
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Parallel Iteration of the Extended Backward Differentiation Formulas

J.E. Frank, P.J. van der Houwen

Modelling, Analysis and Simulation (MAS)

MAS-R9913 May 31, 1999

Report MAS-R9913
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Parallel Iteration of the Extended Backward Differentiation Formulas

J.E. Frank
TU Delft, Fac. ITS

P.O. Box 356, 2600 AJ Delft, The Netherlands

P.J. van der Houwen
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

The extended backward differentiation formulas (EBDFs) and their modified form (MEBDF) were proposed by

Cash in the 1980s for solving initial-value problems (IVPs) for stiff systems of ordinary differential equations

(ODEs). In a recent performance evaluation of various IVP solvers, including a variable-step-variable-order

implementation of the MEBDF method by Cash, it turned out that the MEBDF code often performs more

efficiently than codes like RADAU5, DASSL and VODE. This motivated us to look at possible parallel im-

plementations of the MEBDF method. Each MEBDF step essentially consists of successively solving three

nonlinear systems by means of modified Newton iteration using the same Jacobian matrix. In a direct imple-

mentation of the MEBDF method on a parallel computer system, the only scope for (coarse grain) parallelism

consists of a number of parallel vector updates. However, all forward-backward substitutions and all righthand

side evaluations have to be done in sequence. In this paper, our starting point is the original (unmodified) EBDF

method. As a consequence, two different Jacobian matrices are involved in the modified Newton method, but on

a parallel computer system, the effective Jacobian-evaluation and the LU-decomposition costs are not increased.

Furthermore, we consider the simultaneous solution, rather than the successive solution, of the three nonlinear

systems, so that in each iteration the forward-backward substitutions and the righthand side evaluations can be

done concurrently. A mutual comparison of the performance of the parallel EBDF approach and the MEBDF

approach shows that we can expect a speedup factor of about 2 on 3 processors.

1991 Mathematics Subject Classification: 65L06

Keywords and Phrases: numerical analysis, iteration methods, initial-value problems, extended BDFs, parallelism

Note: Work carried out under project MAS 2.3 - ‘Numerical Algorithms for Initial Value Problems.’ The investigations

reported in this paper were partly supported by STW and TU Delft.

1. Introduction

The extended backward differentiation formulas (EBDFs) were proposed by Cash[2] in 1980 for solving
initial-value problems (IVPs) for stiff systems of ordinary differential equations (ODEs)

dy

dt
= f(y), y, f ∈ Rd, t ≥ t0. (1.1)

Each EBDF step essentially consists of successively solving three nonlinear systems by means of (mod-
ified) Newton iteration. Since two different Jacobian matrices are involved, the method needs two
different LU decompositions after each Jacobian update or change of stepsize. In order to reduce the
LU costs, Cash[3] modified the EBDF methods (MEBDF methods) such that only one LU decompo-
sition is required.

In a recent performance evaluation [9] of various IVP solvers, including a variable-step-variable-
order implementation of the MEBDF method due to Cash, it turned out that the MEBDF code often

2. The EBDF and MEBDF methods of Cash 2

performs more efficiently than codes like RADAU5 [7], DASSL[10] and VODE[1]. This motivated us
to look at possible parallel implementations of the MEBDF method.

In a direct implementation of the MEBDF method on a parallel computer system, the only scope
for (coarse grain) parallelism consists of a number of parallel vector updates. However, all forward-
backward substitutions and all righthand side evaluations have to be done in sequence. In this paper,
our starting point is the original (unmodified) EBDF method. As a consequence, two different Jacobian
matrices are involved in the modified Newton method, but on a parallel computer system, the effective
costs of the Jacobian-evaluations and the LU-decompositions are not increased. Furthermore, we
consider the simultaneous solution, rather than the successive solution, of the three nonlinear systems,
so that in each iteration the forward-backward substitutions and the righthand side evaluations can
be done concurrently. A mutual comparison of the performance of the parallel EBDF and MEBDF
approaches shows that we can expect a speedup factor of about 2 on 3 processors.

2. The EBDF and MEBDF methods of Cash

The EBDF method of Cash[2] is based on the formula

yn+1 = a1yn + a2yn−1 + · · ·+ akyn−k+1 + hb0f(yn+1) + hb1f(yn+2) (2.1)

for computing an approximation yn+1 to the exact solution y(tn+1) of (1.1). Here, yn+2 is an approx-
imation to y(tn+2) obtained by some predictor formula and the coefficients ai and bi are determined
by imposing the conditions for order k + 1 accuracy. Cash used the BDF predictor formula

un+1 = ā1yn + ā2yn−1 + · · ·+ ākyn−k+1 + hb̄0f(un+1),
un+2 = ā1un+1 + ā2yn + · · ·+ ākyn−k+2 + hb̄0f(un+2),

(2.2a)

to obtain a prediction un+2 for the ‘future’ value yn+2. Thus, yn+1 is computed from the equation

yn+1 = a1yn + a2yn−1 + · · ·+ akyn−k+1 + hb0f(yn+1) + hb1f(un+2). (2.2b)

