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ABSTRACT

Applying the fractional Fourier transform and the Wigner distribution on a signal in a cascade fashion is
equivalent with a rotation of the time and frequency parameters of the Wigner distribution. This report
presents a formula for all unitary operators that are related to energy preserving transformations on the
parameters of the Wigner distribution by means of such a cascade of operators. Furthermore, such operators
are used to solve certain type of energy localization problems via the Weyl correspondence.
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1. INTRODUCTION

For analysing signalg € L?(IR) one may use the Fourier transform. This transform maps a fung¢tion

a functionf. For a function of time (a signaly, represents the intensity of the fluctuations (frequencies) in
the signalf. Analysing a signal in this way is called spectral analysis. Besides the representation fn time
and the representation in frequenGthere exists transformatiorfis— f to represent a signal both in time

and in frequency. Amongst others a well-known time-frequency transformation is the Wigner distribution.

The Wigner distribution is defined by

WYL (2, w) = % / f@+t/2)F@—1/De ™ dt, Vyoenm (1.1)
R

The Wigner distribution is in fact the Fourier transform of the function
Ryo(t) = f(z+1/2) f(x —t/2)/V2T.

Consequently, the Wigner distribution is non-linear and it also represents a signal redundantly in time and
frequency. Therefore, a signal can be reconstructed from its Wigner distribution, but this cannot be done in
a unique way. The Wigner distribution is discussed extensively in Section 2.

A representation of a signal in a domain different from the time or frequency domain is given by the
fractional Fourier transform (FRFT). This transform is given by

ei ((u?+22)-(cot ) /2 — uz csc a) du, (12)

Ca
Falfllo) = e IZ f(w)



for some parameter # kw, k € Z and a constant’,, with |C,,| = 1. This transform may seem a bit
peculiar, however representation (1.2) can be derived by defining

Fo =F°, (1.3)

whereF denotes the Fourier transform. In Section 3 we discuss the definition and properties of the FRFT.
There we also show that taking the Wigner distributioraff corresponds to the Wigner distribution of
the functionf followed by a rotation over an angdein the Wigner plane.

The rotation property of the FRFT inspired mathematicians in the past to study also other transformations
in the Wigner plane, that correspond to linear operatoré k). However, already before the introduc-

tion of the FRFT De Bruijn proposed in [2] a class of operators that are related to linear operators in the
Wigner plane. In Section 4 we study this problem forthdimensional Wigner distribution. Furthermore,

we show that the FRFT is a special element of this class, since it is the only transformation that corresponds
to an orthogonal symplectic transformation in the one-dimensional case.

We derive a classification of all unitary operatorsot(IR") that correspond to linear energy preserving
transformations in then-dimensional Wigner plane. Using this classification we present a representation
formula for these unitary operators. This is done in Section 5.

Sections 6 and 7 are devoted to a celebrated problem in signal analysis, namely energy localization in time
and frequency. In Section 6 two well-known problems are discussed rigorously, namely maximalization
of the energy of time-limited signal within a compact frequency interval and maximalization of a signal’s
energy within a disc in the Wigner plane. In Section 7 we show how a generalization of the FRFT can be
used to solve a class of localization problems in the phase plane, if the solution of one problem in such a
class is known. This procedure is illustrated by using it for the classical localization problems of Section 6.

The sequel of this introductory section is devoted to mathematical preliminaries, namely the Fourier trans-
form and Lie group theory.

1.1 The Fourier transform

To obtain information on the frequency behaviour of a function we may consider its Fourier transform.
This transform computes the frequency spectrum of a given function. We discuss the Fourier transform
first for functions inL! (IR) and subsequently for functions ii¥ (IR).

For f € L'(IR) its Fourier transfornf is given by
£ 1 —iwT
w)=— r)e " dx. 1.4
fw) = == [ 1@ (1.4)
R
Formally, an inverse Fourier transform exists and is given by

1 ¢ iTw
flx) = Eﬂ[f(w)e dw. (1.5)

However, convergence of the integral in (1.5) is not guaranteed. Indeed, the following example shows that
fis not necessarily i} (IR) if f € L'(IR).

Example 1.1 Let f € L'(IR) be given by

) V2me™®, x>0,
)= { 0, z < 0.
Then its Fourier transform is given by
fw) = —
14w’

which is notinL! (IR).
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Following [3, 11], we present additional conditions gnand f, that are necessary for a well-defined
inversion formula.

Theorem 1.2 Let f € L'(IR) andf € L'(IR). Then

1

flx) = 5 /f( )™ dw a.e., = € IR.
R

4

Moreover, the latter results holds for everye R if also f € C(IR).

A useful property of the Fourier transform is given by the following lemma.

Lemma 1.3 Let f € L'(IR), thenf € C(IR) and|| f|ls < ||f]l1/V27.

Proof
Letf € L'(IR). Then

|[f(wr) = flwo)]

ﬁ!

/ 7zw1w o efiwzw)dx
R

/ ei(wl—wg)x| dr
R

|f(z)| - | sin((w1 — wa)z/2)| da.

IN

.3

R

Applying the dominated convergence theorem on the latter result yields
[f(w1) = flwa)] =0 (w1 — wa),

which shows thaf is continuous. Furthermore, we have
<= HZ @yl = JZ 7@l d = £ /v

Taking the supremum over establishes the proof. ]

In the sequel of this report we will focus ourselves on functiond #/R). Starting form the defini-
tion of the Fourier transform od!(IR) the Fourier transform oi.?(/R) can only be defined iff €
LY(IR) N L?(IR). To come to a definition of the Fourier transform bA(IR) we will define the Fourier
transform first on a dense subspace of hbthi?) and L2(IR) and then extend it uniquely t6*(IR).

A dense subspace of boiH (IR) and L?(IR) is given by the Schwartz clasg IR), see [32, 33].

Definition 1.4 The Schwartz clasS(IR™) is the space of rapidly decreasirggf-functions onR", i.e.,
foreachk,l € IN

sup |xf1 . ~x§"a3; c g f(x)] < 00 Vies(mrn-
|a|<k, | B|<L,zE R

It can be shown that the Fourier transfoffi when restricted t&'(IR), is a bounded linear mapping on
S(IR) as a subspace d@f*(IR). Moreover,F is an isometry or§ (IR), with respect to the inner product in
L?(IR), see [11, 36]. So, we have Parseval's formula

(fag)Q = (]:.ﬁ]:g)%
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with (-, -)2 the inner product id.? (IR).

