
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Exploiting Symmetry in Protocol Testing

J.M.T. Romijn, J.G. Springintveld

Software Engineering (SEN)

SEN-R9918 August 31, 1999

Report SEN-R9918
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Exploiting Symmetry in Protocol Testing ∗

Judi Romijn1 and Jan Springintveld1,2

1 CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{judi,spring}@cwi.nl

2 Computing Science Institute

University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

ABSTRACT

Test generation and execution are often hampered by the large state spaces of the systems involved. In

automata (or transition system) based test algorithms, taking advantage of symmetry in the behavior of

specification and implementation may substantially reduce the amount of tests. We present a framework

for describing and exploiting symmetries in black box test derivation methods based on finite state machines

(FSMs). An algorithm is presented that, for a given symmetry relation on the traces of an FSM, computes

a subautomaton that characterizes the FSM up to symmetry. This machinery is applied to the classical

W-method [28, 7] for test derivation. Finally, we focus on symmetries defined in terms of repeating patterns.

1991 Mathematics Subject Classification: 68M15, 68Q05, 68Q68, 94C12

1991 ACM Computing Classification System: B.4.5, D.2.5, F.1.1

Keywords and Phrases: conformance testing, automated test generation, state space reduction, symmetry

Note: The research of the first author was carried out as part of the project “Specification, Testing and

Verification of Software for Technical Applications” at the Stichting Mathematisch Centrum for Philips Re-

search Laboratories under Contract RWC-061-PS-950006-ps. The research of the second author was partially

supported by the Netherlands Organization for Scientific Research (NWO) under contract SION 612-33-006.

His current affiliation is: Philips Research Laboratories Eindhoven, Prof. Holstlaan 4, 5656 AA, Eindhoven,

The Netherlands.

1 Introduction

It has long been recognized that for the proper functioning of components in open and
distributed systems, these components have to be thoroughly tested for interoperability and
conformance to internationally agreed standards. For thorough and efficient testing, a high
degree of automation of the test process is crucial. Unfortunately, methods for automated
test generation and execution are still seriously hampered by the often very large state spaces

∗ A short version of this report appeared in S. Budkowski, A. Cavalli and E. Najm, editors, Formal
Description Techniques and Protocol Specification, Testing and Verification (FORTE XI/PSTV XVIII ’98),
pages 337–352. Kluwer Academic Publishers, 1998.

1. Introduction 2

of the implementations under test. One of the ways to deal with this problem is to exploit
structural properties of the implementation under test that can be safely assumed to hold.
In this paper we focus on taking advantage of symmetry that is present in the structure of
systems. The symmetry, as it is defined here, may be found in any type of parameterized
system: such parameters may for example range over IDs of components, ports, or the
contents of messages.

We will work in the setting of test theory based on finite state machines (FSMs). Thus, we
assume that the specification of an implementation under test is given as an FSM and the
implementation itself is given as a black box. From the explicitly given specification automa-
ton a collection of tests is derived that can be applied to the black box. Exploiting symmetry
will allow us to restrict the test process to subautomata of specification and implementa-
tion that characterize these systems up to symmetry and will often be much smaller. The
symmetry is defined in terms of an equivalence relation over the trace sets of specification
and implementation. Some requirements are imposed to ensure that such a symmetry indeed
allows to find the desired subautomata. We instantiate this general framework by focusing
on symmetries defined in terms of repeating patterns. Some experiments with pattern-based
symmetries, supported by a prototype tool implemented using the Open/Cæsar tool set
[14], have shown that substantial savings may be obtained in the number of tests.

Since we assume that the black box system has some symmetrical structure (cf. the uni-
formity hypothesis in [16, 6]), it is perhaps more appropriate to speak of gray box testing.
For the specification FSM it will generally be possible to verify that a particular relation is a
symmetry on the system, but for the black box implementation one has to assume that this is
the case. The reliability of this assumption is the tester’s responsibility. In this respect, one
may think of exploiting symmetry as a structured way of test case selection [13, 4] for systems
too large to be tested exhaustively, where at least some subautomata are tested thoroughly.

This paper is not the first to deal with symmetry in protocol testing. In [22], similar tech-
niques have been developed for a test generation methodology based on labeled transition
systems, success trees and canonical testers [3, 27]. Like in our case, symmetry is an equiva-
lence relation between traces, and representatives of the equivalence classes are used for test
generation. Since our approach and the approach in [22] start from different testing method-
ologies, it is not easy to compare them. In [22], the symmetry relation is defined through
bijective renamings of action labels; our pattern-based definition generalizes this approach.
On the other hand, since in our case a symmetry relation has to result in subautomata of
specification and implementation that characterize these systems up to the symmetry, we
have to impose certain requirements, which are absent in [22].

In [21], symmetrical structures in the product automaton of interoperating systems are
studied. It is assumed that the systems have already been tested in isolation and attention is
focused on pruning the product automaton by exploiting symmetry arising from the presence
of identical peers. In the present paper, we abstract away from the internal composition of
the system and focus on defining a general framework for describing and using symmetries
on FSMs.
This paper is organized as follows. Section 2 contains some basic definitions concerning
FSMs and their behavior. In Section 3, we introduce and define a general notion of trace
based symmetry. We show how, given such a symmetry on the behavior of a system, a
subautomaton of the system can be computed, a so-called kernel, that characterizes the

2. Finite state machines 3

behavior of the system up to symmetry. In Section 5 we apply the machinery to the classical
W-method [28, 7] for test derivation. In Section 6 we will instantiate the general framework
by focusing on symmetries defined in terms of repeating patterns. Section 7 contains an
extensive example, inspired by [26]. Finally, we discuss future work in Section 8. Code
listings for the examples can be found in Appendices A, B and C.

2 Finite state machines

In this section, we will briefly present some terminology concerning finite state machines and
their behavior, that we will need in the rest of this paper.
We let N denote the set of natural numbers. (Finite) Sequences are denoted by greek letters.
Concatenation of sequences is denoted by juxtaposition; ε denotes the empty sequence and
the sequence containing a single element a is simply denoted a. If σ is non-empty then first(σ)
returns the first element of σ and last(σ) returns the last element of σ.

If V and W are sets of sequences and σ is a sequence, then σ W = {σ τ | τ ∈ W}
and V W =

⋃
σ∈V σ W . For X a set of symbols, we define X0 = {ε} and, for i > 0,

Xi = Xi−1 ∪X Xi−1. As usual, X∗ =
⋃

i∈N Xi.

Definition 2.1. A finite state machine (FSM) is a structure A = (S,Σ, E, s0) where

• S is a finite set of states

• Σ a finite set of actions

• E ⊆ S × Σ× S is a finite set of edges

• s0 ∈ S is the initial state

We require that A is deterministic, i.e., for every pair of edges (s, a, s′), (s, a, s′′) in EA,
s′ = s′′.
We write SA, ΣA, etc., for the components of an FSM A, but often omit subscripts when
they are clear from the context. We let s, s′ range over states, a, a′, b, c, . . . over actions, and
e, e′ over edges. If e = (s, a, s′) then act(e) = a. We write s

a−→ s′ if (s, a, s′) ∈ E and with
s

a−→ we denote that s
a−→ s′ for some state s′. A subautomaton of an FSM A is an FSM B

such that s0
B = s0

A, SB ⊆ SA, ΣB ⊆ ΣA, and EB ⊆ EA.
An execution fragment of an FSMA is a (possibly empty) alternating sequence γ = s0 a1 s1 · · · an sn

of states and actions of A, beginning and ending with a state, such that for all i, 0 ≤ i < n,
we have si

ai+1−→ si+1. If s0 = sn then γ is a loop, if n 6= 0 then γ is a non-empty loop. An
execution of A is an execution fragment that begins with the initial state of A.

For γ = s0 a1 s1 · · · an sn an execution fragment of A, trace(γ) is defined as the sequence
a1 a2 · · · an. If σ is a sequence of actions, then we write s

σ−→ s′ if A has an execution
fragment γ with first(γ) = s, last(γ) = s′, and trace(γ) = σ. If γ is a loop, then σ is a looping
trace. We write s

σ−→ if there exists an s′ such that s
σ−→ s′, and write traces(s) for the set

{σ ∈ (ΣA)∗ | s σ−→}. We write traces(A) for traces(s0
A). 2

3. Symmetry 4

3 Symmetry

In this section we introduce the notion of symmetry employed in this paper.
We want to be able to restrict the test process to subautomata of specification and imple-

mentation that characterize these systems up to symmetry. In papers on exploiting symmetry
in model checking [2, 8, 10, 11, 12, 19], such subautomata are constructed for explicitly given
FSMs by identifying and collapsing symmetrical states. We are concerned with black box
testing, and, by definition, it is impossible to refer directly to the states of a black box. In
traditional FSM based test theory, FSMs are assumed to be deterministic and hence a state
of a black box is identified as the unique state of the black box that is reached after a certain
trace of the system. Thus it seems natural to define symmetry as a relation over traces.

For our basic notion of symmetry on an FSM A, we use an equivalence relation on (ΣA)∗,
such that A is closed under the relation, i.e., if a sequence of actions is related to a trace of
A then the sequence is a trace of A too.

The idea is to construct from the specification automaton an automaton such that its trace
set is included in the trace set of the specification and contains a representative trace for each
equivalence class of the equivalence relation on the traces of the specification. In order to be
able to do this, we define a symmetry to be the pair consisting of the equivalence relation
and a representative-choosing function. We impose some requirements on the symmetry. For
the specification we demand (1) that each equivalence class of the symmetry is represented
by a unique trace, (2) that prefixes of a trace are represented by prefixes of the representing
trace, and (3) that representative traces respect loops. The third requirement means that
if a representative trace is a looping trace, then the trace with the looping part removed is
also a representative trace. This requirement introduces some state-based information in the
definition of symmetry.

These requirements enable us to construct a subautomaton of the specification, a so-called
kernel, such that every trace of the specification is represented by a trace from the kernel.
Of course, it will often be the case that the symmetry itself is preserved under prefixes and
respects loops, so the requirements will come almost for free.

For the black box implementation, we will, w.r.t. symmetry, only demand that it is closed
under symmetry. So if tests have established that the implementation displays certain be-
havior, then by assumption it will also display the symmetrical behavior. In Section 5, where
the theory is applied to Mealy machines, we will in addition need a way to identify a subau-
tomaton of the implementation that is being covered by the tests derived from the kernel of
the specification.

Definition 3.1. A symmetry S on an FSM A is pair 〈', ()r〉 where ' is a binary equivalence
relation on (ΣA)∗, and ()r : (ΣA)∗ → (ΣA)∗ is a representative function for ' such that:

1. A is closed under ': If σ ∈ traces(A) and σ ' τ , then τ ∈ traces(A).

2. Only traces of the same length are related: If σ ' τ , then |σ| = |τ |.

3. ()r satisfies:

(a) σr ' σ

4. Construction of a kernel 5

(b) τ ' σ ⇒ τ r = σr

(c) ()r is prefix closed on A: If σ a ∈ traces(A) and (σ a)r = τ b, then σr = τ

(d) ()r is loop respecting on representative traces: If (σ1 σ2 σ3)r = σ1 σ2 σ3 ∈ traces(A)
and σ2 is a looping trace, then (σ1 σ3)r = σ1 σ3.

2

As mentioned above, we will demand that there exists a symmetry on the specification, while
the implementation under test is required only to be closed under the symmetry.

Proposition 3.2. (σr)r = σr

Definition 3.3. Let S = 〈', ()r〉 be a symmetry on FSM A. A kernel of A w.r.t. S is a
minimal subautomaton K of A, such that for every σ ∈ traces(A), σr ∈ traces(K). 2

4 Construction of a kernel

In this section, we fix an FSM A and a symmetry S = 〈', ()r〉 on A. Figure 1 presents an
algorithm that constructs a kernel of A w.r.t. S. It basically explores the state space of A,
while keeping in mind the trace that leads to the currently visited state. As soon as such a
trace contains a loop, the algorithm will not explore it any further.

In Figure 1, enabled(s,A) denotes the set of actions a such that EA contains an edge
(s, a, s′), and for such an a, eff (s, a,A) denotes s′. Furthermore, repr(σ,E) denotes the set
F of actions such that a ∈ F iff there exists an action b ∈ E such that σr a = (σ b)r. We
will only call this function for σ such that σr = σ(see Lemma 4.3). By definition of ()r,
for some action c, (σ b)r = σr c = σ c. So, since A is deterministic and closed under ',
F ⊆ E and if E is non-empty, F is non-empty. This justifies the function choose(F) which
nondeterministically chooses an element from F . In the algorithm, the global variable K is
the growing state space which is returned at the end of the algorithm, and updated during
the execution of the procedure Build It. The local variable F for Build It is not significant
for the execution of the algorithm but is useful for proving correctness.

The remainder of this section is devoted to the correctness of algorithm Kernel. In order
to prove that the algorithm works properly, we first prove that it terminates, that it creates
a subautomaton of A and that Build It uses its parameters properly.

Lemma 4.1. The execution of the algorithm Kernel(A, S) terminates.

Proof. The number of states in A is finite, and for each nested call of Build It(s′, σ′, Seen ′)
within Build It(s, σ,Seen), Seen ′ = Seen ∪ {s′} with s′ 6∈ Seen. So there can be only finitely
many levels of such nested calls. Furthermore, the number of enabled transitions in s is finite,
so the while loop that empties E (E decreases strictly monotonically during this loop until
it’s empty) can make finitely many nested calls to Build It. �

Lemma 4.2. During execution of Build It(s0
A,ε,∅), automaton K is a subautomaton of A,

and K grows monotonically.

4. Construction of a kernel 6

1 function Kernel(A, S): FSM;
2 var K: FSM;
3
4 procedure Build It(s, σ, Seen);
5 var a, b, s′, E, F ;
6 begin
7 if s 6∈ Seen then
8 E := enabled(s,A);
9 F := ∅;

10 while E 6= ∅ do
11 a := choose(repr (σ,E));
12 s′ := eff (s, a,A);
13 SK := SK ∪ {s′};
14 ΣK := ΣK ∪ {a};
15 EK := EK ∪ {(s, a, s′)};
16 Build It(s′, σ a, Seen ∪ {s});
17 F := F ∪ {a};
18 for each b ∈ E . σ a ' σ b do
19 E := E \ {b};
20 od;
21 od;
22 fi;
23 end;
24
25 begin
26 s0

K := s0
A;

27 SK := {s0
A};

28 ΣK := ∅;
29 EK := ∅;
30 Build It(s0

A, ε, ∅);
31 return K;
32 end.

Figure 1: The algorithm Kernel

4. Construction of a kernel 7

Proof. Obvious from the algorithm. �

The following lemma concerns the value of the variable K at the moment that the call to
Build It is made.

Lemma 4.3. When Kernel(A,S) during its execution calls Build It(s,σ,Seen), then at that
moment s0

K
σ−→K s and σr = σ.

Proof. By induction on the length n of σ.

• n = 0. Then σ = ε. From observing the algorithm Kerneland procedure Build It, it
is clear that the only call of Build It(s,ε,Seen) is with s = s0

A and Seen = ∅. In the
initialization of K, s0

K has been defined equal to s0
A. As s0

K
ε−→K s and (ε)r = ε, we are

done.

• n = m + 1.

Suppose σ = σ′ a is a trace of length m + 1 and Kernel(A,S) calls Build It(s,σ, Seen).
Since σ 6= ε, the call Build It(s,σ,Seen) must occur within the execution of a call

Build It(s′,σ′,Seen ′). By the induction hypothesis, we know that s0
K

σ′−→K s′. When
Build It(s′,σ′,Seen ′) calls Build It(s,σ′ a,Seen) then (s′, a, s) has just been added to
EK, with a from enabled(s,A) and s = eff (s′, a,A). So s′

a−→K s when the call
Build It(s,σ,Seen) is made, and it follows that σ ∈ traces(K).

As to σr = σ. When Build It(s′,σ′,Seen ′) calls Build It(s,σ′ a,Seen) then by definition
of choose(repr(σ′, E)), (σ′)r a = (σ′ a)r. Since, by induction hypothesis, (σ′)r = σ′,
(σ′ a)r = σ′ a, which completes the proof.

�

Lemma 4.4. If Kernel(A,S)=K and during its execution has called Build It(s,σ,Seen), then
s0
K

σ−→K s and σr = σ.

Proof. Follows immediately from Lemmas 4.2 and 4.3. �

Lemma 4.5. If Kernel(A,S)=K and s
a−→K t then there is a σ such that s0

K
σ−→K s and

(σa)r = σa.

Proof. If s
a−→K t, then we know by Lemma 4.2 and by the fact that execution starts

with K empty, that the transition (s, a, t) has been added to K by execution of line 15 of
algorithm Kernel. This happens during the execution of the call Build It(s,σ,Seen) for some
σ and some Seen , so by Lemma 4.4 we may conclude that upon completion, s0

K
σ−→K s and

σr = σ. By the definition of a during execution of the call Build It(s,σ,Seen) at line 11, we
see that (σa)r = σa. �

Lemma 4.6. When Kernel(A,S) calls Build It(s,σ,Seen), then during the execution of
Build It the following holds:

4. Construction of a kernel 8

1. at termination of the while loop, the following property holds:

a ∈ F ⇒ Kernel(A, S) has called Build It(eff (s, a,K), σ a,Seen ∪ {s})

2. at termination of the while loop, the following property holds:

s
b−→A⇒ ∃a ∈ F. σ a = (σ b)r

Proof.

1. When the while loop is started, F is empty. The only statement that adds a to F is at
line 17, which is executed after lines 12 through 16 have been executed, hence the edge
(s, a, s′) has been added to EK and Build It(s′, σa,Seen ∪ {s}) has been called.

2. At the start of the while loop, E = enabled(s,A,), so b ∈ E at the start of the while
loop. At termination of the while loop, E is empty. Actions are never added to E,
only removed from E at line 19. So during the execution of the while loop, certainly
E ⊆ enabled(s,A,). We observe that during the execution of the while loop for each a, if
a ∈ repr(σ,E), then a ∈ repr(σ, enabled (s,A,)). At the moment that b is removed from
E (at line 19), the condition that σ a ' σ b holds. Since a was defined at line 11 and has
not changed since, and by our observation, it holds that a ∈ repr (σ, enabled(s,A,)). So
there is a c ∈ enabled(s,A,) such that σ a = (σ c)r. Since σ a ' σ b, and by definition
of representative, σ b ' σ c. By uniqueness of representative, σ a = (σ b)r, and we are
done.

�

Lemma 4.7. If Kernel(A,S) during execution calls Build It(s,σ,Seen) with σ = a1a2 . . . an,

s0
a1−→A s1

a2−→A s2 . . .
an−→A sn, and s0 = s0

A, then

1. Kernel(A,S) calls Build It(s0,ε,∅)

2. for 0 ≤ i < n, Build It(si,σi,Seeni) calls Build It(si+1,σi+1,Seeni+1) with σi = a1a2 . . . ai

and for 0 ≤ i ≤ n, Seeni =
⋃

j∈{0,1,... ,i−1}{sj}

3. s = sn and Seen = Seenn

Proof. By induction on the length n of σ.

• n = 0. Then σ = ε, and the result follows immediately.

• n = m + 1.

Suppose σ = a1a2 . . . am+1 and Kernel(A,S) calls Build It(s,σ,Seen) with s0
a1−→A

s1
a2−→A s2 . . .

am+1−→A sm+1 and s0 = s0
A. Let σ′ = a1a2 . . . am. Since σ 6= ε, the call

Build It(s,σ,Seen) must occur within the execution of a call Build It(s′,σ′,Seen ′) and
Seen = Seen ′ ∪ {s′}. By the induction hypothesis, we know that Seen ′ = Seenm, that
s′ = sm, that Kernel(A,S) calls Build It(s0,ε,∅), that for 0 ≤ i < m, Build It(si,σi,Seen i)

4. Construction of a kernel 9

calls Build It(si+1,σi+1,Seen i+1) with σi = a1a2 . . . ai and that for 0 ≤ i ≤ m, Seeni =⋃
j∈{0,1,... ,i−1}{sj}.

So Build It(sm,σm,Seenm) calls Build It(sm+1,σm+1,Seen), and we need to prove that
s = sm+1 and Seenm+1 = Seen =

⋃
j∈{0,1,... ,m}{sj}. Looking at the statements in

Build It(sm,σm,Seenm) that call Build It(sm+1,σm+1,Seen), we see that s = sm+1 and
Seen = Seenm ∪ {sm}. So Seen = (

⋃
j∈{0,1,... ,m−1}{sj})∪ {sm} =

⋃
j∈{0,1,... ,m}{sj} and

the result follows.

�

Lemma 4.8. If Kernel(A,S) during execution calls Build It(s,σ,Seen), then

s ∈ Seen ⇔ ∃σ1, σ2. σ = σ1 σ2 ∧ σ2 6= ε ∧ s0
A

σ1−→A s
σ2−→A s

Proof. From Lemmas 4.2 and 4.4 it follows that σ ∈ traces(A). The lemma then follows
from Lemma 4.7. �

The next theorem completes the proof of the fact that the algorithm Kernel(A,S) returns a
kernel for A w.r.t. S.

Theorem 4.9. Let K = Kernel(A,S).

1. If K′ is a kernel of A w.r.t. S, then K is a subautomaton of K′.

2. If σ ∈ traces(A), then σr ∈ traces(K).

Proof. First we prove Item 1. From the algorithm Kernel it is obvious that for each state
s in K, either s is the initial state, or there is a transition leading to s. Since K and K′
are subautomata of A, their initial states are equal. Since K and K′ are deterministic and
representative traces are unique, and since by Lemma 4.5 each transition in K is part of a
representative trace, we see that each transition in K must be present in K′. Combining all
these observations, we see that each state in K is present in K′. We conclude that K is a
subautomaton of K′.

As to Item 2. Let τ = σr. Since A is closed under S, τ ∈ traces(A); say that s0
A

τ−→A t.
We prove a stronger property Inv(τ) by induction on the length n of σ (= the length of τ).

Inv(τ) = ∧ τ ∈ traces(K)
∧ ∃Seen.

∨ Kernel(A, S) during execution calls Build It(t, τ,Seen)
∨ ∧ τ = τ1 τ2 a τ3

∧ s0
A

τ1−→A t′
τ2a−→A t′

τ3−→A t
∧ τ1 τ2 contains no non-empty looping trace in A
∧ Kernel(A, S) during execution calls Build It(t′, τ1 τ2 a,Seen)

• n = 0.

Then σ = ε, and also τ = ε. So t = s0
A. Since s0

A ∈ SK, ε ∈ traces(K). It suffices to
observe that Kernel(A,S) calls Build It(s0

A,ε,∅).

5. Test derivation from symmetric Mealy machines 10

• n = m + 1.

Induction Hypothesis (IH): 0 ≤ |ρ| ≤ m⇒ Inv(ρr)

Suppose σ = σ′ b, τ = τ ′ c, and |σ| = |τ | = m+1. Since ()r is prefixed closed, (σ′)r = τ ′.
Since τ ∈ traces(A), τ ′ ∈ traces(A). We distinguish two cases.

– τ ′ does not contain a non-empty looping trace.
We show that, for some set Seen, Kernel(A, S) calls Build It(t, τ ′ c,Seen). By
Lemma 4.4 we then know that τ ′ c ∈ traces(K), which proves Inv(τ).

Assume s0
A

τ ′−→A t′. Since (σ′)r = τ ′, Inv(τ ′) holds by IH, so τ ′ ∈ traces(K). There
is no looping trace in τ ′, and by Inv(τ ′), for some set Seen ′, Kernel(A, S) calls
Build It(t′, τ ′,Seen ′). We now inspect the execution of procedure Build It for this
call. By Lemma 4.8, we know that t′ 6∈ Seen ′. By Lemma 4.6 we know that upon
completion of the while loop Build It(t′′,τ ′ c′,Seen ′∪{t′}) has been called, for some

state t′′ and action c′ such that t′
c′−→K t′′ and (τ ′c)r = τ ′c′. By Lemma 3.2, we

know that (τ ′c)r = τ ′c, so c′ = c and hence t′′ = t. Thus, Build It(t,τ ′ c,Seen ′∪{t′})
has been called.

