.61)! From
there on, the analysis completely follows the one in the
last part of Section VD, and we recover again all our fa-
miliar expressions for the relaxation of the front velocity
and the profile.

We stress that for a given equation, the transforma-
tion to the leading edge variable can be done exactly. If
this is done for a p.d.e., we again get a p.d.e. of finite
order. As no approximations are made, the resulting
equation still allows one to study the fast or small scale
dynamics in the linear region as well. For finite difference
equations or for integro-differential equations, the trans-
formation to the leading edge variable ψ still results in a
finite difference equation of integro-differential equation:
the usual p.d.e. for ψ then only emerges if in addition a
gradient expansion is made for ψ. Such an expansion will
obviously contain an infinite number of terms. (We will
see explicit examples of this in Sections V F3, VF 5, and
VF6). Normally, such an expansion is, of course, not
of much use. However, when we turn to the long time
relaxation towards pulled fronts, ψ becomes arbitrarily
smooth and slow and hence the derivatives become nicely
ordered. Moreover, the long-time large-scale relaxation
of ψ corresponds precisely to the low-frequency small-
wavenumber behavior of the Fourier-Laplace transform
and this is why the expansion of S∗ gives the proper
evolution equation to analyze the front relaxation: As
(5.61) shows, the coefficients bmn in this equation are
then nothing but the expansion coefficients of the char-
acteristic equation S∗(q, Ω) for small q and Ω. In other
words, independently of whether we started from a differ-
ential, a difference or an integro-differential equation, we
find at this point always the same p.d.e. for the leading
edge variable ψ, and hence the same expression for the
velocity relaxation!

Let us finally remark, that instead of the leading edge
transformation, we here also could have performed a lead-
ing edge projection onto the slow dynamics, as discussed
in the following section. We will show, that the universal
results of Table I do not depend on this choice.

3. The case of a set of fields and possible projections

For dynamical equations which inherently consist of
sets of equations for more than one field, one obviously
can only arrive at an equation for a scalar variable ψ by
some kind of projection onto the slow direction. The way
in which one projects out the slow dynamics clearly en-
tails a certain freedom of choice. For a given equation,
the “best” choice may be obvious, but in general there
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is some ambiguity. We will illustrate this explicitly in
Appendix J.

We note first, that a vector field ψ̂(q, Ω) can be decom-
posed into its dynamical components π̂m(q, Ω) as

ψ̂(q, Ω) =
M∑

m=1

π̂m(q, Ω) Û
∗
m(q, Ω) , (5.85)

π̂m(q, Ω) = Û
∗
m

†
(q, Ω) · ψ̂(q, Ω) , (5.86)

where the superscript ∗ on the eigenvectors U m and
eigenvalues um is to remind us that these are written
in terms of the variables q and Ω.

Each π̂m(q, Ω) has its own dynamics, cf. (5.84),

u∗m(q, Ω) π̂m(q, Ω) = initial condition terms m . (5.87)

The natural projection onto a scalar leading edge vari-
able is thus onto the eigendirection with the largest v∗,
which we denote with Û

∗
1(q, Ω). We then identify the

scalar leading edge variable with π̂1(q, Ω). Inverting now
the Fourier-Laplace transformation, we find a p.d.e. for
π1(ξ, t) of the form (5.57) with the coefficients

b(1)
mn =

(i∂Ω)m

m!
(−i∂q)n

n!
u∗1(q, Ω)

∣∣∣∣
(q=Ω=0)

. (5.88)

Defining the saddle point parameters just as in (5.62)
and (5.63) for Eq. (5.57), they in general will depend
on whether we derived the coefficients from S or from
u1. However, we will argue below, that the saddle point
parameters v∗, λ∗ and D do not depend on this choice.

Though the projection onto Û
∗
1(q, Ω) is formally the

simplest one, the direction of projection is actually not
very practical, as it depends on q and Ω. In practice, one
will want to project along a fixed direction. Our previous
analysis, summarized by Eq. (5.81), indeed suggested to
project the long time dynamics of the Green’s function
onto U1(k∗, ω∗) = Û

∗
1(0, 0). Projection of ψ̂(q, Ω) onto

this eigendirection yields

ψ̂p(q, Ω) = Û
∗
1

†
(0, 0) · ψ̂(q, Ω) (5.89)

=
M∑

m=1

π̂m(q, Ω) Û
∗
1

†
(0, 0) · Û∗m(q, Ω) .

Now only for q ≈ 0 ≈ Ω, we have ψ̂p(q, Ω) ≈ π̂1(q, Ω),
while for finite q and Ω, also π̂m(q, Ω) with m > 1 will
contribute. Inverting the Fourier-Laplace transform and
working in the frame ξ = x − v∗t, we find the contribu-
tions from π̂m>1 to decay exponentially in time. Such
contributions we encountered already a number of times
before, for the first time in Sect. II E. The more impor-
tant contribution comes from the coefficient of π̂1, which

is Û
∗
1

†
(0, 0) · Û∗1(q, Ω) = 1 − O(q, Ω). These algebraic

corrections in q and Ω actually modify the bmn for the
projection ψ̂p(q, Ω) in comparison to (5.88), except for
the diffusion coefficient D, as we will see below.

Still other projections might be physically useful, and
we discuss an explicit example in Appendix J. We now
turn to the consequences of all these different choices.

4. The freedom of projection and the universality of Tables I
and IV

At first sight, the leading edge transformation or the
different leading edge projections each determine their
own saddle or pinch point equations or expansion pa-
rameters bmn, compare, e.g., (5.61) with (5.88).

Nevertheless, the definition of the saddle or pinch point
parameters v∗, λ∗ and D in Table IV does not depend on
the choice of the leading edge transformation or projec-
tion, and hence, the universal relaxation results for the
velocity v(t) and the shape Φv(t) in Table I are indepen-
dent of these as well.

For the saddle/pinch point equations of Table IV this
conclusion is based on two observations: (i) S(k, ω) con-
tains u1(k, ω) as a factor (5.77). The saddle point is
determined by a double root in k of u1(k, ω), which can
be written as

u∗1(q, Ω) = b
(1)
10

(
−iΩ + Dq2 + . . .

)
(5.90)

= u1(k, ω) = b
(1)
10

(
−i(ω − v∗k) + D(k − k∗)2 + . . .

)
.

D here obviously is defined as D = −b
(1)
02 /b

(1)
10 with b

(1)
mn

from (5.88). The root (5.90) fully determines the lowest
derivatives of S =

∏
m um at the saddle point q = 0 = Ω

— up to a constant prefactor, resulting from the other
factors in S. (ii) The saddle point parameters are defined
by homogeneous equations (5.62) or ratios of derivatives
(5.63). So the prefactors depending on differentiation of
either u1 or S will cancel in the equations that determine
v∗, λ∗ and D. In particular, D defined by D = −b02/b10

in (5.63) is identical with D = −b
(1)
02 /b

(1)
10 here and with

other D’s resulting from different projections.
The subleading terms D3 and w for the scalar lead-

ing edge variable in (5.64), in contrast, do depend on
the choice of projection. Hence, as there always will be a
leading edge equation of form (5.64), and as the universal
results summarized in Table I do not depend on the val-
ues of D3 or w, Table I is a universal result, independent
of the particular projection chosen. The subleading con-
tribution g0(z) in the leading edge will always be solved
as in (5.69), so it will not depend on initial conditions,
but it will depend on the direction of projection through
the parameters D3 and w.

In conclusion, we reiterate that the relaxation results
also apply to dynamical equations other than p.d.e.’s,
because the dynamics of the leading edge representation
ψ becomes arbitrarily slow and diffusive for long times.
This allows one to do a gradient expansion in time and
space for ψ, even if the original equations are not p.d.e.’s!
In this case the path of analysis via the Fourier-Laplace
transformation and pinch point analysis is necessary. For
equations, that are of differential form in time, Fourier
transformation in space and saddle point analysis is suf-
ficient.

54



Definition of ωm(k) : S(k, ωm(k)) = 0

Saddle point equations: (definition: λ∗ = ik∗)
S(k∗, ω∗) = 0 ⇐⇒ ω∗ = ωm(k∗)

(∂k + v∗∂ω)S|(k∗,ω∗) = 0 ⇐⇒ v∗ =
∂ωm(k)

∂k

∣∣∣∣
(k∗,ω∗)

Comoving frame:

Im (ω∗ − v∗k∗) = 0 ⇐⇒ v∗ =
Im ωm(k∗)

Im k∗

Diffusion constant:

D =
−i (∂k + v∗∂ω)2 S

2 ∂ωS

∣∣∣∣∣
(k∗,ω∗)

⇐⇒ D =
i∂2ωm(k)

2 ∂k2

∣∣∣∣
(k∗,ω∗)

In general, only saddle points with Re D > 0 are relevant.
In this paper only saddle points with D real are considered.

Table IV: The saddle or pinch point equations, determining v∗, k∗ = iλ∗ and D for a given characteristic
polynomial S(k, ω) = det Ŝ(k, ω). If there are several saddle point solutions (v∗, λ∗), take the one with the
largest v∗.

F. Applications

In this subsection, we support the above arguments by
summarizing the results of numerical simulations of three
equations — a spatially fourth order p.d.e., a set of two
coupled p.d.e.’s and a difference-differential equation —
which are all in complete agreement with our predicted
universal relaxation trajectory as in Table I, consisting of
the velocity convergence (5.70), the slaved interior (5.71),
and the cross-over to a diffusive type of dynamics in the
leading ege for ξ >∼

√
t. We also briefly consider a p.d.e.

with second order temporal derivatives, an extension of
the nonlinear diffusion equation with a memory kernel,
and the discretization corrections in the Euler and in the
semi-implicit numerical integration method for a nonlin-
ear diffusion equation. The last is an example of a par-
tial difference equation, both in time and in space, and
we numerically verified its predictions already in Section
IV.

1. The EFK equation

The EFK (“extended Fisher Kolmogoroff”) equation is
an extension of the nonlinear diffusion equation [65,64],
which has been investigated quite intensely in the math-
ematical literature [70]. It reads

∂tφ = ∂2
xφ− γ∂4

xφ + φ− φ3 . (5.91)

A straightforward calculation [63] shows that the saddle
point equations (5.16), (5.17) and (5.13) yield

v∗ = 2λ∗ (1− 2γλ∗2) ,

λ∗ =
(

1−
√

1− 12γ

6γ

)1/2

,

D =
√

1− 12γ for γ <
1
12

. (5.92)

For γ > 1/12, the saddle point solution has Re k∗ 6= 0,
and in agreement with this, the pulled fronts in this equa-
tion are then found to be non-uniformly translating and
to generate periodic patterns [64]. We will therefore fo-
cus here on the regime γ < 1/12. The arguments of
the Appendix of [65] for the multiplicity of front solu-
tions (summarized in Appendix F) give evidence that this
equation indeed admits a family of uniformly translating
fronts in this regime. One also can prove, that the front
cannot propagate with a larger velocity than v∗, if the ini-
tial conditions are sufficiently steep [74,75]. The conver-
gence towards the pulled front solution should therefore
be given by Eq. (5.40) for v(t) and Eq. (5.31) or Eqs.
(5.38)–(5.39) for the interior of the leading edge of the
front profile. Fig. 12 shows some of the results of our nu-
merical simulations for v(t) at γ = 0.08. This value of γ
is closely below the bifurcation value γc = 1/12 = 0.083.
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The plot is of the same type as in Fig. 9(a) for the non-
linear diffusion equation.