SinceS(IR) is dense inL2(IR), F can be uniquely extended to a Hilbert space isometd/*iR). It can

be shown that this definition is equivalent with the following expression, which we shall refer to as the

definition of the Fourier transform ab? (IR).

Definition 1.5 Let f € L?(IR). Then its Fourier transfornf = F f is given by
N
FUNG) = limy o —= 4 f@)e i da, (L6)

where L.i.m. stands for limit iiL? mean.

Remark, that this definition coincides with (1.4)fife L'(IR) N L*(IR). Also we observe that by this
definition F f is a function, defined almost everywhere&rand belonging td.?(IR). Moreover, with this
construction Parseval’s formula can be extendeb*aR).

/ f(2)g(a) d = / F(@)3(@) d, 1.7)
R R

forall f,g € L?(IR). As a result we also have Plancherel’s formula
J1s@F do= [ 1) de. )
R R

forall f € L?(IR). The two equal sides of (1.8) give the energyfof L?(IR).

Sincef € L?(IR) for f € IR, we can derive an inversion formula using the same construction as for (1.6),
ie.,

N
; 1 ¢ iTw

Another result on the Fourier transform that is used in the sequel of this report deals with convolution prod-
ucts. The following lemma presents two relations between convolution products and the Fourier transform.
For a proof we refer to [46].

Lemma 1.6 Convolution products and the Fourier transform are related by
L (f* g (w) = V2r f(w) - §(w), for f € L'(R) U L*(IR) andg € L'(IR),
2.V2m (f -9V (w) = (f % §)(w), for f,g € L*(IR).

A subspace of ?(IR), which is of special interest in signal analysis[jé)mp(ﬂ%), i.e., the space of all
functions inL?(IR) with compact support. Related to this space we can define two types of signals.

Definition 1.7 A signal f € L*(IR) is called time-limited iff € LZymp(IR). If fe Liomp(IR), thenf is
called band-limited.

Another special class of functions iif (IR) is the class of functions of exponential type.
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Definition 1.8 A functionf € L?(IR) is called of exponential type if it extends to a holomorphic function
on € and if there are two positive constarisand(2 such that

1f(2)] < ce®M=l vz e .

Functions of exponential type can be related to band-limited functions by means of the Paley-Wiener
theorem; for a proof, see [45].

Theorem 1.9 (Paley-Wiener)If f € L?(IR) is holomorphic and of exponential type, théris band-
limited. Conversely, if is band-limited, therf is holomorphic and of exponential type.

Since a holomorphic functiofi € L?(IR), vanishing at a certain interval, has to be identically zero, the
Paley-Wiener theorem immediately yields

Corollary 1.10 If f € L2(IR) is both time-limited and band-limited, thgn= 0.

The previous corollary states that there does not exist a non-trivial time-limited gigndlose energy is
contained within a finite interval in the frequency domain, ay, wo]. In Section 6.1 we will deal with

this phenomenon. There, we will consider the problem of maximizing the energy of a band-limited signal
within a finite interval|—wy, w] in the frequency domain.

1.2 Lie Group Theory and the Heisenberg Group
In this section we will discuss Lie groups. In particular the Heisenberg group will be studied. In the fol-
lowing section we will see that this group can be related to time-frequency operators.

We start with some standard definitions on Lie group theory, that can be found in e.g. [38, 41].

Definition 1.11 A setG having both a topological and a group structure is called a topological group if
the mapping

(z,y) — ay™" (1.10)

is a continuous mapping fro¥ x G ontoG. A topological group’ is called a Lie group if there is a
differentiable structure oz, compatible with its topology, such th&tconverts into aC°°-manifold and
for which the mapping (1.10) i5°°.

Related to a Lie groupr we can also look for a Lie subgrody defined as a Lie group that is a subgroup
of the groupG and aC'*°-submanifold of the”>°-manifoldG. In the following example we shall consider
a well-known Lie group and some of its Lie subgroups.

Example 1.12 Consider the group/L(n) = {M € R™*™| det M # 0}. It can be verified rather easily
thatGL(n) is a Lie group using the fact that the mappihg— det M is continuous. Some well-known
Lie subgroups o7 L(n) are given by

1. SL(n) ={M € GL(n) | det M = 1},
2. 0(n)={M € GL(n) | MTM = I},
3. SO(n)={M € O(n) | det M = 1}.
Another example of a well-known Lie group is the Heisenberg group, which is defined as follows.

Definition 1.13 The2n + 1-dimensional Heisenberg groug,, is identified withlR™ x IR™ x IR with the
multiplication law

(p1,q1,t1) (P2, G2, t2) = (P1 + P2, @1 + @2, t1 +t2 + ((q1,02) — (P1,42))/2)- (1.11)



To relate a topological group to an operator on a separable Hilbert space, we use the concept of topological
group representations.

Definition 1.14 LetG be atopological groupH be a Hilbert space an®(H ) be the space of all bounded
operators onH. Then a representation ¢f in H is a mapping: : G — B(H) for which

1. p(z)u(y) = p(zy), forallz,y € G,
2. u(e) = Z, with e the identity ofG andZ the identity operator ofi,

3. = — p(x)f is a continuous mapping frod to H, forall f € H.

Note, that Definition 1.14 yields thatis a group homomorphism, which is continuous in the strong oper-
ator topology ofB(H).

Topological group representations may satisfy several important properties. A first desirable property of a
representation is that it is unitary, i.e(x) € U(H), for all z € G, whereU (H) denotes the space of all
unitary operators ofil. Furthermorey: is said to be irreducible 0} andH are the only closed subspaces

of H that are invariant under the action ofz), for all z € G. A last property concerns the equivalence

of two representations. A representatjors said to be equivalent with a representationG — B(H) if

there exists an operatdY e U(H), such that

p(z) =V @)V Vaco (1.12)
Note that a unitary representatipnis a group homomorphism, which is continuous in the strong operator
topology of U (H). Also we observe, that for unitary representations it can be proved, see e.g. [16], that
is irreducible if and only if forp = u, (1.12) only holds fol = CZ, with |C| = 1.
Anirreducible unitary representation £, in the spacd.?(IR") is given by the Sctadinger representation

wp, g, 0)[f)(x) = PV HPDD) f (4 g). (1.13)

In the sequel of this section the representationill denote the Schodinger representation.