– τ ′ contains a non-empty looping trace.
Then there exist τ1, τ2, τ3, σ1, σ2, σ3, a, and t′ such that

∧ τ = τ1 τ2 a τ3 c ∧ σ = σ1 σ2 σ3

∧ |τ1| = |σ1| ∧ |τ2 a| = |σ2| ∧ |τ3 c| = |σ3|
∧ s0

τ1−→A t′
τ2a−→A t′

τ3c−→A t
∧ τ1τ2 contains no non-empty looping trace in A

We show that, for some set Seen, Kernel(A, S) calls Build It(t′, τ1 τ2 a,Seen), and
that τ ∈ traces(K). Trivially, |τ1 τ2 a| < |τ1 τ2 a τ3 c|, and |τ1 τ3 c| < |τ1 τ2 a τ3 c|.
Since ()r is prefix closed and τ r = τ , τ1 τ2 a = (τ1 τ2 a)r. Since ()r is loop re-
specting, τ1 τ3 c = (τ1 τ3 c)r. So we may apply IH and obtain that Inv(τ1 τ2 a) and
Inv(τ1 τ3 c) hold. This means that τ1 τ2 a ∈ traces(K), τ1 τ3 c ∈ traces(K), and
since there is no looping trace in τ1 τ2, that, for some set Seen , Kernel(A, S) calls
Build It(t′, τ1 τ2 a,Seen). Since K is a subautomaton of A (Lemma 4.2), we know
that s0

K
τ1−→K t′

τ2a−→K t′
τ3c−→K t, and hence τ1 τ2 aτ3 c ∈ traces(K).

�

5 Test derivation from symmetric Mealy machines

In this section we will apply the machinery developed in the previous sections to Mealy
machines. There exists a wealth of test generation algorithms based on the Mealy machine
model [28, 7, 5, 1]. We will show how the classical W-method [28, 7] can be adapted to
a setting with symmetry. The main idea is that test derivation is not based on the entire
specification automaton, but only on a kernel of it. A technical detail here is that we do not
require Mealy machines to be minimal (as already observed by [24] for the setting without
symmetry). We will use the notation from Chow’s paper.

5. Test derivation from symmetric Mealy machines 11

Definition 5.1. A Mealy machine is a (deterministic) FSM A such that

ΣA = {(i/o) | i ∈ IA ∧ o ∈ OA}

where IA and OA are two finite and disjoint sets of inputs and outputs, respectively. We
require that A is input enabled and input deterministic, i.e., for every state s ∈ SA and input

i ∈ IA, there exists precisely one output o ∈ OA such that s
(i/o)−→.

Input sequences of A are elements of (IA)∗. For ξ an input sequence of A and s, s′ ∈ SA,

we write s
ξ

=⇒A s′ if there exists a trace σ such that s
σ−→A s′ and ξ is the result of

projecting σ onto IA. In this case we write outcomeA(ξ, s) = σ; the execution fragment γ
with first(γ) = s and trace(γ) = σ is denoted by execA(s, ξ). A distinguishing sequence for
two states s, s′ of A is an input sequence ξ such that outcomeA(ξ, s) 6= outcomeA(ξ, s′). We
say that ξ distinguishes s from s′. 2

In Chow’s paper, conformance is defined as the existence of an isomorphism between spec-
ification and implementation. Since we do not assume automata to be minimal, we will
show the existence of a bisimulation between specification and implementation. Bisimilarity
is a well-known process equivalence from concurrency theory [23]. For minimal automata,
bisimilarity is equivalent to isomorphism, while for deterministic automata, bisimilarity is
equivalent to equality of trace sets.

Definition 5.2. Let A and B be FSMs. A relation R ⊆ SA × SB is a bisimulation on A
and B iff

• R(s1, s2) and s1
a−→A s′1 implies that there is a s′2 ∈ SA such that s2

a−→B s′2 and
R(s′1, s

′
2),

• R(s1, s2) and s2
a−→B s′2 implies that there is a s′1 ∈ SA such that s1

a−→A s′1 and
R(s′1, s

′
2).

A and B are bisimilar, notation A ↔ B, if there exists a bisimulation R on A and B such
that R(s0

A, s0
B). We call two states s1, s2 ∈ SA bisimilar, notation s1

↔A s2, if there exists a
bisimulation R on A (and A) such that R(s1, s2). The relation ↔A is an equivalence relation
on SA; a bisimulation class of A is an equivalence class of SA under ↔A. 2

The main ingredient of Chow’s test suite is a characterizing set for the specification, i.e.,
a set of input sequences that distinguish inequivalent states by inducing different output
behavior from them. In our case, two states are inequivalent if they are non-bisimilar, i.e.
have different trace sets. In the presence of symmetry we will need a characterizing set not
for the entire specification automaton but only for a kernel of it. However, a kernel need
not be input enabled, so two inequivalent states need not have a common input sequence
that distinguishes between them. Instead we will use a characterizing set that contains for
every two states of the kernel that are inequivalent in the original specification automaton,
an input sequence that these states have in common in the specification and distinguishes
between them.

Constructing distinguishing sequences in the specification automaton rather than in the
smaller kernel is of course potentially as expensive as in the setting without symmetry, and

5. Test derivation from symmetric Mealy machines 12

may lead to large sequences. However, if the number of states of the kernel is small we will not
need many of them, so test execution itself may still benefit considerably from the restriction
to the kernel. Moreover, we expect that in most cases distinguishing sequences can be found
in a well marked out subautomaton of the specification that envelopes the kernel.

Definition 5.3. A test pair for a Mealy machine A is a pair 〈K,W 〉 where K is a kernel
of A and W is a set of input sequences of A such that the following holds. For every
pair of states s, s′ ∈ SK such that s 6↔A s′, W contains an input sequence ξ such that
outcomeA(ξ, s) 6= outcomeA(ξ, s′). 2

The proof that Chow’s test suite has complete fault coverage crucially relies on the assumption
that (an upper bound to) the number of states of the black box implementation is correctly
estimated. Since specification and implementation are also assumed to have the same input
sets and to be input enabled, this is equivalent to a correct estimate of the number of states
of the implementation that can be reached from the start state by an input sequence from
the specification. Similarly, we will assume that we can give an upper bound to the number
of states of the black box that are reachable from the start state by an input sequence from
the kernel of the specification. We call the subautomaton of the implementation generated
by these states the image of the kernel.

Technically, the assumption on the state space of the black box is used in [7] to bound the
maximum length of distinguishing sequences needed for a characterizing set for the imple-
mentation. Since, like the kernel, the image of the kernel need not be input enabled, it may
be that distinguishing sequences for states of the image cannot be constructed in the image
itself. Thus, it is not sufficient to estimate the number of states of the image, but we must in
addition estimate how long the suffix of a distinguishing sequence can be which starts with
the first step outside the image of the kernel.

Definition 5.4. Let A and B be Mealy machines with the same input set and let K be a
kernel of A. A K-sequence is an input sequence ξ such that s0

K
ξ

=⇒K. A state s of B is called

K-related if there exists a K-sequence ξ such that s0
B

ξ
=⇒B s.

We define imK(B) as the subautomaton (S,Σ, E, s0) of B defined by:

• S = {s ∈ SB | s is K-related}

• E = {(s, a, s′) ∈ EB | s, s′ ∈ S}

• Σ = {a ∈ ΣB | ∃ s, s′. (s, a, s′) ∈ E}

• s0 = s0
B

2

In the following definition, the parameter n is the upper bound to the length of that part of
the distinguishing sequence which steps outside the image of the kernel.

Definition 5.5. A subautomaton B of a Mealy machine A is n-self-contained in A when
the number of bisimulation classes Q of A such that Q ∩ SB 6= ∅ is m, and for every pair of

5. Test derivation from symmetric Mealy machines 13

states s, s′ of B such that s 6↔A s′, there exist input sequences ξ1, ξ2 of A of length at most
m, n, respectively, such that s

ξ1=⇒B, s′
ξ1=⇒B, and outcomeA(ξ1ξ2, s) 6= outcomeA(ξ1ξ2, s

′).
2

The next lemma is a generalization of [7]’s Lemma 0.

Lemma 5.6. Let A and B be Mealy machines with the same input set I and let 〈K,W 〉 be
a test pair for A. Let C = imK(B). Suppose that:

1. The number of bisimulation classes Q of B such that Q ∩ SC 6= ∅ is bounded by m1.

2. C is m2-self-contained in B.

3. W distinguishes between n bisimulation classes Q of B such that Q ∩ SC 6= ∅.

Then for every two states s and s′ of C such that s 6↔B s′, Im1−n Im2 W distinguishes s from
s′.

Proof. By induction on j ∈ {0, . . . ,m1 − n} we prove that there exist j + n bisimulation
classes Q of B with Q ∩ SC 6= ∅ such that Ij Im2 W distinguishes between them. This proves
the result, since, by assumption 2, the number of bisimulation classes Q of B such that
Q ∩ SC 6= ∅ is bounded by m1.

• j = 0. By assumption 3, W already distinguishes between n bisimulation classes of B
with Q ∩ SC 6= ∅, so surely Im2 W distinguishes at least these n classes.

• j = k + 1. If Ik Im2 W already distinguishes between k + n + 1 bisimulation classes Q
of B such that Q∩ SC 6= ∅, we are done. So suppose not. Then there exist two distinct
bisimulation classes Q1 and Q2 of B whose intersection with SC is non-empty, such that
Ik Im2 W does not distinguish Q1 from Q2. So there exist states s1 ∈ Q1 ∩ SC and
s2 ∈ Q2 ∩ SC of C such that s1 6↔B s2 but Ik Im2 W does not distinguish s1 from s2.
Since C is m2-self-contained in B, we can define the smallest number l ≤ m1 such that
I l Im2 W contains an input sequence ξ such that outcomeB(ξ, s1) 6= outcomeB(ξ, s2).
So there exist states t1 and t2 of C (among the (l − (k + 1))th successors of s1 and s2,
respectively) such that Ik Im2 W does not distinguish t1 from t2 whereas Ik+1 Im2 W
does distinguish t1 from t2. Hence Ik+1 Im2 W distinguishes the bisimulation classes of
B to which t1 and t2 belong.

�

This result allows us to construct a characterizing set Z = Im1−n Im2 W for the image of
the kernel in the implementation. The test suite resulting from the W-method consists of
all concatenations of sequences from a transition cover P for the specification with sequences
from Z.

Definition 5.7. A transition cover for the kernel of a Mealy machine A is a finite collection

P of input sequences of A, such that ε ∈ P and, for all transitions s
(i/o)−→ s′ of K, P contains

input sequences ξ and ξ i such that s0
K

ξ
=⇒K s. 2

5. Test derivation from symmetric Mealy machines 14

Now follows the main theorem.

Theorem 5.8. Let Spec and Impl be Mealy machines with the same input set I, and
assume 〈', ()r〉 is a symmetry on Spec such that Impl is closed under '. Let 〈K,W 〉 be a
test pair for Spec. Write C = imK(Impl). Suppose

1. The number of bisimulation classes Q of Spec such that Q ∩ SK 6= ∅ is n.

2. The number of bisimulation classes Q of Impl such that Q∩ SC 6= ∅ is bounded by m1.

3. C is m2-self-contained in Impl .

4. For all σ ∈ P and τ ∈ Im1−n Im2 W

outcomeSpec(σ τ, s0
Spec) = outcomeImpl (σ τ, s0

Impl) (?)

Then Spec ↔ Impl .

Proof. Spec and Impl are deterministic, so it suffices to prove traces(Spec) = traces(Impl).
Since Spec is input enabled and Impl is input deterministic, it then suffices to prove that
traces(Spec) ⊆ traces(Impl). Using that Impl is closed under S, this follows immediately
from the first item of the following claim.

Claim. For every σ ∈ traces(Spec), with σr = τ and s0
K

τ−→K r we have:

1. τ ∈ traces(Impl)

2. For every ξ ∈ P such that s0
K

ξ−→K r: if s0
Impl

τ−→Impl u and s0
Impl

ξ
=⇒Impl u′ then

u ↔I u′.

where I abbreviates Impl .

Proof of claim. Write Z = Im1−n Im2 W . Note that, by construction of W , W dis-
tinguishes between n bisimulation classes of Spec whose intersection with SK is non-empty.
So, since (?) holds, W distinguishes between at least n bisimulation classes of Impl whose
intersection with SC is non-empty. Thus we can use Lemma 5.6.
The proof of the claim proceeds by induction on the length n of σ.

• n = 0. So σ = ε = τ . Then certainly τ ∈ traces(Impl). As to item 2). Consider an

input sequence ξ ∈ P such that s0
K

ξ
=⇒K s0

K and assume s0
Impl

ξ
=⇒Impl u′. We have to

show that s0
Impl

↔I u′.

Since ξ and ε are elements of P and lead in Spec to the same state, it follows from (?)
that for all ρ ∈ Z, outcomeImpl (ρ, s0

Impl) = outcomeImpl (ρ, u′). Hence, by Lemma 5.6,
s0
Impl

↔I u′.

6. Patterns 15

• n > 0. Write σ = σ′ (i/o). By induction hypothesis (σ′)r = τ ′ ∈ traces(K) ∩
traces(Impl). Say that s0

K
τ ′−→K r′. Since K is a kernel of Spec, there exists an ac-

tion (i′/o′) such that (σ′ (i/o))r = τ ′ (i′/o′) and, for some state r, r′
i′/o′−→K r. Since

r′ ∈ SK, there exist input sequences ξ′, ξ′ i′ ∈ P such that s0
K

ξ′
=⇒K r′.

Let s0
Impl

τ ′−→Impl u and s0
Impl

ξ′
=⇒Impl u′. By induction hypothesis, item 3), u ↔I u′.

Since outcomeSpec(ξ′ i′, s0
Spec) = outcomeImpl (ξ′ i′, s0

Impl), there exists a (unique) state v′

such that u′
i′/o′−→I v′. Since u ↔I u′, there exists a (unique) state v such that u

i′/o′−→I v.
So τ ′ (i′/o′) ∈ traces(Impl). Because Impl is input deterministic, v ↔I v′.

Finally, we have to prove, for all ξ ∈ P such that s0
K

ξ
=⇒K r: for the unique state w

such that s0
Impl

ξ
=⇒Impl w, we have w ↔I v. Consider such a ξ. Since v′ ↔I v it suffices

to prove that w ↔I v′. Since ξ′ i′ and ξ are elements of P and lead to the same state
in Spec, it follows from (?) that, for all ρ ∈ Z, outcome Impl (ρ, v) = outcomeImpl (ρ,w).
Hence, by Lemma 5.6, v′ ↔I w.

�
�

6 Patterns

In this section we describe symmetries based on patterns. A pattern is an FSM, together with
a set of permutations of its set of actions, so-called transformations. The FSM is a template
for the behavior of a system, while the transformations indicate how this template may be
filled out to obtain symmetric variants that cover the full behavior of the system.

In [21] an interesting example automaton is given for a symmetric protocol, representing the
behavior of two peer hosts that may engage in the ATM call setup procedure. This behavior
is completely symmetric in the identity of the peers. An FSM representation is given in
Figure 2. Here, !<action>(i) means output of the ATM service to caller i, and ?<action>(i)
means input from caller i to the ATM service. So, action ?set up(1) denotes the request from
caller 1 to the ATM service, to set up a call to caller 2. A set up request is followed by an
acknowledgement in the form of call proc if the service can be performed. Then, action conn
indicates that the called side is ready for the connection, which is acknowledged by conn ack.
A caller may skip sending call proc, if it can already send conn instead (transition from state
3 to 5 and from 10 to 12 in Figure 2).

Here, a typical template is the subautomaton representing the call set up as initiated by
a single initiator (e.g. caller 1), and the transformation will be the permutation of actions
generated by swapping the roles of initiator and responder. Such a template is displayed in
Figure 3.

In the example of Section 7, featuring a chatbox that supports multiple conversations be-
tween callers, the template will be the chatting between two callers, while the transformations
will shuffle the identity of the callers.

The template FSM may be arbitrarily complex; intuitively, increasing complexity indicates
a stronger symmetry assumption on the black box implementation.

6. Patterns 16

00000000000000000

11111111111111111

22222222222222222

33333333333333333

55555555555555555

44444444444444444

66666666666666666

77777777777777777

1111111111111111111111111111111111

88888888888888888

99999999999999999

1010101010101010101010101010101010

1212121212121212121212121212121212

1313131313131313131313131313131313

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)

!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)

?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)
?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)

!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1) !conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)

!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)

?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)

?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)

?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)

!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)

!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

Figure 2: The ATM call setup protocol

00000000000000000

11111111111111111

22222222222222222

33333333333333333

55555555555555555

44444444444444444

66666666666666666

77777777777777777

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)

!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)

?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)
?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)

!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

Figure 3: A template

To define pattern based symmetries, we need some terminology for partial functions and
multisets. If f : A → B is a partial function and a ∈ A, then f(a) ↓ means that f(a) is
defined, while f(a) ↑ means that f(a) is not defined. A multiset over A is a set of the form
{(a1, n1), . . . , (ak, nk)} where, for 1 ≤ i ≤ k, ai is an element of A and ni ∈ N denotes its
multiplicity. We use [f(x)| cond(x)] as a shorthand for the multiset over A that is created by
adding, for every single x ∈ A, a copy of f(x) if the condition cond(x) holds.

Definition 6.1 (Patterns). A pattern P is a pair 〈T ,Π〉 where T is an FSM, called the
template of P, and Π is a finite set of permutations of ΣT , which we call transformations.

Given a sequence 〈f1, . . . , fn〉 of (partial) functions f1, . . . , fn : Π → ET , we denote with
exec(〈f1, . . . , fn〉, π) the sequence of edges obtained by taking for each function fi, 0 ≤ i ≤ n,
the edge e (if any) such that fi(π) = e.

In the remainder of this section, we fix an FSM A and a pattern P = 〈T ,Π〉.
Below we will explain how P defines a symmetry of the behavior of an FSM A. Each
transformation π ∈ Π gives rise to a copy π(T) of T obtained by renaming the actions
according to π. Each such copy is a particular instantiation of the template. Intuitively,
the trace set of A is included in the trace set of the parallel composition of the copies π(T),
indexed by elements of Π, with enforced synchronization over all actions of A. Using that
traces of A are traces of the parallel composition, we will define the symmetry relation on
traces in terms of the behavior of the copies and permutations of the index set Π.

The following definition rephrases the intuitive requirement above in such a way that the
relation ' and a representative function for it can be formulated succinctly. In particular,
if A is the parallel composition of the copies of T , both the intuitive requirement and the
formal rephrasing apply.

6. Patterns 17

Definition 6.2. Let σ = a1 · · · an be an element of (ΣA)∗. A covering of σ by P is a
sequence 〈f1, . . . , fn〉 of partial functions fi : Π→ ET with non-empty domain such that for
every π ∈ Π and 1 ≤ i ≤ n:

1. If fi(π) = e then ai = π(act(e)).

2. The sequence exec(〈f1, . . . , fi〉, π) induces an execution γi of T .

3. If the sequence trace(γi−1) ai is a trace of π(T) then fi(π) ↓.

We say that P covers σ if there exists a covering of σ by P.

We call P loop preserving when the following holds. Suppose σ1 σ2 ∈ traces(A) is covered
by 〈f1, . . . , fn, g1, . . . , gm〉 and σ2 is a looping trace. Then for all π ∈ Π,

last(exec(〈f1, . . . , fn〉, π)) = last(exec(〈f1, . . . , fn, g1, . . . , gm〉, π))

2

Intuitively, these requirements mean the following. The ‘non-empty domain’ requirement for
the partial functions fi ensures the inclusion of the trace set of A in the trace set of the
parallel composition of copies of T . Requirements 1 and 2 express that a covering should not
contain ‘junk’. Requirement 3 corresponds to the enforced synchronization of actions of the
parallel composition.

Lemma 6.3. For every trace σ, there exists at most one covering of σ by P.

Proof. Since T is deterministic, coverings of σ are uniquely determined by T . �

Two traces σ and τ of the same length n that are covered by P, are variants of each other
if at each position i, 1 ≤ i ≤ n, of σ and τ the following holds. The listings for σ and τ ,
respectively, of the copies π(T) that participate in the action at position i, the states these
copies are in before participating, and the edge they follow by participating, are equal up to
a permutation of Π. Then, two traces of the same length are symmetric iff they are either
both not covered by P or are covered by coverings that are variants of each other.

Definition 6.4. Let σ and τ be elements of (ΣA)n, which P covers by cov1 = 〈f1, . . . , fn〉
and cov2 = 〈g1, . . . , gn〉, respectively. Then cov 1 and cov 2 are said to be variants of each
other if for every 1 ≤ i ≤ n, [fi(π) | π ∈ Π] = [gi(π) | π ∈ Π].
We define the binary relation 'P on (ΣA)∗ by:

σ 'P τ ⇔ ∧ |σ| = |τ |
∧ ∨ both σ and τ are not covered by P
∨ P covers σ and τ by variant coverings

It is easy to check that 'P is an equivalence relation. As in Section 3, we will write ' instead
of 'P . 2

6. Patterns 18

An important special case is the following. Suppose A consists of the parallel composition of
components Ci, indexed by elements of a set I, that are identical up to their index (which
occur as parameters in the actions). Let σ and τ be traces of A. If there exists a permutation
ρ of the index set I such that for all indices i ∈ I, σ induces (up to renaming of indices in
actions) the same execution of Ci as τ induces in Cρ(i), then σ and τ are symmetric.

Lemma 6.5. If P covers σa by 〈f1, . . . , fn〉, then P covers σ by 〈f1, . . . , fn−1〉.

Lemma 6.6. If P covers σ a and τ b and σ a ' τ b, then σ ' τ .

Proof. Let σ a and τ b be covered by 〈f1, . . . , fn〉 and 〈g1, . . . , gn〉, respectively. By
Lemma 6.5, these coverings induce the coverings 〈f1, . . . , fn−1〉 and 〈g1, . . . , gn−1〉 of σ and
τ , respectively, which are clearly variants of each other. �

The previous two lemmas together imply the following result.

Corollary 6.7. The relation ' is prefix closed on A, i.e., for every two traces σ a, τ b ∈
traces(A), if σ a ' τ b then σ ' τ .

Given the definition of ', it is reasonable to demand that every trace of A is covered by
P. We will also need the following closure property. We call a binary relation R on (ΣA)∗

persistent on A when R(σ, τ) and σ a ∈ traces(A) implies that there exists an action b such
that R(σ a, τ b).
Now we define a representative function for '. We assume given a total, irreflexive ordering
< on ΣA. Such an ordering of course always exists, but the choice for < may greatly influence
the size of the kernel constructed for a symmetry based on P.

Definition 6.8. Let < be a total, irreflexive ordering on ΣA. This ordering induces a
reflexive, transitive ordering ≤ on traces of the same length in the following way:

aσ ≤ b τ ⇔ a < b ∨ (a = b ∧ σ ≤ τ)

We define σr as the least element of {τ |σ ' τ} under ≤. 2

We will show that ()r is a representative function for '. First we prove that ()r is prefix
closed.

Lemma 6.9. Suppose ' is persistent on A and A is closed under '. If (τ b)r = σ a ∈
traces(A), then (τ)r = σ.

Proof. By contradiction. Suppose that there exists a trace ρ such that ρ = (τ)r and ρ 6= σ.
Note that, since A is closed under ', τ b ∈ traces(A). By persistence of ', ρ ' τ implies
that there exists an action c such that ρ c ' τ b. Since ' is prefix closed on A (Corollary 6.7)
and σ a ' τ b, it follows that σ ' τ . By definition of ()r, ρ ≤ σ. But also, σa ≤ ρc, and, by
definition of ≤, σ ≤ ρ. So ρ = σ and we have a contradiction. �

6. Patterns 19

To show that ()r is loop respecting, we first prove two auxiliary results.