The coefficients āi and b̄0 are the BDF coefficients. The internal vectors un+1 and un+2 defined by
(2.2a) have order of accuracy k and the external (or output) vector yn+1 defined by (2.2b) has order
of accuracy k + 1. Hence the stage order s equals k and the actual order p equals k + 1. Furthermore,
{(2.2a),(2.2b)} possesses a considerably larger stability region than the classical BDF method of order
p = k + 1. This can be explained by observing that the underlying corrector formula (2.1) is much
more stable than the classical BDF. For future reference, the coefficients {āi, b̄0} and {ai, b0, b1} are
given in the Tables 2.1 and 2.2 for k = 2, . . . , 5. The MEBDF methods arise from the EBDF method
{(2.2a),(2.2b)} by replacing (2.2b) with the formula (see Cash [3])

yn+1 = a1yn + a2yn−1 + · · ·+ akyn−k+1 + hb̄0f(yn+1) + h(b0 − b̄0)f(un+1) + hb1f(un+2).
(2.2c)

The advantage is that the modified Newton iteration of the subsystems (2.2a) and (2.2b) can use the
same LU-decomposition. Furthermore, the order of accuracy is not affected and the stability regions
are even slightly larger than for the EBDF methods.

2.1 The implicit relations
The EBDF and MEBDF methods are implicit in un+1, un+2 and yn+1, and use the back values
yn−k+1, . . . , yn as input. Let us define the stage vector Yn+1 and the input vector Vn according to

Yn+1 =

 un+1

un+2

yn+1

 , Vn =

 yn−k+1

...
yn

 .

2. The EBDF and MEBDF methods of Cash 3

Table 2.1: Coefficients {āi, b̄0} in the BDF formulas (2.2a).

k ā1d ā2d ā3d ā4d ā5d b̄0d d
2 4 -1 2 3
3 18 -9 2 6 11
4 48 -36 16 -3 12 25
5 300 -300 200 -75 12 60 137

Table 2.2: Coefficients {ai, b0, b1} in the EBDF and MEBDF formulas (2.2b) and (2.2c).

k a1d a2d a3d a4d a5d b0d b1d d
2 28 -5 22 -4 23
3 279 -99 17 150 -18 197
4 4008 -2124 728 -111 1644 -144 2501
5 26550 -18700 9600 -2925 394 8820 -600 14919

Then, using tensor notation, both the EBDF method {(2.2a), (2.2b)} and the MEBDF method {(2.2a),
(2.2c)} can be represented in the compact form

(B ⊗ I)Yn+1 − h(C ⊗ I)F (Yn+1) = (E ⊗ I)Vn, (2.3)

Here, I is the d-by-d identity matrix, ⊗ the Kronecker product, h the stepsize tn+1− tn, and F (Yn+1)
contains the righthand sides f(un+1), f(un+2), f(yn+1). In the EBDF case, B, C and E are defined
by

B :=

 1 0 0
−ā1 1 0
0 0 1

 , C :=

 b̄0 0 0
0 b̄0 0
0 b1 b0

 , E :=

 āk āk−1 · · · ā1

0 āk · · · ā2

ak ak−1 · · · a1

 . (2.4)

In the MEBDF case, the last row of the matrix C changes to
(
b0 − b̄0, b1, b̄0

)
.

2.2 Iteration processes
Instead of solving the unknown components un+1, un+2 and yn+1 of Yn+1 sequentially, as was the
original approach of Cash, we here consider an approach where these components are solved simulta-
neously, that is, the subsystems in the EBDF or MEBDF method are solved simultaneously. As we
shall see below, one option in this approach is approximating the matrix B−1C by a diagonal matrix.
Since the error of the diagonal approximation will be smaller as B−1C is itself closer to a diagonal
matrix, we choose the EBDF method, rather than the MEBDF method, as our starting point, because
in the EBDF case the first entry in the last row of B−1C vanishes and in the MEBDF case it does
not.

Premultiplying (2.3) by B−1 ⊗ I, we can rewrite it in the form

Rn(Yn+1) = 0, Rn(Y) := Y − h(A⊗ I)F (Y)− (B−1E ⊗ I)Vn,

A := B−1C =

 b̄0 0 0
ā1b̄0 b̄0 0

0 b1 b0

 .
(2.5)

Let us iterate the system of implicit relations Rn(Yn+1) = 0 by the Newton type method

(I −A∗ ⊗ hJn+1)(Y (j) − Y (j−1)) = −Rn(Y (j−1)), j = 1, . . . , m, (2.6)

2. The EBDF and MEBDF methods of Cash 4

where I is again the identity matrix, A∗ is a suitably chosen matrix, Y (0) is an initial approximation
to Y n+1, and Jn+1 is an approximation to the Jacobian matrix of the righthand side function in (1.1)
at tn+1 (note that in the preceding timestep, an approximation to yn+1 has been computed). Suppose
that the first and third component of Y (0) are defined by the second component of the stage vector Yn
computed in the preceding step, and that the second component of Y (0) is obtained by extrapolation
of the most recent approximations available at the points tn+1, tn, . . . , tn−k+1. Then, Y (0) has order
of accuracy p = k and is expected to be an excellent initial approximation to Yn+1. Moreover, the
computational costs are negligible.