2. THE WIGNER DISTRIBUTION
A well-known representation of a signalin both time and frequency is the Wigner distribution. This is a
guadratic time-frequency representation given by

WV fl(z,w) = %/f(x—l—t/?)f(m —t/2)e” " qt, (2.1)
R

forall f € L2(IR). In the sequel we will refer to the domain of the Wigner distribution as the Wigner plane.
This representation was already introduced in 1932 by Wigner in his paper [43]. He presented this repre-
sentation in the field of quantum mechanics. In 1948, Ville introduced the representation in the fields of
signal analysis in [39]. Therefore, this representation is also known in the literature as the Wigner-Ville
distribution.

Later in this report we will also use the mixed Wigner distribution given by

WIS, gl(a.) = 5= [ fa b2 = 172 at, 22)
R

forall f,g € L?(IR). Obviously, this representation coincides with the Wigner distributigi=f g.
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Then-dimensional Wigner distribution is defined from a straightforward generalization of (2.1) by

WVYI[f](z,w) = (27)™" / fz+t/2)f(x —t/2)e "B dt, (2.3)

forall f € L2(IR™) and with(-,-) the inner product inR". For simplicity we only discuss properties of
the Wigner distribution forf € L2(IR). Generalizations of these results for functiond.f{/?") can be
made in a rather direct way.

The Wigner distribution is invariant under the action of both translafjcend frequency modulatiai,,,,
given by
L[fl(x) = flz—0) (2.4)
M, [fl(z) = e f(x), (2.5)
forb € IR andwg € IR. A straightforward calculation shows
WV[T, fl(z,w) = WV[f](x — b,w) and WV[M,, fl(z,w) = WV[f](z,w — wp).

Furthermore, by a change of variables in (2.1) it follows immediately that the Wigner distribution is real-
valued, i.e. WV[f] = WV|f], and that

WV[f](z,w) = WV[f](z, —w), (2.6)

forall f € L2(IR). In particular Relation (2.6) yieldgVV[f](z,w) = WV|f](z, —w) for all real-valued
f € L?(IR). Rewriting (2.1) enables us to derive more useful properties of the Wigner distribution.

By definingh, (1) = f(x +t/2)e~"/2/\/2x, for f € L?(IR), we can also write (2.1) as

f](l‘, W) = / h:zc,w (t) hx7u(_t) dt.
R

Now, Parseval’s formula (1.7) yields

WV[f](x,w):/h w(0) ha :%/ (w+0/2) flw — 0/2)e" do, (2.7)
R

forall f € L?(IR). Relation (2.7) shows thay'V[f](-,w) is the Fourier transform of a function i (IR).
Consequently, Lemma 1.3 can be applied. This yields ¥t f](-,w) is bounded and continuous for
fixedw € IR. In the same manner it follows from (2.1) thatV[f](z, -) is bounded and continuous for
fixedz € IR. Moreover, we can show thavV[f] € C(IR?), forall f € L?(IR), see e.g. [24]. Concluding,
we haveWV|[f] € L= (IR?) N C(IR?), forall f € L*(IR).

Also Relation (2.7) yields immediately
WVIF fl(z,w) = WV[f](—w, z), (2.8)
forall f € L*(IR).

By rewriting the integrand in (2.7) we get

fw+0/2) flw—0/2) = / / @) Fg) e @0/ givw=0/2) gy gy —

i F( _ +/9) ,—tub —itw — L _ —itw
zﬂﬂlﬂlf(u—i—tﬂ)f(u t/2)e e " dudt MHZMU]( 0,t)e”"" dt,



with
M[f)(6,t) = \/%_ﬁ /f(u+t/2)f(u —t/2)e™? du. (2.9)
R
The function)M [f] is called the characteristic function of the Wigner distribution. Note #&f](—-, ¢) is

the Fourier transform of (- + ¢/2) f(- — t/2), which is in L' (IR) for all ¢t € IR. Using this characteristic
function we obtain

WV[f](z,w) = (2m)~3/2 M{f](6,t)e” e~ dp dt. (2.10)
/]

Introducing the functior?; ,, of f € L?(IR) by
Rya(t) = f(z+1/2) f(x —1/2)/V2r
gives the last representation of the Wigner distribution which we discuss in this report. We have
WV[f](z,w) = FRfz](w). (2.11)

We proceed our discussion of the Wigner distribution with a counterpart of Plancherel’s formula. To deduce
such a formula for the Wigner distribution we use relation (2.11).

Lemma 2.1 Letf € L?(IR). Then

(m If(:c)Ide) =27T//|WV[f](x,w)|2dwdx.

R R

Proof
We derive

(m If(x)Ide)

[isran [isera
R R

[ [1sG 2P s y2p

R R

_ //|f(1;+t/2)f(x—t/2)|2dtd3:

= 27 |Rf,x(t)|2dt) dz.
[

Applying Plancherel’'s formula on the inner integral of the latter result yields

(m If(a:)lzd:c> 2w//|f[Rf,x](w)|2dwdx
R R

2n [ [ WV do s

R R

which follows from (2.11). ]

We observe that this lemma also yieMs8)[f] € L?(IR?) forall f € L?(IR). A counterpart of Parseval’s
formula also exists. This is given by Moyal’s formula, which we present in the following theorem.
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Theorem 2.2 (Moyal) Let f, g € L?(IR). Then

(f,9))” = 2w//WV[f](x,w)WV[g](x,w) dw dz.

R R

Proof
First we observe thatVV[f](z,w) WV[g](z,w) € L' (IR?). This follows from Schwarz’s inequality and
Lemma 2.1

[ [ i) wiigew)| dods

R R

IN

IWVIll2 WVl

1£13 1lg113/27.