The numerical grid sizes of the simulation are ∆x =
0.01 = ∆t. The system size is L = 200, the initial con-
dition is characterized by λinit = 20 and x0 = 25. The
analytical prediction for γ = 0.08 is according to (5.92):
D = 0.2, λ∗ =

√
5/3 = 1.29, and v∗ = 4.4 · λ∗/3 = 1.89.

The ratio between the 1/t- and the 1/t3/2-contribution
in v(t) according to (5.40) is measured on the time scale

T = 1/(λ∗2D) , (5.93)

as in the dimensional analysis (5.36). For γ = 0.08, we
have T = 3. The plot of Fig. 9(a) gave good results from
time t = 20 on, where T = 1. It is therefore consis-
tent, that the plot of Fig. 12 with T = 3 is good from
times t = 60 on. We thus plot here the time interval
60 ≤ t ≤ 200. One already can anticipate from the plot,
that again a correction of v∗ for the numerical finite dif-
ference code will be required, if we proceed to even higher
precision. In conclusion, we find the results to be in full
accord with our analytical predictions.
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dt
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vφ(t)-v
∗
-dtX3/2
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0.001

0.99

FIG. 12. Velocity relaxation in the EFK equation (5.91) for γ = 0.08: Plot of vφ(t) − 2 − Ẋ3/2 as a function of Ẍ3/2 as in
Fig. 9(a) for times 60 ≤ t ≤ 200. System size L = 200, front position x0 = 25, initial steepness λinit = 20 in (4.4). Grid sizes
∆x = 0.01 = ∆t.

2. The streamer equations

Streamers are discharge patterns which result from the
competition between an electron avalanche formation due
to impact ionization, and the screening of the electric
field by charges. For planar streamer fronts, the equa-
tion for the electron density σ and electric field E are
[15]

∂tσ = Dσ∂2
xσ + ∂x(σE) + σfstr(E) ,

∂tE = −Dσ∂xσ − σE , (5.94)

where we have assumed, that in the region x� 1, where
the electron density vanishes σ+ = σ(x → ∞, t) = 0,
the electric field E+ = E(x → ∞, t) does not change
in time: ∂tE

+ = 0. The field dependent ionization rate
has a functional form like, e.g., fstr(E) = |E| e−1/|E|.
This is the functional form we use in our simulations.
The state (σ, E) = (0, E+) is unstable, and also for
these equations it is known [15], that they admit a one

parameter family of uniformly translating front solu-
tions. The dispersion relation for linear perturbations
about the unstable state σ = 0, E = E+ < 0 reads
−iω(k) = ikE+ + fstr(E+)−Dσk2, where we choose to
analyze the leading edge in a projection onto the σ-axis.
The saddle point equations (5.16), (5.17) and (5.13) then
yield

v∗ = −E+ + 2
√

Dσfstr(E+) ,

λ∗ =
√

fstr(E+)/Dσ , (5.95)
D = Dσ . (5.96)

Again, the simulations of these equations show that the
velocity convergence follows our analytical prediction
(5.40). An example of our results is shown in Fig. 13
in a plot as in Figs. 9(a) and 12, where we track vari-
ous heights of the electron density σ. The dimensionless
time is T = 1/fstr(E+) = e1 = 2.718 for E+ = −1. We
plot our data for times 40 ≤ t ≤ 200, and again find our
predictions to hold.
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FIG. 13. Velocity relaxation in the streamer equations (5.94) for E+ = −1 and D = 0.1, plotted as in Figs. 9(a) and 12 for

times 40 ≤ t ≤ 200. Initial condition: Gaussian electron density σ(x, 0) = 0.9 e−x2
(thus λinit = ∞), E(x, 0) = −1. System

size L = 400, front position shifted back to x0 = 100, after it is reached. Grid sizes: ∆x = 0.01, ∆t = 0.0025.

3. A difference-differential equation

We now summarize some key elements of our analysis
[71] of the difference-differential equation

∂tCj(t) = −Cj + C2
j−1 , C0(t) = 0 , Cj�1(t) = 1 ,

(5.97)

with j integer. This equation originates from kinetic the-
ory [17]. If we transform with φj(t) = 1− Cj(t) to

∂tφj(t) = −φj + 2φj−1 − φ2
j−1 , (5.98)

φ0(t) = 1 , φj�1(t) = 0 ,

we have our usual notation with the state φj = 0 be-
ing unstable and the state φj = 1 stable. As usual, we
consider fronts between these states, starting from suf-
ficiently steep initial conditions. It is easy to see, that
such initial conditions will create a pulled front [71].

Equation (5.98) provides the first illustration of our ar-
gument from Sect. VE, that our analysis applies to dif-
ference equations as well — with the only difference, that
the spatial Fourier modes k now extend over a finite in-
terval or “Brillouin zone” 0 ≤ k < 2π only. Substitution
of the Fourier ansatz φj ∼ e−iωt+ikj into the equation of
motion linearized about the unstable state φj = 0

∂tφj = −φj + 2φj−1 (5.99)

yields the dispersion relation

−iω(k) = 2e−ik − 1 ⇐⇒ s(λ) = 2eλ − 1 . (5.100)

As discussed before, the long time asymptote of the lead-
ing edge is again determined by the saddle point which
obeys (5.13), (5.16) and (5.17). This results in

v∗ = 2eλ∗ =
2eλ∗ − 1

λ∗
(5.101)

When we choose the solution with v∗ > 0, the saddle
point equations are solved by

−ik∗ = λ∗ > 0 real
v∗ = 2eλ∗ = 4.31107 ,

λ∗ = (2eλ∗ − 1)/(2eλ∗) = 0.768039 , (5.102)
D = D2 = v∗/2 , Dn = (−)nv∗/n! .

The Dn are determined from (5.28). We now perform
the leading edge transformation

φj(t) = e−λ∗ξ ψ(ξ, t) , ξ = j − v∗t . (5.103)

The large-time, small-gradient expansion in the leading
edge now results in the p.d.e.

∂tψ = D∂2
ξψ + D3∂

3
ξψ + . . . . (5.104)

The velocity convergence should again be given by (5.40),
with v∗, λ∗ and D given by (5.102). We do find indeed
that the fronts in this equation are pulled, and that the
velocity convergence follows (5.40). This is illustrated
in Fig. 14, where we plot (v(t) − v∗ + 3/(2λ∗t))/t−3/2

as a function of 1/
√

t. v(t) = ẋ(t) is the velocity of
the front defined as x(t) =

∑∞
j=0 φj(t). The curve in

Fig. 14 should extrapolate to 3/(2λ∗) ·
√

π/(λ∗2D) =

3.0699 as 1/
√

t → 0. This predicted asymptote is
marked by the cross on the axis. Indeed, the data of
(v(t) − v∗ + 3/(2λ∗t))/t−3/2 for 40 ≤ t ≤ 4000 extrapo-
late very well to the predicted asymptote — also in view
of the fact, that t3/2 = O(2 · 105) at the latest times.
The slight offset at the end might be due either to finite
system size L or to finite numerical discretization ∆t.
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FIG. 14. Velocity relaxation for the difference-differential equation (5.97), where v(t) = ẋ(t), and x(t) =
∑∞

j=0
φj(t), see Eq.

(5.98). Plotted is here
(
v(t)− v∗ + 3/(2λ∗t)

)
/t−3/2 as a function of 1/

√
t for times 40 ≤ t ≤ 4000. The curve is predicted to

extrapolate to c3/2 as 1/
√

t→ 0. The predicted value of c3/2 is marked by the cross on the axis. Initial condition φj(0) = e−j2
.

System size N = 4000 grid points. Front shifted back to n0 = 75, after it has been reached. Temporal grid size ∆t = 0.0005.

4. Diffusion equation with second order time derivative

Quite recently, it was shown [80] that, not surprisingly,
fronts in a second order extension of the F-KPP equation,

τ2
∂2φ

∂t2
+

∂φ

∂t
=

∂2φ

∂x2
+ φ− φ3 , (5.105)

are also pulled. One interesting aspect of this equation
is that while the diffusive spreading in a first order dif-
fusion equation is, in a sense, infinitely fast, the second
order term gives a finite speed of propagation of the dis-
turbances.

As discussed in Section VD, our results immediately
apply to this equation, so the velocity and front relax-
ation is then given by Eqs. (5.70) and (5.71), with

v∗ =
2√

1 + 4τ2
,

λ∗ =
√

1 + 4τ2 , (5.106)

D =
1

(1 + 4τ2)2
.

The expression for D nicely illustrates the effictive renor-
malization of the diffusion coefficient due to the second
order time derivative.

5. An extension of the F-KPP equation with a memory
kernel

As an example of an equation with a memory kernel,
consider the extension of the F-KPP equation

∂tφ(x, t) = ∂2
xφ(x, t) +

∫ t

0

dt′K(t− t′)φ(x, t′)

− φk(x, t) , (k > 1) . (5.107)

Upon Fourier–Laplace transformation as in (5.18), this
equation is a scalar version of (5.73) with S(k, ω) =
iω − k2 + K̃(ω), and so according to our discussion of
Section V E, our analysis directly applies. If we take for
instance

K(t− t′) =
1√
πτ3

e−(t−t′)2/4τ2
3 , (5.108)

the equation reduces to the F-KPP equation in the limit
τ3 → 0, and the characteristic equation becomes

λ2 − s + eτ2
3 s2

erfc(τ3s) = 0 , (5.109)

where we follow the notation of Section V C2 in writing
s = Im ω, λ = Im k, and where erfc is the complementary
error function. The results for v∗, λ∗ and D, obtained by
solving (5.109) together with the saddle point condition
∂s/∂λ = s/λ|λ∗ numerically, are shown in Fig. 15.

Other examples of equations with memory kernels can,
e.g., be found in [107,108].
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FIG. 15. Plot of v∗, λ∗, and D as a function of τ3 for the extension (5.107) of the F-KPP equation with a memory kernel
(5.108).

6. Exact results for numerical finite difference schemes

The fact that our results also apply to finite differ-
ence equations has the important implication that if we
study a p.d.e. with pulled fronts numerically using a finite
difference approximation with gridsize ∆x and timestep
∆t, we can calculate v∗(∆x, ∆t) as well as v(t; ∆x, ∆t)
exactly. This allows us to estimate analytically the in-
trinsic discretization error in these quantities, and hence
to decide beforehand which grid and step size are needed
to obtain a given accuracy.