It is tempting to set A∗ = A resulting in the familiar (modified) Newton method and to try to
diagonalize (2.6) by a Butcher similarity transformation Ỹ (j) = (Q−1 ⊗ I)Y (j) such that the matrix
Q−1AQ is diagonal. Unfortunately, the matrix A is defective, so that this does not work. However, if
we approximate A by the matrix

A∗ =

 b̄0 0 0
0 b̄0 0
c1 c2 b0

 , (2.7a)

then diagonalization is possible. It can be shown that

Q :=

 q1 0 0
q0 q2 0

c1q1+c2q2
b̄0−b0

c2q2
b̄0−b0 q3

⇒ Q−1A∗Q = D, D := diag(b̄0, b̄0, b0) (2.7b)

for all nonzero diagonal entries of Q. This family of transformation matrices does not represent all
possible transformation matrices Q with the property Q−1A∗Q = D, but for our purposes, we do not
need more generality.

Using {(2.7a),(2.7b)}, we can define the transformed iteration method

(I −D ⊗ hJn+1)(Ỹ (j) − Ỹ (j−1)) = −(Q−1 ⊗ I)Rn(Y (j−1)), Y (j) = (Q⊗ I)Ỹ (j), j = 1, . . . , m.
(2.8)

We shall refer to {(2.7a),(2.7b),(2.8)} as the transformed EBDF method. In particular, we may
set c1 = c2 = 0 in (2.7a), i.e. A∗ = D, so that we can use Q = I which avoids transformation
costs. We shall call {(2.6), A∗ = D} simply the diagonal EBDF method. Both iteration processes
{(2.7a),(2.7b),(2.8)} and {(2.6), A∗ = D} have the advantage of possessing a lot of additional in-
trinsic parallelism when compared with the MEBDF method as implemented in Cash[3] where the
three equations in {(2.2a),(2.2c)} are solved sequentially by Newton iteration (to be referred to as
sequential MEBDF). Firstly, the two LU decompositions can be obtained in parallel; and secondly, in
each iteration the forward-backward substitutions for the 3 subsystems, the three components of the
residue function Rn(Y (j)), and in the case of {(2.7a),(2.7b),(2.8)} the similarity transformation can
be computed in parallel.

Let us compare the iteration cost of diagonal and transformed EBDF with that of sequential
MEBDF. Suppose that respectively m1, m2 and m3 iterations are required. Then, sequential MEBDF
requires one LU decomposition, m1 + m2 + m3 sequential forward-backward substitutions, and m1 +
m2 + m3 sequential evaluations of f . Thus, diagonal and transformed EBDF (if we ignore the trans-
formation costs) are less costly than sequential MEBDF if m < m1 + m2 + m3. Finally, we remark
that in an actual implementation of diagonal and transformed EBDF, it is sometimes advantageous
to use in the system matrix in (2.6) the Jacobian Jn+1 in the blocks of the first and third row and
an approximation Jn+2 of the Jacobian at tn+2 in the blocks of the second row (see Section 4). Since
these Jacobians can again be evaluated concurrently, the effective costs do not increase.

3. Convergence of diagonal and transformed EBDF 5

3. Convergence of diagonal and transformed EBDF

Let us consider the rate of convergence of the iteration process (2.6). Defining the iteration error
ε(j) := Y (j) − Yn+1, we derive for (2.6) the error recursion

ε(j) = Mε(j−1) + hLΦ
(
ε(j−1)

)
, j ≥ 1,

M := (I −A∗ ⊗ hJn+1)
−1 ((A−A∗)⊗ hJn+1) , L := (I −A∗ ⊗ hJn+1)−1(A⊗ I),

Φ(ε) := F (Yn+1 + ε)− F (Yn+1)− (I ⊗ Jn+1)ε.
(3.1)

Hence,

ε(j) = M jε(0) + hM j−1LΦ(ε(0)) + · · ·+ hMLΦ(ε(j−2)) + hLΦ(ε(j−1)). (3.2)

3.1 The rate of convergence
Let A∗ be defined by (2.7a), so that A∗ has the same diagonal entries as A. Then the 3-by-3 lower
block-triangular matrix M has zero diagonal blocks, so that M j vanishes for all j ≥ 3. Thus,

ε(1) = Mε(0) + hLΦ(ε(0)),
ε(2) = M2ε(0) + hMLΦ(ε(0))hLΦ(ε(1)),
ε(j) = hM2LΦ(ε(j−3)) + hMLΦ(ε(j−2)) + hLΦ(ε(j−1)), j ≥ 3.

(3.2′)

Thus, in the case of linear problems, where the function Φ vanishes, we have convergence within three
iterations for all matrices A∗ with the same diagonal entries as A (of course, if A∗ = A, then (2.6)
reduces to modified Newton which converges within one iteration for linear problems). For nonlinear
problems, we consider the first-order approximation to (3.2′). Let us write Φ(ε) = Kε + O(ε2) and
hLK = N , where K is the (3-by-3 block-diagonal) Jacobian matrix of Φ(ε) at ε = 0. By ignoring
second and higher powers of ε, the first-order approximation to (3.2′) becomes

ε(1) = (M + N)ε(0), N := hLK,
ε(2) = (M + N)2ε(0),
ε(j) = M2Nε(j−3) + MNε(j−2) + Nε(j−1), j ≥ 3.