Using Parseval’s formula we derive as a corollary of Fubini’s theorem

/ WVIf)(z,0) WYl () de = / FIRy ) () F Ry ] (@) dw

= /Rfvx(t)Rw(t) dt.
R
Integrating the latter result overyields

27r//WV[f](x,w) WV[g](z,w) dwdx =
R R

//f(x+t/2)g(x+t/2) flx—1/2)g(x —t/2)dt dx =

//f Jo(0) dudv = |(f,9)/2.

For signal analysis a further desirable property of the Wigner distribution is given in the following theorem.
Theorem 2.3 Let f € L?(IR). Then

O

@) = /WV[f](a:,w)dw, it f e L'(IR) (2.12)
R

|f(w)f?

/WV[f](x,w)dx, if fe L'Y(IR). (2.13)

Proof
We derive from (2.7)

/ WV (, )] deo
R

AN
N)’._l

// (w+0/2)] |f(w — 0/2)| d6 dw

R R
1 .
- 2—// )l |F)| dudv = |13 /2r.

Fix z € IR. ThenWV[f](z,-) € L*(IR) if f € L'(IR). Equivalently,FR; . € L*(RR) if f € L*(IR), cf.
(2.11). AlsoR; , € C(IR), sincef is continuous. This follows from applying Theorem 1.3 AnFinally
we haveR; , € L'(IR) sincef € L?(IR). Now, Theorem 1.2 can be applied. This yields

F(@)? = V2r Ry, (0) /;fwa dw_/WV (2,)



10

This proves (2.12). Relation (2.13) is proved in the same manner by replating. m]
Relations (2.12) and (2.13) are called the time-frequency marginals, see also [5].

A last result on the energy density of the Wigner distribution is obtained from integrating (2.13) over
This yields

1712 = / WIS (&, w) dat doo, (2.14)
R

for f € L'(IR) N L*(IR) or f € L'(IR) N L2(IR).
For a comprehensive list of other properties of the one dimensional Wigner distribution we ridfet h
In the sequel of this report we will use a group theoretical approach for the Wigner distribution. This

approach uses a relation between the Heisenberg group and the Wigner distribution. This relation can be
derived using the characteristic functidfi f] for then-dimensional Wigner distribution. We derive

Mifpa) = o) [ a2 T a/2e e du
R?L

(gﬂ)—n/2ei(p7q)/2/f(u+q) (w)e' ™™ du
Bn

= (2m) "2 (u(p,q,0)f, f)a (2.15)
This yields
WY[f(z,w) = (2m) 2 F[M[f])(z,w) = 27) " Fl(u(-, -, 0) £, 2 (z,w), (2.16)

with WYV then-dimensional Wigner distribution arél then-dimensional Fourier transform. By polariza-
tion, we see that (2.16) also holds for the mixed Wigner distribution, i.e.,

WVY[f, gl(z,w) = (2m) 7" F(u(:, -, 0)f, 9)2] (z, w). (2.17)
Sincey is irreducible, we have for unitary operatdfsas a corollary of (2.19),
WV[f] =WV[VSf] <= V=CZ, |C]=1. (2.18)

We have seen that the Wigner distribution is related to thedsidhgér representation by means of the
characteristic function. Now, assume that there exists a unitary represeptafiéfy, in U(L?(IR™)), for
which u = V*pV, for someV € U(L?(IR")). Then

WV[Vf]({E,W) = (271-)7”‘7:.[(”(770)]).][7 Vf)Q](wi
= @m) " FIOVul, - 0V, fal(z,w)
= (277')_".7:[(/)(-,-,0),]0, f)g](l‘,bd),.

forall f € L2(IR™). This yields

WYV (2, w) = (2m) 2" / / (00,4, 0)f, fa eI PDe=10) dg s, (2.19)

We will return to the latter relation in Section affiensect.
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3. THE FRACTIONAL FOURIER TRANSFORM

The fractional Fourier transform (FRFT) was introduced by Namias in [23] as a Fourier transform of frac-
tional order. This was done starting from fractional powers of the eigenvalues of the Fourier transform and
their corresponding eigenvalues. With this formalism he derived in a heuristic manner an integral repre-
sentation of this operator. In [15, 19], McBride and Kerr provided a rigorous mathematical framework in
which the formal work of Namias could be situated. We discuss this mathematical framework and Namias
formal work in the first part of this section.

Recently, the FRFT turned out to be an interesting transformation for time-frequency signal processing and
optical engineering. This growing interest for the FRFT is the consequence of a series of papers that deal
with the relation of the FRFT to time-frequency representations of a signal, like the Wigner distribution,
see e.g. [1, 22, 25, 26]. This relation is discussed in the second part of this section.

3.1 Definition and Properties
We start with the definition of the FRFT for functionsiri (IR).

Definition 3.1 Takef € L?(IR). Its fractional Fourier transform of ordes € (—, ] is given by

ei ((u?+22)-(cot ) /2 — uz csc a) du, (31)

Ca
Faolfl(x) = \/ﬁ ]IZf(U)

for 0 < |a| < 7, with
C, = ¢! (Fsgna—a/2), (3.2)
Furthermore, fora. = 0 anda = 7 the FRFT is defined by
Folfl(z) = f(x) and Fx[f](z) = f(—x).
For o & (m, 7] the FRFT is defined by periodiCit§, 2, = Fa.

Particularly, we have from this definition
Frpo=F and Frjo = F" Vnez,
with F the Fourier transform oh?(IR).

The factorC,, in (3.2) is chosen to guarantee ti#at is properly normalized and th&t, is continuous in
«. Indeed, it can be shown that

lim | F5f — Fafll2 =0, (3:3)
forall f € L?(IR) and for this particular choice @f,,.

This result is obtained by combining two properties of the FRFT. The first property of the FRFT is known
as the index law, i.e.,

-Fafﬁf = foHrﬁfv (34)

foralla,3 € IR andf € L%(IR). A rigorous proof of this property for functions in the Schwartz space
S(IR) is given in [19]. Consequently, this result can be extended to functioh¥(if).

The second property we need for proving the continuitfgiis the continuity of the FRFT either in = 0
ora = 7. In [15], it is proven that

lim [|Fof = fll2 =0, (3.5)
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for all f € L?(IR). Result (3.3) can now be obtained in a straightforward way by combining (3.4) and
(3.5). We observe, that (3.3) also holds for other choicésgfsee e.g. [1].