Lemma 6.10. If P covers σ and τ by 〈f1, . . . , fn〉 and 〈g1, . . . , gn〉, respectively, and σ ' τ ,
then for every 1 ≤ i ≤ n:

[last(exec(〈f1, . . . , fi〉, π)) | π ∈ Π ∧ fi(π) ↓]
= [last(exec(〈g1, . . . , gi〉, π)) | π ∈ Π ∧ gi(π) ↓]

Proof. Since σ ' τ we know that for every 1 ≤ i ≤ n, [fi(π) | π ∈ Π] = [gi(π) | π ∈ Π].
Now the result follows immediately. �

Lemma 6.11. Suppose P is a loop preserving pattern on A and let < be a total, irreflexive
ordering on ΣA. Let ()r be as in Definition 6.8. Suppose every trace of A is covered by P,
A is closed under ', and ' is persistent on A. If σ1 σ2 σ3 ∈ traces(A) and σ2 is a looping
trace, then

σ1 σ3 ' σ1 τ iff σ1 σ2 σ3 ' σ1 σ2 τ.

Proof. Write |σ1| = n, |σ2| = m, and |σ3| = |τ | = k.
Let 〈f1, . . . , fn, g1, . . . , gm, h1, . . . , hk〉 cover σ1 σ2 σ3.
By Lemma 6.5, 〈f1, . . . , fn, g1, . . . , gm〉 covers σ1 σ2 and 〈f1, . . . , fn〉 covers σ1. Since ' is
loop preserving on A, we know that for every π ∈ Π

last(exec(〈f1, . . . , fn〉, π)) = last(exec(〈f1, . . . , fn, g1, . . . , gm〉, π)) (6.1)

So 〈f1, . . . , fn, h1, . . . , hk〉 covers σ1 σ3.

“⇒” Since σ1 σ3 ' σ1 τ and σ1 σ3 ∈ traces(A), σ1 τ ∈ traces(A).
Let 〈f1, . . . , fn, h′1, . . . , h′k〉 cover σ1 τ .
From Equation 6.1 and the fact that 〈f1, . . . , fn, g1, . . . , gm〉 covers σ1 σ2, it follows
that 〈f1, . . . , fn, g1, . . . , gm, h′1, . . . , h′k〉 covers σ1 σ2 τ . Since σ1 σ3 ' σ1 τ , we obtain,
for every 0 ≤ i ≤ k:

[hi(π) | π ∈ Π] = [h′i(π) | π ∈ Π] (6.2)

Now it follows that σ1 σ2 σ3 ' σ1 σ2 τ .

“⇐” Since σ1 σ2 σ3 ' σ1 σ2 τ and σ1 σ2 σ3 ∈ traces(A), σ1 σ2 τ ∈ traces(A).
Let 〈f1, . . . , fn, g1, . . . , gm, h′1, . . . , h′k〉 cover σ1 σ2 τ . From Equation 6.1, it follows that
〈f1, . . . , fn, h′1, . . . , h′k〉 covers σ1 τ . Since σ1 σ2 σ3 ' σ1 σ2 τ , we obtain, for every 0 ≤
i ≤ k:

[hi(π) | π ∈ Π] = [h′i(π) | π ∈ Π] (6.3)

Now it follows that σ1 σ3 ' σ1 τ .

�

6. Patterns 20

Finally, we prove that ()r is loop respecting.

Lemma 6.12. Suppose P is a loop preserving pattern on A and let < be a total, irreflexive
ordering on ΣA. Let ()r be as in Definition 6.8. Suppose every trace of A is covered by P, A
is closed under ', and ' is persistent on A. If (σ1 σ2 σ3)r = σ1 σ2 σ3 ∈ traces(A) and σ2 is a
looping trace, then (σ1 σ3)r = σ1 σ3.

Proof. By contradiction. Suppose that (σ1 σ3)r = τ1 τ3 and τ1 τ3 6= σ1 σ3. By Lemma 6.9,
(σ1)r = σ1, and τ1 = (σ1)r, so τ1 = σ1. By definition of ()r, σ1 τ3 ≤ σ1 σ3 and σ1 τ3 ' σ1 σ3.
By Lemma 6.11, σ1 σ2 σ3 ' σ1 σ2 τ3. Since σ1 σ2 σ3 = (σ1 σ2 σ3)r, σ1 σ2 σ3 ≤ σ1 σ2 τ3, and
by definition of ≤, σ1 σ3 ≤ σ1 τ3. Since also σ1 τ3 ≤ σ1 σ3, σ1τ3 = σ1σ3, and we have a
contradiction. So σ1 σ3 = (σ1 σ3)r. �

The next result allows us to use the pattern-approach for computing a kernel. In our
example of the ATM switch, we have computed the kernel from the FSM in Figure 2, using
the symmetry induced by the template in Figure 3 and an ordering < that obeys the relation
?set up(1) < ?set up(2). Not surprisingly, the resulting kernel is identical to the template.

Theorem 6.13. Suppose P is a loop preserving pattern on A and let < be a total, irreflexive
ordering on ΣA. Let ()r be as in Definition 6.8. Suppose every trace of A is covered by P, A
is closed under ', and ' is persistent on A. Then 〈', ()r〉 is a symmetry on A.

Proof. We have to show that ()r is a representative function for '. It is immediate that
σr ' σ and for all τ such that σ ' τ , τ r = σr. The requirement that ()r is prefix closed
follows from Lemma 6.9. That ()r is loop respecting follows from Lemma 6.12. �

The following lemma is an extra ingredient for making the implementation of the algorithm
Kernel from Section 4 more efficient. The implementation itself is described in Section 7.

Lemma 6.14. Suppose P = 〈T ,Π〉 is a pattern on A, that covers σ and τ by 〈f1, . . . , fn〉
and 〈g1, . . . , gm〉, respectively.
If s0
A

σ−→A s, s0
A

τ−→A s and for each π in Π: last(exec(〈f1, . . . , fn〉, π)) = last(exec(〈g1,

. . . , gm〉, π)), then for each ρ such that s
ρ−→A:

〈f1, . . . , fn, h1, . . . , hk〉 covers σρ ⇔ 〈g1, . . . , gm, h1, . . . , hk〉 covers τρ

Lemma 6.15. Suppose 〈P, ()r〉 is a symmetry on A, ()r is as in Definition 6.8, and
P = 〈T ,Π〉 covers σ and τ by 〈f1, . . . , fn〉 and 〈g1, . . . , gm〉, respectively.
If s0

A
σ−→A s, s0

A
τ−→A s, for each π in Π: last(exec(〈f1, . . . , fn〉, π)) = last(exec(〈g1,

. . . , gm〉, π)), and σ = σr and τ = τ r, then for each ρ such that s
ρ−→A:

σρ = (σρ)r ⇔ τρ = (τρ)r

7. Examples 21

Proof. We only prove “⇒”, the other direction then follows immediately.
By contradiction. Suppose s

ρ−→A, σρ = (σρ)r and (τρ)r = τρ′ with ρ 6= ρ′. By definition
of ()r, we know that τρ ' τρ′. By Lemma 6.14, we know that the covering of the ρ-part in
τρ must be equal to the covering of the ρ-part in σρ, and likewise for the ρ′-part in τρ′ and
σρ′. Then certainly σρ ' σρ′ must hold. By unicity of representatives, σρ = (σρ′)r. From
Definition 6.8 we then obtain that σρ ≤ σρ′ and τρ′ ≤ τρ, so ρ ≤ ρ′ and ρ′ ≤ ρ. This yields
a contradiction with the assumption that ρ 6= ρ′. �

7 Examples

In this section we report on some initial experiments in the application of symmetry to the
testing of three examples. Section 7.1 presents the example of a chatbox, Section 7.2 presents
the example of a cyclic train, and Section 7.3 presents the example of a ring leader election
protocol. The code listings for these examples can be found in Appendices A, B and C.

Part of the test generation trajectory was implemented: we used the tool environment
Open/Cæsar[14] for prototyping the algorithm Kernel from Section 3. Section 7.4 relates
some prototyping experiences.

We work with a pattern based symmetry (Section 6) and apply the test derivation method
from Section 5.

7.1 A chatbox service

In this section we report on some experiments in the application of symmetry to the testing
of a chatbox.

A chatbox offers the possibility to talk with users connected to the chatbox. After one
joins (connects to) the chatbox, one can talk with all other connected users, until one leaves
(disconnects). One can only join if not already present, and one can leave at any time.
For simplicity, we assume that every user can at each instance talk with at most one user.
Moreover, we demand that a user waits for a reply before talking again (unless one of the
partners leaves). Finally, we abstract from the contents of the messages, and consider only
one message. The service primitives provided by the chatbox are thus the following; Join,
Leave, DReq, and DInd, with the obvious meaning (see Figure 4). For lack of space, we do
not give the full formal specification of the chatbox or its template.

What we test for is the service of the chatbox as a whole, such as it may be offered by a
vendor, rather than components of its implementation, which we (the “customers”) are not
allowed to, or have no desire to, inspect.

This example was inspired by the conference protocol presented in [26]. Some changes
were made, all stemming from the need to keep the protocol manageable for experiments
without losing the symmetry pursued. We mention the absence of queues and multicasts
and the restriction to the number of outstanding messages. Also, we ignore the issues of test
contexts, test architectures, and points of control and observation. A Lotos [20] model and a
µCRL [18] model can be found in Appendix A.

The symmetry inherent in the protocol is immediate: pairs of talking users can be replaced
by other pairs of talking users, as long as this is done systematically according to Defini-
tions 6.2 and 6.4. As an example, the trace in which user 1 joins, leaves and joins again, is

7. Examples 22

userCuserBuserA

Join

userCuserBuserA

Leave

userA userB userC

DIndDReq

Figure 4: The chatbox protocol service

symmetric to the trace in which user 1 joins and leaves, after which user 2 joins. The essence
is that after user 1 has joined and left, this user is at the same point as all the other users not
present, so all new join actions are symmetric. Note that this symmetry is more general than
a symmetry induced solely by a permutation of actions or IDs of users. Thus the template
T used for the symmetry basically consists of the conversation between two users, including
joining and leaving, while the transformations π in the set Π shuffle the identity of users.
We feel that it is a reasonable assumption that the black implementation offering the service
indeed is symmetric in this sense.

We have applied the machinery to chatboxes with up to 4 users. We also considered a
(much simpler) version of the protocol without joining and leaving.

We start the test generation by computing a kernel for these specifications. In Table 1,
the results of applying our prototype implementation of the algorithm Kernel can be found.
Our prototype is able to find a significantly smaller Mealy machine as a kernel for each of
the models, provided that it is given a suitable ordering < (see Definition 6.8) on the actions
symbols for its representative function. The kernels constructed consist of interleavings of
transformations of the pattern, constrained by the symmetry and the ordering <.

For instance, in a chatbox with 3 users and no joining and leaving, we take the ordering <
defined as follows. “Sending a message from i1 to j1” < “sending a message from i2 to j2” if
(i1 < i2) or if (i1 = i2 and j1 < j2), and “sending a reply from i1 to j1” < “sending a reply
from i2 to j2” if (i1 > i2) or if (i1 = i2 and j1 > j2).

Using this ordering, the kernel only contains those traces in which first messages from user
1 are sent, then messages from user 2 and finally messages from user 3, while the sending of
replies is handled in the reverse order. Each trace with different order of sending messages
can then be computed from a trace of this kernel, which is exactly what Theorem 4.9 states.
This technique of dealing with traces is reminiscent of partial ordering techniques [17].

From Table 1 we see that the kernel size is relatively smaller when considering chatboxes
without joining and leaving This difference is due to the fact that, since one cannot send a
message to a user that has left, joining and leaving obstructs the symmetry in messages being
sent.

Given the computed kernels, we can construct test pairs by determining for each kernel a
set of input sequences W that constitutes a characterizing set for the kernel (as defined in
Definition 5.3). Although this part has not yet been automated, it is easily seen by a generic

7. Examples 23

model kernel
states trans minimal? states trans

3 users 512 12288 yes 213 3722
4 users 65536 2621440 yes 16385 263000

no joining/leaving
3 users 64 1152 yes 10 84
4 users 4096 131072 yes 112 1296

Table 1: Kernel statistics for the chatbox

argument that for every pair of inequivalent (non-bisimilar) states very short distinguishing
sequences exist. It is easy to devise a transition cover for a kernel, the size of which is
proportional to the size of the kernel.

As shown in Theorem 5.8, the size of the test suite to be generated will depend on the mag-
nitude of two numbers m1 and m2, indicating the search space for distinguishing sequences
for the image of the kernel in the implementation. This boils down to the following questions:
(1) What is the size of the image part of the implementation for this kernel? (2) What is the
size of a minimal distinguishing experience for each two inequivalent (non-bisimilar) states in
the image part of the implementation? (3) How many steps does a distinguishing sequence
perform outside the image of the kernel? These questions are variations of the classical state
space questions for black box testing. For practical reasons, these numbers are usually taken
to be not much larger than the corresponding numbers for the specification.

7.2 A cyclic train

In this section we report on some initial experiments in the application of symmetry to the
testing of a cyclic train. This example was inspired by the elevator specification used by
Frits Vaandrager in the course ‘Declarative Specifications and Systems’ at the University of
Nijmegen in spring 1998. Since the symmetry in an elevator obviously must be sought in the
floor numbers, and at the lowest (highest) floor it is not possible to go any lower (higher), we
modified the example a little to make the elevator cyclic: from the lowest floor, the elevator
can reach the highest floor by moving one floor down, and vice versa. To make the example
a bit more intuitive, we rename the cyclic elevator to a cyclic train, and floors to stations.

See Figure 5. The train runs on a cyclic track, from station to station. It can change
direction if needed, and can be sent to a destination if a button inside the train is pressed,
and called to a station if a button in the station is pressed. We consider as running example
a cyclic train running between four stations. In Figure 5, the train is moving from station 3
to station 2.

The symmetry inherent in the protocol is immediate: the behavior of the train requested
to go to a station or moving from one station to another is symmetric to the same behavior
when other stations are involved. As an example, the trace in which the train starts at station
1, is called to station 2 and then sent to station 0 is symmetric to the trace in which the train
starts at station 3, is called to station 0 and then sent to station 2. Thus the template T used
for the symmetry basically consists of the train arriving at the current station (from left or

7. Examples 24

Station 1Station 3

Station 0

Station 2

Figure 5: A cyclic train with 4 stations

right), opening its doors, closing its doors and moving away again, while the transformations
π in the set Π shuffle the identity of the station.

We have applied the machinery to trains with up to 8 stations. We also considered a
version of the train in the Mealy style, where each transition consists of an input and an
output action. Here we have assumed that in each state, one can give an input by pressing a
button, and that the output for such an input depends on the state of the train. If no input
is given, the train may still want to move from station to station. This is modeled with the
input action WAIT.

In Table 2, the results of applying our prototype implementation of the algorithm Kernel
can be found. We work with state spaces generated from µCRL code (See Appendix B)
which have not been minimized. The kernel is significantly smaller for each of the models,
provided that it is given a suitable ordering < (see Definition 6.8) on the actions symbols
for its representative function. The orderings in the table refer to the ordering of symmetric
request actions for the train to go to a certain station. The numbers indicate the indentity
of the station to which the train should go. For the Mealy style models, it turns out that the
orderings listed in the table work better than others. For the models with 4 and 5 stations
these are in fact the best orderings. For the other models, only some orderings were tested.
Naturally, if the state space from which the kernel is constructed and the kernel itself get
larger, the process takes longer.

7.3 A ring leader election protocol

In this section we report on some initial experiments in the application of symmetry to the
testing of a ring leader election protocol. This example was taken from [15].

The protocol is used in the setting of a number of stations, connected with a unidirectional
ring on which messages can be passed, and one central resource to which no more than one
station should have access at the same time. Exclusive access is guaranteed by a token which
is passed around by the stations. Since the links that connect the stations are unreliable, and

7. Examples 25

model kernel
states trans minimal? states trans representant ordering

7 stations 286725 4300874 no 12685 79594 6<5<4<3<2<1<0
8 stations 1310725 22282324 no 30945 195404 7<6<5<4<3<2<1<0

Mealy style
4 stations 2808 24312 no 1548 0<2<1<3
5 stations 13950 148650 no 5193 0<2<4<3<1
6 stations 72036 912276 no 16959 0<2<5<3<4<1
7 stations 336042 4927734 no 49941 79594 0<3<6<4<5<2<1
8 stations 1563696 26060592 no 146394 887208 0<2<7<3<6<4<5<1

Table 2: Kernel statistics for the cyclic train

model kernel
states trans minimal? states trans

3 stations 37764 292254 yes 17501 100941
3 stations 224152 1710534 no 40927 281544

Table 3: Kernel statistics for the ring leader election protocol

the stations themselves may crash at any moment, the token can be lost and a new token
should be generated. The leader election protocol ensures that a leader is chosen who may
use the resource and generate a new token. At any moment a new election may be started.

The protocol is proved correct and explained in more detail in [15]. Our µCRL model (See
Appendix C) is translated from the Lotos code at pages 23–24 in [15].

Again, the symmetry inherent in the protocol is immediate: the behavior for one station is
symmetric to the same behavior for another station. The pattern for our symmetry is equal
to the behavior of a station operating in isolation. Therefore we have generated the state
space of the pattern from the µCRL description. The resulting state space can be found in
Appendix C.

We have applied the machinery to rings with 3 stations. In Table 3, the results of applying
our prototype implementation of the algorithm Kernel can be found. We work with state
spaces generated from µCRL code (See Appendix C) which have not been minimized. The
kernel is significantly smaller for each of the models, provided that it is given a suitable
ordering < (see Definition 6.8) on the actions symbols for its representative function. This
ordering depends on the parameters of the action. For the minimized state space, an ordering
descending in the values of the parameters worked better, whereas for the state space which
was not minimized, an ordering ascending in the values of the parameters worked slightly
better. We have not tried all possible orderings.

7.4 Implementing the algorithm Kernel

The algorithm Kernel (see Figure 1) was implemented using the Open/Cæsar [14] tool
set. An interesting detail here is that the algorithm uses two finite state machines: one

8. Future work 26

for the specification that is reduced to a kernel, and one for the template of the symmetry,
which is used to determine (as an oracle) whether two traces are symmetric. To enable this,
Open/Cæsar interface had to be generalized somewhat so that it is now able to explore sev-
eral labeled transition systems at the same time. We have the experience that Open/Cæsar

is suitable for prototyping exploration algorithms such as Kernel.

8 Future work

We have introduced a general, FSM based, framework for exploiting symmetry in speci-
fications and implementations in order to reduce the amount of tests needed to establish
correctness. The feasibility of this approach has been shown in a few experiments.

However, a number of open issues remain. We see the following steps as possible, necessary
and feasible. On the theoretical side we would like to (1) construct algorithms for computing
and checking symmetries, and (2) determine conditions that are on the one hand sufficient
to guarantee symmetry, and on the other hand enable significant optimizations of the algo-
rithms. On the practical side we would like to (1) generate and execute tests for real-life
implementations, and (2) continue prototyping for the whole test generation trajectory.

Acknowledgments

We thank Frits Vaandrager for suggesting the transfer of model checking techniques to test
theory, and Radu Mateescu and Hubert Garavel for their invaluable assistance (including
adding functionality!) with the Open/Cæsar tool set. We also thank Jan Tretmans and
the anonymous referees for their comments on this paper.

References

[1] A.V. Aho, A.T. Dahbura, D. Lee, and M.Ü. Uyar. An optimization technique for protocol
conformance test generation based on UIO sequences and Rural Chinese Postman Tours. IEEE
Transactions on Communications, 39(11):1604–1615, 1991.

[2] K. Ajami, S. Haddad, and J-M. Ilié. Exploiting symmetry in linear time temporal logic model
checking: One step beyond. In Steffen [25], pages 52–67.

[3] E. Brinksma. A theory for the derivation of tests. In S. Aggrawal and K. Sabani, editors, Protocol
Specification Testing and Verification, Volume VIII, pages 63–74. North-Holland, 1988.

[4] E. Brinksma, J. Tretmans, and L. Verhaard. A framework for test selection. In B. Jonsson,
J. Parrow, and B. Pehrson, editors, Protocol Specification Testing and Verification, Volume XI,
pages 233–248. North-Holland, 1991.

[5] W.Y.L. Chan, S.T. Vuong, , and M.R. Ito. An improved protocol test generation procedure based
on UIOs. In Proceedings of the ACM Symposium on Communication Architectures and Protocols,
pages 283–294, 1989.

[6] O. Charles and R. Groz. Basing test coverage on a formalization of test hypotheses. In M. Kim,
S. Kang, and K. Hong, editors, Testing of Communicating Systems, Volume 10, pages 109–124.
Chapman & Hall, 1997.

[7] T.S. Chow. Testing software design modeled by finite-state machines. IEEE Transactions on
Software Engineering, 4(3):178–188, 1978.

REFERENCES 27

[8] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model checking. In
Courcoubetis [9], pages 450–462.

[9] C. Courcoubetis, editor. Proceedings 5th International Conference on Computer Aided Verifica-
tion (CAV ’93), volume 697 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[10] E.A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry reductions. In
E. Brinksma, editor, Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’97), volume 1217 of Lecture Notes in Computer Science, pages 19–34. Springer-Verlag, 1997.

[11] E.A. Emerson and A.P. Sistla. Symmetry and model checking. In Courcoubetis [9], pages 463–478.

[12] E.A. Emerson and A.P. Sistla. Utilizing symmetry when model-checking under fairness assump-
tions: an automata-theoretic approach. ACM Transactions on Programming Languages and
Systems, 19(4):617–638, 1997.

[13] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection based
on finite state models. IEEE Transactions on Software Engineering, 16(6):591–603, 1991.

[14] H. Garavel. Open/Cæsar: An open software architecture for verification, simulation,
and testing. In Steffen [25], pages 68–84. For more information on the tool set, see
http://www.inrialpes.fr/vasy/pub/cadp.html.

[15] H. Garavel and L. Mounier. Specification and verification of various distributed leader elec-
tion algorithms for unidirectional ring networks. Science of Computer Programming, 29(1–
2):171–197, July 1997. Full version available as INRIA Research Report RR-2986 from
http://www.inrialpes.fr/vasy/Publications/.

[16] M.-C. Gaudel. Testing can be formal, too. In P.D. Mosses, M. Nielsen, and M.I. Schwartzbach,
editors, TAPSOFT’95: Theory and Practice of Software Development, volume 915 of Lecture
Notes in Computer Science, pages 82–96. Springer-Verlag, 1995.

[17] P. Godefroid. Partial-order methods for the verification of concurrent systems – An approach to
the state-explosion problem, volume 1032 of Lecture Notes in Computer Science. Springer-Verlag,
1996.

[18] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse, C. Verhoef, and
S.F.M. van Vlijmen, editors, Algebra of Communicating Processes ’94, Workshops in Computing.
Springer-Verlag, 1995.

[19] V. Gyuris and A.P. Sistla. On-the-fly model checking under fairness that exploits symmetry. In
O. Grumberg, editor, Proceedings 9th International Conference on Computer Aided Verification
(CAV ’97), volume 1254 of Lecture Notes in Computer Science, pages 232–243. Springer-Verlag,
1997.

[20] ISO. Information processing systems – Open Systems Interconnection – LOTOS – a formal
description technique based on the temporal ordering of observational behaviour. ISO/IEC 8807,
1989.

[21] S. Kang and M. Kim. Interoperability test suite derivation for symmetric communication pro-
tocols. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors, Formal Description
Techniques and Protocol Specification, Testing and Verification (FORTE X/ PSTV XVII ’97),
pages 57–72. Chapman & Hall, 1997.

[22] F. Michel, P. Azema, and K. Drira. Selective generation of symmetrical test cases. In B. Baum-
garten, H.-J. Burkhardt, and A. Giessler, editors, Testing of Communicating Systems, Volume 9,
pages 191–206. Chapman & Hall, 1996.

A. Chatbox code listings 28

[23] Robin Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,
1989.

[24] A. Petrenko, T. Higashino, and T. Kaji. Handling redundant and additional states in protocol
testing. In A. Cavalli and S. Budkowski, editors, Protocol Test Systems, Volume VIII, pages
307–322. Chapman & Hall, 1995.

[25] B. Steffen, editor. Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’98), volume 1384 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[26] R. Terpstra, L. Fereira Pires, L. Heerink, and J. Tretmans. Testing theory in practice: A simple
experiment. In Proceedings of the COST 247 International Workshop on Applied Formal Methods
in System Design, 1996. Also published as Technical Report CTIT 96-21, University of Twente,
The Netherlands.