(3.3)

In the Newton case A∗ = A, we have M = O, so that the first-order error recursion (3.3) reduces to
ε(j) = Nε(j−1), j ≥ 1. However, if M 6= O, then both N and M play a role in the rate of convergence.
We consider the first few iteration errors taking the structure of the matrices M and N into account.
From (2.7a) and (3.1) it follows that M and N are 3-by-3 block matrices with the structure

M = (I −D ⊗ hJn)−1

 O
ā1b̄0 ⊗ hJn O
× (b1− c2)⊗ hJn O

 , N =

 ×
× ×
× × ×

 . (3.4)

Hence, all matrix products in (3.3) containing three or more factors M vanish, so that

ε(1) = (M + N)ε(0),
ε(2) = (M2 + MN + NM + N2)ε(0),
ε(3) = (M2N + MNM + NM2 + MN2 + NMN + N2M + N3)ε(0),
ε(4) = (M2N2 + (MN)2 + MN2M + NM2N + (NM)2 + N2M2 + O(N3))ε(0),
ε(j) = O(N j−2)ε(0), j ≥ 5.

(3.3′)

where the notation O(N i) is used for terms containing i factors N . We summarize the preceding
derivations in the following theorem:

Theorem 3.1 Let in the error recursion (3.1) the function Φ satisfy Φ(ε) = Kε + O(ε2), and let
N := hLK. Then the first-order approximation to the error recursion (3.2) is given by{

ε(j) = Nε(j−1), j ≥ 1
}

if A∗ = A (modified Newton),{
ε(j) = (M + N)jε(0), j = 1, 2; ε(j) = O(N j−2)ε(0), j ≥ 3

}
if A∗ is defined by (2.7a).

3. Convergence of diagonal and transformed EBDF 6

Thus, if A∗ is defined by (2.7a), then after at most two iterations the rate of convergence is compa-
rable with that of modified Newton, for all values of c1 and c2. However, in the transformed EBDF
case with c2 = b1, this is already achieved after one iteration, because for this choice M assumes the
form (see (3.4))

M =

 O
× O
× O O

 .

Hence, all matrix products in (3.3′) containing factors Mp with p ≥ 2 vanish. Furthermore, MNM =
(MN)2 = (NM)2 = MN2M = O. Using these relations, it can be shown that

ε(1) = (M + N)ε(0), ε(j) = O(N j−1)ε(0), j ≥ 2.

Thus, we have proved:

Theorem 3.2 Let the conditions of Theorem 3.1 be satisfied, and let in (2.7a) c2 = b1. Then, for
all c1 the first-order approximation to the error recursion (3.2) associated with transformed EBDF
{(2.7a),(2.7b),(2.8)} is given by{

ε(1) = (M + N)ε(0); ε(j) = O(N j−1)ε(0)j ≥ 2
}

.

3.2 Amplification factors
Theorems 3.1 and 3.2 show that transformed and diagonal EBDF may converge slower than Newton
in the first iteration and the first two iterations, respectively. The reason is that the magnitude of M
is expected to be much greater than that of N . We shall consider the effect of the amplification matrix
(M + N)j ≈M j on the initial error ε(0). Although M has only zero eigenvalues, the magnitude of M
is not necessarily small. Let us expand ε(0) with respect to the vectors a⊗v, where v is an eigenvector
of the Jacobian matrix Jn+1. Since

M j(a⊗ v) = (Zj(z)⊗ I)(a⊗ v), Z(z) := z(I − zA∗)−1(A−A∗), z := hλ(Jn+1), (3.5)

we are interested in the size of ‖Zj(z)‖. It follows from (2.7a) that

Z(z) =
z

(1− b0z)(1− b̄0z)

 0 0 0
ā1b̄0(1− b0z) 0 0

(c1 + c2ā1)b̄0z − c1 (b1 − c2)(1− b̄0z) 0

 .

Assuming that the eigenvalues λ(Jn+1) are in the left halfplane, ‖Zj(z)‖ is maximal along the imagi-
nary axis, so that we set z = iy. Let us assume that the parameters c1 and c2 are chosen such that
‖Zj(iy)‖∞ is determined by the second row of Z. We verified that this happens in the case of diagonal
Newton where c1 = c2 = 0 and in the case of transformed Newton with c1 = 0 or c1 = ā1b̄0b1(b̄0−b0)−1

and with c2 = b1. For these cases we find

‖Z(iy)‖∞ =
ā1b̄0|y|√
1 + b̄2

0y
2
, ‖Z2(iy)‖∞ =

ā1b̄0|b1 − c2||y2|√
1 + b̄2

0y
2
√

1 + b2
0y

2
. (3.6)

showing that ‖Z(iy)‖∞ monotonically increases from 0 to ā1 and ‖Z2(iy)‖∞ monotonically increases
from 0 to ā1|b1 − c2|b−1

0 . Since ā1 > 1 (see Table 2.2), we should expect that the stiff components in
the iteration error are amplified in the first iteration. However, in the second iteration, transformed
EBDF already has zero amplification factors and diagonal EBDF has quite small amplification factors
because ā1|b1|b−1

0 � 1. Figure 3.1 illustrates the behaviour of ‖Z(iy)‖∞ and ‖Z2(iy)‖∞ as given by
(3.6) for the 6th-order diagonal EBDF method (k = 5).

4. Numerical experiments 7

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y

||Z
(iy

)|
| ∞

, |
|Z

2 (iy
)|

| ∞

Figure 3.1: The amplification factors (3.6) for the 6th-order, iterated EBDF method (k = 5).