Considering again Relation (3.4) we have in partictatF_, = Z andF_,F, = Z. Consequently, the
inverse ofF,, is given byF_,, foralla € IR.

For a better understanding of the action of the FRFT we introduce two unitary operatbf$ M. For
t € IR, we define the operatd} on L?(IR) by

Clfl(x) = "2 f(x). (3.6)

Obviously,C, multiplies a given functiory € L?(IR) with a quadratic chirp, i.e., a Fourier mode with a
quadratic argument. Furthermore, we introducesfe# 0 the dilation operatoP, on L?(IR) by

D[ f](z) = \/ﬁf (2) (3.7)

Using the operatc€.o » andDs;y o, We can writeF,,, o € (—m, ), also as
]:af = Ca Ccot aDsinachota- (38)

The fact that all operators in the right-hand side of (3.8) are unitary operatdr$(d@®) and thatC,,| = 1
yields thatF,, is a unitary operator oh?(IR), for all « € IR. Note, thatF, and.F,, are also unitary, which
follows directly from Definition 3.1. As a consequence we also have Parseval's formula for the FRFT

/ f@)g@ de = [ Falf)(@) Falgl (@) de, (3.9)
R R

foralla € IR andf,g € L*(IR). Furthermore, as a result we have Plancherel’'s formula for the FRFT

/ (@) de = / Falf](@)]? de, (3.10)
R R

foralla € Randf € L*(R).

From the preceding derivations and the definitiogfit follows thatG, = {F, | « € IR} is a strongly
continuous subgroup of unitary operatorsiot{IR). A cyclic subgroup of order 4 is given by the integer
powers of the Fourier transforfsF™ | n = 0, 1, 2, 3}. Consequently, the discrete cyclic group with gener-
ating elementF is embedded in the continuous grodp, .

A further relation with the classical Fourier transformbh(IR) can be obtained by considering the formal

derivation of the FRFT by Namias in [23]. His starting point was to consider the eigenvalues and eigen-

functions of the Fourier transform.

Itis known, see e.g. [9], that the eigenfunctions of the Fourier transform are given by the Hermite functions
hi(x) = (28k!V/7)

whereH), are the Hermite polynomials given by

et (), (3.11)

k
Hi(z) = (—1)Fe”” (%) e (3.12)

The Hermite functions form an orthonormal basis f8( IR) and they satisfyFh;, = e**7/2h,,. The first
idea of an FRFT was to define an operakQy, satisfying

Fohi, = e*hy, (3.13)
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fora € IR. Fora = mm/2, with m € Z, we haveF,,,,» = F™. Particularly, ifm mod4 = 0, then
F™ = 7. For a formal representation &%, with 0 < o < 7/2, we follow Namias in [23].

We write f € L2(IR) asf = Y_ (f, hx)2hi. Consequently, we have

k=0
Falfl@) = D (f he)eFalbal(@) =D (f hi)2 € hi()
k=0 k=0
_ / f(u)< eikahk(u)hk(x)> du
R k=0

> etha M2 oa?
]Zf(u) <kZ_OWHk(u)Hk(x)e /2 /2> du.

The latter expression can be rewritten using Mehler’s formula, see [20],

: 1 2auz — 22(x? + u?
Z WHk(u)Hk(x) = 7r(1——z2) exp ( - _(22 )) .

k=0

> k

(3.14)

Here1l/(1 — 22) lies in the right half plane and the square root jif1 — 2?2) is the branch that is positive
for z > 0. Furthermore, we observe that the series convergés inith respect ta:, for all  andz, see
[9]. Using Mehler’s formula in the previous result yields

Flfllr) = 1 - ]Zf(u) exp (Z_Zixu — i(em‘—i— e~ ') (2% + u2)/2>

\/ﬂ-eia . \/efia _ eta — g—ia

_ 61',7r/4—i04/2 f(u) 61', ((uw?+22)-(cot @) /2 — uzx csc ) du.

V21 sin o A
For a rigorous framework in which this formal work of Namias can be studied we refer to [15, 19].

3.2 The FRFT and the Wigner Plane

For time-frequency analysis it is interesting to consider the relation of the FRFT with time-frequency op-
erators like the Wigner distribution. Therefore, we compute the Wigner distribution of the FRFT. This
will give us insight in how the FRFT acts in the Wigner plane, i.e., the phase space related to the Wigner
distribution.

For this computation we need the following lemma.

Lemma 3.2 Let7, and M,,, b,w € IR, denote respectively the shift operator and frequency modulation
on L2(IR) as given in (2.4) and (2.5) respectively. Furthermore, f/gt o € IR, the fractional Fourier
transform onL?(IR) as given in Definition 3.1. Then

fa% = eibQ (sin2a)/4 be sin %COS afa; (315)
FaMy, = efin(sin 2a)/4 M cosa Twsin aFa- (316)

Proof

Fora = 0 both results are trivial, sinc€y = Z. Fora = 7 both results follow directly from Definition 3.1.
Furthermore, equation (3.16) follows from (3.15) by observing thatl,, = 7.,F, with F the Fourier
transform. Indeed, if (3.15) holds, this observation yields

FaMy, = fa}-*,]:u}_ = ]:a77r/27:u~7:7r/2

iw? (sin -7
e (sin(2a—m)/4 M—w sin(a—m/2) Z}cos(a—-rr/Q)fa—w/wa/Q

— e*iw2(sin 2a) /4 M

wcos %sina}_aa
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using (3.4). Consequently, the proof is established by showing that (3.15) holfs<fofx| < 7. We
derive forf € L?(IR),b € Rand0 < |o| <7

z((u +x2)-(cot ) /2 — uzx csc o) du

FoaT[fl(z) =

m/“‘)

’L (u?4224+b%+2ub)-(cot a) /2 — (u+b)z csc ) du

\/27T|51n05 /

Ca e?',(b2~(coso¢)/2—b9c)(1—cos2 @) csc o
/27 |sin o

/ flu)é ((u*+(z—bcos @)?)(cot @) /2 — (u(z—beos a)) esca) 7,

X

_ ez'(£12(5i11 2a) /4—bx sin o) Fa[f](x — beos Oé)
eibQ (sin2a)/4 besina %COS ozfa [f] (LE)

O

Using this lemma, we can compute the action of the FRFT in phase space by means of the Wigner distri-
bution. For this we write

Wlww) = o / f + /2T — /2 dt
R

= %/f(t +a)f(x—t)e ¥ dt = (M_oT o f, MyToFrf)/7.