[27] J. Tretmans. A theory for the derivation of tests. In Formal Description Techniques (FORTE II
’89). North-Holland, 1989.

[28] M.P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665, 1973.

A Chatbox code listings

Lotos model for 3 users

1 specification chatbox[JOIN, LEAVE, DREQ] : noexit
2
3 library
4 X_BOOLEAN, X_NATURAL
5 endlib
6
7 type CHATBOX_TYPES is CHATBOX_RENAME_TYPES, BOOLEAN, NATURALNUMBER
8 sorts MES_TYPE,
9 VECTOR_TYPE (*! implementedby C_VECTOR_TYPE comparedby COMPAREV \
10 enumeratedby ENUMV printedby PRINTV external *),
11 MATRIX_TYPE (*! implementedby C_MATRIX_TYPE comparedby COMPAREM \
12 enumeratedby ENUMM printedby PRINTM external *),
13 OUTPUT
14 opns
15 NO_OUTPUT (*! constructor *),
16 OK (*! constructor *),
17 DIND (*! constructor *): -> OUTPUT
18 mes (*! constructor *),
19 ack (*! constructor *) : -> MES_TYPE
20 _eq_ : MES_TYPE, MES_TYPE -> BOOL
21 vector (*! implementedby c_vector constructor external *)
22 : -> VECTOR_TYPE
23 setv (*! implementedby c_setv external *)
24 : USR_TYPE,BOOL,VECTOR_TYPE -> VECTOR_TYPE
25 getv (*! implementedby c_getv external *)
26 : USR_TYPE,VECTOR_TYPE -> BOOL
27 matrix (*! implementedby c_matrix constructor external *)
28 : -> MATRIX_TYPE
29 setm (*! implementedby c_setm external *)

A. Chatbox code listings 29

30 : USR_TYPE,USR_TYPE,BOOL,MATRIX_TYPE -> MATRIX_TYPE
31 getm (*! implementedby c_getm external *)
32 : USR_TYPE,USR_TYPE,MATRIX_TYPE -> BOOL
33 updatem (*! implementedby c_updatem external *)
34 : USR_TYPE,BOOL,VECTOR_TYPE,MATRIX_TYPE -> MATRIX_TYPE
35 eqns
36 ofsort BOOL
37 ack eq mes = false;
38 mes eq ack = false;
39 ack eq ack = true;
40 mes eq mes = true;
41 endtype
42
43 type CHATBOX_RENAME_TYPES is NATURALNUMBER renamedby
44 sortnames USR_TYPE for NAT
45 endtype
46
47 behaviour
48
49 CHAT[JOIN, LEAVE, DREQ]
50 (vector,matrix,matrix)
51
52 where
53
54 process CHAT
55 [JOIN, LEAVE, DREQ]
56 (PC:VECTOR_TYPE, SENT_TO,TO_ACK:MATRIX_TYPE)
57 : noexit :=
58
59 (choice u:USR_TYPE []
60 ([getv(u,PC)] ->
61 JOIN ! u ! NO_OUTPUT ;
62 CHAT[JOIN, LEAVE, DREQ](PC,SENT_TO,TO_ACK)
63 []
64 [not(getv(u,PC))] ->
65 JOIN ! u ! OK ;
66 CHAT[JOIN, LEAVE, DREQ]
67 (setv(u,true,PC),SENT_TO,TO_ACK)
68 []
69 [not(getv(u,PC))] ->
70 LEAVE ! u ! NO_OUTPUT ;
71 CHAT[JOIN, LEAVE, DREQ](PC,SENT_TO,TO_ACK)
72 []
73 [getv(u,PC)] ->
74 LEAVE ! u ! OK ;
75 CHAT[JOIN, LEAVE, DREQ]
76 (setv(u,false,PC),SENT_TO,TO_ACK)
77))
78 []
79 (choice u1:USR_TYPE, u2:USR_TYPE []
80 (

A. Chatbox code listings 30

81 DREQ ! u1 ! u2 ! mes ! NO_OUTPUT
82 [((u1 eq u2) or not(getv(u1,PC) and getv(u2,PC))) or getm(u1,u2,SENT_TO)];
83 CHAT[JOIN, LEAVE, DREQ](PC,SENT_TO,TO_ACK)
84 []
85 DREQ ! u1 ! u2 ! ack ! NO_OUTPUT
86 [((u1 eq u2) or not(getv(u1,PC) and getv(u2,PC))) or not(getm(u1,u2,TO_ACK))];
87 CHAT[JOIN, LEAVE, DREQ](PC,SENT_TO,TO_ACK)
88 []
89 DREQ ! u1 ! u2 ! mes ! DIND
90 [(not(u1 eq u2) and getv(u1,PC) and getv(u2,PC)) and not(getm(u1,u2,SENT_TO))];
91 CHAT[JOIN, LEAVE, DREQ]
92 (PC,setm(u1,u2,true,SENT_TO),setm(u2,u1,true,TO_ACK))
93 []
94 DREQ ! u1 ! u2 ! ack ! DIND
95 [(not(u1 eq u2) and getv(u1,PC) and getv(u2,PC)) and getm(u1,u2,TO_ACK)];
96 CHAT[JOIN, LEAVE, DREQ]
97 (PC,setm(u2,u1,false,SENT_TO),setm(u1,u2,false,TO_ACK))
98))
99
100 endproc
101
102 endspec (* chatbox *)

µCRL model for 4 users

1 sort Bool
2 func T,F : -> Bool
3 map not: Bool -> Bool
4 and: Bool # Bool -> Bool
5 var b : Bool
6 rew not(T) = F
7 not(F) = T
8 and(F,b) = F
9 and(b,F) = F
10 and(T,b) = b
11 and(b,T) = b
12
13 sort Nat
14 func 0,1,2,3: -> Nat
15
16 sort Mes
17 func MES, ACK: -> Mes
18
19 sort Output
20 func NO_OUTPUT, OK, DIND : -> Output
21
22 act JOIN, LEAVE: Nat # Output
23 DREQ: Nat # Nat # Mes # Output
24
25 proc Chatbox(pres0: Bool, pres1: Bool, pres2: Bool, pres3: Bool,
26 sentto01: Bool, sentto02: Bool, sentto03: Bool,

A. Chatbox code listings 31

27 sentto10: Bool, sentto12: Bool, sentto13: Bool,
28 sentto20: Bool, sentto21: Bool, sentto23: Bool,
29 sentto30: Bool, sentto31: Bool, sentto32: Bool)
30 =
31 JOIN(0,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
32 sentto01, sentto02, sentto03,
33 sentto10, sentto12, sentto13,
34 sentto20, sentto21, sentto23,
35 sentto30, sentto31, sentto32)
36 <| pres0 |>
37 JOIN(0,OK) . Chatbox(not(pres0), pres1, pres2, pres3,
38 sentto01, sentto02, sentto03,
39 sentto10, sentto12, sentto13,
40 sentto20, sentto21, sentto23,
41 sentto30, sentto31, sentto32)
42 +
43 JOIN(1,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
44 sentto01, sentto02, sentto03,
45 sentto10, sentto12, sentto13,
46 sentto20, sentto21, sentto23,
47 sentto30, sentto31, sentto32)
48 <| pres1 |>
49 JOIN(1,OK) . Chatbox(pres0, not(pres1), pres2, pres3,
50 sentto01, sentto02, sentto03,
51 sentto10, sentto12, sentto13,
52 sentto20, sentto21, sentto23,
53 sentto30, sentto31, sentto32)
54 +
55 JOIN(2,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
56 sentto01, sentto02, sentto03,
57 sentto10, sentto12, sentto13,
58 sentto20, sentto21, sentto23,
59 sentto30, sentto31, sentto32)
60 <| pres2 |>
61 JOIN(2,OK) . Chatbox(pres0, pres1, not(pres2), pres3,
62 sentto01, sentto02, sentto03,
63 sentto10, sentto12, sentto13,
64 sentto20, sentto21, sentto23,
65 sentto30, sentto31, sentto32)
66 +
67 JOIN(3,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
68 sentto01, sentto02, sentto03,
69 sentto10, sentto12, sentto13,
70 sentto20, sentto21, sentto23,
71 sentto30, sentto31, sentto32)
72 <| pres3 |>
73 JOIN(3,OK) . Chatbox(pres0, pres1, pres2, not(pres3),
74 sentto01, sentto02, sentto03,
75 sentto10, sentto12, sentto13,
76 sentto20, sentto21, sentto23,
77 sentto30, sentto31, sentto32)

A. Chatbox code listings 32

78 +
79 LEAVE(0,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
80 sentto01, sentto02, sentto03,
81 sentto10, sentto12, sentto13,
82 sentto20, sentto21, sentto23,
83 sentto30, sentto31, sentto32)
84 <| not(pres0) |>
85 LEAVE(0,OK) . Chatbox(not(pres0), pres1, pres2, pres3,
86 sentto01, sentto02, sentto03,
87 sentto10, sentto12, sentto13,
88 sentto20, sentto21, sentto23,
89 sentto30, sentto31, sentto32)
90 +
91 LEAVE(1,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
92 sentto01, sentto02, sentto03,
93 sentto10, sentto12, sentto13,
94 sentto20, sentto21, sentto23,
95 sentto30, sentto31, sentto32)
96 <| not(pres1) |>
97 LEAVE(1,OK) . Chatbox(pres0, not(pres1), pres2, pres3,
98 sentto01, sentto02, sentto03,
99 sentto10, sentto12, sentto13,
100 sentto20, sentto21, sentto23,
101 sentto30, sentto31, sentto32)
102 +
103 LEAVE(2,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
104 sentto01, sentto02, sentto03,
105 sentto10, sentto12, sentto13,
106 sentto20, sentto21, sentto23,
107 sentto30, sentto31, sentto32)
108 <| not(pres2) |>
109 LEAVE(2,OK) . Chatbox(pres0, pres1, not(pres2), pres3,
110 sentto01, sentto02, sentto03,
111 sentto10, sentto12, sentto13,
112 sentto20, sentto21, sentto23,
113 sentto30, sentto31, sentto32)
114 +
115 LEAVE(3,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
116 sentto01, sentto02, sentto03,
117 sentto10, sentto12, sentto13,
118 sentto20, sentto21, sentto23,
119 sentto30, sentto31, sentto32)
120 <| not(pres3) |>
121 LEAVE(3,OK) . Chatbox(pres0, pres1, pres2, not(pres3),
122 sentto01, sentto02, sentto03,
123 sentto10, sentto12, sentto13,
124 sentto20, sentto21, sentto23,
125 sentto30, sentto31, sentto32)
126 +
127 DREQ(0,0,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
128 sentto01, sentto02, sentto03,

A. Chatbox code listings 33

129 sentto10, sentto12, sentto13,
130 sentto20, sentto21, sentto23,
131 sentto30, sentto31, sentto32)
132 <| T |>
133 delta
134 +
135 DREQ(1,1,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
136 sentto01, sentto02, sentto03,
137 sentto10, sentto12, sentto13,
138 sentto20, sentto21, sentto23,
139 sentto30, sentto31, sentto32)
140 <| T |>
141 delta
142 +
143 DREQ(2,2,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
144 sentto01, sentto02, sentto03,
145 sentto10, sentto12, sentto13,
146 sentto20, sentto21, sentto23,
147 sentto30, sentto31, sentto32)
148 <| T |>
149 delta
150 +
151 DREQ(3,3,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
152 sentto01, sentto02, sentto03,
153 sentto10, sentto12, sentto13,
154 sentto20, sentto21, sentto23,
155 sentto30, sentto31, sentto32)
156 <| T |>
157 delta
158 +
159 DREQ(0,1,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
160 not(sentto01), sentto02, sentto03,
161 sentto10, sentto12, sentto13,
162 sentto20, sentto21, sentto23,
163 sentto30, sentto31, sentto32)
164 <| and(pres0,and(pres1,not(sentto01))) |>
165 DREQ(0,1,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
166 sentto01, sentto02, sentto03,
167 sentto10, sentto12, sentto13,
168 sentto20, sentto21, sentto23,
169 sentto30, sentto31, sentto32)
170 +
171 DREQ(0,2,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
172 sentto01, not(sentto02),sentto03,
173 sentto10, sentto12, sentto13,
174 sentto20, sentto21, sentto23,
175 sentto30, sentto31, sentto32)
176 <| and(pres0,and(pres2,not(sentto02))) |>
177 DREQ(0,2,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
178 sentto01, sentto02, sentto03,
179 sentto10, sentto12, sentto13,

A. Chatbox code listings 34

180 sentto20, sentto21, sentto23,
181 sentto30, sentto31, sentto32)
182 +
183 DREQ(0,3,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
184 sentto01, sentto02, not(sentto03),
185 sentto10, sentto12, sentto13,
186 sentto20, sentto21, sentto23,
187 sentto30, sentto31, sentto32)
188 <| and(pres0,and(pres3,not(sentto03))) |>
189 DREQ(0,3,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
190 sentto01, sentto02, sentto03,
191 sentto10, sentto12, sentto13,
192 sentto20, sentto21, sentto23,
193 sentto30, sentto31, sentto32)
194 +
195 DREQ(1,0,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
196 sentto01, sentto02, sentto03,
197 not(sentto10), sentto12, sentto13,
198 sentto20, sentto21, sentto23,
199 sentto30, sentto31, sentto32)
200 <| and(pres1,and(pres0,not(sentto10))) |>
201 DREQ(1,0,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
202 sentto01, sentto02, sentto03,
203 sentto10, sentto12, sentto13,
204 sentto20, sentto21, sentto23,
205 sentto30, sentto31, sentto32)
206 +
207 DREQ(1,2,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
208 sentto01, sentto02, sentto03,
209 sentto10, not(sentto12), sentto13,
210 sentto20, sentto21, sentto23,
211 sentto30, sentto31, sentto32)
212 <| and(pres1,and(pres2,not(sentto12))) |>
213 DREQ(1,2,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
214 sentto01, sentto02, sentto03,
215 sentto10, sentto12, sentto13,
216 sentto20, sentto21, sentto23,
217 sentto30, sentto31, sentto32)
218 +
219 DREQ(1,3,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
220 sentto01, sentto02, sentto03,
221 sentto10, sentto12, not(sentto13),
222 sentto20, sentto21, sentto23,
223 sentto30, sentto31, sentto32)
224 <| and(pres1,and(pres3,not(sentto13))) |>
225 DREQ(1,3,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
226 sentto01, sentto02, sentto03,
227 sentto10, sentto12, sentto13,
228 sentto20, sentto21, sentto23,
229 sentto30, sentto31, sentto32)
230 +

A. Chatbox code listings 35

231 DREQ(2,0,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
232 sentto01, sentto02, sentto03,
233 sentto10, sentto12, sentto13,
234 not(sentto20), sentto21, sentto23,
235 sentto30, sentto31, sentto32)
236 <| and(pres2,and(pres0,not(sentto20))) |>
237 DREQ(2,0,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
238 sentto01, sentto02, sentto03,
239 sentto10, sentto12, sentto13,
240 sentto20, sentto21, sentto23,
241 sentto30, sentto31, sentto32)
242 +
243 DREQ(2,1,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
244 sentto01, sentto02, sentto03,
245 sentto10, sentto12, sentto13,
246 sentto20, not(sentto21), sentto23,
247 sentto30, sentto31, sentto32)
248 <| and(pres2,and(pres1,not(sentto21))) |>
249 DREQ(2,1,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
250 sentto01, sentto02, sentto03,
251 sentto10, sentto12, sentto13,
252 sentto20, sentto21, sentto23,
253 sentto30, sentto31, sentto32)
254 +
255 DREQ(2,3,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
256 sentto01, sentto02, sentto03,
257 sentto10, sentto12, sentto13,
258 sentto20, sentto21, not(sentto23),
259 sentto30, sentto31, sentto32)
260 <| and(pres2,and(pres3,not(sentto23))) |>
261 DREQ(2,3,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
262 sentto01, sentto02, sentto03,
263 sentto10, sentto12, sentto13,
264 sentto20, sentto21, sentto23,
265 sentto30, sentto31, sentto32)
266 +
267 DREQ(3,0,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
268 sentto01, sentto02, sentto03,
269 sentto10, sentto12, sentto13,
270 sentto20, sentto21, sentto23,
271 not(sentto30), sentto31, sentto32)
272 <| and(pres3,and(pres0,not(sentto30))) |>
273 DREQ(3,0,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
274 sentto01, sentto02, sentto03,
275 sentto10, sentto12, sentto13,
276 sentto20, sentto21, sentto23,
277 sentto30, sentto31, sentto32)
278 +
279 DREQ(3,1,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
280 sentto01, sentto02, sentto03,
281 sentto10, sentto12, sentto13,

A. Chatbox code listings 36

282 sentto20, sentto21, sentto23,
283 sentto30, not(sentto31), sentto32)
284 <| and(pres3,and(pres1,not(sentto31))) |>
285 DREQ(3,1,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
286 sentto01, sentto02, sentto03,
287 sentto10, sentto12, sentto13,
288 sentto20, sentto21, sentto23,
289 sentto30, sentto31, sentto32)
290 +
291 DREQ(3,2,MES,OK) . Chatbox(pres0, pres1, pres2, pres3,
292 sentto01, sentto02, sentto03,
293 sentto10, sentto12, sentto13,
294 sentto20, sentto21, sentto23,
295 sentto30, sentto31, not(sentto32))
296 <| and(pres3,and(pres2,not(sentto32))) |>
297 DREQ(3,2,MES,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
298 sentto01, sentto02, sentto03,
299 sentto10, sentto12, sentto13,
300 sentto20, sentto21, sentto23,
301 sentto30, sentto31, sentto32)
302 +
303 DREQ(0,0,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
304 sentto01, sentto02, sentto03,
305 sentto10, sentto12, sentto13,
306 sentto20, sentto21, sentto23,
307 sentto30, sentto31, sentto32)
308 <| T |>
309 delta
310 +
311 DREQ(1,1,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
312 sentto01, sentto02, sentto03,
313 sentto10, sentto12, sentto13,
314 sentto20, sentto21, sentto23,
315 sentto30, sentto31, sentto32)
316 <| T |>
317 delta
318 +
319 DREQ(2,2,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
320 sentto01, sentto02, sentto03,
321 sentto10, sentto12, sentto13,
322 sentto20, sentto21, sentto23,
323 sentto30, sentto31, sentto32)
324 <| T |>
325 delta
326 +
327 DREQ(3,3,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
328 sentto01, sentto02, sentto03,
329 sentto10, sentto12, sentto13,
330 sentto20, sentto21, sentto23,
331 sentto30, sentto31, sentto32)
332 <| T |>

A. Chatbox code listings 37

333 delta
334 +
335 DREQ(0,1,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
336 sentto01, sentto02, sentto03,
337 not(sentto10), sentto12, sentto13,
338 sentto20, sentto21, sentto23,
339 sentto30, sentto31, sentto32)
340 <| and(pres0,and(pres1,sentto10)) |>
341 DREQ(0,1,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
342 sentto01, sentto02, sentto03,
343 sentto10, sentto12, sentto13,
344 sentto20, sentto21, sentto23,
345 sentto30, sentto31, sentto32)
346 +
347 DREQ(0,2,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
348 sentto01, sentto02,sentto03,
349 sentto10, sentto12, sentto13,
350 not(sentto20), sentto21, sentto23,
351 sentto30, sentto31, sentto32)
352 <| and(pres0,and(pres2,sentto20)) |>
353 DREQ(0,2,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
354 sentto01, sentto02, sentto03,
355 sentto10, sentto12, sentto13,
356 sentto20, sentto21, sentto23,
357 sentto30, sentto31, sentto32)
358 +
359 DREQ(0,3,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
360 sentto01, sentto02, sentto03,
361 sentto10, sentto12, sentto13,
362 sentto20, sentto21, sentto23,
363 not(sentto30), sentto31, sentto32)
364 <| and(pres0,and(pres3,sentto30)) |>
365 DREQ(0,3,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
366 sentto01, sentto02, sentto03,
367 sentto10, sentto12, sentto13,
368 sentto20, sentto21, sentto23,
369 sentto30, sentto31, sentto32)
370 +
371 DREQ(1,0,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
372 not(sentto01), sentto02, sentto03,
373 sentto10, sentto12, sentto13,
374 sentto20, sentto21, sentto23,
375 sentto30, sentto31, sentto32)
376 <| and(pres1,and(pres0,sentto01)) |>
377 DREQ(1,0,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
378 sentto01, sentto02, sentto03,
379 sentto10, sentto12, sentto13,
380 sentto20, sentto21, sentto23,
381 sentto30, sentto31, sentto32)
382 +
383 DREQ(1,2,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,

A. Chatbox code listings 38

384 sentto01, sentto02, sentto03,
385 sentto10, sentto12, sentto13,
386 sentto20, not(sentto21), sentto23,
387 sentto30, sentto31, sentto32)
388 <| and(pres1,and(pres2,sentto21)) |>
389 DREQ(1,2,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
390 sentto01, sentto02, sentto03,
391 sentto10, sentto12, sentto13,
392 sentto20, sentto21, sentto23,
393 sentto30, sentto31, sentto32)
394 +
395 DREQ(1,3,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
396 sentto01, sentto02, sentto03,
397 sentto10, sentto12, sentto13,
398 sentto20, sentto21, sentto23,
399 sentto30, not(sentto31), sentto32)
400 <| and(pres1,and(pres3,sentto31)) |>
401 DREQ(1,3,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
402 sentto01, sentto02, sentto03,
403 sentto10, sentto12, sentto13,
404 sentto20, sentto21, sentto23,
405 sentto30, sentto31, sentto32)
406 +
407 DREQ(2,0,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
408 sentto01, not(sentto02), sentto03,
409 sentto10, sentto12, sentto13,
410 sentto20, sentto21, sentto23,
411 sentto30, sentto31, sentto32)
412 <| and(pres2,and(pres0,sentto02)) |>
413 DREQ(2,0,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
414 sentto01, sentto02, sentto03,
415 sentto10, sentto12, sentto13,
416 sentto20, sentto21, sentto23,
417 sentto30, sentto31, sentto32)
418 +
419 DREQ(2,1,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
420 sentto01, sentto02, sentto03,
421 sentto10, not(sentto12), sentto13,
422 sentto20, sentto21, sentto23,
423 sentto30, sentto31, sentto32)
424 <| and(pres2,and(pres1,sentto12)) |>
425 DREQ(2,1,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
426 sentto01, sentto02, sentto03,
427 sentto10, sentto12, sentto13,
428 sentto20, sentto21, sentto23,
429 sentto30, sentto31, sentto32)
430 +
431 DREQ(2,3,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
432 sentto01, sentto02, sentto03,
433 sentto10, sentto12, sentto13,
434 sentto20, sentto21, sentto23,

A. Chatbox code listings 39

435 sentto30, sentto31, not(sentto32))
436 <| and(pres2,and(pres3,sentto32)) |>
437 DREQ(2,3,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
438 sentto01, sentto02, sentto03,
439 sentto10, sentto12, sentto13,
440 sentto20, sentto21, sentto23,
441 sentto30, sentto31, sentto32)
442 +
443 DREQ(3,0,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
444 sentto01, sentto02, not(sentto03),
445 sentto10, sentto12, sentto13,
446 sentto20, sentto21, sentto23,
447 sentto30, sentto31, sentto32)
448 <| and(pres3,and(pres0,sentto03)) |>
449 DREQ(3,0,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
450 sentto01, sentto02, sentto03,
451 sentto10, sentto12, sentto13,
452 sentto20, sentto21, sentto23,
453 sentto30, sentto31, sentto32)
454 +
455 DREQ(3,1,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
456 sentto01, sentto02, sentto03,
457 sentto10, sentto12, not(sentto13),
458 sentto20, sentto21, sentto23,
459 sentto30, sentto31, sentto32)
460 <| and(pres3,and(pres1,sentto13)) |>
461 DREQ(3,1,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
462 sentto01, sentto02, sentto03,
463 sentto10, sentto12, sentto13,
464 sentto20, sentto21, sentto23,
465 sentto30, sentto31, sentto32)
466 +
467 DREQ(3,2,ACK,OK) . Chatbox(pres0, pres1, pres2, pres3,
468 sentto01, sentto02, sentto03,
469 sentto10, sentto12, sentto13,
470 sentto20, sentto21, not(sentto23),
471 sentto30, sentto31, sentto32)
472 <| and(pres3,and(pres2,sentto23)) |>
473 DREQ(3,2,ACK,NO_OUTPUT) . Chatbox(pres0, pres1, pres2, pres3,
474 sentto01, sentto02, sentto03,
475 sentto10, sentto12, sentto13,
476 sentto20, sentto21, sentto23,
477 sentto30, sentto31, sentto32)
478
479
480 init Chatbox(F,F,F,F, F,F,F, F,F,F, F,F,F, F,F,F)
481