4. Numerical experiments

In this section, we compare the accuracy obtained by the sequential MEBDF method and the trans-
formed and diagonal EBDF methods for fixed stepsizes and fixed number of iterations. The fixed-
stepsize and fixed-number-of-iterations strategy is chosen in order to see the algorithmic properties
separately from strategy effects. In the three approaches, we computed the initial iterates by taking
the most recent approximation available or, if not yet available (in the case of the ‘future’ value un+2),
by (k + 1)-point extrapolation of already computed approximations. The experiments include results
obtained by the three methods where the Jacobian matrix Jn+1 is evaluated in each step using the
future-point-approximation to yn+1 from the preceding step. Moreover, we included results obtained
by diagonal EBDF using two Jacobians Jn+1 and Jn+2, where the y-argument in Jn+2 is obtained
by extrapolation of already computed y-values (these two Jacobians can of course be evaluated in
parallel). This version will be denoted by EBDF(2). The methods were tested for k = 5. The starting
values were obtained either from the exact solution if available or by applying the 5th-order Radau IIA
method with a 5 times smaller stepsize. We took two well-known test problems from the literature
such that there is no transient phase, allowing us to use fixed stepsizes; viz. a problem posed by
Kaps[8].

dy1

dt
= −1002y1 + 1000y2

2,
dy2

dt
= y1 − y2(1 + y2), y1(0) = y2(0) = 1, 0 ≤ t ≤ 5, (4.1)

with exact solution y1 = e−2t, y2 = e−t, and the problem

HIRES on [5, 321.8122], (4.2)

where the initial conditions at t = 5 were obtained by integrating the HIRES problem given in ([6], p.
157) on [0, 5]. It turns out that these problems are relatively easy in the sense that the three methods

4. Numerical experiments 8

converge within one or two iterations. Therefore, we also used the more difficult problem

y′1 = −1000(y3
1y

6
2 − cos3(t) sin6(t))− sin(t), y1(0) = 1,

y′2 = −1000(y5
2y

4
3 − sin5(t) sin4(t)) + cos(t), y2(0) = 0,

y′3 = −1000(y2
1y

3
3 − cos2(t) sin3(t)) + cos(t), y3(0) = 0,

0 ≤ t ≤ 1 (4.3)

with exact solution y1 = cos(t) and y2 = y3 = sin(t). Because of its strong nonlinearity it is a more
suitable test problem for showing the differences in rate of convergence of the three methods. Finally,
we tested the problem

y′1 = −0.04y1 + 104y2y3 − 0.96e−t, y1(0) = 1,
y′2 = 0.04y1 − 104y2y3 − 107(y2)2 − 0.04e−t, y2(0) = 0,
y′3 = 3 107(y2)2 + e−t, y3(0) = 0,

0 ≤ t ≤ tend, (4.4)

with exact solution y1 = e−t, y2 = 0, y3 = 1− e−t. This problem has the same highly stiff Jacobian
matrix as the famous Robertson problem[11], but it is modified by adding nonhomogeneous terms,
so that it possesses for the given initial values a solution without transient phase. System (4.4)
resembles the original Robertson problem more as t increases. Note that the numerical integration
process will become unstable if negative approximations to y2(t) are generated. In our numerical
experiments, we denoted the number of steps by N , the number of iterations in each iteration process
by m , and the total number of iterations by M (not including the iterations needed to compute the
starting values). Note that for fixed values of m and N , sequential MEBDF requires three times more
sequential righthand side evaluations and forward-backward substitutions than the transformed and
diagonal EBDF-type methods, because sequential MEBDF solves three subsystems per step. Hence,
for sequential MEBDF the value of M is three times greater. The accuracy is given by the number
of significant correct digits scd ; that is, we write the maximal absolute end point error in the form
10−scd. In the tables of results, we shall indicate negative scd -values by *.

4.1 Fixed numbers of iterations
We start by applying the three methods with a prescribed number of iterations m. In the case of
the HIRES problem (4.2) where no exact solution is available, the starting values were provided by
the Radau IIA method using 10 iterations. Tables 4.1 and 4.2 list for given values of m and N the
resulting scd -values for the problems (4.1) and (4.2). These results show that in almost all cases
sequential MEBDF finds the solution in one iteration per subsystem, whereas transformed or diagonal
EBDF needs two iterations for the whole system (note that transformed and diagonal EBDF show a
comparable convergence behaviour). Diagonal EBDF(2) behaves poorly for the HIRES problem (4.2)
due to the relatively large timesteps which destroy the quality of the Jacobian Jn+2 (recall that the
argument in Jn+2 is based on extrapolation of preceding y-values). Only for the smallest stepsize in
Table 4.2 (i.e. h ≈ 7.9) does the diagonal EBDF(2) method converge. As to the order behaviour, in
the Kaps problem the order p = 6 of the methods is shown, but the HIRES problem only shows their
stage order s = 5.

In order to see more clearly the differences in convergence rates, we now integrate the highly
nonlinear problem (4.3). Surprisingly, the numbers of iterations to reach the converged solution
is more or less comparable for all methods and differ by at most one iteration. Furthermore, in
this example, the additional Jacobian Jn+2 used in diagonal EBDF(2) improves the initial rate of
convergence considerably. The N = 20 and N = 40 results indicate that again only the stage order
s = 5 is shown (since the experiments were run with 14 decimals precision, the N = 80 results did
not reach the expected value scd = 14.3). Finally, we integrate the highly stiff modified Robertson
problem (4.4). Here, the performance is similar to that in the Kaps problem (4.1). Apparently, the
methods are able to compute positive approximations to the second component y2(t).