Using Lemma 3.2 we derive

]:—onwIZTE = ei(wz_xz)‘(SiHQQ)/zl Mw cos « T—w sin o M.’L‘ sin ,ijccos a]:—a

o2 2 : . .2
i(w®—x“)-(sin2cx) /4 Jixwsin®
€ ( )-( )/ € Ma: sin a+w cos zcosafw sin affa'

Combining these two results yields

WVFafl(z,w) = M_owToFaf, Mo T FxFof)/m =
(ffaMfwawfafv ffaMw,Z;fwfaf)Q/W =

(M—x sin a—w cos « T—x cos a+w sin af; M.’L‘ sin a4w cos a ,ijccos a—w sin oz]:-rrf)/ﬂ' =
WV f](x cosa — wsin a, zsin a + w cos &) = WV[f](Ro (2, w)), (3.17)

whereR,, (z,w) represents the matrix vector product with matrix

R — ( cosa —sina ) (3.18)

sin & Cos &

We conclude from this derivation that the FRFT of ordeacts like a rotation by in the Wigner plane.
In particular, we have a rotation by/2 in the Wigner plane fof. ;,, which is a result that coincides with
(2.8).

The action of the FRFT in the Wigner plane leads us in a natural way to the question which operators on
L?(IR) act like a linear transformation in the Wigner plane. The following section is devoted to this ques-
tion. However, instead of operators @A3([?) we consider operators acting dri(R™). It will turn out

that finding a solution for the-dimensional problem does not follow straightforwardly from the solution

for the one-dimensional case.
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Since we want to give an answer to our problem for operator“@#z"), we introduce the fractional
Fourier transform or.?(IR™) by

Forrrsan = Far+ Founs (3.19)
for as, ..., o € IR. HereF,, is given by

-7:011' [f](xla vy L1, Yy L1y e - axn) = fai [gwl,m yLi—1,Tqd1ye-- ,wn](y)a

With 9oy s v e (W) = (21,00 @im1, Y, @ig1, - ., ), fOr fixeday, .., 21, g1, .., 2, € IR.
Computing then-dimensional Wigner distribution of this FRFT yields
Wv[fah...,anf](xaw) = Wv[f](Ral,m,an (z,w)), (3.20)
with
cos 0 —sinag 0
0 CoS Qi 0 —sin oy,
Rayoan = sin oy 0 cosaq 0| (3.21)
0 sin oy, 0 COS iy,

This result follows in a straightforward way from (3.17).

4. AFFINE TRANSFORMATIONS IN THEWIGNER PLANE
Inspired by the fractional Fourier transform and its action in the Wigner plane, we search for linear opera-
tors) on L?(IR™) such that there exist a matrik € IR"*"™ and a vectob € IR" for which

WVIVS](z,w) = WV[f](A(z,w) +b), (4.1)

holds for all f € L?(IR™). We observe, that De Bruijn already considered this problem in [2] where he
dealt with a new class of generalized functions. Here we will follow an approach based on group theory, see
[30, 31, 40]. These results will be placed within the concept of the FRFT in order to embed this transform
in a larger class of unitary transformations. Also new results will be added.

We restrict ourselves to matriceisfor whichdet A = +1. For these matrices we have
/ / WV[fl(Alz,w] + b) dw dz = / / WV[f](z,w) dw dz.
R» R» RBn RBn

We shall refer to such affine transformations in the Wigner plane as energy preserving affine transforma-
tions. Indeed, for these transformations the corresponding opetators.? (IR") satisfy

V5LV = //WV[Vf](x,w)dwdmz//WV[f](A(x,w)—I—b)dwdx

R R» I
_ / WVIf](z, w) dw dz = (f, f),
R’!L R’!L

for f € L'(IR") N L2(IR™) or f € L*(IR™) N L2(IR™) which follows from (2.14). We observe that
L'(IR™) N L?(IR™) is a dense subspace bf(/R"). Concluding, an operator ob?(IR™) that yields an
energy preserving affine transformation in the Wigner plane has to be an isométtyiBri). On the other
hand, Equation (4.1) follows directly from applying (2.14) on both sides of the equatibrV f) = (f, f),
for f € LY(IR") N L2(IR™) or f € L*(IR™) N L2(IR™).
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Before dealing with a classification of all unitary operators that satisfy (4.1), we present some well-known
operators for which (4.1) holds.

Multiplication

We start our set of unitary operators 6A(IR™) with a trivial one, namely multiplication by a constatit
with |C| = 1. Result (2.18) already showed thatV[f] = WYV[Cf], for all |C| = 1. Consequently, this
multiplication operator satisfies (4.1) with= I, the(2n x 2n) identity matrix, and = 0.

Complex conjugation
Besides linear operators there also exists a non-linear operator for which (4.1) holds, namely the operator
f — f. For the one-dimensional case we have already seen in (2.6) that

WV[?] (:E, w) = WV[f](:C, _w)'

For f € L?(IR™) this result also holds. This follows from a straightforward generalization of (2.6). We
conclude, that taking the complex conjugate also satisfies (4.1) with

I, O _
A_( 0 _In> and b = 0.

We observe that we haviet A = (—1)" for the complex conjugation. Later in this section it will turn out
that a necessary condition on a linear oper&tosuch that (4.1) holds, is given kigt A = 1.

Space and frequency shift
For g, wo € IR™ we introduce the shift operator and the frequency shift operatdrom™) by
Too[f)(x) = f(x — 20) and M, [f](z) = €' f(x)

respectively, withf € L2(IR™). Remark, that these operators coincide with the shift and frequency shift
operators (2.4) and (2.5) in the one-dimensional case.