State space of symmetry for user 1

1 des (0, 44, 6)

A. Chatbox code listings 40

2 (0, "1 !JOIN !0 !OK", 1)
3 (0, "15 !LEAVE !0 !NO_OUTPUT", 0)
4 (0, "16 !DREQ !0 !0 !MES !NO_OUTPUT", 0)
5 (0, "17 !DREQ !0 !0 !ACK !NO_OUTPUT", 0)
6 (0, "18 !DREQ !0 !1 !MES !NO_OUTPUT", 0)
7 (0, "19 !DREQ !0 !1 !ACK !NO_OUTPUT", 0)
8 (1, "2 !LEAVE !0 !OK", 0)
9 (1, "3 !DREQ !0 !1 !MES !DIND", 2)
10 (1, "5 !DREQ !1 !0 !MES !DIND", 2)
11 (1, "20 !JOIN !0 !NO_OUTPUT", 1)
12 (1, "21 !DREQ !0 !0 !MES !NO_OUTPUT", 1)
13 (1, "22 !DREQ !0 !0 !ACK !NO_OUTPUT", 1)
14 (1, "23 !DREQ !0 !1 !MES !NO_OUTPUT", 1)
15 (1, "24 !DREQ !0 !1 !ACK !NO_OUTPUT", 1)
16 (2, "4 !DREQ !1 !0 !ACK !DIND", 1)
17 (2, "6 !DREQ !0 !1 !ACK !DIND", 1)
18 (2, "7 !LEAVE !0 !OK", 3)
19 (2, "9 !DREQ !1 !0 !MES !DIND", 4)
20 (2, "12 !DREQ !0 !1 !MES !DIND", 4)
21 (2, "25 !JOIN !0 !NO_OUTPUT", 2)
22 (2, "26 !DREQ !0 !0 !MES !NO_OUTPUT", 2)
23 (2, "27 !DREQ !0 !0 !ACK !NO_OUTPUT", 2)
24 (2, "28 !DREQ !0 !1 !MES !NO_OUTPUT", 2)
25 (2, "29 !DREQ !0 !1 !ACK !NO_OUTPUT", 2)
26 (3, "8 !JOIN !0 !OK", 2)
27 (3, "30 !LEAVE !0 !NO_OUTPUT", 3)
28 (3, "31 !DREQ !0 !0 !MES !NO_OUTPUT", 3)
29 (3, "32 !DREQ !0 !0 !ACK !NO_OUTPUT", 3)
30 (3, "33 !DREQ !0 !1 !MES !NO_OUTPUT", 3)
31 (3, "34 !DREQ !0 !1 !ACK !NO_OUTPUT", 3)
32 (4, "10 !DREQ !0 !1 !ACK !DIND", 2)
33 (4, "11 !DREQ !1 !0 !ACK !DIND", 2)
34 (4, "13 !LEAVE !0 !OK", 5)
35 (4, "35 !JOIN !0 !NO_OUTPUT", 4)
36 (4, "36 !DREQ !0 !0 !MES !NO_OUTPUT", 4)
37 (4, "37 !DREQ !0 !0 !ACK !NO_OUTPUT", 4)
38 (4, "38 !DREQ !0 !1 !MES !NO_OUTPUT", 4)
39 (4, "39 !DREQ !0 !1 !ACK !NO_OUTPUT", 4)
40 (5, "14 !JOIN !0 !OK", 4)
41 (5, "40 !LEAVE !0 !NO_OUTPUT", 5)
42 (5, "41 !DREQ !0 !0 !MES !NO_OUTPUT", 5)
43 (5, "42 !DREQ !0 !0 !ACK !NO_OUTPUT", 5)
44 (5, "43 !DREQ !0 !1 !MES !NO_OUTPUT", 5)
45 (5, "44 !DREQ !0 !1 !ACK !NO_OUTPUT", 5)

Lotos model for 3 users without joining/leaving

1 specification chatbox[JOIN, LEAVE, DREQ] : noexit
2
3 library
4 X_BOOLEAN, X_NATURAL

A. Chatbox code listings 41

5 endlib
6
7 type CHATBOX_TYPES is CHATBOX_RENAME_TYPES, BOOLEAN, NATURALNUMBER
8 sorts MES_TYPE,
9 VECTOR_TYPE (*! implementedby C_VECTOR_TYPE comparedby COMPAREV \
10 enumeratedby ENUMV printedby PRINTV external *),
11 MATRIX_TYPE (*! implementedby C_MATRIX_TYPE comparedby COMPAREM \
12 enumeratedby ENUMM printedby PRINTM external *),
13 OUTPUT
14 opns
15 NO_OUTPUT (*! constructor *),
16 DIND (*! constructor *): -> OUTPUT
17 mes (*! constructor *),
18 ack (*! constructor *) : -> MES_TYPE
19 _eq_ : MES_TYPE, MES_TYPE -> BOOL
20 vector (*! implementedby c_vector constructor external *)
21 : -> VECTOR_TYPE
22 setv (*! implementedby c_setv external *)
23 : USR_TYPE,BOOL,VECTOR_TYPE -> VECTOR_TYPE
24 getv (*! implementedby c_getv external *)
25 : USR_TYPE,VECTOR_TYPE -> BOOL
26 matrix (*! implementedby c_matrix constructor external *)
27 : -> MATRIX_TYPE
28 setm (*! implementedby c_setm external *)
29 : USR_TYPE,USR_TYPE,BOOL,MATRIX_TYPE -> MATRIX_TYPE
30 getm (*! implementedby c_getm external *)
31 : USR_TYPE,USR_TYPE,MATRIX_TYPE -> BOOL
32 updatem (*! implementedby c_updatem external *)
33 : USR_TYPE,BOOL,VECTOR_TYPE,MATRIX_TYPE -> MATRIX_TYPE
34 eqns
35 ofsort BOOL
36 ack eq mes = false;
37 mes eq ack = false;
38 ack eq ack = true;
39 mes eq mes = true;
40 endtype
41
42 type CHATBOX_RENAME_TYPES is NATURALNUMBER renamedby
43 sortnames USR_TYPE for NAT
44 endtype
45
46 behaviour
47
48 CHAT[DREQ]
49 (matrix,matrix)
50
51 where
52
53 process CHAT
54 [DREQ]
55 (SENT_TO,TO_ACK:MATRIX_TYPE)

A. Chatbox code listings 42

56 : noexit :=
57
58 (choice u1:USR_TYPE, u2:USR_TYPE []
59 (
60 DREQ ! u1 ! u2 ! mes ! NO_OUTPUT
61 [(u1 eq u2) or getm(u1,u2,SENT_TO)];
62 CHAT[DREQ](SENT_TO,TO_ACK)
63 []
64 DREQ ! u1 ! u2 ! ack ! NO_OUTPUT
65 [(u1 eq u2) or not(getm(u1,u2,TO_ACK))];
66 CHAT[DREQ](SENT_TO,TO_ACK)
67 []
68 DREQ ! u1 ! u2 ! mes ! DIND
69 [not(u1 eq u2) and not(getm(u1,u2,SENT_TO))];
70 CHAT[DREQ]
71 (setm(u1,u2,true,SENT_TO),setm(u2,u1,true,TO_ACK))
72 []
73 DREQ ! u1 ! u2 ! ack ! DIND
74 [not(u1 eq u2) and getm(u1,u2,TO_ACK)];
75 CHAT[DREQ]
76 (setm(u2,u1,false,SENT_TO),setm(u1,u2,false,TO_ACK))
77))
78
79 endproc
80
81 endspec (* chatbox *)

State space of symmetry for user 1 without joining/leaving

1 des (0, 20, 3)
2 (0, "1 !DREQ !0 !1 !MES !DIND", 1)
3 (0, "3 !DREQ !1 !0 !MES !DIND", 1)
4 (0, "9 !DREQ !0 !1 !MES !NO_OUTPUT", 0)
5 (0, "10 !DREQ !0 !1 !ACK !NO_OUTPUT", 0)
6 (0, "11 !DREQ !0 !0 !MES !NO_OUTPUT", 0)
7 (0, "12 !DREQ !0 !0 !ACK !NO_OUTPUT", 0)
8 (1, "2 !DREQ !1 !0 !ACK !DIND", 0)
9 (1, "4 !DREQ !0 !1 !ACK !DIND", 0)
10 (1, "5 !DREQ !1 !0 !MES !DIND", 2)
11 (1, "7 !DREQ !0 !1 !MES !DIND", 2)
12 (1, "13 !DREQ !0 !1 !MES !NO_OUTPUT", 1)
13 (1, "14 !DREQ !0 !1 !ACK !NO_OUTPUT", 1)
14 (1, "15 !DREQ !0 !0 !MES !NO_OUTPUT", 1)
15 (1, "16 !DREQ !0 !0 !ACK !NO_OUTPUT", 1)
16 (2, "6 !DREQ !0 !1 !ACK !DIND", 1)
17 (2, "8 !DREQ !1 !0 !ACK !DIND", 1)
18 (2, "17 !DREQ !0 !1 !MES !NO_OUTPUT", 2)
19 (2, "18 !DREQ !0 !1 !ACK !NO_OUTPUT", 2)
20 (2, "19 !DREQ !0 !0 !MES !NO_OUTPUT", 2)
21 (2, "20 !DREQ !0 !0 !ACK !NO_OUTPUT", 2)

A. Chatbox code listings 43

Algorithm Kernel for 4 users

1 /**
2 * O P E N / C A E S A R
3 *---
4 * INRIA - Unite de Recherche Rhone-Alpes
5 * 655, avenue de l’Europe
6 * 38330 Montbonnot Saint Martin
7 * FRANCE
8 *---
9 * Module : kernel_4_users.c (adapted from reductor.c)
10 * Auteur : Judi Romijn (e-mail: judi@cwi.nl)
11 * Date : 98/03/20 (97/09/23 18:08:37)
12 ***/
13
14
15 /* This program can be used by the following command:
16 bcg_open <file1>.bcg kernel_4_users.c <file2>.bcg <file3>.bcg
17 where
18 <file1>.bcg = LTS Spec in bcg format (input)
19 <file2>.bcg = LTS Symm in bcg format (input)
20 <file3>.bcg = LTS Result in bcg format (output)
21
22 This program computes an LTS Result which is a sub-LTS of Spec, more
23 precisely, it computes a Kernel for Spec, based on the symmetry given
24 in LTS Symm.
25 More information on the theory of kernels and symmetry is found
26 in the paper:
27 Exploiting Symmetry in Protocol Testing
28 Judi Romijn and Jan Springintveld.
29 An extended abstract and the full version of this paper are available
30 at
31 http://www.cwi.nl/~judi/
32 */
33
34 /* ASSUMPTIONS:
35 -> the pair <Symm, Permutations> with the representation function r()
36 is a symmetry on Spec
37 (r(sigma) is defined by taking the smallest trace tau such that
38 tau is the smallest trace that is symmetric to sigma,
39 ‘smallest’ = minimal element wrt lexigraphic ordering
40 induced by the ranking of action labels as
41 given in MY_RANK_LABEL)
42 -> action labels in Spec are of form <label>
43 with
44 <label> = <input string> "!" { <offer> "!" }+ <output string>
45 -> action labels in Symm are of form
46 <edgenr> "!" <label>
47 with
48 <edgenr> = unique edgenumber of the transition in Symm
49 -> the <label> part in Symm must also occur in Spec (subset)

A. Chatbox code listings 44

50 -> function MY_PERMUTE_LABEL assumes that MY_PERMUTATION_SIZE
51 is 4, so 2 parameters are permuted (nr 0 by nr 1 and nr 2 by nr 3).
52 -> typedefs MY_TYPE_PERMUTATION and function MY_PERMUTE_LABEL
53 assume that the parameter to be permuted is a single character
54 (see also the static constant Permutations)
55 -> typedef MY_TYPE_COLOUR and function MY_ADD_ITEM_COLOUR_LIST
56 assume the edge nr from LTS Symm is stored as int
57
58 -> Lemma 6.15 from the full paper (\ref{La:efficiente kernel stap 1})
59 implies that for each two visits of one state with the same states
60 for each permutation of LTS Symm, we can skip one of the
61 two visits. This makes the implementation far more efficient.
62
63 -> The search tables caesar_t1 and caesar_t2 keep track of all the
64 states visited until now. The table caesar_t1 stores each state
65 that needs to be visited and explored, instead of storing a
66 state and on visit decide whether it should be explored.
67 So a state needs to be stored only if
68 - the transition leading to it is the representative one
69 (all other transitions symmetric to this one are skipped)
70 - the path leading to it does not contain the state (a loop)
71 (this is stored with pointers throughout the table, of
72 course a NULL pointer for the initial state with empty trace)
73 - there is not an occurrence in the table of the same state
74 (unique state id!) where also all the permutations of LTS
75 Symm are in the same state (Lemma 6.15 from the full paper)
76 Still, multiple occurrences of one state can occur in the table
77 caesar_t1. So the requirements from the OPEN/CAESAR manual
78 (Hubert Garavel, October 18, 1997) are not obeyed here.
79 During execution this gives no errors.
80
81 -> The constant MY_BRANCHING_SIZE is used to denote the branching
82 factor of LTS Spec, this number is needed for finite administration
83 of whether transitions from Spec have been written to Result or not
84 (to avoid writing more than once, which is very inefficient!).
85 */
86
87 /* ASSUMPTIONS for this example CHATBOX:
88 -> In the action labels in Spec en Symm:
89 <input string> = "JOIN" | "LEAVE" | "DREQ"
90 <output string> = "OK" | "DIND" | "NO_OUTPUT"
91 <offer> = [0..9] | "MES" | "ACK"
92
93 "JOIN", "LEAVE" have 1 offer: [0..9]
94 "JOIN", "LEAVE" have output: "OK" | "NO_OUTPUT"
95 "DREQ" has 3 offers: [0..9] "!" [0..9] "!" ("MES" | "ACK")
96 "DREQ" has output: "DIND" | "NO_OUTPUT"
97
98 -> constant MY_VECTOR_SIZE is 12: there are 12 permutations of the
99 symmetry template LTS Symm, because there are 4 users of the chatbox.
100

A. Chatbox code listings 45

101 */
102
103
104 /*----PRELIMINARY DEFS, INCLUDES, GLOBAL VARS--------------------------------*/
105
106 static char caesar_sccs_what_kernel_algo[] =
107 "@(#)open/caesar -- 2.15 -- 98/03/07 18:08:37 -- kernel_4_users.c";
108
109 static char *LDFLAGS = "@(#)LDFLAGS = \
110 -L${BCG:-$CADP}/bin.‘$CADP/com/arch‘ -lBCG_IO -lBCG -lm";
111
112 #include <string.h>
113 #include "caesar_graph.h"
114 #include "caesar_edge.h"
115 #include "caesar_table_1.h"
116
117 #include <signal.h>
118 #include "bcg_user.h"
119 /* bcg_user.h includes bcg_io_write_bcg.h */
120
121 /* Global variable for exploring LTS Symm, since it is used in some (one)
122 of the following functions */
123 BCG_TYPE_OBJECT_TRANSITION bcg_object_transition;
124
125 /*----POP-UP WINDOW WITH STATISTICS--*/
126
127 static void caesar_abort (bcg_signal)
128 int bcg_signal;
129
130 {
131 signal (SIGHUP, SIG_IGN);
132 signal (SIGINT, SIG_IGN);
133 signal (SIGQUIT, SIG_IGN);
134 signal (SIGILL, SIG_IGN);
135 signal (SIGABRT, SIG_IGN);
136 signal (SIGFPE, SIG_IGN);
137 signal (SIGBUS, SIG_IGN);
138 signal (SIGSEGV, SIG_IGN);
139 #ifdef SIGSYS
140 signal (SIGSYS, SIG_IGN);
141 #endif
142 signal (SIGTERM, SIG_IGN);
143 signal (SIGPIPE, SIG_IGN);
144 BCG_IO_WRITE_BCG_END ();
145 CAESAR_ERROR ("caught interrupt: closing BCG file");
146 }
147
148 /*----TYPEDEFS FOR PERMUTATION---*/
149
150 #define MY_PERMUTATION_SIZE 4 /* 2 action parameters to be permuted */
151 #define MY_VECTOR_SIZE 12 /* 12 permutations of LTS Symm (incl identity pm) */

A. Chatbox code listings 46

152
153 /* parameters are to be permuted in a string label, so type char
154 in our case, we’ll just deal with parameters 0 .. n with n<10,
155 so 1 char suffices */
156 typedef char MY_TYPE_PERMUTATION [MY_PERMUTATION_SIZE];
157 typedef MY_TYPE_PERMUTATION MY_TYPE_PERMUTATION_VECTOR[MY_VECTOR_SIZE];
158
159 /* the permutations are stored such that
160 Permutations[i] gives the i-th permutation, and
161 Permutations[i][j] with j even, gives value to be permuted, and
162 Permutations[i][j] with j odd, gives new value for Permutations[i][j-1]
163 Here you have to know what the default values are!!! */
164 static MY_TYPE_PERMUTATION_VECTOR Permutations = {
165 {’0’,’0’,’1’,’1’}, /* (0,1) (identity perm) */
166 {’0’,’0’,’1’,’2’}, /* (0,2) */
167 {’0’,’0’,’1’,’3’}, /* (0,3) */
168 {’0’,’1’,’1’,’0’}, /* (1,0) */
169 {’0’,’1’,’1’,’2’}, /* (1,2) */
170 {’0’,’1’,’1’,’3’}, /* (1,3) */
171 {’0’,’2’,’1’,’0’}, /* (2,0) */
172 {’0’,’2’,’1’,’1’}, /* (2,1) */
173 {’0’,’2’,’1’,’3’}, /* (2,3) */
174 {’0’,’3’,’1’,’0’}, /* (3,0) */
175 {’0’,’3’,’1’,’1’}, /* (3,1) */
176 {’0’,’3’,’1’,’2’} /* (3,2) */
177 };
178
179 /*----TYPEDEFS FOR COLOURING---*/
180
181 #define MY_LABEL_SIZE 100 /* reserve space big enough for action labels */
182 typedef char MY_TYPE_LABEL [MY_LABEL_SIZE];
183
184 /* state vector of BCG states for exploring LTS Symm
185 there is a state for each permutation of LTS Symm */
186 typedef BCG_TYPE_NATURAL MY_TYPE_STATE_VECTOR[MY_VECTOR_SIZE];
187
188 typedef int MY_TYPE_COLOUR; /* the edge nr from LTS Symm is stored as int */
189
190 typedef struct tag_colour *MY_TYPE_COLOUR_LIST;
191
192 typedef struct tag_colour {
193 MY_TYPE_COLOUR colour;
194 MY_TYPE_COLOUR_LIST next;
195 } MY_TYPE_COLOUR_BODY;
196
197 /*----FUNCTIONS FOR COLOURING--*/
198
199 char *MY_GET_EDGENR(MY_TYPE_LABEL label)
200 /* Note: the contents of label are changed! */
201 { /* the edges of the bcg of the symmetry format have labels with first
202 the edgenr, then a "!", then the action label so this function must

A. Chatbox code listings 47

203 get the characters of label before the first "!" */
204
205 char *tmp;
206
207 tmp = strchr ((char *) label, ’!’);
208 (* tmp)= ’\0’;
209
210 return (char *) label;
211 }
212
213 char *MY_GET_ACTION(MY_TYPE_LABEL label)
214 /* Note: the contents of label may be changed! */
215 { /* the edges of the bcg of the symmetry format have labels with first
216 the edgenr, then a "!", then the action label so this function must
217 get the characters of label after the first "!" */
218
219 char *tmp;
220
221 tmp = strchr ((char *) label, ’!’);
222
223 return ++tmp;
224 }
225
226 CAESAR_TYPE_BOOLEAN MY_NO_OUTPUT(CAESAR_TYPE_LABEL caesar_l)
227 { /* determine whether the last offer in caesar_l
228 is equal to "NO_OUTPUT" */
229
230 char *tmp,separator[]="!";
231 MY_TYPE_LABEL label;
232
233 CAESAR_DUMP_LABEL (label, caesar_l);
234
235 tmp = strtok((char *) label, separator);
236 switch(*tmp){
237 case ’J’ : /* "JOIN" or "JOIN " or "LEAVE" or "LEAVE " */
238 case ’L’ : tmp = strtok(NULL, separator); /* 1 parameter/offer */
239 tmp = strtok(NULL, separator);
240 break;
241 case ’D’ : tmp = strtok(NULL, separator); /* "DREQ" or "DREQ " */
242 tmp = strtok(NULL, separator); /* 3 parameters/offers */
243 tmp = strtok(NULL, separator);
244 tmp = strtok(NULL, separator);
245 break;
246 default: tmp = strtok(NULL, separator); /* edge number taken off */
247 switch(*tmp){
248 case ’J’ : /* "JOIN" or "JOIN " or "LEAVE" or "LEAVE " */
249 case ’L’ : tmp = strtok(NULL, separator);
250 tmp = strtok(NULL, separator);
251 break;
252 case ’D’ : tmp = strtok(NULL, separator); /* "DREQ" or "DREQ " */
253 tmp = strtok(NULL, separator);

A. Chatbox code listings 48

254 tmp = strtok(NULL, separator);
255 tmp = strtok(NULL, separator);
256 break;
257 }
258 }
259 return (CAESAR_TYPE_BOOLEAN) ((strcmp(tmp,"NO_OUTPUT")==0)? 1 : 0);
260 }
261
262 int MY_RANK_LABEL(CAESAR_TYPE_LABEL caesar_l)
263 { /* determine ranking of label conform following:
264 JOIN!i!o = 100 + i
265 LEAVE!i!o = 210 - i
266 DREQ!i!j!m!o =
267 if (m=="MES")
268 then for (ij): 01<10<02<20<03<30<12<21<13<31<23<32
269 else for (ij): 32<23<31<13<21<12<30<03<20<02<10<01
270 (in this case such an ordering is more easily implemented
271 with a case statement than one arithmetic expression)
272
273 Note: these labels get same ranking for o="OK" or "DIND" or "NO_OUTPUT";
274 since labels with different outputs will never be symmetric (they
275 are covered by different edges), this is safe
276 */
277
278
279 char *tmp,separator[]="!";
280 int rnk,rnk1,rnk2;
281 MY_TYPE_LABEL label;
282
283 CAESAR_DUMP_LABEL (label, caesar_l);
284 tmp = strtok((char *) label, separator);
285 switch(*tmp){
286 /* "JOIN" or "JOIN " */
287 case ’J’ : tmp = strtok(NULL, separator);
288 rnk = 100 + atoi(tmp);
289 break;
290
291 /* "LEAVE" or "LEAVE " */
292 case ’L’ : tmp = strtok(NULL, separator);
293 rnk = 210 - atoi(tmp);
294 break;
295
296 /* "DREQ" or "DREQ " */
297 case ’D’ : tmp = strtok(NULL, separator);
298 rnk1 = 10*atoi(tmp);
299 tmp = strtok(NULL, separator);
300 rnk1 += atoi(tmp);
301 tmp = strtok(NULL, separator);
302 if ((*tmp)==’M’) /* this offer is MES or ACK */
303 switch(rnk1){
304 case 01: rnk = 301; break;