As a first illustration, suppose, that one integrates the
F-KPP equation (1.1) numerically with an explicit Euler
scheme. This amounts to approximating the p.d.e. by

uj(t + ∆t)− uj(t)
∆t

=

uj+1(t)− 2uj(t) + uj−1(t)
(∆x)2

+ uj(t)− uk
j (t) . (5.110)

Upon substitution of uj(t) ∼ est−λx, x = j ∆x into the
linearized equation (we again follow the notation of Sec-
tion VC2 by writing s = Im ω, λ = Im k), we obtain

e s∆t − 1
∆t

= 1 +
(

sinhλ∆x/2
∆x/2

)2

, (5.111)

which is straight forward to solve for s(λ; ∆x, ∆t). As we
emphasized above, by solving the saddle point condition
∂s/∂λ = s/λ|λ∗ = v∗, we can obtain the exact values
of v∗, λ∗ and D for any step and grid size, and in this
way determine the accuracy of the numerical scheme. In
general, these equations have to be solved by a simple nu-
merical iteration routine, but for small ∆x and ∆t, the
result can easily be calculated analytically: Expanding
in ∆x and ∆t, we find the dispersion relation

s(λ; ∆x, ∆t) = 1 + λ2 +
λ4(∆x)2

12
− (1 + λ2)2∆t

2
+ . . . .

(5.112)

For ∆t → 0, ∆x → 0, this reduces to the continuum
result s(λ) = 1 + λ2, as it should. For the saddle point
parameters, we find

v∗ = 2− 2∆t +
1
12

(∆x)2 + · · ·

Euler: λ∗ = 1 + ∆t− 1
8
(∆x)2 + · · · (5.113)

D = 1− 4∆t +
1
2
(∆x)2 + · · · ,

In practice, the Euler scheme is not used very often,
because it is numerically very unstable and not very ac-
curate. We have done all our simulations in Section IV
and in the present section with a more stable and ac-
curate semi-implicit method [109], which for the F-KPP
equation amounts to the discretization

uj(t + ∆t)− uj(t)
∆t

=

1
2

[
uj+1(t)− 2uj(t) + uj−1(t)

(∆x)2

]
+

+
1
2

[
uj+1(t + ∆t)− 2uj(t + ∆t) + uj−1(t + ∆t)

(∆x)2

]
+

+
1
2

[uj(t) + uj(t + ∆t)]−

− 1
2

[
2uk

j (t) + kuk−1
j (t)(uj(t + ∆t)− uj(t))

]
. (5.114)

The term on the last line is obtained by expanding
uk

j (t+∆t) about uk
j (t) to first order in uj(t+∆t)−uj(t),

so that one obtains a linear equation for the uj(t + ∆t).
This expansion makes what would otherwise have been
an implicit method, into a semi-implicit method.

The dispersion relation is now given by

tanh s∆t/2
∆t/2

= 1 +
(

sinhλ∆x/2
∆x/2

)2

, (5.115)
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which immediately yields s(λ; ∆x, ∆t). For small ∆x and
∆t the result is

s(λ; ∆x, ∆t) = 1 + λ2 +
λ4(∆x)2

12
+

(1 + λ2)3(∆t)2

12
+ . . . .

(5.116)

For this integration scheme, it is now straight forward to
find

v∗ = 2 +
2
3
(∆t)2 +

1
12

(∆x)2 + · · ·

Semi-implicit: λ∗ = 1− 2
3
(∆t)2 − 1

8
(∆x)2 + · · · (5.117)

D = 1 + 3(∆t)2 +
1
2
(∆x)2 + · · ·

We stress that these are the exact expressions for the
application of this numerical scheme to a nonlinear dif-

fusion equation, scaled to the normal form (2.1), (2.2).
They are therefore the “ideal” finite difference correction
terms in the absence of numerical instabilities, round-off
errors et cetera. The correctness and accuracy of the
prediction (5.117) for v∗ is demonstrated in Section IV
in Fig. 9(b).

We finally note that an early example of pulled front
relaxation observed in a finite difference equation in space
and time was seen in a mean-field model of ballistic
growth [22]. In this paper, the prefactor of the 1/t term,
obtained by plotting v versus 1/t, was found to be about
9 percent too small. Presumably, this discrepancy is due
to the corrections from the 1/t3/2 term: According to

(5.70), the term (1−
√

π/(λ∗2Dt)) generally gives rise to
a lowering of the effective slope in a v versus 1/t plot, as
Fig. 8(b) clearly demonstrates.
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VI. SUMMARY AND OUTLOOK

A. Summary of the main results

The essential result of this paper is that for front prop-
agation into unstable states, starting from steep initial
conditions, the convergence of front velocity and shape is
given in the pulled regime by the universal expressions

v(t) = v∗ + Ẋ(t) , (6.1)

Ẋ(t) = − 3
2λ∗t

(
1−

√
π

(λ∗)2Dt

)
+ O(t−2) , (6.2)

φ = Φv(t)(ξX) + O

(
1
t2

)
, ξX

<∼
√

t , (6.3)

ξX = x− v∗t−X(t) , (6.4)

provided the asymptotic front profile is uniformly trans-
lating. All terms in the expression for v(t), λ∗, v∗ and
D, are given explicitly in terms of the dispersion rela-
tion of dynamical equation, linearized about the unsta-
ble state [see Eqs. (5.16), (5.17) and (5.19) or Table IV].
These results are also summarized in Table I. The depen-
dence on pushing or pulling and on the initial conditions
is sketched in Table III.

With universal we mean that not only the asymp-
totic profile is unique, but also the relaxation towards
it, provided we start with sufficiently steep initial con-
ditions. Moreover, the relaxation is universal in that it
is independent of the precise nonlinearities in the equa-
tion, and of the precise form of the equation: It holds for
p.d.e.’s, sets of p.d.e.’s, difference–differential equations,
equations with memory kernels, etc., provided fronts are
pulled and that the asymptotic front solution is uniformly
translating, and provided that we are not at the bifurca-
tion point from the pulled to the pushed regime, or at the
bifurcation point D = 0 towards pattern forming fronts
(e.g., at γ = 1/12 in the EFK-equation). The fact that
the results also apply to finite difference equations has
a nice practical consequence: If a p.d.e. is studied nu-
merically using a finite difference approximation scheme,
both v∗ and the prefactors of the algebraic relaxation
terms can also be calculated exactly for the numerical
scheme. This allows one to estimate in advance how big
step and grid sizes need to be, in order to achieve a par-
ticular numerical accuracy (see Section VF6).

The remarkable relaxation properties are reminiscent
of the universal corrections to scaling in critical phenom-
ena, if we think of the relaxation as the approach to a
unique fixed point in function space along a unique tra-
jectory. An alternatively way to express this in more
mathematical terms is to say that we have constructed
the center manifold for front relaxation in the pulled
regime.

The above expressions contain all universal terms:
those of order t−2 depend on the precise initial conditions
and on the nonlinearities in the equations. The order of

the limits is important here: Our results are the exact ex-
pressions in a 1/t expansion, i.e., when we take the large
time limit while tracking the velocity of a point where the
dynamical field reaches a fixed value. To order 1/t2, this
is equivalent to keeping ξX fixed. When we interchange
the limits by taking ξX large at fixed time, there is a
cross-over to a different intermediate asymptotic regime
for ξX

>∼
√

t. The different dynamical regions of a pulled
front are sketched in Fig. 2.

The slow algebraic convergence to the asymptotic ve-
locity has important consequences, as it prohibits the
derivation of a standard moving boundary approximation
for patterns in more than one dimension that consist of
propagating pulled fronts whose width is much smaller
than their radius of curvature [37].

While we have limited the analysis in this paper to
equations that admit uniformly translating front solu-
tions, it turns out that most elements of our analysis
can be extended to pattern forming fronts for which
Re k∗ 6= 0 and Re ω∗ 6= 0. In this case, the expression
(6.2) with 1/

√
D replaced by Re (1/

√
D) applies [75,76].

In addition to our derivation of the above expressions
for the convergence of pulled fronts, we have reformulated
and extended the connection between front selection and
the stability properties of fronts. This leads to an es-
sentially complete picture also of front relaxation in the
pushed regime (Cases I and II in Table III) and in the
case of leading edge dominated dynamics resulting from
flat initial conditions (Case III). For an interpretation of
these results, again a consideration of the different dy-
namical regions of a front as in Fig. 2 is helpful. The
relaxation behavior in the pulled regime (Case IV) can
not be obtained simply from the properties of the sta-
bility operator of the pulled front solution, and therefore
had to be obtained along a different route, which is sum-
marized below.

B. Summary of the main conceptual steps of the
analysis

The derivation of our central result on pulled front re-
laxation is based on the following steps:

1. From the dispersion relation ω(k) or from the char-
acteristic function S(k, ω), we obtain v∗, λ∗ and D (see
Table IV).

2. The double root condition which determines v∗

and λ∗ implies that the asymptotic large ξ behavior
of uniformly translating front solutions is as Φ∗(ξ) =
(αξ + β)e−λ∗ξ, where generically α 6= 0.

3. The double root condition which determines v∗

and λ∗ also implies that the lowest order spatial deriva-
tive term in the dynamical equation for the leading edge
representation ψ = eλ∗ξφ(ξ, t) is of the diffusion type,
D∂2ψ/∂ξ2 (see Sections VC3, VD, and VE).

4. The diffusion type dynamics implied by 3. shows
that in the co-moving frame ξ = x − v∗t, the front pro-
file shifts back with the collective coordinate X(t) which
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grows logarithmically in time. Linearization about the
asymptotic front solution Φ∗(ξ) in the ξ frame is therefore
impossible (see Sections III A 3 and III A 4). Instead, we
introduce the frame ξX = x− v∗t−X(t) with the expan-
sion Ẋ(t) = c1/t + c3/2/t3/2 + · · · and the corresponding
leading edge transformation ψ(ξX , t) = eλ∗ξX φ(x, t).

5. In the front interior, the long time expansion for
Ẋ generates an expansion for the corrections to the front
profile in inverse powers of t. To order t−2 temporal
derivatives of the front corrections do not come in, so
that to this order the equations for the profile shape re-
duce to those for Φv(t). This immediately leads to (6.3)
for the time dependence of the front profile.

6. In the leading edge, where nonlinearities can be
neglected, we use an asymptotic expansion for ψ(ξX , t),
linearized about ψ 6= 0, in terms of functions of the sim-
ilarity variable z = ξ2

X/(4Dt) of the diffusion equation.
Now for small values of z the expansion has to match the
boundary condition ψ ≈ e−λ∗ξX Φ∗(ξX) ≈ αξX + β (im-
plied by observation 2.), and for large ξX the terms in
the (intermediate) asymptotic expansion have to decay
as a Gaussian e−z = e−ξ2

X/(4Dt) times a polynomial in
the similarity variable z. These two requirements fix the
constants c1, c3/2, . . . in the expansion of Ẋ, and hence
(6.2).