4. Numerical experiments 9

Table 4.1: Values of scd for problem (4.1).

N Method m = 1 m = 2 m = 3 . . . m =∞
10 Sequential MEBDF 4.7 . . . 4.7

Transformed EBDF * 4.5 . . . 4.5
Diagonal EBDF * 4.7 4.5 . . . 4.5
Diagonal EBDF(2) * 4.7 4.5 . . . 4.5

20 Sequential MEBDF 6.5 . . . 6.5
Transformed EBDF * 6.3 . . . 6.3
Diagonal EBDF * 6.4 6.3 . . . 6.3
Diagonal EBDF(2) * 6.4 6.3 . . . 6.3

40 Sequential MEBDF 8.3 . . . 8.3
Transformed EBDF * 8.1 . . . 8.1
Diagonal EBDF * 8.2 8.1 . . . 8.1
Diagonal EBDF(2) * 8.2 8.1 . . . 8.1

Table 4.2: Values of scd for problem (4.2).

N Method m = 1 m = 2 m = 3 m = 4 . . . m =∞
10 Sequential MEBDF 2.2 2.7 2.8 2.7 . . . 2.7

Transformed EBDF * 3.1 2.6 2.7 . . . 2.7
Diagonal EBDF * 2.8 2.5 2.7 . . . 2.7
Diagonal EBDF(2) * * 2.4 0.6 . . . *

20 Sequential MEBDF 3.4 3.3 . . . 3.3
Transformed EBDF * 3.3 . . . 3.3
Diagonal EBDF * 3.6 3.4 3.3 . . . 3.3
Diagonal EBDF(2) * 3.2 3.1 3.3 . . . *

40 Sequential MEBDF 4.3 4.2 . . . 4.2
Transformed EBDF * 4.3 . . . 4.3
Diagonal EBDF * 4.4 4.3 . . . 4.3
Diagonal EBDF(2) * 4.3 . . . 4.3

4.2 Variable number of iterations
If the number of iterations is adjusted to each nonlinear system (or subsystem in the case of sequential
MEBDF) to be solved, then the efficiency is obviously improved, because we avoid the situation where
the (sub)system solutions have quite different accuracies. Moreover, in such a dynamic approach,
sequential MEBDF can take advantage of the fact that it solves the subsystems successively instead
of simultaneously as done in the transformed and diagonal EBDF methods. Hence, we also obtain a
more honest comparison.

In our dynamic iteration strategy, we used the stopping strategy described in ([6], p. 130). This
stopping strategy depends on a given tolerance parameter Tol, because it presupposes the use of
automatic stepsize selection based on keeping the local truncation error LTE close to Tol. Since we
focus on convergence aspects we want to use fixed stepsizes, so that we have to replace Tol by some

4. Numerical experiments 10

Table 4.3: Values of scd for problem (4.3).

N Method m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 . . . m =∞
20 Seq. MEBDF 5.3 9.3 10.3 10.9 10.8 10.9 . . . 10.9

Transf. EBDF * 7.6 11.2 11.4 11.3 . . . 11.3
Diag. EBDF * 5.0 9.8 10.5 10.9 11.4 11.3 . . . 11.3
Diag. EBDF(2) * 11.4 11.3 . . . 11.3

40 Seq. MEBDF 11.7 12.3 12.4 12.5 12.4 . . . 12.4
Transf. EBDF * 12.9 12.8 . . . 12.8
Diag. EBDF * 11.3 12.3 12.9 12.8 . . . 12.8
Diag. EBDF(2) * 13.1 12.8 . . . 12.8

80 Seq. MEBDF 13.5 13.9 13.8 . . . 13.8
Transf. EBDF * 13.8 . . . 13.8
Diag. EBDF * 13.5 13.8 . . . 13.8
Diag. EBDF(2) * 13.8 . . . 13.8

Table 4.4: Values of scd for problem (4.4) on [0, 1].

N Method m = 1 m = 2 . . . m =∞
10 Sequential MEBDF 7.9 . . . 7.9

Transformed EBDF 7.9 . . . 7.9
Diagonal EBDF 7.8 7.9 . . . 7.9
Diagonal EBDF(2) 7.9 . . . 7.9

20 Sequential MEBDF 9.6 . . . 9.6
Transformed EBDF 6.4 9.6 . . . 9.6
Diagonal EBDF * 9.6 . . . 9.6
Diagonal EBDF(2) 4.9 9.6 . . . 9.6

40 Sequential MEBDF 11.3 . . . 11.3
Transformed EBDF * 11.3 . . . 11.3
Diagonal EBDF * 11.3 . . . 11.3
Diagonal EBDF(2) * 11.3 . . . 11.3

estimate of LTE. In our case, the difference un − yn from the preceding step provides us with a free
estimate of LTE. We define the damping parameter θm and the accumulated damping parameter ηm:

θm :=
‖Y (m) − Y (m−1)‖∞
‖Y (m−1) − Y (m−2)‖∞

, η0 := (ηold)0.8, ηm :=
θm

1− θm
, m ≥ 1, (4.5a)

where ηold equals the ηm from the preceding step (bounded below by the machine precision). Then,
the stopping criterion described in [6] yields for the number of iterations m the condition

ηm‖Y (m) − Y (m−1)‖∞ ≤ κ‖un − yn‖∞. (4.6b)

Here, κ is a control parameter. The implicit relations are solved more accurately as κ is smaller. For the