A. Chatbox code listings 49

305 case 10: rnk = 302; break;
306 case 02: rnk = 303; break;
307 case 20: rnk = 304; break;
308 case 03: rnk = 305; break;
309 case 30: rnk = 306; break;
310 case 12: rnk = 307; break;
311 case 21: rnk = 308; break;
312 case 13: rnk = 309; break;
313 case 31: rnk = 310; break;
314 case 23: rnk = 311; break;
315 case 32: rnk = 312; break;
316 }
317 else
318 switch(rnk1){
319 case 01: rnk = 350; break;
320 case 10: rnk = 349; break;
321 case 02: rnk = 348; break;
322 case 20: rnk = 347; break;
323 case 03: rnk = 346; break;
324 case 30: rnk = 345; break;
325 case 12: rnk = 344; break;
326 case 21: rnk = 343; break;
327 case 13: rnk = 342; break;
328 case 31: rnk = 341; break;
329 case 23: rnk = 340; break;
330 case 32: rnk = 339; break;
331 }
332 break;
333 }
334 return rnk;
335 }
336
337 char *MY_PERMUTE_LABEL(char *str,MY_TYPE_PERMUTATION perm)
338 /* Note: the contents of str are changed */
339 {
340 /* Each occurrence in string str of perm[0] must be replaced by perm[1]
341 and each occ of perm[2] must be replaced by perm[3], simultaneously
342 Assumptions: replace only single characters,
343 only 2 replacements to be made (nr 1 for nr 0, nr 3 for nr 2)
344 */
345
346 char *tmp;
347
348 tmp = str;
349 while ((*tmp) != ’\0’){
350 if ((*tmp) == perm[0])
351 (*tmp) = perm[1];
352 else
353 if ((*tmp) == perm[2])
354 (*tmp) = perm[3];
355 tmp++;

A. Chatbox code listings 50

356 }
357 return str;
358 }
359
360 void MY_CREATE_COLOUR_LIST(MY_TYPE_COLOUR_LIST *cl)
361 { /* create empty list at which pointer cl points */
362
363 (* cl) = (MY_TYPE_COLOUR_LIST) malloc(sizeof(MY_TYPE_COLOUR_BODY));
364 }
365
366 void MY_DELETE_COLOUR_LIST(MY_TYPE_COLOUR_LIST *cl)
367 { /* free memory space corresponding to list pointed to by cl. */
368
369 MY_TYPE_COLOUR_LIST tmp1,tmp2;
370
371 tmp1 = tmp2 = (*cl);
372 if (tmp1!=NULL) {
373 while (tmp1!=NULL) {
374 tmp1 = tmp1->next;
375 free(tmp2);
376 tmp2 = tmp1;
377 }
378 }
379 (*cl) = NULL;
380 }
381
382 int MY_LENGTH_COLOUR_LIST(MY_TYPE_COLOUR_LIST cl)
383 { /* return the number of elements of the list cl */
384
385 int n;
386
387 for (n=0; cl!=NULL;n++)
388 cl = cl->next;
389 return n;
390 }
391
392 MY_TYPE_COLOUR MY_HEAD_COLOUR_LIST(MY_TYPE_COLOUR_LIST cl)
393 { /* return the colour elt in the first elt of the list cl */
394
395 return cl->colour;
396 }
397
398 void MY_TAIL_COLOUR_LIST(MY_TYPE_COLOUR_LIST *cl)
399 { /* delete the first elt from the list cl and store a pointer
400 to the tail of the list in cl */
401
402 MY_TYPE_COLOUR_LIST tmp;
403
404 tmp = *cl;
405 (*cl) = tmp->next;
406 free(tmp);

A. Chatbox code listings 51

407 }
408
409 void MY_ADD_ITEM_COLOUR_LIST(char *str,MY_TYPE_COLOUR_LIST *cl)
410 { /* add item str at the end of list pointed at by cl. */
411
412 MY_TYPE_COLOUR_LIST tmp;
413
414 tmp = *cl;
415 if (tmp != NULL){
416 MY_TYPE_COLOUR_LIST tmp2;
417
418 while (tmp->next!=NULL){
419 tmp = tmp->next;
420 }
421
422 MY_CREATE_COLOUR_LIST(&tmp2);
423 tmp2->colour = atoi(str); /* blanks at the end of str are deleted? */
424 tmp2->next = NULL;
425 tmp->next = tmp2;
426 } else {
427 MY_CREATE_COLOUR_LIST(&tmp);
428 tmp->colour = atoi(str);
429 tmp->next = NULL;
430 (*cl) = tmp;
431 }
432 }
433
434 void MY_MAKE_COLOUR_LIST(cursymm,caesar_l,cl,newsymm)
435 /* Note: this function uses global variable bcg_object_transition, which
436 must therefore be defined earlier! */
437 /* Note: no problems are caused by using the string-changing functions
438 MY_GET_ACTION and MY_GET_EDGENR on the same string ‘label2’,
439 because the order in which these functions are used ensures that
440 they don’t mess with each other’s information */
441 MY_TYPE_STATE_VECTOR cursymm;
442 CAESAR_TYPE_LABEL caesar_l;
443 MY_TYPE_COLOUR_LIST *cl;
444 MY_TYPE_STATE_VECTOR *newsymm;
445 {
446 /* The label caesar_l may be an enabled transition in several of
447 the states in cursymm. For each of these states, add the edge nr
448 of the enabled transition as colour to the colourlist cl. */
449
450 int j,step = 0;
451 MY_TYPE_LABEL label1,label2;
452 BCG_TYPE_STATE_NUMBER bcg_symm_state0, bcg_symm_state1;
453 BCG_TYPE_LABEL_NUMBER bcg_label_number;
454
455 CAESAR_DUMP_LABEL (label1, caesar_l);
456
457 for(j=0;j<MY_VECTOR_SIZE;j++){ /* compute all succ for each permtion */

A. Chatbox code listings 52

458 bcg_symm_state0 = (BCG_TYPE_STATE_NUMBER) cursymm[j];
459 BCG_OT_ITERATE_P_LN(
460 bcg_object_transition,
461 bcg_symm_state0,
462 bcg_label_number,
463 bcg_symm_state1){ /* body of the state iterator */
464 char *tmp;
465
466 /* get the label string from LTS Symm belonging to this label number */
467 strcpy((char *)label2,
468 (char *)BCG_OT_LABEL_STRING(bcg_object_transition,
469 bcg_label_number));
470 tmp = MY_PERMUTE_LABEL(MY_GET_ACTION(label2),Permutations[j]);
471
472 if (strcmp(tmp,(char *)label1) == 0){
473
474 (* newsymm)[j] = (BCG_TYPE_NATURAL) bcg_symm_state1;
475 MY_ADD_ITEM_COLOUR_LIST(MY_GET_EDGENR(label2),cl);
476 step = 1;
477 } /* end if */
478 } BCG_OT_END_ITERATE; /* ?This END should be used with new CADP? */
479 if (!step)
480 (* newsymm)[j] = cursymm[j];
481 step = 0;
482 } /* end for */
483 }
484
485 CAESAR_TYPE_BOOLEAN MY_FIND_DELETE_COLOUR_LIST(col,cl)
486 MY_TYPE_COLOUR col;
487 MY_TYPE_COLOUR_LIST *cl;
488 { /* find entry col in list cl, delete entry from cl, return true
489 and store changed list in pointer cl.
490 if entry not found, return false (cl not changed) */
491 CAESAR_TYPE_BOOLEAN found=(CAESAR_TYPE_BOOLEAN) 0;
492 MY_TYPE_COLOUR_LIST tmp;
493
494 tmp = (*cl);
495 if (tmp!=NULL){
496 if (tmp->colour == col){
497 found = (CAESAR_TYPE_BOOLEAN) 1;
498 (*cl) = tmp->next;
499 free(tmp);
500 } else {
501 while ((tmp->next!=NULL) && (tmp->next->colour != col))
502 tmp = tmp->next;
503 if (tmp->next!=NULL){
504 MY_TYPE_COLOUR_LIST tmp2;
505 found = (CAESAR_TYPE_BOOLEAN) 1;
506 tmp2 = tmp->next;
507 tmp->next = tmp2->next;
508 free(tmp2);

A. Chatbox code listings 53

509 }
510 }
511 }
512 return found;
513 }
514
515 CAESAR_TYPE_BOOLEAN MY_SYMMETRIC_COLOUR_LIST(cl1,cl2)
516 MY_TYPE_COLOUR_LIST cl1;
517 MY_TYPE_COLOUR_LIST *cl2;
518 { /* compare the lists of colours cl1 and cl2. These lists should induce
519 equal multisets of colours, we check this by taking the first elt
520 of cl1, see if it’s in cl2 and if so, delete it. Then look the
521 first elt of the tail of cl1 and so on.
522 NOTE: cl2 is changed with this function, might be totally emptied */
523
524 int j,n,m;
525 MY_TYPE_COLOUR col1,col2;
526 MY_TYPE_COLOUR_LIST tmp;
527
528 n = MY_LENGTH_COLOUR_LIST(cl1);
529 m = MY_LENGTH_COLOUR_LIST(*cl2);
530
531 if (n==m)
532 { for(j=0;j<n;j++)
533 { col1 = MY_HEAD_COLOUR_LIST(cl1);
534
535 if (!(MY_FIND_DELETE_COLOUR_LIST(col1,cl2)))
536 return (CAESAR_TYPE_BOOLEAN) 0;
537 cl1 = cl1->next;
538 }
539 return (CAESAR_TYPE_BOOLEAN) 1;
540 }
541 return (CAESAR_TYPE_BOOLEAN) 0;
542 }
543
544 /*----VARS/TYPEDEFS FOR SEARCH TABLES--*/
545
546 CAESAR_TYPE_TABLE_1 caesar_t1; /* base = CAESAR_TYPE_STATE,
547 mark = MY_TYPE_MARK1_FIELD */
548 CAESAR_TYPE_TABLE_1 caesar_t2; /* base field = CAESAR_TYPE_STATE,
549 mark = MY_TYPE_MARK2_FIELD */
550
551 /* caesar_t1 keeps track of states that need to be explored by
552 the algorithm. Per state we also need information of
553 - the path that led to this state
554 - the current state of each permutation of LTS Symm
555
556 caesar_t2 will be used to store each state from caesar_t1
557 only at the first visit to this state. The index of the
558 state in caesar_t2 can then be used as a unique id for the
559 state. It is also used as id when states are written to the

A. Chatbox code listings 54

560 output LTS Result.
561 Furthermore, it is useless and inefficient to write
562 transitions to output LTS Result more than once. So in
563 caesar_t2, we keep track of which transitions have
564 already been written. The branching factor of LTS Spec is
565 an upperbound for the number of transitions that will
566 maximally be written to LTS Result, so we can use a finite
567 structure (vector) for this.
568
569 */
570
571 /* the mark field of table caesar_t1 must store
572 prev: an int flag indicating whether there is (1) a prev
573 state or not (0)
574 prev_index: index in t1 of state from which current state was reached
575 symmstates: a vector for current state of each permutation of LTS Symm */
576 typedef struct tag_mark1 *MY_TYPE_MARK1_FIELD;
577 typedef struct tag_mark1 {
578 int prev;
579 CAESAR_TYPE_INDEX_TABLE_1 prev_index;
580 MY_TYPE_STATE_VECTOR symmstates;
581 } MY_TYPE_MARK1_BODY;
582
583 #define MY_BRANCHING_SIZE 80 /* LTS Spec: max 80 outgoing trans per state */
584 typedef struct {
585 MY_TYPE_LABEL label;
586 CAESAR_TYPE_INDEX_TABLE_1 succ;
587 } MY_TYPE_TRANS;
588 typedef MY_TYPE_TRANS MY_TYPE_TRANS_VECTOR[MY_BRANCHING_SIZE];
589
590 /* the mark field of table caesar_t2 must store
591 howmany: an integer indicating how many transitions departing
592 from the state in corr. base field have already been
593 written to the output BCG file
594 trans: a vector with fixed size of which the first #howmany fields
595 are filled with transitions already written to BCG output */
596 typedef struct tag_mark2 *MY_TYPE_MARK2_FIELD;
597 typedef struct tag_mark2 {
598 int howmany;
599 MY_TYPE_TRANS_VECTOR trans;
600 } MY_TYPE_MARK2_BODY;
601
602 /* when iterating successor states, the edges use the mark field
603 for indicating:
604 ’0’: this transition has not been explored or found symmetric
605 ’1’: transition is symmetric to another but not repr, do not explore
606 ’2’: transition is representant for all symmetric trans, explore! */
607 typedef char MY_TYPE_EDGE_MARK_FIELD;
608
609 /*----MAIN---*/
610

A. Chatbox code listings 55

611 main (argc, argv)
612 int argc;
613 char *argv[];
614
615 { /*----variable decls--*/
616 int j;
617
618 CAESAR_TYPE_BOOLEAN caesar_monitor;
619 CAESAR_TYPE_STATE caesar_s0, caesar_s1, caesar_s2;
620 CAESAR_TYPE_STATE prev_state, tmp_state;
621 int prev, found, tmp_found;
622 CAESAR_TYPE_EDGE caesar_e1_en, caesar_e1, caesar_e2;
623 CAESAR_TYPE_EDGE *caesar_e_ptr_next;
624 CAESAR_TYPE_LABEL caesar_l1, caesar_l2, caesar_l_r;
625 CAESAR_TYPE_STRING caesar_label;
626 CAESAR_TYPE_POINTER caesar_m1, caesar_m2, pointer_dummy;
627 MY_TYPE_MARK1_BODY *mark1, *mark1_1, *mark1_2, *mark1_p, *prev_mark1, *tmp_mark1;
628 MY_TYPE_MARK1_BODY mark1_dummy;
629 MY_TYPE_MARK1_BODY mark1_body, mark1_body_prev;
630 MY_TYPE_MARK2_BODY *mark2, *mark2_1, *mark2_2, *mark2_p, *prev_mark2;
631 MY_TYPE_MARK2_BODY mark2_dummy;
632 MY_TYPE_MARK2_BODY mark2_body, mark2_body_prev;
633 MY_TYPE_EDGE_MARK_FIELD edge_mark1,edge_mark2;
634 MY_TYPE_EDGE_MARK_FIELD *edge_mark_ptr1,*edge_mark_ptr2, *edge_mark_ptr_r;
635
636 CAESAR_TYPE_INDEX_TABLE_1 bcg_spec_initial_state, bcg_spec_state0, bcg_spec_state1;
637 CAESAR_TYPE_INDEX_TABLE_1 prev_index, caesar_dummy, run;
638 CAESAR_TYPE_INDEX_TABLE_1 get_index_table1, put_index_table1;
639
640 char bcg_filename_output[4096];
641 char bcg_filename_symm[4096];
642 char tmp_label[40];
643 BCG_TYPE_C_STRING bcg_label_string;
644 BCG_TYPE_BOOLEAN bcg_visible;
645
646 MY_TYPE_COLOUR_LIST cl1, cl2;
647 MY_TYPE_STATE_VECTOR cursymmstates,newsymmstates1,newsymmstates2;
648
649 setbuf (stdout, NULL);
650
651 /*----opening LTS Spec--*/
652 CAESAR_TOOL = argv[0];
653 --argc;
654 ++argv;
655
656 if (argc != 2)
657 CAESAR_ERROR ("two BCG filenames expected as argument,
658 first LTS Symmetry input file, then LTS Result output file");
659
660 if ((strlen (argv[0]) > 4) &&
661 (strcmp (argv[0] + strlen (argv[0]) - 4, ".bcg") == 0))

A. Chatbox code listings 56

662 sprintf (bcg_filename_symm, "%s", argv[0]);
663 else
664 sprintf (bcg_filename_symm, "%s.bcg", argv[0]);
665
666 --argc;++argv;
667 if ((strlen (argv[0]) > 4) &&
668 (strcmp (argv[0] + strlen (argv[0]) - 4, ".bcg") == 0))
669 sprintf (bcg_filename_output, "%s", argv[0]);
670 else
671 sprintf (bcg_filename_output, "%s.bcg", argv[0]);
672
673 /*----opening LTS Symm--*/
674 BCG_INIT (); /* one or more occurrences of BCG_INIT doesn’t matter */
675
676 BCG_OT_READ_BCG_BEGIN (bcg_filename_symm, &bcg_object_transition, 1);
677
678 CAESAR_INIT_GRAPH ();
679
680 /* ?? I’m taking a guess at the alignment mark value here */
681 CAESAR_INIT_EDGE (CAESAR_FALSE, CAESAR_TRUE, CAESAR_TRUE, sizeof(char), 16);
682
683 /*----building exploration tables---*/
684
685 CAESAR_CREATE_TABLE_1 (&caesar_t1,
686 0, /* use standard base field with CAESAR_TYPE_STATE */
687 sizeof(MY_TYPE_MARK1_BODY),
688 0, 0, CAESAR_TRUE,
689 NULL, NULL,
690 CAESAR_PRINT_STATE, NULL);
691 if (caesar_t1 == NULL)
692 CAESAR_ERROR ("not enough memory for table 1");
693
694 CAESAR_CREATE_TABLE_1 (&caesar_t2,
695 0, /* use standard base field with CAESAR_TYPE_STATE */
696 sizeof(MY_TYPE_MARK2_BODY),
697 0, 0, CAESAR_TRUE,
698 NULL, NULL, NULL, NULL);
699 if (caesar_t2 == NULL)
700 CAESAR_ERROR ("not enough memory for table 2");
701
702 /*----storing initial state---*/
703 CAESAR_START_STATE ((CAESAR_TYPE_STATE) CAESAR_PUT_BASE_TABLE_1 (caesar_t1));
704
705 CAESAR_START_STATE ((CAESAR_TYPE_STATE) CAESAR_PUT_BASE_TABLE_1 (caesar_t2));
706
707 mark2 = (MY_TYPE_MARK2_BODY*) CAESAR_PUT_MARK_TABLE_1 (caesar_t2);
708 mark2_dummy.howmany = 0;
709 (*mark2) = (mark2_dummy);
710 CAESAR_PUT_TABLE_1 (caesar_t2);
711
712 bcg_spec_initial_state = (BCG_TYPE_STATE_NUMBER)

A. Chatbox code listings 57

713 CAESAR_GET_INDEX_TABLE_1(caesar_t2);
714
715 mark1 = (MY_TYPE_MARK1_BODY*) CAESAR_PUT_MARK_TABLE_1 (caesar_t1);
716
717 /* initialise symmstates on initial states of LTS Symm */
718 mark1_dummy.prev = 0;
719 mark1_dummy.prev_index = 0;
720 for (j=0; j<MY_VECTOR_SIZE; j++)
721 mark1_dummy.symmstates[j] = BCG_OT_INITIAL_STATE(bcg_object_transition);
722
723 (*mark1) = (mark1_dummy);
724 CAESAR_PUT_TABLE_1 (caesar_t1);
725
726
727 /*----opening LTS Kernel--*/
728 BCG_INIT (); /* one or more occurrences of BCG_INIT doesn’t matter */
729
730 BCG_IO_WRITE_BCG_BEGIN (bcg_filename_output, bcg_spec_initial_state, 1,
731 "created by kernel_algo", caesar_monitor);
732
733 /*----setting interrupts--*/
734 signal (SIGHUP, caesar_abort);
735 signal (SIGINT, caesar_abort);
736 signal (SIGQUIT, caesar_abort);
737 signal (SIGILL, caesar_abort);
738 signal (SIGABRT, caesar_abort);
739 signal (SIGFPE, caesar_abort);
740 signal (SIGBUS, caesar_abort);
741 signal (SIGSEGV, caesar_abort);
742 #ifdef SIGSYS
743 signal (SIGSYS, caesar_abort);
744 #endif
745 signal (SIGTERM, caesar_abort);
746 signal (SIGPIPE, caesar_abort);
747
748 CAESAR_CREATE_LABEL(&caesar_l_r);
749
750 /*----main loop for exploring table---------------------------------------*/
751 while ((!CAESAR_EXPLORED_TABLE_1 (caesar_t1))) {
752
753 /*----current size of table---*/
754 get_index_table1 = CAESAR_GET_INDEX_TABLE_1 (caesar_t1);
755 put_index_table1 = CAESAR_PUT_INDEX_TABLE_1 (caesar_t1);
756
757 /*----get current state from table--------------------------------------*/
758 CAESAR_COPY_STATE(caesar_s0,
759 (CAESAR_TYPE_STATE) CAESAR_GET_BASE_TABLE_1 (caesar_t1));
760
761 mark1 = (MY_TYPE_MARK1_BODY*) CAESAR_GET_MARK_TABLE_1 (caesar_t1);
762 /* we need the state id of the current state for BCG_IO_WRITE later */
763 found = CAESAR_SEARCH_TABLE_1(caesar_t2,

A. Chatbox code listings 58

764 (CAESAR_TYPE_POINTER) caesar_s0,
765 &bcg_spec_state0, &pointer_dummy);
766
767 if (!found)
768 CAESAR_ERROR("At get index %d in table 1, state not found in table 2",
769 get_index_table1);
770
771 mark1_body = (*mark1);
772 for(j=0;j<MY_VECTOR_SIZE;j++){
773 cursymmstates[j] = mark1_body.symmstates[j];
774 }
775
776 CAESAR_GET_TABLE_1 (caesar_t1);
777
778 /*----create successor list for current state---------------------------*/
779 CAESAR_CREATE_EDGE_LIST (caesar_s0, &caesar_e1_en, 1);
780
781 if (CAESAR_TRUNCATION_EDGE_LIST () != 0)
782 CAESAR_ERROR ("not enough memory for edge lists");
783
784 /* put ’0’ in the mark field of every edge in the list */
785 CAESAR_ITERATE_LNM_EDGE_LIST(caesar_e1_en,caesar_e1,caesar_l1,
786 caesar_s1,caesar_m1) {
787 edge_mark_ptr1 = (MY_TYPE_EDGE_MARK_FIELD*) caesar_m1;
788 (*edge_mark_ptr1) = ’0’;
789 }
790
791 /*----iterate loop for each successor-----------------------------------*/
792 CAESAR_ITERATE_LNM_EDGE_LIST(caesar_e1_en,caesar_e1,caesar_l1,
793 caesar_s1,caesar_m1) {
794 edge_mark_ptr1 = (MY_TYPE_EDGE_MARK_FIELD*) caesar_m1;
795
796 CAESAR_DUMP_LABEL((CAESAR_TYPE_STRING) tmp_label,caesar_l1);
797
798 /*----skip if not representative--------------------------------------*/
799 if ((*edge_mark_ptr1) !=’1’) {
800
801 MY_MAKE_COLOUR_LIST(cursymmstates,caesar_l1,&cl1,&newsymmstates1);
802 if (!MY_LENGTH_COLOUR_LIST(cl1))
803 CAESAR_ERROR ("Main: colour list for label %s in state %d with
804 symm states [%d,%d,%d,%d,%d,%d] is empty!\n",
805 tmp_label, bcg_spec_state0,
806 cursymmstates[0], cursymmstates[1], cursymmstates[2],
807 cursymmstates[3], cursymmstates[4], cursymmstates[5]);
808
809 /*----if representative not yet known-------------------------------*/
810 if ((*edge_mark_ptr1) == ’0’){ /* then we need to find repr */
811
812 /* Now walk through the rest of the edge list and change the
813 explore flag for each successor state for which the transition
814 is symmetric to the transition from caesar_s0 to caesar_s1.