C. Open problems

What one considers as remaining open problems con-
cerning pulled front propagation, will depend largely on
one’s background and standards regarding the desired
mathematical rigour. While our results are exact and
yield an almost complete understanding of the general
mechanism of pulled front propagation, they have, of
course, not been derived rigorously. In physics, such
a situation is often not just quite acceptable but even
quite gratifying, but more mathematically inclined read-
ers may wish to take up the challenge to provide a more
rigorous justification. More work could also be done on
enlarging the classes of equations for which the assump-
tions underlying our approach can be shown to hold, i.e.,
for which one can show that fronts are pulled and that
there exists a family of uniformly translating front solu-
tions.

Within the realm of our approach, one can consider
two extensions to special cases. First, our results ap-
ply to steep initial conditions such that the steepness
λ = − limx→∞ lnφ(x, 0) is larger than λ∗. Bramson [77]
has also obtained some results for the marginal case that
for large x φ(x, 0) ∼ x−νe−λ∗x with ν > 0. We have
not investigated whether we can recover his results with
our approach. Second, at the bifurcation point from uni-
formly translating solutions to pattern forming fronts,
which in the EFK equation (5.91) happens at γ = 1/12,
the diffusion coefficient D vanishes [see Eq. (5.92)]. At
this bifurcation point, the equation for the leading edge

representation ψ is not of the diffusion type, so our
asymptotic expansion breaks down right at this point.
We have not investigated what happens then.

As mentioned before, we will elsewhere address what
we consider the most interesting remaining challenges,
the extension of (part of) these results to pattern form-
ing and chaotic fronts [75,76] and the question whether
weakly curved fronts can be analyzed with a moving
boundary approximation [37], an issue which is of cen-
tral importance for understanding fronts in two and three
dimensions like steamers [15].

D. The multiplicity of front solutions and of
solutions of the saddle point equations

As we discussed in Section VB, our general discus-
sion of the convergence of pulled fronts to their asymp-
totic velocity and shape is based on the assumption that
a uniformly translating front solution Φ∗(ξ) exists (see
(5.19) for a definition), and that it is a member of a
one-parameter family of front solutions. What happens
if this family of front solutions does not exist has, to
our knowledge, not been investigated systematically for
real equations. However, experience with various pat-
tern generating fronts — especially with a similar case
in which no generalized uniformly translating solutions
exist in the quintic complex Ginzburg-Landau equation
[66], even though the dynamics is pulled — yields the
scenario that the leading edge just spreads according to
the linearized equations, and that the front interior “just
follows”, in the sense that if there are uniformly trans-
lating fronts solutions, the leading edge relaxes smoothly,
while if there are none, it is forced to follow the spread-
ing in some other way. This leads one to conjecture that
if there is no family of uniformly translating front solu-
tions, the velocity relaxation will still be described by
Eqs. (6.1) and (6.2) in the leading edge, but that in the
interior front region the dynamics will inherently time-
dependent, e.g., incoherent.

This can occur in particular in the following situation:
As mentioned in Section VC1, it can happen that the
dispersion relation is such that there is more than one
nontrivial solution for the equations for v∗ and λ∗. Ac-
cording to the linearized equation, arbitrary sufficiently
steep initial conditions will spread out asymptotically
with the largest of the speeds v∗. Hence the asymptotic
spreading speed of pulled fronts emerging from steep ini-
tial conditions is simply the largest velocity v∗. Now,
according to a counting argument for the multiplicity of
uniformly translating front solutions, the multiplicity of
front solutions associated with different solutions of the
saddle point equations for v∗ will differ: If there are two
solutions v∗1 and v∗2 with λ∗1 < λ∗2, the multiplicity of
front solutions with velocity near v∗2 and an asymptotic
spatial decay rate near λ∗2 will be smaller than that of
those with velocity near v∗1 and a spatial decay rate near
λ∗1. Investigations of the issue of the competition between
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various solutions v∗ will therefore also bear on the issue
raised in the beginning of this section, the question what
happens when there is no uniformly translating solution
Φ∗. In particular, the dynamics in an equation that has
a family of uniformly translating fronts associated with
the solution v∗1 , should show a transition from smoothly
relaxing interior dynamics for v∗1 > v∗2 to incoherent in-
terior dynamics for v∗1 < v∗2 .

E. A step by step guideline for applying these results

If one just wants to apply our results to a given dy-
namical equation with a given initial condition without
worrying about the derivation and justification, one can
simply follow the following guidelines:

(i) Linearize the dynamical equation about the un-
stable state, and determine the characteristic equation
S(k, ω) = 0 for modes e−iωt+ikx in the linearized equa-
tion.

(ii) Solve the double root or saddle point conditions
from table IV to determine v∗, k∗ and D.

(iii) Check whether the leading edge of the initial con-
ditions is steeper than Re eik∗x. Only then the front is
a candidate for pulling (Case IV in Table III), otherwise
Cases II or III apply.

(iv) Check whether the conditions (5.19) under which
fronts are expected to be uniformly translating, Re k∗ =
Re ω∗ = 0, Im D = 0 are satisfied. If not, the fronts will
be pattern generating rather than uniformly translating
(see Section VI D above).

(v) Assuming the conditions under (iv) are obeyed, so
that the asymptotic front is expected to be uniformly
translating, investigate by a counting argument or other-
wise whether there is a one-parameter family of uniformly
translating front profiles Φv(ξ) that includes Φ∗(ξ).

(vi) Determine, by using bounds, comparison theorems
or physical arguments, whether the fronts will be pushed
or pulled. This determines, whether either Case I or Case
IV from Table III applies.

(vii) If according to points (iv)–(vi) there is a family
of front solutions that includes Φ∗, and if the dynamics
is pulled, then our predictions (6.1)–(6.3) or Table I ap-
ply. If the conditions under (iv) are satisfied but there
is no family of uniformly translating solutions according
to (v), then our formula (6.2) should apply but one then
expects intrinsic nontrivial dynamics in the front interior
to remain, so that (6.3) does not apply. If (iv) is not sat-
isfied (as for the EFK equation (5.91) for γ > 1/12), one
expects pattern generating fronts with a similar algebraic
convergence [75,76].

F. The subtle role of the nonlinearities: an
alternative intuitive explanation

As we have seen in (2.58) and (5.20), the convergence
of the linear spreading velocity to the asymptotic value
v∗ is as v(t) = v∗− 1/(2λ∗t) + · · ·, while the convergence
of nonlinear fronts is as v(t) = v∗ − 3/(2λ∗t) + · · ·. The
prefactor of the 1/t in the latter case is just three times
larger than for the linear spreading velocity. What is this
subtle difference due to?

In this paper, we have attributed the difference to
the presence of the term αξ in the large-ξ asymptotics
(αξ + β)e−λ∗ξ of Φ∗(ξ). We used an argument closely
related to the one presented below, to prove in Sec-
tion II E 2, that α 6= 0. The functional form of Φ∗
leads to the requirement that the leading term in the
expansion in similarity solutions in the leading edge
is (ξ/t3/2)e−ξ2/(4Dt), not (1/t1/2)e−ξ2/(4Dt) (see Section
III A 1). Nevertheless, one may want to have a better
intuitive understanding of why the asymptotics of the
linear spreading velocity is not correct for the nonlinear
front relaxation — after all, one might at first sight think
that the linear spreading results should be correct suffi-
ciently far into the leading edge where the nonlinearities
can be neglected. The following picture allows us to un-
derstand why this is wrong, and why the same type of
algebraic convergence also applies to pattern forming and
chaotic fronts [75,76].

Consider for simplicity the F-KPP equation (1.1). As
discussed in the introduction and Section II E 2, the
dynamical equation for the leading edge representation
ψ(ξ, t) of φ is

∂tψ(ξ, t) = ∂2
ξψ(ξ, t)− ψ3(ξ, t)e−2λ∗ξ . (6.5)

We can think of the nonlinear ψ3e−2λ∗ξ term as a local-
ized sink term in the diffusion equation for ψ: the term
vanishes for positive ξ due to the exponential term, and
for large negative ξ since ψ vanishes exponentially in the
region to the left where φ saturates. Thus, if we think of
ψ as representing the density of diffusing particles, then
in the region where this term is nonvanishing, it describes
the death or annihilation of particles. For the half space
to the right of it, where the particles freely diffuse, this
term therefore acts like an absorbing boundary on the
left. This is actually all that remains of the nonlinearities
in the equation! Whenever the integrated sink strength
α [the spatial integral of the nonlinear term, in agree-
ment with (2.66)] is nonzero, the problem in the leading
edge reduces to that of the buildup of a diffusion field in
the presence of an absorbing boundary (and at the same
time, as (2.66) shows, α 6= 0). In this language, the pulled
to pushed transition occurs precisely when the absorption
strength α vanishes, and indeed precisely at this point the
velocity convergence is as v(t) = v∗ − 1/(2λ∗t) + · · · [see
Eq. (3.66)].

There is one complication: unlike the usual problems
of diffusion in the presence of a given absorbing bound-
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ary, the “sink” in (6.5) depends on the relaxing field ψ
itself. In fact, as we discussed extensively in the paper,
the diffusive dynamics of ψ leads to a logarithmic shift
of the sink in time, in the frame ξ. That is why in this
interpretation we have to go, for selfconsistency, to the
frame ξX = ξ −X(t). In this frame, the “sink” or “ab-
sorbing wall” remains essentially fixed in time, and so
the dynamics of ψ is, in leading order, that of a diffu-
sion field in the presence of a fixed absorbing wall. As
is well known, in such a case a linear gradient ψ ∝ ξX

will build up in front of the wall, to balance the constant
annihilation of particles in the wall region.

Clearly, even if the “sink” strength is not stationary
in time, the buildup of the linear diffusion gradient far
ahead of it will not be affected. The present interpreta-
tion therefore yields a natural starting point for analyz-
ing the velocity relaxation of non-uniformly translating
fronts. This will be explored elsewhere [71,75,76].