4. Numerical experiments 11

problems (4.1), (4.2), (4.3) and (4.4), we performed experiments where the number of steps was chosen
such that a prescribed scd -value was obtained. For these problems, the maximal number of iterations
in the subsequent iteration processes was prescribed, viz. m = 5, m = 10, m = 20 and m = 10,
respectively. In problem (4.2), where no exact solution is available, we used the Radau starting method
with m = 10. Tables 4.5–4.9 list the total number of iterations M needed to obtain a given scd -value.
Since transformed and diagonal EBDF exhibit a similar convergence behaviour, we only listed scd -
values for the easier implementable diagonal EBDF methods. From these results we may conclude that
the total number of iterations is always less for the diagonal EBDF methods. Furthermore, diagonal
EBDF(2) is now performing quite well for the HIRES problem, because the stepsize is adjusted to the
required accuracy. On the basis of the above results, we can derive theoretical speedup factors for the
efficiency of the iteration part of the methods. Table 4.10 presents such efficiency speedup factors by
comparing M -values (averaged over the scd -values) for sequential MEBDF and diagonal EBDF(2).

Table 4.5: Values of M for problem (4.1) with κ = 0.1.

Method scd = 5 scd = 6 scd = 7 scd = 8 scd = 9 scd = 10
Sequential MEBDF 29 49 79 123 187 282
Diagonal EBDF 20 32 59 106 160 244
Diagonal EBDF(2) 20 32 62 97 153 235

Table 4.6: Values of M for problem (4.2) with κ = 0.1.

Method scd = 4 scd = 5 scd = 6 scd = 7
Sequential MEBDF 126 210 305 406
Diagonal EBDF 83 133 189 241
Diagonal EBDF(2) 72 122 177 234

Table 4.7: Values of M for problem (4.3) with κ = 0.1.

Method scd = 10 scd = 11 scd = 12 scd = 13
Sequential MEBDF 103 118 157 231
Diagonal EBDF 131 125 121 140
Diagonal EBDF(2) 32 38 67 105

Table 4.8: Values of M for problem (4.4) on [0, 1] with κ = 0.1.

Method scd = 8 scd = 9 scd = 10 scd = 11 scd = 12 scd = 13
Sequential MEBDF 21 39 66 107 168 260
Diagonal EBDF 9 17 29 49 74 114
Diagonal EBDF(2) 8 17 30 48 74 115

4. Numerical experiments 12

Table 4.9: Values of M for problem (4.4) on [0, 10] with κ = 0.1.

Method scd = 3 scd = 4 scd = 5 scd = 6 scd = 7 scd = 8
Sequential MEBDF 31 60 101 163 255 392
Diagonal EBDF 19 37 47 75 119 184
Diagonal EBDF(2) 18 26 47 76 119 184

Table 4.10: Theoretical iteration speedup of diagonal EBDF(2).

Problem Speedup
(4.1) 1.3
(4.2) 1.7
(4.3) 2.7
(4.4) 2.2

4.3 Code timings
Finally we will give an indication of how our formulation of the diagonal EBDF method compares with
the sequential MEBDF method of Cash when implemented on a parallel shared memory machine, in
this case a Cray C916. Parallel speedups in this section were obtained using the Autotasking Expert
analysis tool [4] available on Cray computer systems, which estimates the speedup that would be
obtained by a program run on a dedicated multiprocessor system, based on the observed performance
on an arbitrarily loaded system. Since the ATExpert tool measures speedup with respect to the same
code run on a single processor, it is important for obtaining meaningful results that no redundant
work be performed within parallel sections of the code. The tests in this section were run with a
fixed number of Newton iterations per timestep to clearly distinguish the parallel performance in the
absence of iteration strategies. We have taken many more time steps in the experiments of this section
to reduce the effects of initialization costs such as memory allocation and startup procedure.

There is, of course, a certain amount of parallelism available in sequential MEBDF. For each of
the three relations in {(2.2a),(2.2c)}, a nonlinear system must be solved with a (modified) Newton
method, in which the following tasks have varying degrees of parallelism:

1. Evaluation of the Jacobian Jn+1.

2. Evaluation of the righthand side.

3. Update of the solution vector.

4. Computation of an LU-decomposition of the system matrix I − b̄0hJn+1.

5. Execution of a forward-backward substitution.

These tasks all contain a number of independent operations which is proportional to the problem
dimension d (parallelism across the space, in the classification of Gear[5]) and are present in sequential
MEBDF, as well as in the diagonal EBDF methods. However we are interested in an additional,
coarser grained parallelism, orthogonal to these parallelizations, such as the concurrent computation
of LU-decompositions and forward-backward substitutions for the three subsystems (parallelism across
the method). This kind of parallelism is not available if the subsystems are solved successively as in
sequential MEBDF. However, by solving the subsystems simultaneously as in diagonal EBDF, all
of items 1 through 5 above can be computed in parallel for the three subsystems. In the following

4. Numerical experiments 13

subsections we present timings concerning the effect of concurrent computation of the various tasks
in diagonal EBDF.