We combine the introduced unitary operatdgs andM,,, into one unitary operator oh?(IR"), given by
Nizowo) [1(@) = T Muy [f](2) = ') f(a = o). (4.2)
Computing the Wigner transform of this operator yields
WV[Mwo,wo)f]('r7w) =WV[f|(x — z0,w — wo),

which is a result we have seen before in discussing the one-dimensional Wigner distribution. From this
result we conclude, that (4.1) holds 8, .,,), namely by takingd = 0 andb = (o, wo).

We observe that all possible translatidns IR™ in (4.1) can be obtained froit,. This means, that if we
are looking for a unitary operatdt on L?(IR") such that (4.1) holds, then we only have to find a linear
operatoi/ on L?(IR™) such that

WYUS(z,w) = WV[f](A(z,w)), (4.3)

for all f € IR™. The operato’ we are looking for is then given by = Nyl{. Therefore, we will restrict
ourselves from now on to operatdisthat satisfy (4.3) withlet A = +1.

The Fourier transform
In Section 2 we already derived for the Fourier transfdfran L?(IR)

WVIF fl(z,w) = WV[f](-w, z). (4.4)

For f € L?(IR") and then-dimensional Fourier transfortA this relation remains the same, which follows
directly from a generalization of Relation (2.7) for thedimensional Wigner distribution. Consequently,
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the Fourier transform oh?(IR™) satisfies (4.3) witd = JI'. HereJ,, denotes thé2n x 2n) matrix given

by
0o I,
Jp = ( 0 ) (4.5)

In the sequel of this section this matrix will play an important role in classifying all unitary opeidtors
that satisfy (4.3).

The dilation operator
For B € IR"*"™, with det B # 0, the dilation operatoP on L?(IR") is defined by

L y(p1), (4.6)

DB[f](x):\/ﬁ

with inverse
Dy'[f)(x) = /| det B| f(Buz).

We use the definition of the Wigner distribution to derive the actidR gfin the Wigner plane. We compute

WVDsfl(ew) = s | F(B (@ /2B = /D)) dr
i

! T D1 o\, —i T
= —— [ f(B'z+7/2)f(B Tz —7/2)e {"F @ dr
(2m) B/n

= WV[f|(B™ 'z, BTw). (4.7)
Concluding, als@p corresponds to a linear transformation in the Wigner plane.ZThoRelation (4.3)

holds with .
B~ 0
()
Multiplication with a chirp

The last example of a unitary operator that satisfies (4.3) is the operator that multiplies a funttioiih)
with a quadratic chirp. This operator is given by

Cs[fl(x) = " 5=M/2 f (), (4.8)

with S € R™*" symmetric. Remark, that we have seen this operator already for the one-dimensional case
in (3.6), which coincides with (4.8) fat = 1. Obviously its inverse is given by

C5'[f)() = C5lf)(a) = 752D 2 f(a).
We use (2.19) to derive the action®f in the Wigner plane

WVCs (o) = @)™ [ [ (Conlp.,0)Cs). fae™ P dpay
R™ R™
In a direct way we get
(Culp, q,0)Cs)[f](z) = e—i(5x7x)/2ei(p7x)ei(p7q)/2evi(8(:c+q),x+q)/2f(x +q)
_ ei(p+Sq>w)ei(p+S(q,Q))/2f(x +q)

which yields
WV[Cs fl(z,w) = (QW)’%//(M(p+Sq,q,O)f,f)ze*“p’“e*“q"") dp dq
R Rn
= (QW)_Q"//(u(p,q70)f,f)ze‘“(”"I)’A(‘W))dpdq
R”L R”L

= WVIfI(A(z,w)), (4.9)
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I, 0

WIthA=< 5 1,

) . Consequently, als@s satisfies (4.3) with4 as given before.

4.1 A Group Theoretical Approach

In the latter example we have already seen that the relation between a unitary opefatof¥m and its

affine action in the Wigner plane can be given by using (2.19). This relation can also be used to translate
our problem in terms of group theory. This can be done in the following way.

Given a unitary operator on L?(IR"™), we define a unitary representatipf the Heisenberg grouf,,
by p(g) = V*u(g)V, for all g € H,, andu the Schodinger representation. Then by (2.19) we have for
suchp andy

WYVf(z,w) = (2#)_2”/ /((V*,u(p,q,O)V)f, fla e el gp dg.

R™ IR™

(2m) 2" / / (00,0, 0, f)2 e~ P e=(0) gy i,

R™ R"
Consequently, if there exists a linear transformatiosuch thay(g, 0) = p(A% g,0) forall g € H},, with
H;, = {g € R™ |Vier(g,t) € Hn},
then
W Awe) = @0 [ [ AT 00,0, Hee 00 @) dpdy

R~ R"
= |det A| - WV[f](A(z,w)), (4.10)

using the notationt =7 = (A~H)T.

This derivation shows that the problem we are considering is equivalent to the problem of finding operators
V € U(L*(IR™)) for which there exist matriced € IR"*" such that

V(g )Y = u(A™ " g, 1), (4.11)
forall g € H, andt € RR.

Besides the Lie groups in Example 1.12 we introduce another Lie group for solving this problem, namely
the symplectic grou'p(n). This group is defined by

Sp(n) = {M € GL(2n) | J,MTJF = M—1}, (4.12)

with J,, as given in (4.5). Note that by definitiaW” € Sp(n) anddet M = +1 for any M € Sp(n).
Moreover, it can be shown th&lp(n) is connected, see [9]. This yields thiatt M = 1if M € Sp(n).
Furthermore, we observe, thép(n) C SL(2n), butSp(1) = SL(2). It will turn out later in this section,
that this property of the symplectic group causes the fact that solutions fardireensional problem do
not follow straightforwardly from the solution for the one-dimensional case.

To solve our problem we start with the introduction@fthe subgroup of/ (L?(IR™)) given by
G ={V e U(L*(R")) | VyemeVier3gemen : Vu(g,t)V = u(g',t)}. (4.13)

Obviously,G is a semi-group. Later we will show that everye G has an inverse element @&, which
yields thatG is a group. This group can be equipped with the strong operator topoldgydi IR")). Fur-
thermore, it is clear from (1.13) thatin (4.13) is uniquely determined. So a mappinyy) : R*" — R*"
can be defined, which dependsWre G. Thisv (V) is given byv(V)g = ¢', with g, ¢’ € IR*". Alsov(V)
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is a homomorphism for al? € G. This is shown in the following way.