We end this paper by stressing that while we have
shown that nonlinear fronts relax according to the “3/2
law” v(t) = v∗ − 3/(2λ∗t) + · · ·, one can not apply this
result completely with closed eyes. An amusing illustra-
tion of this warning is the following. It has been noted,
that the spreading velocity in the equation

∂φ

∂t
=

∂2φ

∂x2
+ φ + e

(
∂φ

∂x

)2

(6.6)

is follows the “1/2 law” v(t) = v∗ − 1/(2λ∗t) · · · =
2− 1/(2t) + · · · [110]. At first sight, this equation there-
fore might appear to yield a counterexample to our as-
sertions. In fact, it does not. Our results only hold
for equations where the growth of the dynamical field
saturates behind the front, not in the case in which the
growth is unbounded. If the growth is unbounded, our
arguments for why α 6= 0, and hence for the “3/2 law”,
break down. The above equation is precisely an example
in which the growth does not saturate: For e > 0 and
positive φ, the nonlinear term only increases the growth.
Hence there is no saturation and the spreading velocity
vnl(t) in the presence of the nonlinearities is larger than
the one of the linear equation: vnl(t) ≥ v∗− 1/(2t)+ · · ·.
Apparently, in practice the equality is obeyed asymptot-
ically.
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APPENDIX A: AN UPPER BOUND FOR VC IN
THE NONLINEAR DIFFUSION EQUATION

With a generalization of the leading edge transforma-
tion introduced in Sect. II F, it is straight forward to
prove the well-known upper bound vc ≤ vsup, where

vsup = 2 sup
0≤φ≤1

√
f(φ)

φ
, (A1)

for the selected front velocity in the nonlinear diffu-
sion equation, if the initial conditions have steepness
λ > vsup/2. The steepness λ of a front is defined in
(2.6). To prove this bound, transform (2.1) to a frame
ξ = x− vt, and write

ψ(ξ, t) = evξ/2φ(x, t) . (A2)

The equation of motion is now

∂tψ = ∂2
ξψ − v2

4
ψ + evξ/2 f

(
ψ e−vξ/2

)
. (A3)

If the initial steepness is λ > v/2, then

lim
ξ→±∞

ψ(ξ, t) = 0 for all 0 ≤ t <∞ , (A4)

since the steepness of the leading edge (ξ → ∞) is con-
served for all finite times, cf. the discussion in Sect. II E;
and since convergence at ξ → −∞ is garantueed by φ→ 1
behind the front together with the transformation (A2).
Thus the decay of ψ at ξ → ±∞ is exponential in ξ for
t < ∞. Hence, the whole equation can be multiplied by
ψ and integrated over ξ. This yields

∂t

∫
ξ

ψ2

2
= −

∫
ξ

{
(∂ξψ)2 + ψ2

[
v2

4
−

f
(
ψ e−vξ/2

)
ψ e−vξ/2

]}
,

(A5)

where all integrals are finite. The r.h.s. of this equation is
strictly negative, if v > vsup (A1). Therefore, in a frame
moving with velocity v > vsup, the integral

∫
ξ ψ2 decays

in time. This means, that the frame is propagating too
rapidly, so that the front shrinks away in the leading edge
representation ψ (A2). Only a frame moving with veloc-
ity v ≤ vsup can propagate along with the speed of the
front. vsup is therefore an upper bound for the asymp-
totic velocity of any initial condition with λ > vsup/2.

For nonlinearity fKPP = φ − φk, we have vsup = 2.
But on the other hand, we know (see Sect. II), that
vsup ≥ vc ≥ v∗ = 2. Hence, these fronts are pulled with
vc = v∗ = 2. For nonlinearity fε = εφ + φn+1 − φ2n+1,
we have vsup =

√
1 + 4ε > 2

√
ε = v∗.

This version of the argument for v < vsup [74] can
be generalized to equations with higher spatial deriva-
tives, forming both uniformly translating fronts or pat-
tern forming fronts [75].

APPENDIX B: THE GENERALIZED
NONLINEAR DIFFUSION EQUATION

Analyse an equation with first temporal and second
spatial derivative:

F
(
φ, ∂xφ, ∂2

xφ, ∂tφ
)

= 0 . (B1)

A front translating uniformly with velocity v solves

F
(
Φv, dξΦv , d2

ξΦv, −vdξΦv

)
= 0 , ξ = x− vt . (B2)

The stability analysis of such a solution and the further
treatment of convergence is identical with what we did for
the nonlinear diffusion equation (1.1) in Sections II and
III. We only first have to transform the linear operators
appropriately. We here show, how to do this transforma-
tion. Our analysis is directly relevant for the equation
studied in [111].

We use the definition of functional derivatives as in
(5.32) – (5.36). A linear perturbation η(ξ, t) (2.23) about
a uniformly translating state Φv then solves the linear
equation ∂tη = Lvη (2.24) resp. (5.30) with the linear
operator being now

Lv = f2(ξ) ∂2
ξ + f1,v(ξ) ∂ξ + f0(ξ) , f1,v = v + f1 .

(B3)

For transforming to a Schrödinger problem ∂tψ = Hvψ+
o(ψ2e−α), Hv = −∂2

y + Vv(y), we now have to make the
coefficient of the first order derivative ∂ξ vanish, and the
coefficient of the second order derivative ∂2

ξ constant.
This can be achieved through a transformation similar
to (2.26) and (2.27), combined with a nonlinear transfor-
mation y(ξ) of the length scale ξ:

ψ = eα η , dα(ξ) =
2f1,v − ∂ξf2

4f2
dξ , (B4)

Hv(y) = − eα(ξ) Lv e−α(ξ) = − ∂2
y + Vv(y) , (B5)

dy(ξ) =
dξ√
f2(ξ)

(
⇔ ∂y =

√
f2(ξ) ∂ξ

)
, (B6)

Vv(y(ξ)) =
f2
1,v − 4f0f2

4f2
+

f2 dξf1,v − f1,v dξf2

2f2

+
3 (dξf2)2 − 4f2 d2

ξf2

16f2
. (B7)

We use again the convention limξ→∞ Φv(ξ) = 0. By
construction the pulled velocity v∗ is the velocity, where
Vv∗(∞) = 0. Accordingly now

v∗ = 2
√

f0(∞) f2(∞)− f1(∞) . (B8)

The steepness of the leading edge is

λ∗ = ∂ξα
∣∣∣
ξ→∞, v=v∗

=

√
f0(∞)
f2(∞)

. (B9)
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(In the convention of Section VB: fn(∞) = cn.) In the
leading edge region, the relation between y and ξ is lin-
ear: y = ξ/

√
f2(∞).

If Vv∗(y) ≥ 0 for all y, there are no destablizing lin-
ear modes within the Hilbert space of (B5). Then the
front propagating with v∗ is stable. The remaining anal-
ysis translates from Sections II and III step by step with
only the explicit notation of the linear operators Lv and
Hv and the transformation operator eα having a more
involved notation.

If there is a range of y such that Vv∗(y) becomes neg-
ative, there might be a destabilizing mode in the spec-
trum of linear perturbations. In this case, there must be
a pushed front solution with some velocity v† > v∗ with
steepness λ = λ+(v†) > λ0(v†) = v†/2. Such a pushed
front might even be integrated analytically, if one can
find an analytic solution ψ(φ) of

F

(
φ, ψ, ψ

dψ

dφ
, −vψ

)
= 0 , (B10)

equivalent to (C3). ξ(φ) can then be integrated as in
(C5). (Again, a closed form for ψ(φ) cannot be found
for pulled fronts, except possibly for equations at the
pushed/pulled transition.)

APPENDIX C: ANALYTICAL SOLUTIONS FOR
PUSHED NONLINEAR DIFFUSION FRONTS

AND TRANSITION TO PULLING

We here discuss, how to find analytical solutions for
uniformly translating fronts φ(ξ) in the equation

∂2
ξφ + v∂ξφ + f(φ) = 0 . (C1)

• We rephrase and straighten the method from [65] (see
also [112,113]) how to find analytical front solutions.
• We recall, that analytical solutions can be found only
for pushed fronts (propagating either into a meta- or into
an unstable state, Cases I and II from Table III), but not
for pulled fronts (Case IV).
• We recall, that only a strongly heteroclinic orbit, i.e.,
a front approaching φ = 0 with λ > λ0(v), is a candidate
for a pushed front. This allows us to calculate the criti-
cal ε for the pushed/pulled transition in the case of the
nonlinearity (1.11).

Write the equation as a flow in phase space as in (2.22)

∂ξ

(
ψ

φ

)
=

(
−vψ − f(φ)

ψ

)
, (C2)

where ξ parametrizes the flow. If φ is monotonic in ξ, ψ
can be parametrized by φ instead of by ξ. This substitu-
tion yields for ψ(φ)

ψ
∂ψ

∂φ
+ vψ + f(φ) = 0 . (C3)

This is the differential equation for the trajectory in
phase space, where now the translational degree of free-
dom is removed together with the parametrization ξ of
the flow. The resulting differential equation is one order
lower than the original differential equation (C1). Ac-
cording to (2.14), the initial condition for the integration
at φ ≈ 1 is

ψ(φ = 1− δ) = −λ̃− + o(δ) , (C4)

λ̃− = v/2−
√

v2/4− f ′(1) ,

so the front trajectory is unique and can be integrated.
In some cases, the integration can be done analytically,
if one is lucky enough to find an analytical solution ψ(φ)
of Eq. (C3) for a given f(φ). If we have a solution ψ(φ),
then the function ξ(φ) can be integrated as

ξ =
∫ φ(ξ)

φ(0)

dφ

ψ(φ)
. (C5)

The final step consists in finding the inverse function
φ = φ(ξ), if this is possible.

Note now, that solutions ψ(φ) can be found analyt-
ically only, if φ approaches φ = 0 with a single expo-
nential φ ∝ e−λξ, since only then ψ(φ) has the simple
analytic form ψ(φ) = −λ + o(φ). Any other form of the
approach to φ = 0, cf. (2.15), would not be expressible
in a simple analytic expression for ψ(φ). In particular,
a generic Φ∗ front with Φ∗ ∝ (αξ + β)e−λ∗ξ in the lead-
ing edge does not have a simple analytical expression for
ψ(φ), so a pulled front generically cannot be integrated
analytically.

Given an analytical front solution with velocity v and
decay rate λ, one has to check the nature of the front. A
pushed front is a strongly heteroclinic front, i.e., it has
leading edge steepness λ = λ+(v) > λ0(v). (For the no-
tation of λ’s, compare Eq. (2.18).) If λ = λ0(v) = λ±(v),
we have found a front at the transition point from pushed
to pulled with leading edge behavior φ ∝ e−λ∗ξ. This is
the only pulled front, we can integrate. If λ = λ−(v) <
λ0(v), we have a particular flat front, that has evolved
from an initial condition with the same flatness in the
leading edge.

Finding analytical solutions for pushed fronts can even
be turned into a machinery, if we don’t fix f and look for
a ψ, but if we define ψ(φ) and then calculate f(φ). For

ψ = −λφ(1− φn) (C6)

we calculate, e.g.,

f(φ) = λ(v − λ)φ + λ(λ(n + 2)− v)φn+1 − λ2(n + 1)φ2n+1

= ε̄φ + φn+1 − (1 + ε̄)φ2n+1 , (C7)

where we have to identify v = (n + 2)λ − 1/λ, and
ε̄ = λ(v−λ). The analytic front solution for (C6) can be
calculated from (C5) and inverted to yield
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φ(ξ) =
[
1 +

(
φ(0)−n − 1

)
eλnξ

]−1/n
. (C8)

This solution is a pushed front, if λ ≥ λ0(v) = v/2,
which implies ε̄ ≤ 1/n. For such ε̄, we find pushed
fronts with decay rate λ =

√
(ε̄ + 1)/(n + 1), velocity

v = (1 + ε̄(n + 2))/
√

(n + 1)(1 + ε̄), and analytical form
(C8). For ε̄ = 1/n, the solution is a front on the transi-
tion point from pushed to pulled fronts with asymptotic
decay φ ∝ e−λ∗ξ + o(φ2). For ε̄ > 1/n, the solution
(C8) is a flat front evolving from flat initial conditions.
Fronts evolving from sufficiently steep initial conditions
are then pulled, propagate with velocity 2

√
ε̄, have decay

rate λ∗ =
√

ε̄ and no analytic form of the front solution
can be found.