4.3.1 LU-decompositions. Since the computation of LU-decompositions are generally considered to
be expensive, we first discuss the effect on the CPU time of computing the LU decomposition of the
matrices I − b̄0hJn+1 and I − b0hJn+2 needed in diagonal EBDF concurrently. Since the Jacobians
are factored only once per time step, the effect of factoring them concurrently becomes less important
as more iterations are needed. Table 4.11 shows for N = 1280 time steps the speedup figures obtained
from a two-processor implementation of diagonal EBDF in which only the two LU-decompositions are
computed in parallel. Apparently, for the problems (4.1)–(4.4), the parallel computation of the LU
decompositions does not lead to a substantial speedup, even for the 8-dimensional HIRES problem
(4.2). Of course, for higher-dimensional problems, the speedup will increase. On the other hand, a
more sophisticated implementation, where the Jacobian is only updated every few steps, will decrease
the speedup attained by concurrent decomposition of Jacobians. Therefore, a substantial speedup of
a parallel implementation of diagonal EBDF should not be expected from the parallel computation of
the LU-decompositions alone.

Table 4.11: Speedups attained by concurrent decomposition of Jacobians in diagonal EBDF.

Problem m = 2 m = 3 m = 4 m = 5
(4.1) 0.97 0.97 1.00 1.00
(4.2) 1.18 1.14 1.11 1.10
(4.3) 1.03 1.02 1.02 1.02
(4.4) 1.04 1.03 1.03 1.02

4.3.2 Overhead costs. The diagonal EBDF approach incurs a small increase in cost due to the fact
that the most recently computed function evaluations f(u(j−1)

n+1) and f(u(j−1)
n+2) must be updated in

the second and third components of the residue in (2.6), whereas these are constant components of
the residue functions if the subsystems are solved in sequence. Hence, these additional costs have to
be considered as overhead costs. In order to estimate these costs, we compared diagonal EBDF with
sequential EBDF. The latter method is understood to be the method obtained if the EBDF subsystems
in {(2.2a),(2.2b)} are solved sequentially. An indication of the significance of this overhead is provided
in Table 4.12, in which the ratio of serial CPU times for sequential EBDF and diagonal EBDF is
compared for N = 1280 time steps. These figures show that the increase in sequential overhead is
quite modest.

Table 4.12: Ratio of serial CPU times for sequential and diagonal Newton.

Problem m = 2 m = 3 m = 4 m = 5
(4.1) 0.94 0.91 0.89 0.89
(4.2) 0.98 0.97 0.97 0.96
(4.3) 1.01 0.99 0.97 0.97
(4.4) 0.98 0.96 0.95 0.94

4.3.3 Overall speedup factors. Table 4.13 shows the ATExpert observed speedup of the diagonal
EBDF approach on three processors over sequential MEBDF on one processor for N = 1280 time steps

References 14

and m = 5 iterations. It is noteworthy that this speedup is essentially independent of the number of
Newton iterations. In the table we have also listed the dimension of each system (the nonautonomous
terms of problems (4.3) and (4.4) have been implemented as an extra dimension). The attainable
speedup is highest for the HIRES problem, which has dimension 8, and lowest for the Kaps problem
of dimension 2. As observed in Section 4.1, we suffer only a slight loss in convergence rate when
changing from sequential MEBDF to diagonal EBDF. Hence, we may expect comparable accuracies
for equal numbers of steps N and iterations m, so that the CPU speedup factors in Table 4.13 are
also an indication of the speedup of efficiency (that is, CPU speedup under the condition of equal
accuracies).

Table 4.13: Speedup of diagonal EBDF on 3 processors.

Problem d m = 5
(4.1) 2 1.8
(4.2) 8 2.3
(4.3) 4 2.0
(4.4) 4 2.0

References

1. P.N. Brown, A.C. Hindmarsh, and G.D. Byrne. VODE: A variable coefficient ODE solver. Avail-
able at http://www.netlib.org./ode/vode.f, 1992.

2. J.R. Cash. On the integration of stiff ODEs using extended backward differentiation formulae.
Numer. Math., 34:235–246, 1980.

3. J.R. Cash. The integration of stiff initial value problems in ODEs using modified extended back-
ward differentiation formulae. Comput. Math. Appl., 5:645–657, 1983.

4. Cray Research Inc. CF77 Commands and directives, SR-3771, 6.0 edition, 1994.

5. C.W. Gear. Massive parallelism across time in ODEs. Appl. Numer. Math., 11:27–44, 1993. Pro-
ceedings of the International Conference on Parallel Methods for Ordinary Differential Equations,
Grado (It), Sept. 10–13, 1991.

6. E. Hairer and G. Wanner. Solving ordinary differential equations, II. Stiff and differential-algebraic
problems. Springer-Verlag, Berlin, 1991.

7. E. Hairer and G. Wanner. RADAU. Available at ftp://ftp.unige.ch/pub/doc/math/stiff/
radau.f, 1998.

8. P. Kaps. Rosenbrock-type methods. In G. Dahlquist and R. Jeltsch, editors, Numerical methods
for stiff initial value problems, Bericht nr. 9. Inst. für Geometrie und Praktische Mathematik der
RWTH Aachen, 1981.

9. W.M. Lioen and J.J.B. de Swart. Test set for IVP solvers, Release 2.0. Available at http:
//www.cwi.nl/cwi/projects/IVPtestset/, 1998.

10. L.R. Petzold. DASSL: A differential/algebraic system solver. Available at http://www.netlib.
org/ode/ddassl.f, 1991.

11. H.H. Robertson. The solution of a set of reaction rate equations. In J. Walsh, editor, Numerical
Analysis, an Introduction, pages 178–182. Academ. Press, 1966.