A. Chatbox code listings 59

815 If there is one with lower ranking, then current one will
816 *not* be explored!
817 This ensures that symmetric successors are not explored.
818 Starting point in the edge list is the successor of edge
819 caesar_e1, the current elt */
820
821 CAESAR_COPY_LABEL(caesar_l_r,caesar_l1);
822 edge_mark_ptr_r = edge_mark_ptr1;
823 caesar_e_ptr_next = CAESAR_SUCCESSOR_EDGE(caesar_e1);
824 if (caesar_e_ptr_next != NULL){
825
826 CAESAR_ITERATE_LM_EDGE_LIST((*caesar_e_ptr_next),
827 caesar_e2,caesar_l2,caesar_m2){
828 edge_mark_ptr2 = (MY_TYPE_EDGE_MARK_FIELD*) caesar_m2;
829 if ((*edge_mark_ptr2) == ’0’){
830
831 MY_MAKE_COLOUR_LIST(cursymmstates,caesar_l2,&cl2,&newsymmstates2);
832
833 if (MY_SYMMETRIC_COLOUR_LIST(cl1,&cl2)){
834
835 if (MY_RANK_LABEL(caesar_l2)<MY_RANK_LABEL(caesar_l_r)){
836 (*edge_mark_ptr_r) = ’1’;
837 CAESAR_COPY_LABEL(caesar_l_r,caesar_l2);
838 edge_mark_ptr_r = edge_mark_ptr2;
839 } else
840 (*edge_mark_ptr2) = ’1’; /* this edge should not be explored later! */
841 } /* end if */
842 MY_DELETE_COLOUR_LIST(&cl2);
843 } /* end if */
844 } /* end CAESAR_ITERATE */
845 } /* end if */
846 (*edge_mark_ptr_r) = ’2’;
847
848 } /* end if */
849
850 /* Even if it’s empty, deleting this list is safe (i hope) */
851 MY_DELETE_COLOUR_LIST(&cl1);
852
853 /*----explore representative--*/
854 if((*edge_mark_ptr1) ==’2’){ /* only explore repr */
855
856 /* we need the state id of the succ state: search caesar_t2
857 if this is first visit, initialise mark field */
858 found = CAESAR_SEARCH_TABLE_1 (caesar_t2,
859 (CAESAR_TYPE_POINTER) caesar_s1,
860 &bcg_spec_state1,
861 &caesar_dummy);
862
863 if(!found){
864 CAESAR_COPY_STATE ((CAESAR_TYPE_STATE)
865 CAESAR_PUT_BASE_TABLE_1(caesar_t2),

A. Chatbox code listings 60

866 caesar_s1);
867 mark2 = (MY_TYPE_MARK2_BODY *) CAESAR_PUT_MARK_TABLE_1(caesar_t2);
868 mark2->howmany = 0;
869 bcg_spec_state1 = CAESAR_PUT_INDEX_TABLE_1(caesar_t2);
870 CAESAR_PUT_TABLE_1 (caesar_t2);
871 }
872
873 /*----decide if current successor was Seen--------------------------*/
874 /* only store succ state in table 1 if this is first visit
875 on the current path from initial state */
876 /* walk back via the path that led to caesar_s1 to the
877 initial state or until caesar_s0 is encountered on the way */
878 found = 0;
879 prev = 1; /* the prev is the state we just came from */
880 prev_index = get_index_table1; /* and it’s index is get index from t1 */
881
882 while ((prev!=0) && (found == 0)){
883 CAESAR_RETRIEVE_I_B_TABLE_1(caesar_t1,
884 prev_index,
885 (CAESAR_TYPE_POINTER *) &prev_state);
886 if(CAESAR_COMPARE_STATE(caesar_s1,prev_state))
887 found = 1;
888 else {
889 CAESAR_RETRIEVE_I_M_TABLE_1(caesar_t1,
890 prev_index,
891 (CAESAR_TYPE_POINTER *) &prev_mark1);
892 mark1_body_prev = (MY_TYPE_MARK1_BODY) (*prev_mark1);
893 prev = mark1_body_prev.prev;
894 prev_index = mark1_body_prev.prev_index;
895 }
896 }
897
898 /*----skip if Seen or if exact state already in caesar_t1-----------*/
899 if (!found){ /* first time caesar_s1 is visited on this path */
900 /* we are going to try to find the same state with the same
901 symmstates in table 1, because such a combination just
902 needs to be explored once, not more often! */
903 put_index_table1 = CAESAR_PUT_INDEX_TABLE_1(caesar_t1);
904 for (run=0; ((run<put_index_table1) && (!found)); run++){
905 CAESAR_RETRIEVE_I_BM_TABLE_1(caesar_t1,
906 run,
907 (CAESAR_TYPE_POINTER *) &tmp_state,
908 (CAESAR_TYPE_POINTER *) &tmp_mark1);
909 if(CAESAR_COMPARE_STATE(caesar_s1,tmp_state)){
910 tmp_found = 1;
911 for (j=0; ((j<MY_VECTOR_SIZE) && tmp_found); j++)
912 tmp_found = (tmp_mark1->symmstates[j] == newsymmstates1[j]);
913 found = tmp_found;
914 }
915 }
916 }

A. Chatbox code listings 61

917
918
919 caesar_label = CAESAR_STRING_LABEL (caesar_l1);
920
921 /*----store in caesar_t1 to be explored later-----------------------*/
922 if (!found){ /* first time caesar_s1 is visited on this path */
923
924 /* prepare base field values for storing the new state in table 1 */
925 put_index_table1 = CAESAR_PUT_INDEX_TABLE_1(caesar_t1);
926 CAESAR_COPY_STATE((CAESAR_TYPE_STATE)
927 CAESAR_PUT_BASE_TABLE_1(caesar_t1),
928 caesar_s1);
929 /* prepare mark field to be put with new values for symmstates
930 from colouring */
931 mark1_p = (MY_TYPE_MARK1_BODY*) CAESAR_PUT_MARK_TABLE_1(caesar_t1);
932 mark1_dummy.prev = 1;
933 mark1_dummy.prev_index = get_index_table1;
934 for (j=0; j<MY_VECTOR_SIZE; j++)
935 mark1_dummy.symmstates[j] = newsymmstates1[j];
936 (*mark1_p) = mark1_dummy;
937 /* finally, store new elt in table 1 */
938 CAESAR_PUT_TABLE_1 (caesar_t1);
939 } else {
940 } /* end if */
941
942 /*----store also in caesar_t2---------------------------------------*/
943 /* explored edges must be added to table 2 and LTS Kernel */
944 /* if they’re not already in table 2 */
945 found = 0;
946 CAESAR_RETRIEVE_I_M_TABLE_1(caesar_t2,
947 (CAESAR_TYPE_INDEX_TABLE_1) bcg_spec_state0,
948 (CAESAR_TYPE_POINTER *) &mark2_1);
949
950 for(run=0; ((run<mark2_1->howmany) && (!found)); run++){
951
952 found = ((mark2_1->trans[run].succ == bcg_spec_state1)
953 && (strcmp(mark2_1->trans[run].label,caesar_label) == 0));
954 }
955
956 /*----write to LTS Result---*/
957 if (!found){
958 run = mark2_1->howmany;
959 mark2_1->trans[run].succ =bcg_spec_state1;
960 strcpy(mark2_1->trans[run].label,caesar_label);
961 mark2_1->howmany++;
962 BCG_IO_WRITE_BCG_EDGE(bcg_spec_state0, caesar_label, bcg_spec_state1);
963 }
964
965 } /* end if */
966 } else {
967 } /* end if */

B. Cyclic train code listings 62

968 } /* end CAESAR_ITERATE */
969
970 /*----finished iterating successors-------------------------------------*/
971 CAESAR_DELETE_EDGE_LIST (&caesar_e1_en);
972 } /* end while */
973
974 /*----finished exploring table--*/
975
976 printf("Done!!\n");
977 BCG_IO_WRITE_BCG_END ();
978 exit (0);
979 } /* end main */

B Cyclic train code listings

µCRL model for 8 stations

1 sort Bool
2 func T,F : -> Bool
3 map not : Bool -> Bool
4 and : Bool # Bool -> Bool
5 or : Bool # Bool -> Bool
6 if : Bool # Bool # Bool -> Bool
7 var b, b1, b2: Bool
8 rew not(T) = F
9 not(F) = T
10 and(F,b) = F
11 and(b,F) = F
12 and(T,b) = b
13 and(b,T) = b
14 or(T,b) = T
15 or(b,T) = T
16 or(F,b) = b
17 or(b,F) = b
18 if(T,b1,b2) = b1
19 if(F,b1,b2) = b2
20
21 sort Station
22 func 0,1,2,3,4,5,6,7 : -> Station
23 map eq : Station # Station -> Bool
24 left : Station -> Station
25 right : Station -> Station
26 left : Station # Station -> Bool
27 right : Station # Station -> Bool
28 var s1, s2 : Station
29 rew left(0) = 7
30 left(1) = 0
31 left(2) = 1
32 left(3) = 2
33 left(4) = 3

B. Cyclic train code listings 63

34 left(5) = 4
35 left(6) = 5
36 left(7) = 6
37 right(0) = 1
38 right(1) = 2
39 right(2) = 3
40 right(3) = 4
41 right(4) = 5
42 right(5) = 6
43 right(6) = 7
44 right(7) = 0
45 eq(0,0) = T
46 eq(0,1) = F
47 eq(0,2) = F
48 eq(0,3) = F
49 eq(0,4) = F
50 eq(0,5) = F
51 eq(0,6) = F
52 eq(0,7) = F
53 eq(1,0) = F
54 eq(1,1) = T
55 eq(1,2) = F
56 eq(1,3) = F
57 eq(1,4) = F
58 eq(1,5) = F
59 eq(1,6) = F
60 eq(1,7) = F
61 eq(2,0) = F
62 eq(2,1) = F
63 eq(2,2) = T
64 eq(2,3) = F
65 eq(2,4) = F
66 eq(2,5) = F
67 eq(2,6) = F
68 eq(2,7) = F
69 eq(3,0) = F
70 eq(3,1) = F
71 eq(3,2) = F
72 eq(3,3) = T
73 eq(3,4) = F
74 eq(3,5) = F
75 eq(3,6) = F
76 eq(3,7) = F
77 eq(4,0) = F
78 eq(4,1) = F
79 eq(4,2) = F
80 eq(4,3) = F
81 eq(4,4) = T
82 eq(4,5) = F
83 eq(4,6) = F
84 eq(4,7) = F

B. Cyclic train code listings 64

85 eq(5,0) = F
86 eq(5,1) = F
87 eq(5,2) = F
88 eq(5,3) = F
89 eq(5,4) = F
90 eq(5,5) = T
91 eq(5,6) = F
92 eq(5,7) = F
93 eq(6,0) = F
94 eq(6,1) = F
95 eq(6,2) = F
96 eq(6,3) = F
97 eq(6,4) = F
98 eq(6,5) = F
99 eq(6,6) = T
100 eq(6,7) = F
101 eq(7,0) = F
102 eq(7,1) = F
103 eq(7,2) = F
104 eq(7,3) = F
105 eq(7,4) = F
106 eq(7,5) = F
107 eq(7,6) = F
108 eq(7,7) = T
109 left(0,0) = F
110 left(0,1) = T
111 left(0,2) = T
112 left(0,3) = T
113 left(0,4) = T
114 left(0,5) = F
115 left(0,6) = F
116 left(0,7) = F
117 left(1,0) = F
118 left(1,1) = F
119 left(1,2) = T
120 left(1,3) = T
121 left(1,4) = T
122 left(1,5) = T
123 left(1,6) = F
124 left(1,7) = F
125 left(2,0) = F
126 left(2,1) = F
127 left(2,2) = F
128 left(2,3) = T
129 left(2,4) = T
130 left(2,5) = T
131 left(2,6) = T
132 left(2,7) = F
133 left(3,0) = F
134 left(3,1) = F
135 left(3,2) = F

B. Cyclic train code listings 65

136 left(3,3) = F
137 left(3,4) = T
138 left(3,5) = T
139 left(3,6) = T
140 left(3,7) = T
141 left(4,0) = T
142 left(4,1) = F
143 left(4,2) = F
144 left(4,3) = F
145 left(4,4) = F
146 left(4,5) = T
147 left(4,6) = T
148 left(4,7) = T
149 left(5,0) = T
150 left(5,1) = T
151 left(5,2) = F
152 left(5,3) = F
153 left(5,4) = F
154 left(5,5) = F
155 left(5,6) = T
156 left(5,7) = T
157 left(6,0) = T
158 left(6,1) = T
159 left(6,2) = T
160 left(6,3) = F
161 left(6,4) = F
162 left(6,5) = F
163 left(6,6) = F
164 left(6,7) = T
165 left(7,0) = T
166 left(7,1) = T
167 left(7,2) = T
168 left(7,3) = T
169 left(7,4) = F
170 left(7,5) = F
171 left(7,6) = F
172 left(7,7) = F
173 right(s1,s2) = left(s2,s1)
174
175 sort ReqType
176 func CALL, SEND : -> ReqType
177
178 sort ReqList
179 func er : -> ReqList
180 rl : Station # Bool # Bool # ReqList -> ReqList
181 map if : Bool # ReqList # ReqList -> ReqList
182 isreq : Station # ReqList -> Bool
183 isleftreq : Station # ReqList -> Bool
184 isrightreq : Station # ReqList -> Bool
185 change : ReqType # Station # Bool # ReqList -> ReqList
186 changeF : Station # ReqList -> ReqList

B. Cyclic train code listings 66

187 var l,l1,l2 : ReqList
188 s,s1,s2 : Station
189 b,b1,b2 : Bool
190 r : ReqType
191 rew if(T,l1,l2) = l1
192 if(F,l1,l2) = l2
193 isreq(s,er) = F
194 isreq(s1,rl(s2,b1,b2,l)) = if(eq(s1,s2),or(b1,b2),isreq(s1,l))
195 isleftreq(s,er) = F
196 isleftreq(s1,rl(s2,b1,b2,l))
197 = if(left(s2,s1),or(b1,b2),isleftreq(s1,l))
198 isrightreq(s,er) = F
199 isrightreq(s1,rl(s2,b1,b2,l))
200 = if(right(s2,s1),or(b1,b2),isrightreq(s1,l))
201 change(r,s,b,er) = er
202 change(CALL,s1,b,rl(s2,b1,b2,l))
203 = if(eq(s1,s2),rl(s2,b,b2,l),rl(s2,b1,b2,change(CALL,s1,b,l)))
204 change(SEND,s1,b,rl(s2,b1,b2,l))
205 = if(eq(s1,s2),rl(s2,b1,b,l),rl(s2,b1,b2,change(SEND,s1,b,l)))
206 changeF(s,er) = er
207 changeF(s1,rl(s2,b1,b2,l))
208 = if(eq(s1,s2),rl(s2,F,F,l),rl(s2,b1,b2,changeF(s1,l)))
209
210 sort Direction
211 func right, left, none : -> Direction
212 map eq : Direction # Direction -> Bool
213 if : Bool # Direction # Direction -> Direction
214 var d, d1, d2 : Direction
215 rew eq(right,right) = T
216 eq(right,left) = F
217 eq(right,none) = F
218 eq(left,right) = F
219 eq(left,left) = T
220 eq(left,none) = F
221 eq(none,right) = F
222 eq(none,left) = F
223 eq(none,none) = T
224 if(T,d1,d2) = d1
225 if(F,d1,d2) = d2
226
227 act REQUEST : ReqType # Station
228 OPENDOOR, CLOSEDOOR, MOVERIGHT, MOVELEFT: Station
229
230 proc CyclicTrain(stat:Station, dooropen:Bool, reqs:ReqList, dir:Direction)
231 =
232 sum(r:ReqType,
233 sum(s:Station,
234 REQUEST(r,s)
235 . CyclicTrain(stat,
236 dooropen,
237 if(not(and(eq(s,stat),dooropen)),

B. Cyclic train code listings 67

238 change(r,s,T,reqs),
239 reqs),
240 if(eq(dir,none),
241 if(left(s,stat),
242 left,
243 if(right(s,stat),right,dir)),
244 dir))))
245 +
246 OPENDOOR(stat) . CyclicTrain(stat,T,changeF(stat,reqs),dir)
247 <| and(not(dooropen),isreq(stat,reqs)) |>
248 delta
249 +
250 CLOSEDOOR(stat) . CyclicTrain(stat,F,reqs,dir)
251 <| dooropen |>
252 delta
253 +
254 MOVERIGHT(right(stat))
255 . CyclicTrain(right(stat),dooropen, reqs,
256 if(isrightreq(right(stat),reqs),
257 dir,
258 if(isleftreq(right(stat),reqs),left,dir)))
259 <| and(not(dooropen),and(eq(dir,right),not(isreq(stat,reqs)))) |>
260 delta
261 +
262 MOVELEFT(left(stat))
263 . CyclicTrain(left(stat),dooropen, reqs,
264 if(isleftreq(left(stat),reqs),
265 dir,
266 if(isrightreq(left(stat),reqs),right,dir)))
267 <| and(not(dooropen),and(eq(dir,left),not(isreq(stat,reqs)))) |>
268 delta
269
270
271 init CyclicTrain(0,
272 F,
273 rl(0,F,F,rl(1,F,F,rl(2,F,F,rl(3,F,F,rl(4,F,F,rl
274 (5,F,F,rl(6,F,F,rl(7,F,F,er)))))))),
275 none)
276

State space of symmetry for station 1

1 des (0, 20, 5)
2 (0, "1!REQUEST(CALL,1)", 1)
3 (0, "2!REQUEST(SEND,1)", 1)
4 (0, "3!MOVELEFT(1)", 2)
5 (0, "4!MOVERIGHT(1)", 2)
6 (1, "5!REQUEST(CALL,1)", 1)
7 (1, "6!REQUEST(SEND,1)", 1)
8 (1, "7!MOVELEFT(1)", 3)
9 (1, "8!MOVERIGHT(1)", 3)

B. Cyclic train code listings 68

10 (2, "9!REQUEST(CALL,1)", 3)
11 (2, "10!REQUEST(SEND,1)", 3)
12 (2, "11!MOVELEFT(0)", 0)
13 (2, "12!MOVERIGHT(2)", 0)
14 (3, "13!REQUEST(CALL,1)", 3)
15 (3, "14!REQUEST(SEND,1)", 3)
16 (3, "15!MOVELEFT(0)", 1)
17 (3, "16!MOVERIGHT(2)", 1)
18 (3, "17!OPENDOOR(1)", 4)
19 (4, "18!REQUEST(CALL,1)", 4)
20 (4, "19!REQUEST(SEND,1)", 4)
21 (4, "20!CLOSEDOOR(1)", 2)

Mealy-style µCRL model for 8 stations

1 sort Bool
2 func T,F : -> Bool
3 map not : Bool -> Bool
4 and : Bool # Bool -> Bool
5 or : Bool # Bool -> Bool
6 if : Bool # Bool # Bool -> Bool
7 var b, b1, b2: Bool
8 rew not(T) = F
9 not(F) = T
10 and(F,b) = F
11 and(b,F) = F
12 and(T,b) = b
13 and(b,T) = b
14 or(T,b) = T
15 or(b,T) = T
16 or(F,b) = b
17 or(b,F) = b
18 if(T,b1,b2) = b1
19 if(F,b1,b2) = b2
20
21 sort Station
22 func 0,1,2,3,4,5,6,7 : -> Station
23 map eq : Station # Station -> Bool
24 left : Station -> Station
25 right : Station -> Station
26 left : Station # Station -> Bool
27 right : Station # Station -> Bool
28 var s1, s2 : Station
29 rew left(0) = 7
30 left(1) = 0
31 left(2) = 1
32 left(3) = 2
33 left(4) = 3
34 left(5) = 4
35 left(6) = 5
36 left(7) = 6

B. Cyclic train code listings 69

37 right(0) = 1
38 right(1) = 2
39 right(2) = 3
40 right(3) = 4
41 right(4) = 5
42 right(5) = 6
43 right(6) = 7
44 right(7) = 0
45 eq(0,0) = T
46 eq(0,1) = F
47 eq(0,2) = F
48 eq(0,3) = F
49 eq(0,4) = F
50 eq(0,5) = F
51 eq(0,6) = F
52 eq(0,7) = F
53 eq(1,0) = F
54 eq(1,1) = T
55 eq(1,2) = F
56 eq(1,3) = F
57 eq(1,4) = F
58 eq(1,5) = F
59 eq(1,6) = F
60 eq(1,7) = F
61 eq(2,0) = F
62 eq(2,1) = F
63 eq(2,2) = T
64 eq(2,3) = F
65 eq(2,4) = F
66 eq(2,5) = F
67 eq(2,6) = F
68 eq(2,7) = F
69 eq(3,0) = F
70 eq(3,1) = F
71 eq(3,2) = F
72 eq(3,3) = T
73 eq(3,4) = F
74 eq(3,5) = F
75 eq(3,6) = F
76 eq(3,7) = F
77 eq(4,0) = F
78 eq(4,1) = F
79 eq(4,2) = F
80 eq(4,3) = F
81 eq(4,4) = T
82 eq(4,5) = F
83 eq(4,6) = F
84 eq(4,7) = F
85 eq(5,0) = F
86 eq(5,1) = F
87 eq(5,2) = F

B. Cyclic train code listings 70

88 eq(5,3) = F
89 eq(5,4) = F
90 eq(5,5) = T
91 eq(5,6) = F
92 eq(5,7) = F
93 eq(6,0) = F
94 eq(6,1) = F
95 eq(6,2) = F
96 eq(6,3) = F
97 eq(6,4) = F
98 eq(6,5) = F
99 eq(6,6) = T
100 eq(6,7) = F
101 eq(7,0) = F
102 eq(7,1) = F
103 eq(7,2) = F
104 eq(7,3) = F
105 eq(7,4) = F
106 eq(7,5) = F
107 eq(7,6) = F
108 eq(7,7) = T
109 left(0,0) = F
110 left(0,1) = T
111 left(0,2) = T
112 left(0,3) = T
113 left(0,4) = T
114 left(0,5) = F
115 left(0,6) = F
116 left(0,7) = F
117 left(1,0) = F
118 left(1,1) = F
119 left(1,2) = T
120 left(1,3) = T
121 left(1,4) = T
122 left(1,5) = T
123 left(1,6) = F
124 left(1,7) = F
125 left(2,0) = F
126 left(2,1) = F
127 left(2,2) = F
128 left(2,3) = T
129 left(2,4) = T
130 left(2,5) = T
131 left(2,6) = T
132 left(2,7) = F
133 left(3,0) = F
134 left(3,1) = F
135 left(3,2) = F
136 left(3,3) = F
137 left(3,4) = T
138 left(3,5) = T

B. Cyclic train code listings 71

139 left(3,6) = T
140 left(3,7) = T
141 left(4,0) = T
142 left(4,1) = F
143 left(4,2) = F
144 left(4,3) = F
145 left(4,4) = F
146 left(4,5) = T
147 left(4,6) = T
148 left(4,7) = T
149 left(5,0) = T
150 left(5,1) = T
151 left(5,2) = F
152 left(5,3) = F
153 left(5,4) = F
154 left(5,5) = F
155 left(5,6) = T
156 left(5,7) = T
157 left(6,0) = T
158 left(6,1) = T
159 left(6,2) = T
160 left(6,3) = F
161 left(6,4) = F
162 left(6,5) = F
163 left(6,6) = F
164 left(6,7) = T
165 left(7,0) = T
166 left(7,1) = T
167 left(7,2) = T
168 left(7,3) = T
169 left(7,4) = F
170 left(7,5) = F
171 left(7,6) = F
172 left(7,7) = F
173 right(s1,s2) = left(s2,s1)
174
175 sort ReqType
176 func CALL, SEND : -> ReqType
177
178 sort ReqList
179 func er : -> ReqList
180 rl : Station # Bool # Bool # ReqList -> ReqList
181 map if : Bool # ReqList # ReqList -> ReqList
182 isreq : Station # ReqList -> Bool
183 isleftreq : Station # ReqList -> Bool
184 isrightreq : Station # ReqList -> Bool
185 change : ReqType # Station # Bool # ReqList -> ReqList
186 changeF : Station # ReqList -> ReqList
187 var l,l1,l2 : ReqList
188 s,s1,s2 : Station
189 b,b1,b2 : Bool