Eq. (1.1) with nonlinearity (C7) can also be rescaled
to bring the equation to the more familiar form

∂τϕ = ∂2
yϕ + εϕ + ϕn+1 − ϕ2n+1 (C9)

ε = ε̄(1 + ε̄) , (1 + ε̄) =
t

τ
=

(
x

y

)2

=
(

ϕ

φ

)n

. (C10)

This reproduces precisely the form of the nonlin-
earity (1.11) with the stable state now at ϕs =[(

1 +
√

4ε + 1
)
/2

]1/n
. Accordingly the critical ε is now

εc = (n + 1)/n2. Fronts propagate for ε < εc with the
pushed velocity v† =

[
(n + 2)

√
1 + 4ε − n

]
/
[
2
√

n + 1
]

and decay rate λ+(v†) =
[
1 +
√

1 + 4ε
]
/
[
2
√

n + 1
]
. For

ε > εc, they propagate with the pulled velocity v∗ = 2
√

ε
and decay rate λ∗ =

√
ε.

APPENDIX D: GENERAL INTEGRATION OF
GSP

N/2(Z)

We here show, how to find special solutions gsp
n/2(z) of

inhomogeneous equations like (3.44) or (3.45) in general.
The general form of such an equation is

T̂n[z, dz] g(z) = in(z) , (D1)

with in(z) the inhomogeneity and T̂n[z, dz] the operator

T̂n[z, dz] = z
d2

dz2
+

(
1
2
− z

)
d

dz
+

n

2
. (D2)

We search for a particular solution g(z) of Eq. (D1). A
particular solution of the homogeneous equation (in(z) =
0) can be expressed by Hermite polynomials:

T̂n[z, dz] hn(z) = 0 (D3)

h0(z) = 1 , h1(z) =
√

2z , h2(z) = 1− 2z etc.

The ansatz g(z) = hn(z) un(z) reduces (D1) to an equa-
tion for dzun(z) of first order:

T̂n g = z hn(z)
(

d

dz
+

d lnhn(z)
dz

+
1− 2z

2z

)
dun(z)

dz

= z hn(z)
dz (Mn(z) dzun(z))

Mn(z)
, (D4)

where in the last line we introduced the integrating factor

Mn(z) = h2
n(z)

√
z e−z . (D5)

Identify now T̂n gn = in, integrate twice, and substitute
Mn by the full expression. A special solution of (D1)
then reads

g(z) = hn(z)
∫ z

a

dx

∫ x

b
dy in(y) hn(y) e−y/

√
y

h2
n(x)

√
x e−x

, (D6)

where the integration constants a and b are free. If we
in particular choose b = ∞, the integrated exponential
ex−y cannot exceed unity, and gsp

n (z) can at most diverge
algebraically, if the integrated inhomogeneity in(z) is al-
gebraic.

Integrating Eq. (3.55) for g0(z) as in (D6) with b =∞,
we find for the algebraic divergence of g0(z) for large z:

g0(z) ∼ 3α z ln z as z →∞ , (D7)

while the solution of the homogeneous equation diverges
only as h2(z) ∼ z. For determining the small z expan-
sion of (D6), it must be noted that the factor hn(x)−2 is
singular at the zeroes of hn(x). Hence, (D6) needs to be
evaluated separately in each interval between the zeroes
of hn(x). This can be done by a proper choice of a. It can
be shown, that the results in each interval join smoothly.

APPENDIX E: ALGEBRAIC CONVERGENCE
AT THE PUSHED/PULLED TRANSITION

In Section III we have analyzed equations, that are
within the pulled regime. We here analyze equations,
that are at the pushed/pulled transition. Leading edges
of fronts within the pulled regime have the form Φ∗ =
(αξ + β) e−ξ ∝ ξ e−ξ (ξ � 1), cf. (2.15). Leading
edges of fronts within the pushed regime are given by
Φ† ∝ e−λ+(v†) ξ, cf. (2.21). Leading edges of fronts at
the pushed/pulled transition accordingly behave as

Φ∗ = β e−ξ for ξ � 1 , λ+(v∗) = λ∗ = 1 . (E1)

For our example nonlinearity (1.11), fronts are within the
pulled regime for ε > (n+1)/n2 and at the pushed/pulled
transition for ε = (n + 1)/n2.

At the pushed/pulled transition, the spectrum of linear
perturbations is still gapless, and convergence therefore
is algebraic. On the other hand, the form of the lead-
ing edge played a crucial role in determining the veloc-
ity corrections Ẋ. Compare our qualitative discussion in
Section III A 1. The leading edge behavior (E1) immedi-
ately lets us expect, that now v(t) = 2− 1/(2t) + . . ., in
contrast to (3.5) and (3.66) for fronts within the pulled
regime, and in agreement with (2.58) for the spreading of
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perturbations under the linearized equation. Intuitively,
we can argue, that the slower convergence of fronts within
the pulled regime is due to the leading edge having to pull
the interior part of the front along. This also makes the
leading edge flatter. The quicker convergence of fronts at
the pushed/pulled transition and in the linearized equa-
tion then resembles the fact, that the leading edge and
the interior part of the front “impose the same speed”.

Let us now do the explicit convergence analysis for
fronts developing from initial conditions steeper than e−x

for x� 1 and aproaching (E1) for large times. The anal-
ysis of the interior is identical with Section III B, where
constants cn

2
are yet undetermined. When expanding

the interior shape towards the leading edge as in Section
III C, the inhomogeneities created by Φ∗ (E1) are differ-
ent, because now α = 0. The differential equations for
the ψn

2
result from (3.34) with α = 0, γ = β and start

with

∂2
ξψ1 = c1β , ∂2

ξψ 3
2

= c 3
2
β , (E2)

∂2
ξψ2 = [−1 + c1(1− ∂ξ)]ψ1 + c2β + o(e−ξX ) etc.

Integrating and resumming, we now find for ξ � 1

ψ = β + (E3)

+
c1β ξ2

X

2! t
+

c1δ ξX

t
+ O

(
1
t

)
+

c 3
2
β ξ2

X

2! t3/2
+ O

(
ξX

t3/2

)
+

c1(c1 − 1)β ξ4
X

4! t2
+

c1(c1δ − δ − c1β) ξ3
X

3! t2
+ O

(
ξ2
X

t2

)
+

c 3
2
(2c1 − 3

2 )β ξ4
X

4! t5/2
+ O

(
ξ3
X

t5/2

)
+ . . . + . . . .

Here δ is an unknown integration constant fixed by con-
dition (3.9). We will see below, that it is not involved
in fixing the velocity, just as also the subleading β for
the leading edge (3.32) within the pulled regime is not
involved in fixing the velocity, cf. calculation till (3.65).

Again, for ξX �
√

t we have to reorder the expansion
in powers of

√
z =

√
ξ2
X/(4t) and 1/

√
t, and find

ψ = β

(
1 +

c1(4z)
2!

+
c1(c1 − 1)(4z)2

4!
+ O(z3)

)
+

1√
t

(
c1δ (4z)1/2 +

c 3
2
β (4z)

2!
+

+
c1(c1δ − δ − c1β) (4z)3/2

3!
+

c 3
2
(2c1 − 3

2 )β (4z)2

4!

)

+ O

(
1
t

)
. (E4)

The structure of the expansion is the same as in (3.42),
except that now the leading order term is of order t0:

G(z, t) = ezψ = g0(z) +
g 1

2
(z)
√

t
+ . . . . (E5)

The equations of motion for the leading and subleading
term are derived from (3.43) – (3.45) through putting
g−1

2
= 0. For g0 we find now the homogenous equation[

z∂2
z +

(
1
2
− z

)
∂z −

1
2
− c1

]
g0 = 0 . (E6)

Just like (3.43) was solved by (3.52), we now solve (E6)
with

c1 =
−1
2

, g0(z) = β . (E7)

The equation for g 1
2

is now, cf. (3.45) and (E7),[
z∂2

z +
(

1
2
− z

)
∂z +

1
2

]
g 1

2
= β

[
c 3

2
−
√

z

2

]
. (E8)

Again a special solution of the inhomogeneous equation
can be found, and the general solution contains the con-
stants of integration k 1

2
and l 1

2
:

g 1
2

= β

[
2c 3

2
−
√

z

2

∞∑
n=1

(1)n−1 zn(
3
2

)
n

n!

]

+ k 1
2

M

(
−1
2

,
1
2
, z

)
+ l 1

2

√
z (E9)

z�1= 2βc 3
2

+ k 1
2

+ l 1
2

√
z + O(z) (E10)

z→∞∼ −β
√

π

4z
ez −

k 1
2

2z
ez . (E11)

Comparing (E10) to the order 1/
√

t in (E4) and imposing
proper convergence of (E11) for z →∞, we find

2βc 3
2

+ k 1
2

= 0 , l 1
2

= −δ , β
√

π + 2k 1
2

= 0 . (E12)

With these constants, the velocity correction c 3
2

is

c 3
2

=
√

π

4
, (E13)

and for g 1
2

we find

g 1
2

=
β
√

π

2

[
1−M

(
−1
2

,
1
2
, z

)
−

√
z

π

∞∑
n=1

(1)n−1 zn(
3
2

)
n

n!

]
− δ
√

z . (E14)

In summary, we find for the convergence to a front at
the pushed/pulled transition, whose leading edge accord-
ingly takes the form (E1), that the velocity correction is
given by

Ẋ = − 1
2t

(
1− 1

2

√
π

t

)
+ O

(
1
t2

)
. (E15)
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In the interior, i.e., for ξX �
√

t, the front is given by
(3.31) just like a front within the pulled regime. In the
leading edge, where ξX �

√
t, the front is given by

φ(ξX , t) = e−ξX−ξ2
X/(4t) G

(
ξ2
X

4t
, t

)
, (E16)

where

G(z, t) = β +
g 1

2
(z)
√

t
+ O

(
1
t

)
. (E17)

APPENDIX F: MULTIPLICITY OF FRONTS
AND LINEAR EIGENMODES FOR

REFLECTION SYMMETRIC EQUATIONS OF
FIRST ORDER IN TIME

The generical multiplicity of uniformly translating
fronts Φv can be determined by counting arguments anal-
ogous to those performed in Section II B. Uniformly
translating solutions Φv(ξ) of (5.1) can be understood
as a heteroclinic orbit in N -dimensional phase space be-
tween fixed points characterized by Φv = 1 at ξ → −∞
and Φv = 0 at ξ → ∞. For a linear perturbation
δ = 1 − Φv about the fixed point φ = 1 from (5.2), we
get the equation

Lv(−∞) δ + O(δ2) = 0 , (F1)

which is a linear ordinary differential equation with con-
stant coefficients with the linear operator L being de-
fined in (5.3). The same is true for a linear perturbation
Φv = 0 + δ of the fixed point φ = 0, which solves

Lv(∞) δ + O(δ2) = 0 . (F2)

In linear order of δ, each of these equations has N solu-
tions e−λn(v) ξ, n = 1, . . . , N .

Let us restrict the analysis to real equations which are
isotropic in space, i.e., where (5.41) is invariant under
x → −x. Such equations are even in ∂x, so N needs to
be even. According to arguments presented in Appendix
A of [65], Eqs. (F1) and (F2) for v > 0 will have N/2 + 1
eigenvalues λn with positive real part and N/2− 1 ones
with a negative real part, if the state, about which we
linearize, is linearly unstable against a range of Fourier
modes. If it is stable, we will have N/2 eigenvalues with
positive real part and N/2 ones with a negative real part.
We assume φ = 1 to be stable, so at ξ → −∞ there are
N/2 directions in phase space with negative real part
of λ, that need to be excluded. If φ = 0 is unstable,
we have only N/2 − 1 bad eigendirections at ξ → ∞.
We then generically have a front connecting these fixed
points for arbitrary values of v. If, however, the state
φ = 0 is metastable, there are N/2 bad eigendirections
at ξ →∞. Then also v needs to be tuned to find a solu-
tion. So for fronts propagating into unstable states, we

generically have a front solution Φv for a continuum of
velocities, while for fronts into metastable states, there
are solutions Φv only for discrete values of v, in general-
ization of the arguents from Section II B.

The multiplicity of linear perturbations is determined
along the same lines. We again decompose the linear
perturbations η (5.30) into η(ξ, t) = ησ(ξ) e−σt by sepa-
ration of variables. The ησ then solve the o.d.e.

[Lv(ξ) + σ] ησ(ξ) = 0 . (F3)

For counting the generic multiplicity of solutions, we need
to linearize the equations about ξ → ±∞, which amounts
to a problem equivalent to (F1) and (F2), except for a
shift of the constant contribution of Lv(ξ) by σ. For
fronts propagating into unstable states, we in general ex-
pect a continuous spectrum σ of linear perturbations at
least in some finite interval of σ, in generalization of Sec-
tion II C.

APPENDIX G: STRONGLY HETEROCLINIC
ORBITS AND CHANGE OF STABILITY AT V †

According to the counting argument from Appendix
F, the front Φ∗(ξ) propagating uniformly with velocity
v∗ does exist. The question is now, whether it is stable
and whether it will be approached by steep initial condi-
tions. In particular, we want to analyze initial conditions
φ(x, 0), that are steeper than e−λ∗x in the leading edge.

This amounts to the question, whether in the spectral
decomposition ησ (F3) of a generic φ(x, 0)−Φ∗(x), there
are destablizing modes with σ < 0. As in Section II C,
the contributing modes in general will all decay at least
as quick as Φ∗ in the leading edge. The leading edge
properties of the ησ in general will depend smoothly on
σ, just as in (2.43), so generically Φ∗ will still be stable
against all perturbations, that in the leading edge decay
quicker than Φ∗.

An exemption is again the generalization of Aσ = 0
from (2.38). For an equation of order N with φ = 0 un-
stable, there are N/2 + 1 exponents Λn(σ, v) > 0. The
leading edge will be a superposition of all the exponen-
tials

ησ(ξ) =
N/2+1∑

n=1

A(n)
σ e−Λnξ as ξ � 1 . (G1)

The condition A
(1)
σ = 0, where Λ1 is the smallest one of

the positive Λn, fixes a discrete set of σ’s, which might
have negative σ, but a steepness in the leading edge larger
than Φ∗. The stability of the pulled front Φ∗ thus again
depends on the “strongly heteroclinic” perturbations.

If there are strongly heteroclinic perturbations, that
destabilize the pulled front propagating with velocity v∗,
then there will be a steeper and quicker front Φ†, which
can be constructed as a strongly heteroclinic orbit of
(5.41). The zero mode ∂ξΦ† then again is a strongly
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heteroclinic perturbation, and as in Section II C 2 we can
conclude, that the quickest of all strongly heteroclinic
orbits cannot be destabilized, so it will attract all suffi-
ciently steep initial conditions.

We conclude, that Table III generalizes to higher or-
der equations, which form uniformly translating fronts,
if we only appropriately adjust the explicit definitions of
the velocities v and steepnesses λ.

APPENDIX H: RELATION BETWEEN THE
GENERALIZED DIFFUSION CONSTANTS DN

AND THE DISPERSION RELATION

If we use the expansion (5.6) for the dispersion relation
ω(k), we get

D = e λ∗ξ

(
N∑

m=0

am∂m
ξ − v∗∂ξ

)
e−λ∗ξ ,

=
N∑

m=0

am(∂ξ − λ∗)m − v∗(∂ξ − λ∗) ,

=
N∑

m=0

m∑
n=0

am
m!

n!(m− n)!
(−λ∗)(m−n)∂n

ξ −

−v∗(∂ξ − λ∗) ,

=
N∑

n=0

(
∂n

∂(−λ∗)n

N∑
m=n

am(−λ∗)m

)
1
n!

∂n
ξ

−v∗(∂ξ − λ∗) . (H1)

This immediately yields the expansion (5.27) with the
identification (5.28).

APPENDIX I: EDGE ANALYSIS OF
UNIFORMLY TRANSLATING PULLED FRONTS

WITH M = 1

We analyze the leading edge representation (5.37) for
a uniformly translating front whose equation of motion
(5.41) is of arbitrary order N in space and of first order
in time M = 1:

∂τψ =

(
∂2

ζ +
N∑

n=3

dn∂n
ζ

)
ψ + Ẏ (∂ζ − 1)ψ . (I1)

We generalize the leading edge analysis from Sections
III C and III D.

With the notions and ansatz

D = ∂2
ζ +

N∑
n=3

dn∂n
ζ , Ẏ =

∞∑
n=2

Cn
2

τn/2
, (I2)

ψ(ζY , t) = α ζY + β +
ψ 1

2

t1/2
+

ψ1

t
+

ψ 3
2

t3/2
+ . . . , (I3)

the expansion of the interior in the region of ζY � 1 at
the crossover towards the leading edge reads

Dψ 1
2

= 0 ,

Dψ1 = C1(α ζY + γ) , γ = β − α ,

Dψ 3
2

= C 3
2
(αζY + γ) , . . . , (I4)

in generalization of (3.34). These equations can be inte-
grated explicitely. The result can be written in leading
edge variables z = ζ2

Y /(4τ) as

ψ =
√

τ α

(
(4z)1/2 +

C1(4z)3/2

3!
+ . . .

)
+ τ0

(
β +

C1(β − α(1 + d3))(4z)
2!

+ . . .

)
+ O(1/

√
τ) . (I5)

This generalizes the results of Section III C and supplies
us with the small z expansion of the leading edge function

ψ(ζ, τ) = e−z G(z, τ) . z =
ζ2

4τ
. (I6)

G solves [compare Eq. (3.41)][
z∂2

z +
(

1
2
− z

)
∂z −

1
2
− t∂t − C1

]
G =

=
1√
t

[
C 3

2
+ C1

√
z(1− ∂z)

]
G

− d3
√

z√
t

[
3
2

(∂z − 1)2 + z (∂z − 1)3
]

G

+ O

(
1
t

)
, (I7)

where we wrote all operators of order t0 on the l.h.s. of
the equation and the operators of order t−1/2 on the r.h.s.

With the ansatz

G(z, τ) =
√

t g−1
2

(z) + g0(z) +
g 1

2
(z)
√

t
+ . . . (I8)

as in (3.42), we find that g−1
2

(z) solves again (3.43), so
we copy from Section III D, that

C1 =
−3
2

, g−1
2

(z) = 2α
√

z . (I9)

For g0(z) we then find instead of (3.55):[
z∂2

z +
(

1
2
− z

)
∂z + 1

]
g0 = (I10)

= 2α

[
3 (1 + d3)

4
+ c 3

2

√
z − 3

2
z + d3(z2 − 3z)

]
.

A special solution of the inhomogeneous equation is now
instead of (3.58):
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gsp
0 (z) = 2α

(
3 (1 + d3)

4
+ 2c 3

2

√
z − 3

4
F2(z)− d3z

2

)
,

(I11)

with F2(z) from (3.56). The general solution is

g0(z) = gsp
0 (z) + k0 (1− 2z) + l0

√
z M

(
−1
2

,
3
2
, z

)
z�1=

(
3α

2
(1 + d3) + k0

)
+

(
4αc 3

2
+ l0

)√
z + O(z)

z→∞∼ −
(

3
2

α
√

π +
l0
4

)
z−3/2 ez , (I12)

Note, that d3 6= 0 does not cause any divergences at
z →∞. It only shifts the constant contribution at z → 0.

Suppressing the divergence at z → ∞ in (I12), and
comparing its small z expansion to (I5) yields again

C 3
2

=
3
√

π

2
, (I13)

and

g0(z) = β (1− 2z) + 3α(1 + d3)z − 2αd3z
2

− 3α

2
F2(z) + 6α

√
π z

(
1−M

(
−1
2

,
3
2
, z

))
.

APPENDIX J: LEADING EDGE PROJECTIONS
FOR COUPLED EQUATIONS: AN EXAMPLE

As a simple illustration of the various questions related
to the projection discussed in Section VE3, we consider
two coupled F-KPP equations,

∂tφ1 = ∂2
xφ1 + φ1 − φ3

1 , (J1)
∂tφ2 = D∂2

xφ2 + φ2 − φ3
2 + Kφ1 .

The dynamics of this set of equations for fronts propa-
gating into the state φ1 = φ2 = 0 with steep initial con-
ditions, is of course immediately obvious: when K = 0,
the two equations are uncoupled, and fronts in the first
equation propagate with speed v∗1 = 2, while those in the
second equation propagate with speed v∗2 = 2

√
D. The

dynamics of φ1 is always independent of that of φ2, even
for K 6= 0, so for K > 0 and D < 1, the dynamics of the
coupled equations amounts to a normal F-KPP φ1 front,
with relaxation given by our usual expressions. This front
entrains a front with speed v = v∗1 = 2 in φ2. For D > 1,
the φ1 and φ2 fronts keep on propagating with different
speeds. We consider the case D < 1, and make a leading
edge transformation φ1 = e−λ∗ξψ1, φ2 = e−λ∗ξψ2 to the
frame moving with velocity ξ = x − v∗1t. The equations
then become

∂tψ1 = ∂2
ξψ1 + ψ1 , (J2)

∂tψ2 = D∂2
ξφ2 + 2(D − 1)∂ξψ2 + (D − 1)ψ2 + Kψ1 .