B. Cyclic train code listings 72

190 r : ReqType
191 rew if(T,l1,l2) = l1
192 if(F,l1,l2) = l2
193 isreq(s,er) = F
194 isreq(s1,rl(s2,b1,b2,l)) = if(eq(s1,s2),or(b1,b2),isreq(s1,l))
195 isleftreq(s,er) = F
196 isleftreq(s1,rl(s2,b1,b2,l))
197 = or(and(left(s2,s1),or(b1,b2)),isleftreq(s1,l))
198 isrightreq(s,er) = F
199 isrightreq(s1,rl(s2,b1,b2,l))
200 = or(and(right(s2,s1),or(b1,b2)),isrightreq(s1,l))
201 change(r,s,b,er) = er
202 change(CALL,s1,b,rl(s2,b1,b2,l))
203 = if(eq(s1,s2),rl(s2,b,b2,l),rl(s2,b1,b2,change(CALL,s1,b,l)))
204 change(SEND,s1,b,rl(s2,b1,b2,l))
205 = if(eq(s1,s2),rl(s2,b1,b,l),rl(s2,b1,b2,change(SEND,s1,b,l)))
206 changeF(s,er) = er
207 changeF(s1,rl(s2,b1,b2,l))
208 = if(eq(s1,s2),rl(s2,F,F,l),rl(s2,b1,b2,changeF(s1,l)))
209
210 sort Direction
211 func right, left, none : -> Direction
212 map eq : Direction # Direction -> Bool
213 if : Bool # Direction # Direction -> Direction
214 var d, d1, d2 : Direction
215 rew eq(right,right) = T
216 eq(right,left) = F
217 eq(right,none) = F
218 eq(left,right) = F
219 eq(left,left) = T
220 eq(left,none) = F
221 eq(none,right) = F
222 eq(none,left) = F
223 eq(none,none) = T
224 if(T,d1,d2) = d1
225 if(F,d1,d2) = d2
226
227 sort Output
228 func OPENDOOR, CLOSEDOOR, MOVERIGHT, MOVELEFT, DOORCLOSED : Station -> Output
229 NO_OUTPUT: -> Output
230 act REQUEST : ReqType # Station # Output
231 WAIT : Output
232
233 proc CyclicTrain(stat:Station, dooropen:Bool, closing: Bool,
234 reqs:ReqList, dir:Direction)
235 =
236 sum(r:ReqType,
237 sum(s:Station,
238 REQUEST(r,s,NO_OUTPUT)
239 . CyclicTrain(stat, dooropen, closing,
240 if(not(and(eq(s,stat),dooropen)),

B. Cyclic train code listings 73

241 change(r,s,T,reqs),
242 reqs),
243 if(eq(dir,none),
244 if(left(s,stat),
245 left,
246 if(right(s,stat),right,dir)),
247 dir))
248 <| or(dooropen,
249 and(or(not(closing),not(eq(s,stat))),
250 or(closing,
251 or(not(eq(dir,none)),isreq(stat,reqs))))) |>
252 delta
253 +
254 REQUEST(r,s,OPENDOOR(stat))
255 . CyclicTrain(stat, T, F, reqs, dir)
256 <| and(not(dooropen),and(eq(dir,none),
257 and(eq(s,stat),not(isreq(stat,reqs))))) |>
258 delta
259 +
260 REQUEST(r,s,MOVELEFT(left(stat)))
261 . CyclicTrain(left(stat), dooropen, F, change(r,s,T,reqs),
262 if(eq(s,left(stat)),none,left))
263 <| and(not(dooropen),and(not(closing),and(eq(dir,none),
264 and(left(s,stat),not(isreq(stat,reqs)))))) |>
265 delta
266 +
267 REQUEST(r,s,MOVERIGHT(right(stat)))
268 . CyclicTrain(right(stat), dooropen, F, change(r,s,T,reqs),
269 if(eq(s,right(stat)),none,right))
270 <| and(not(dooropen),and(not(closing),and(eq(dir,none),
271 and(right(s,stat),and(not(left(s,stat)),
272 not(isreq(stat,reqs))))))) |>
273 delta))
274 +
275 WAIT(NO_OUTPUT) . CyclicTrain(stat,dooropen,closing,reqs,dir)
276 <| and(not(dooropen),and(not(closing),
277 and(eq(dir,none),not(isreq(stat,reqs))))) |>
278 delta
279 +
280 WAIT(DOORCLOSED(stat)) . CyclicTrain(stat,dooropen,F,reqs,dir)
281 <| and(closing,and(eq(dir,none),not(isreq(stat,reqs)))) |>
282 delta
283 +
284 WAIT(OPENDOOR(stat)) . CyclicTrain(stat,T,F,changeF(stat,reqs),dir)
285 <| and(not(dooropen),isreq(stat,reqs)) |>
286 delta
287 +
288 WAIT(CLOSEDOOR(stat)) . CyclicTrain(stat,F,T,reqs,dir)
289 <| dooropen |>
290 delta
291 +

B. Cyclic train code listings 74

292 WAIT(MOVERIGHT(right(stat)))
293 . CyclicTrain(right(stat), dooropen, F, reqs,
294 if(isrightreq(right(stat),reqs),
295 dir,
296 if(isleftreq(right(stat),reqs),left,none)))
297 <| and(not(dooropen),and(eq(dir,right),not(isreq(stat,reqs)))) |>
298 delta
299 +
300 WAIT(MOVELEFT(left(stat)))
301 . CyclicTrain(left(stat), dooropen, F, reqs,
302 if(isleftreq(left(stat),reqs),
303 dir,
304 if(isrightreq(left(stat),reqs),right,none)))
305 <| and(not(dooropen),and(eq(dir,left),not(isreq(stat,reqs)))) |>
306 delta
307
308
309 init CyclicTrain(0,
310 F,
311 F,
312 rl(0,F,F,rl(1,F,F,rl(2,F,F,rl(3,F,F,rl(4,F,F,rl
313 (5,F,F,rl(6,F,F,rl(7,F,F,er)))))))),
314 none)
315

State space of mealy-style symmetry for station 1

1 des (0, 62, 6)
2 (0, "1!WAIT(NO_OUTPUT)", 0)
3 (0, "2!WAIT(MOVELEFT(1))", 5)
4 (0, "3!WAIT(MOVERIGHT(1))", 5)
5 (0, "4!REQUEST(CALL,1,NO_OUTPUT)", 1)
6 (0, "5!REQUEST(SEND,1,NO_OUTPUT)", 1)
7 (0, "6!REQUEST(CALL,1,MOVELEFT(1))", 2)
8 (0, "7!REQUEST(SEND,1,MOVELEFT(1))", 2)
9 (0, "8!REQUEST(CALL,1,MOVERIGHT(1))", 2)
10 (0, "9!REQUEST(SEND,1,MOVERIGHT(1))", 2)
11 (0, "10!REQUEST(CALL,1,MOVELEFT(2))", 1)
12 (0, "11!REQUEST(SEND,1,MOVELEFT(2))", 1)
13 (0, "12!REQUEST(CALL,1,MOVELEFT(3))", 1)
14 (0, "13!REQUEST(SEND,1,MOVELEFT(3))", 1)
15 (0, "14!REQUEST(CALL,1,MOVELEFT(4))", 1)
16 (0, "15!REQUEST(SEND,1,MOVELEFT(4))", 1)
17 (0, "16!REQUEST(CALL,1,MOVERIGHT(0))", 1)
18 (0, "17!REQUEST(SEND,1,MOVERIGHT(0))", 1)
19 (0, "18!REQUEST(CALL,1,MOVERIGHT(7))", 1)
20 (0, "19!REQUEST(SEND,1,MOVERIGHT(7))", 1)
21 (0, "20!REQUEST(CALL,2,MOVERIGHT(1))", 5)
22 (0, "21!REQUEST(SEND,2,MOVERIGHT(1))", 5)
23 (0, "22!REQUEST(CALL,3,MOVERIGHT(1))", 5)
24 (0, "23!REQUEST(SEND,3,MOVERIGHT(1))", 5)

C. Ring leader election code listings 75

25 (0, "24!REQUEST(CALL,0,MOVELEFT(1))", 5)
26 (0, "25!REQUEST(SEND,0,MOVELEFT(1))", 5)
27 (0, "26!REQUEST(CALL,6,MOVELEFT(1))", 5)
28 (0, "27!REQUEST(SEND,6,MOVELEFT(1))", 5)
29 (0, "28!REQUEST(CALL,7,MOVELEFT(1))", 5)
30 (0, "29!REQUEST(SEND,7,MOVELEFT(1))", 5)
31 (1, "30!WAIT(MOVELEFT(1))", 2)
32 (1, "31!WAIT(MOVERIGHT(1))", 2)
33 (1, "32!REQUEST(CALL,1,NO_OUTPUT)", 1)
34 (1, "33!REQUEST(SEND,1,NO_OUTPUT)", 1)
35 (2, "34!WAIT(OPENDOOR(1))", 3)
36 (2, "35!REQUEST(CALL,1,NO_OUTPUT)", 2)
37 (2, "36!REQUEST(SEND,1,NO_OUTPUT)", 2)
38 (3, "37!WAIT(CLOSEDOOR(1))", 4)
39 (3, "38!REQUEST(CALL,1,NO_OUTPUT)", 3)
40 (3, "39!REQUEST(SEND,1,NO_OUTPUT)", 3)
41 (4, "40!WAIT(DOORCLOSED(1))", 4)
42 (4, "41!WAIT(MOVELEFT(0))", 0)
43 (4, "42!WAIT(MOVERIGHT(2))", 0)
44 (4, "43!REQUEST(CALL,1,OPENDOOR(1))", 3)
45 (4, "44!REQUEST(SEND,1,OPENDOOR(1))", 3)
46 (4, "45!REQUEST(CALL,2,MOVERIGHT(2))", 0)
47 (4, "46!REQUEST(SEND,2,MOVERIGHT(2))", 0)
48 (4, "47!REQUEST(CALL,3,MOVERIGHT(2))", 0)
49 (4, "48!REQUEST(SEND,3,MOVERIGHT(2))", 0)
50 (4, "49!REQUEST(CALL,4,MOVERIGHT(2))", 0)
51 (4, "50!REQUEST(SEND,4,MOVERIGHT(2))", 0)
52 (4, "51!REQUEST(CALL,0,MOVELEFT(0))", 0)
53 (4, "52!REQUEST(SEND,0,MOVELEFT(0))", 0)
54 (4, "53!REQUEST(CALL,5,MOVELEFT(0))", 0)
55 (4, "54!REQUEST(SEND,5,MOVELEFT(0))", 0)
56 (4, "55!REQUEST(CALL,6,MOVELEFT(0))", 0)
57 (4, "56!REQUEST(SEND,6,MOVELEFT(0))", 0)
58 (4, "57!REQUEST(CALL,7,MOVELEFT(0))", 0)
59 (4, "58!REQUEST(SEND,7,MOVELEFT(0))", 0)
60 (5, "59!WAIT(MOVELEFT(0))", 0)
61 (5, "60!WAIT(MOVERIGHT(2))", 0)
62 (5, "61!REQUEST(CALL,1,NO_OUTPUT)", 2)
63 (5, "62!REQUEST(SEND,1,NO_OUTPUT)", 2)

C Ring leader election code listings

µCRL model for 3 stations

1 sort Bool
2 func T,F : -> Bool
3 map not : Bool -> Bool
4 and : Bool # Bool -> Bool
5 or : Bool # Bool -> Bool
6 eq : Bool # Bool -> Bool

C. Ring leader election code listings 76

7 neq : Bool # Bool -> Bool
8 if : Bool # Bool # Bool -> Bool
9 var b, b1, b2: Bool
10 rew not(T) = F
11 not(F) = T
12 and(F,b) = F
13 and(b,F) = F
14 and(T,b) = b
15 and(b,T) = b
16 or(T,b) = T
17 or(b,T) = T
18 or(F,b) = b
19 or(b,F) = b
20 eq(F,F) = T
21 eq(F,T) = F
22 eq(T,F) = F
23 eq(T,T) = T
24 neq(F,F) = F
25 neq(F,T) = T
26 neq(T,F) = T
27 neq(T,T) = F
28 if(T,b1,b2) = b1
29 if(F,b1,b2) = b2
30
31 sort Address
32 func 0,1,2 : -> Address
33 map eq : Address # Address -> Bool
34 pred : Address -> Address
35 succ : Address -> Address
36 less : Address # Address -> Bool
37 greater : Address # Address -> Bool
38 var a1, a2 : Address
39 rew pred(0) = 2
40 pred(1) = 0
41 pred(2) = 1
42 succ(0) = 1
43 succ(1) = 2
44 succ(2) = 0
45 eq(0,0) = T
46 eq(0,1) = F
47 eq(0,2) = F
48 eq(1,0) = F
49 eq(1,1) = T
50 eq(1,2) = F
51 eq(2,0) = F
52 eq(2,1) = F
53 eq(2,2) = T
54 less(0,0) = F
55 less(0,1) = T
56 less(0,2) = T
57 less(1,0) = F

C. Ring leader election code listings 77

58 less(1,1) = F
59 less(1,2) = T
60 less(2,0) = F
61 less(2,1) = F
62 less(2,2) = F
63 greater(a1,a2) = less(a2,a1)
64
65 act REC_CLAIM, STAT_REC_CLAIM, LINK_REC_CLAIM : Address # Address # Bool
66 SND_CLAIM, STAT_SND_CLAIM, LINK_SND_CLAIM : Address # Address # Bool
67 REC_TOKEN, STAT_REC_TOKEN, LINK_REC_TOKEN : Address
68 SND_TOKEN, STAT_SND_TOKEN, LINK_SND_TOKEN : Address
69 CRASH, OPEN, CLOSE : Address
70
71 comm LINK_REC_CLAIM | STAT_REC_CLAIM = REC_CLAIM
72 LINK_SND_CLAIM | STAT_SND_CLAIM = SND_CLAIM
73 LINK_REC_TOKEN | STAT_REC_TOKEN = REC_TOKEN
74 LINK_SND_TOKEN | STAT_SND_TOKEN = SND_TOKEN
75
76
77 proc Station(my_add:Address)
78 = Election(my_add, T)
79
80 Election(my_add:Address, my_round:Bool)
81 =
82 CRASH(my_add)
83 . Fail(my_add)
84 +
85 STAT_SND_CLAIM(succ(my_add),my_add,my_round)
86 . Election(my_add,my_round)
87 +
88 STAT_REC_TOKEN(my_add)
89 . Privilege(my_add,my_round)
90 +
91 sum(cand:Address,
92 sum(round:Bool,
93 STAT_REC_CLAIM(my_add,cand,round)
94 . ((CRASH(my_add)
95 . Fail(my_add)
96 +
97 STAT_SND_CLAIM(succ(my_add),cand,round)
98 . Election(my_add,my_round)
99)
100 <| or(less(cand,my_add),less(my_add,cand)) |> delta
101 +
102 Election(my_add,my_round)
103 <| and(eq(my_add,cand),neq(round,my_round)) |> delta
104 +
105 Privilege(my_add,my_round)
106 <| and(eq(my_add,cand),eq(round,my_round)) |> delta
107)
108)

C. Ring leader election code listings 78

109)
110
111
112 Fail(my_add:Address)
113 =
114 STAT_REC_TOKEN(my_add)
115 . STAT_SND_TOKEN(succ(my_add))
116 . Fail(my_add)
117 +
118 sum(cand:Address,
119 sum(round:Bool,
120 STAT_REC_CLAIM(my_add,cand,round)
121 . (STAT_SND_CLAIM(succ(my_add),cand,round)
122 . Fail(my_add)
123 <| not(eq(cand,my_add)) |> delta
124 +
125 Fail(my_add)
126 <| eq(my_add,cand) |> delta
127)
128)
129)
130
131
132 Privilege(my_add:Address, my_round:Bool)
133 =
134 CRASH(my_add)
135 . Fail(my_add)
136 +
137 OPEN(my_add)
138 . (CRASH(my_add)
139 . Fail(my_add)
140 +
141 CLOSE(my_add)
142 . (CRASH(my_add)
143 . Fail(my_add)
144 +
145 STAT_SND_TOKEN(succ(my_add))
146 . Election(my_add,not(my_round))
147)
148)
149 +
150 STAT_SND_TOKEN(succ(my_add))
151 . Election(my_add,not(my_round))
152
153
154 Link(my_add:Address)
155 =
156 LINK_REC_TOKEN(my_add)
157 . LINK_SND_TOKEN(my_add)
158 . Link(my_add)
159 +

C. Ring leader election code listings 79

160 sum(cand:Address,
161 sum(round:Bool,
162 LINK_REC_CLAIM(my_add,cand,round)
163 . LINK_SND_CLAIM(succ(my_add),cand,round)
164 . Link(my_add)
165)
166)
167 +
168 LINK_REC_TOKEN(my_add)
169 . Link(my_add)
170 +
171 sum(cand:Address,
172 sum(round:Bool,
173 LINK_REC_CLAIM(my_add,cand,round)
174 . Link(my_add)
175)
176)
177
178
179 init encap({ LINK_REC_CLAIM, STAT_REC_CLAIM,
180 LINK_SND_CLAIM, STAT_SND_CLAIM,
181 LINK_REC_TOKEN, STAT_REC_TOKEN,
182 LINK_SND_TOKEN, STAT_SND_TOKEN },
183 (Link(0)
184 ||
185 Station(0)
186 ||
187 Link(1)
188 ||
189 Station(1)
190 ||
191 Link(2)
192 ||
193 Station(2)
194)
195)

µCRL model of symmetry for station 0

1 sort Bool
2 func T,F : -> Bool
3 map not : Bool -> Bool
4 and : Bool # Bool -> Bool
5 or : Bool # Bool -> Bool
6 eq : Bool # Bool -> Bool
7 neq : Bool # Bool -> Bool
8 if : Bool # Bool # Bool -> Bool
9 var b, b1, b2: Bool
10 rew not(T) = F
11 not(F) = T
12 and(F,b) = F

C. Ring leader election code listings 80

13 and(b,F) = F
14 and(T,b) = b
15 and(b,T) = b
16 or(T,b) = T
17 or(b,T) = T
18 or(F,b) = b
19 or(b,F) = b
20 eq(F,F) = T
21 eq(F,T) = F
22 eq(T,F) = F
23 eq(T,T) = T
24 neq(F,F) = F
25 neq(F,T) = T
26 neq(T,F) = T
27 neq(T,T) = F
28 if(T,b1,b2) = b1
29 if(F,b1,b2) = b2
30
31 sort Address
32 func 0,1,2 : -> Address
33 map eq : Address # Address -> Bool
34 pred : Address -> Address
35 succ : Address -> Address
36 less : Address # Address -> Bool
37 greater : Address # Address -> Bool
38 var a1, a2 : Address
39 rew pred(0) = 2
40 pred(1) = 0
41 pred(2) = 1
42 succ(0) = 1
43 succ(1) = 2
44 succ(2) = 0
45 eq(0,0) = T
46 eq(0,1) = F
47 eq(0,2) = F
48 eq(1,0) = F
49 eq(1,1) = T
50 eq(1,2) = F
51 eq(2,0) = F
52 eq(2,1) = F
53 eq(2,2) = T
54 less(0,0) = F
55 less(0,1) = T
56 less(0,2) = T
57 less(1,0) = F
58 less(1,1) = F
59 less(1,2) = T
60 less(2,0) = F
61 less(2,1) = F
62 less(2,2) = F
63 greater(a1,a2) = less(a2,a1)

C. Ring leader election code listings 81

64
65 act REC_CLAIM : Address # Address # Bool
66 SND_CLAIM : Address # Address # Bool
67 REC_TOKEN : Address
68 SND_TOKEN : Address
69 CRASH, OPEN, CLOSE : Address
70
71 proc Station(my_add:Address)
72 = Election(my_add, T)
73
74 Election(my_add:Address, my_round:Bool)
75 =
76 CRASH(my_add)
77 . Fail(my_add)
78 +
79 SND_CLAIM(succ(my_add),my_add,my_round)
80 . Election(my_add,my_round)
81 +
82 REC_TOKEN(my_add)
83 . Privilege(my_add,my_round)
84 +
85 sum(cand:Address,
86 sum(round:Bool,
87 REC_CLAIM(my_add,cand,round)
88 . ((CRASH(my_add)
89 . Fail(my_add)
90 +
91 SND_CLAIM(succ(my_add),cand,round)
92 . Election(my_add,my_round)
93)
94 <| or(less(cand,my_add),less(my_add,cand)) |> delta
95 +
96 Election(my_add,my_round)
97 <| and(eq(my_add,cand),neq(round,my_round)) |> delta
98 +
99 Privilege(my_add,my_round)
100 <| and(eq(my_add,cand),eq(round,my_round)) |> delta
101)
102)
103)
104
105
106 Fail(my_add:Address)
107 =
108 REC_TOKEN(my_add)
109 . SND_TOKEN(succ(my_add))
110 . Fail(my_add)
111 +
112 sum(cand:Address,
113 sum(round:Bool,
114 REC_CLAIM(my_add,cand,round)

C. Ring leader election code listings 82

115 . (SND_CLAIM(succ(my_add),cand,round)
116 . Fail(my_add)
117 <| not(eq(cand,my_add)) |> delta
118 +
119 Fail(my_add)
120 <| eq(my_add,cand) |> delta
121)
122)
123)
124
125
126 Privilege(my_add:Address, my_round:Bool)
127 =
128 CRASH(my_add)
129 . Fail(my_add)
130 +
131 OPEN(my_add)
132 . (CRASH(my_add)
133 . Fail(my_add)
134 +
135 CLOSE(my_add)
136 . (CRASH(my_add)
137 . Fail(my_add)
138 +
139 SND_TOKEN(succ(my_add))
140 . Election(my_add,not(my_round))
141)
142)
143 +
144 SND_TOKEN(succ(my_add))
145 . Election(my_add,not(my_round))
146
147
148
149 init Station(0)

State space of symmetry for station 0

1 des (0, 54, 13)
2 (0,"1!REC_CLAIM(0,0,F)",0)
3 (0,"2!REC_CLAIM(0,1,F)",1)
4 (0,"3!REC_CLAIM(0,2,F)",1)
5 (0,"4!REC_CLAIM(0,0,T)",2)
6 (0,"5!REC_CLAIM(0,1,T)",1)
7 (0,"6!REC_CLAIM(0,2,T)",1)
8 (0,"7!SND_CLAIM(1,0,T)",0)
9 (0,"8!REC_TOKEN(0)",2)
10 (0,"9!CRASH(0)",3)
11 (1,"10!SND_CLAIM(1,1,F)",0)
12 (1,"11!SND_CLAIM(1,2,F)",0)
13 (1,"12!SND_CLAIM(1,1,T)",0)

C. Ring leader election code listings 83

14 (1,"13!SND_CLAIM(1,2,T)",0)
15 (1,"14!CRASH(0)",3)
16 (2,"15!SND_TOKEN(1)",4)
17 (2,"16!CRASH(0)",3)
18 (2,"17!OPEN(0)",5)
19 (3,"18!REC_CLAIM(0,0,F)",3)
20 (3,"19!REC_CLAIM(0,1,F)",6)
21 (3,"20!REC_CLAIM(0,2,F)",6)
22 (3,"21!REC_CLAIM(0,0,T)",3)
23 (3,"22!REC_CLAIM(0,1,T)",6)
24 (3,"23!REC_CLAIM(0,2,T)",6)
25 (3,"24!REC_TOKEN(0)",7)
26 (4,"25!REC_CLAIM(0,0,F)",8)
27 (4,"26!REC_CLAIM(0,1,F)",9)
28 (4,"27!REC_CLAIM(0,2,F)",9)
29 (4,"28!REC_CLAIM(0,0,T)",4)
30 (4,"29!REC_CLAIM(0,1,T)",9)
31 (4,"30!REC_CLAIM(0,2,T)",9)
32 (4,"31!SND_CLAIM(1,0,F)",4)
33 (4,"32!REC_TOKEN(0)",8)
34 (4,"33!CRASH(0)",3)
35 (5,"34!CLOSE(0)",10)
36 (5,"35!CRASH(0)",3)
37 (6,"36!SND_CLAIM(1,1,F)",3)
38 (6,"37!SND_CLAIM(1,2,F)",3)
39 (6,"38!SND_CLAIM(1,1,T)",3)
40 (6,"39!SND_CLAIM(1,2,T)",3)
41 (7,"40!SND_TOKEN(1)",3)
42 (8,"41!SND_TOKEN(1)",0)
43 (8,"42!CRASH(0)",3)
44 (8,"43!OPEN(0)",11)
45 (9,"44!SND_CLAIM(1,1,F)",4)
46 (9,"45!SND_CLAIM(1,2,F)",4)
47 (9,"46!SND_CLAIM(1,1,T)",4)
48 (9,"47!SND_CLAIM(1,2,T)",4)
49 (9,"48!CRASH(0)",3)
50 (10,"49!SND_TOKEN(1)",4)
51 (10,"50!CRASH(0)",3)
52 (11,"51!CLOSE(0)",12)
53 (11,"52!CRASH(0)",3)
54 (12,"53!SND_TOKEN(1)",0)
55 (12,"54!CRASH(0)",3)