The matrix S∗(q, Ω) of the linearized equations is in this
case

S∗(q, Ω) =
(

iΩ− q2 0
K iΩ− q2 + J(q)

)
, (J3)

where J(q) = (D − 1)(1 + 2iq − q2). Since the element
S∗12(q, Ω) = 0, the eigenvalues u∗1 and u∗2 are simply the
diagonal element of S∗(q, Ω), u∗1(q, Ω) = iΩ − q2 and
u∗2(q, Ω) = iΩ− q2 + J(q). However, the eigenvectors are
not both along the ψ1 and ψ2 axis. Indeed, we have in
the notation of V E

U∗1(q) =
(

1
−K/J(q)

)
U∗†1 = (1, 0) , (J4)

U∗2 =
(

0
1

)
U∗†2 (q) = (K/J(q), 1) , (J5)

The appropriate saddle point is Ω = q = 0, and since
J(0) = (D − 1), we have

U∗1(0) =
(

1
−K/(D − 1)

)
. (J6)

The fact that the second component is nonzero just ex-
presses the fact that the variable ψ2 is entrained by the
leading edge in ψ1. We can now illustrate our asser-
tion that different choices of projection lead to differ-
ent dynamical equations for the projected leading edge
variable ψp, but that the universal results from Table
I are independent of the particular choice of projection.
Clearly, one obvious intuitively appealing choice is to take
ψp = ψ1, since the ψ1 dynamics is independent of that
of ψ2. In this case, the dynamical equation for ψp is
nothing but the single F-KPP equation, and all the re-
sults for this equation carry over in detail. Likewise, the
choice ψp = π1(q, Ω) (5.86) leads to the linearized F-KPP
equation for ψp since u∗1(q, Ω(q)) = 0 gives the dispersion
relation of the F-KPP equation. However, this choice
is more formal than practical, since the direction in the
vector space (ψ1, ψ2) is not fixed, but depends on the
variable q which influences the dynamics. A more practi-
cal choice for the coupled variables would be to take ψp as
the component along U∗1(0), as this corresponds to a fixed
ratio of ψ1 and ψ2. Since U∗†2 · U∗1 = K(J(q) − J(0) =
−2Kiq/(D − 1) + O(q2), the projected equation for in
this case picks up a third order derivative term D3∂

3
ξψp,

amoungh other ones.
Thus, we observe in this particular example, that in-

deed the universal results from Table I on velocity and
shape relaxation are independent of the choice of projec-
tion, while the subleading contribution g0(z) in the lead-
ing edge is universal in the sense, that it is independent
of the precise initial conditions, but it does depend on the
direction of projection.
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APPENDIX K: PINCH POINT VERSUS SADDLE
POINT ANALYSIS

In this appendix, we briefly discuss the major differ-
ences and similarities between the saddle point and the
pinch point approach for evaluating the integral

Im =
∫ iγ+∞

iγ−∞

dω

2π

∫ ∞
−∞

dk

2π
eikξ−i(ω−vk)t

M̂
m

(k, ω)

um(k, ω)
(K1)

from Eq. (5.79) on a given branch m. Here γ > 0
needs to be large enough, that the integrand is an-
alytic along and above the path of ω integration in
the complex ω plane. We introduced the abbreviation
M̂

m
(k, ω) = Û m(k, ω)× Û

†
m(k, ω). In the moving frame

ξ, it obviously is convenient to transform to the variable
Ω = ω − vk, and to introduce

uv
m(k, Ω) = um(k, Ω + vk) = um(k, ω) , Ω = ω − vk .

(K2)

The characteristic equation

um(k, ωm(k)) = 0 ⇐⇒ uv
m(k, Ωm(k)) = 0 (K3)

defines the dispersion relation ωm(k) or Ωm(k). The in-
tegrals are now of the form

Im =
∫ iγ+∞

iγ−∞

dΩ
2π

∫ ∞
−∞

dk

2π
eikξ−iΩt

M̂
m

(k, Ω + vk)

uv
m(k, Ω)

.

(K4)

The “saddle point” type approach, that we follow in
Sects. VC – VE of this paper, is based on first evaluating
the Ω integral by closing the Ω contour in the lower half
plane for t > 0 around the simple pole ∝ (Ω − Ωm(k)).
The integral then yields

Im =
∫ ∞
−∞

dk

2π
eikξ−iΩm(k)t

M̂
m

(k, Ωm(k) + vk)
i∂Ωuv

m(k, Ωm(k))
, (K5)

where γ needs to be larger than maxk real (Im Ωm(k)).
From here on, the saddle point analysis proceeds essen-
tially as in Sect. VD: the k contour is deformed so as
to go through the saddle corresponding to the maximum
growth rate, a general saddle point being a double root
in k of uv

m(k, Ω), so that

uv
m(k, Ω)|sp = 0 ⇐⇒ ωsp = ωm(ksp) (K6)

⇐⇒ Ωsp = ωm(ksp)− vksp ,

and

∂kuv
m(k, Ω)|sp = 0 ⇐⇒ (∂k + v∂ω)um(k, ω)|sp = 0

⇐⇒ v = −
∂kum(k, ω)|sp

∂ωum(k, ω)|sp

. (K7)

By expanding about such a saddle point, we then get for
large t to leading order

Im =
M̂

m
(k, ω)

i∂ωum(k, ω)

∣∣∣∣∣
sp

eikspξ−iΩspt

∫
q

eiqξ−Dspq2t + . . . ,

(K8)

with the diffusion constant

Dsp =
−i (∂k + v∂ω)2 um

∣∣∣
sp

2 ∂ωum|sp

=
−i ∂2

kuv
m

∣∣
sp

2 ∂ωuv
m|sp

. (K9)

The remaining integral over real q = k − ksp is a sim-
ple Gaussian integral of the form discussed previously in
Sect. VC1. As before, we are in the comoving frame, if

Im Ωsp = 0 ⇐⇒ v =
Im ωm(ksp)

Im ksp
. (K10)

Differentiating the dispersion relation u(k, ωm(k)) = 0
with respect to k: ∂ku(k, ωm(k)) = 0, and comparing to
(K7), we can immediately identify

v =
∂ωm(k)

∂k

∣∣∣∣
sp

. (K11)

From ∂2
ku(k, ωm(k)) = 0 and (K9), we get

D =
i∂2ωm(k)

2∂k2

∣∣∣∣
sp

. (K12)

Choosing in (5.79) the saddle point with the largest ve-
locity vsp = v∗, Eq. (5.81) immediately results.

If the denominator of an integral like (K4) contains a
product of characteristic functions

∏M
m=1 uv

m(k, Ω), then
each factor uv

m(k, Ω) will contribute with its pole and
yield an integral as in (K5), so that the total integral
amounts to a sum of M integrals of the form (K5). Again
the dominating contribution for ξ fixed and t� 1 will be
the one with the largest velocity vsp.

The pinch point analysis [56] is based on evaluating
(K1) by a different order of the integrations, i.e., by first
closing the k contour to get k = k(Ω) and then evaluat-
ing the remaining Ω integral. (For ξ > 0, the k contour
must be closed in the upper half plane.) As discussed
most clearly by Bers [56], this is done as follows. γ in
(K4) has to be large enough to lie above the maxima of
the dispersion relation Ωm(k) for real k. When Ω varies
along the integration path, the poles in the k plane move.
Now when γ is lowered sufficiently, that it approaches the
maximum of the line Ωm(k) traced out by the real k val-
ues, a pole in the k plane will approach the real k axis.
When that happens, the k contour can be continuously
deformed to avoid this pole. This in turn allows one to
lower the value of γ. This process can continue until two
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poles in the k plane approach the k contour from oppo-
site sides, and “pinch off” the k contour at a particular
value of Ω∗. Clearly, that point corresponds to a dou-
ble root, since for that given value of Ω the two k roots
coincide. When the k contour is closed, this point gener-
ates a branch-cut in the Ω plane, since near Ω∗ we have
k − k∗ = ±

√
(Ω− Ω∗)/D. When the Ω contour is sub-

sequently closed in the lower half Ω plane, these branch
points then generate the usual leading asymptotic behav-
ior (5.14), (5.15).

In both approaches, there are clearly mild assumptions
concerning the analytic behavior of the dispersion rela-
tions, that arise in slightly different ways. In the saddle
point approach, the assumption is that the contour in the
k plane can be deformed continuously to go through the
saddle point with the highest velocity and Re D > 0.
This means that the downhill “valleys” at both sides
of the saddle are not completely separated by “ridges”
from the real k axis. In this formulation, the condition
Re D > 0 naturally comes out. In the pinch point for-
mulation, the condition usually mentioned is that the
poles in the k plane “pinch off” the k contour, while the
condition Re D > 0 is usually not mentioned, but it is
actually hidden in the fromulation as well: it just ex-
presses that the pinch point is associated with a point
of the dispersion relation, where the growth rate is maxi-
mal. In fact, the examples discussed on pages 466, 467 in
[56] for solutions of the saddle point equations which are
no pinch points, are just cases where Re D > 0, i.e., so-
lutions which are excluded by a saddle point formulation
as well.
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[33] D. Horváth, V. Petrov, S. K. Scott, and K. Showalter,
J. Chem. Phys. 98, 6332 (1993).

[34] A. Malevanets, A. Careta, and R. Kapral, Phys. Rev. E
52, 4724 (1995).

[35] D. Horváth and A. Tóth, J. Chem. phys. 108, 1447
(1998).

[36] J. A. Murray, Mathematical Biology (Springer, Berlin,
1989). J.D. Logan, An Introduction to Nonlinear Partial
Differential Equations (Wiley, New York, 1994).

73



[37] U. Ebert and W. van Saarloos (unpublished).
[38] P. C. Fife, Dynamics of Internal Layers and Diffusive

Interfaces (SIAM, Philadelphia, 1988).
[39] A. Karma, and W.-J. Rappel, Phys. Rev. E 53, R3017

(1996).
[40] G. F. Mazenko, O. T. Valls, and P. Ruggiero, Phys. Rev.

B 40, 384 (1989).
[41] O. T. Valls and L. M. Lust, Phys. Rev. B 44, 4326

(1991).
[42] A. Lemarchand, A. Lesne, A. Perera, M. Moreau, and

M. Mareschal, Phys. Rev. E. 48, 1568 (1993).
[43] H. Breuer, W. Huber, and F. Petruccione, Physica D

73, 259 (1994).
[44] J. Riordan, C. R. Doering, and D. ben-Avraham, Phys.

Rev. Lett. 75, 565 (1995).
[45] J. Armero, J. M. Sancho, J. Casademunt, A. M. La-

casta, L. Ramirez-Piscina, and F. Sagues, Phys. Rev.
Lett. 76, 3045 (1996).

[46] J. Armero, J. Casademunt, L. Ramrez-Piscina, and J.
M. Sancho, Phys. Rev. E 58, 5494 (1998).

[47] As mentioned by Murray, Ref. [36] on page 277, the
equation was apparently already considered in 1906 by
Luther, who obtained the same analytical form as Fisher
for the wave front.

[48] A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Bul-
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