Fora, 8 € IR andp1, p2, g1, g2 € IR™ we have

V*/j’(apla aqy, 0) M(ﬂp% 5Q27 O)V =
V*u(apy + Bpz, aq1 + Baz, (aq1, Bp2)/2 — (ap1, fg2) /2)V =
w(v(V)(ap1 + Bp2, aqr + Bqz), (adn(p1,q1), B(p2,92))/2).

On the other hand we also have
V*u(apr, aqu,0) u(Bpz, Bgz,0)V =

plav(V)(p1,q1),0) p(Br(V)(p2, g2),0) =
pwlav(V)(p1, q1) + r(V)(p2, 42), (1, 22)/2 — (21,42)/2),

with (z1,y1) = av(V)(p1, ¢1) and(z2,y2) = Br(V)(p2, g2). Taking these results together yields
w(v(V)(ap1 + Bp2, aqr + Bqz), (atn(p1, q1), B(p2,q2))/2) =
w(av(V)(p1, 1) + Br(V)(p2; a2), (y1, 22) /2 — (21, 92)/2). (4.14)

A necessary condition such that (4.14) holds foralb, p1, p2, ¢1 andg, is given by the linearity of (V)
forall vV € G. Consequently, (V) : IR?>" — IR*" is a homomorphism, that satisfies

Viu(p, q,t)V = u(v(V)(p, q),t)- (4.15)

Using this relation we can show, thaf)) is also injective. To do this, we assum@’)g = 0, or equiva-
lently 1(g,t)V = p(0,t). Thenu(g,t) = Vu(0,t)V* = u(0,t), which yieldsg = 0.

Furthermorey satisfies

pw(C)(p,q).t) = (CV)up,q.t)(CV) = uv(V)(p, q),t)

and

prViVe)(p,a),t) = Vi(Viup, ¢, )V)Va = ViuwV1)(p,0)t)Ve
= M(Z/(VQ)V(Vl)(pa q)7t)a

forall V1,V € U(L?*(IR™)) and|C| = 1. In the following lemma we deal with some other properties of
the mapping.

Lemma 4.1 Let G be the subgroup of/ (L?(IR")) as defined in (4.13) and let be the mapping as
defined in (4.15). Them is a continuous mapping fror&’ onto Sp(n) in the subspace topology of
G C U(L*(IR")). The kernel ot is given by Kew = {CZ | |C| = 1}.

Proof

Sinceg’ is uniquely determined in (4.13) it follows tha{)) is a non-singular mapping ofR?", or
equivalentlyv(V) € GL(2n) for all V € G. To show that/(V) € Sp(n), we takeT = v(V) and
P1,P2,q1,q2 € IR™. Then by (4.14) we getfar = 1 andg =1

w(T(p1+p2, 1 + q2), (Jn(p1, 1), (P2,42))/2) =
w(T(p1+p2, 01 + q2), (Jn(@1,91), (22, 92))/2) =
w(T(p1 +p2,q1 + @2), (TT T T(p1,q1), (P2, 42))/2).

This result must hold for alb;, p2, q1, g2 € IR™. This implies thatt'? J, TJI = I, which is equivalent
with the condition in (4.12).
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To compute the kernel of we takeV such that/(V) = I. This yieldsVuV* = p. Sincep is irreducible
this equation yield® = CI, with |C| = 1.

To complete this proof we show the continuity of the mapping. Wet» € G andW = V>, — V. Then
forall p,q € IR"
w((w(V2) =vOV1))(p.0),t) = plv(Va)(p,q),0) p(v(V1)(=p, —q),0)
= Vaulp,q, 0) W+ Vi)Viu(=p, —¢, 0)V1
with t = —(v(V1)T J.v(V2)(p, q), (p, q)). Consequently,
Ves03550Vp,gemn 1 [Va—Vill2 <6 = [[u((v(V2) — v (V1)) (P, q),t) — p1(0,0,0)]2 <e.

It can be shown, see e.g. [40], tHat(p, ¢, t) — 1£(0,0,0)|]2 — 0 implies(p, ¢,t) — (0,0, 0). Since the lat-
ter result must hold for ap, ¢ € IR™, we get||v(V2) — v(V1)]|2 — 0. This condition is not only necessary
to obtain||u(z,y, ) — 1(0,0,0)||2 — 0. Itis also sufficient, since — —(v(V1)" J,v(V1)(p, q), (p,q)) =
—(Ju(p. @), (p,q) = 0, v(V2) — v(W1). O

For solving our original problem, namely to find unitary operatord.6(/R™) that act like affine transfor-
mations in the Wigner plane, we combine (4.10), (4.11) and Lemma 4.1. This results into the following
theorem.

Theorem 4.2 LetV be a unitary operator o ?(IR") and A a linear transformation ori??". Then

WYV f(z,w) = WV[f](A(z,w)). (4.16)
if and only if
(i) V € G, with G as defined in (4.13),
(i) A€ Sp(n),

(i) A =wv(V)~T, with v the continuous mapping frofi onto Sp(n) as defined in (4.15).

Theorem 4.2 tells us under which conditions unitary operators’giiz™) act like affine transformations

in the Wigner plane, namely if they belong& However, Theorem 4.2 does not tell us explicitly which
unitary operators satisfy (4.16), e.g. by means of a representation formula for such operators. In the fol-
lowing examples we revisit three operators, that have been considered in the beginning of this section. We
show that these three operators are elemen€s ahd we compute()). These three operators will give

us some insight in the type of operators, thatonsists of. In Section 5 we will present a representation
formula that gives us an explicit formula for all operatorgin

Example 4.3 The first unitary operator we consider is the Fourier transform4iz™). We derive

(F*ulp, ¢, OF)[fl(x) = /f(w+q)ei((p,w)+(w7w)+(p>q)/2+t)dw

Bﬂ
/ Flw)el ) +@w)=ra)/2- ()41 g,
Rn

_ il(—am)t(—gp)/2+1) / Flw)ei@ ) gy

R™

forall f € L?(IR™). ConsequentlyF € G and

o(F) = JT. (4.17)
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According to Theorem 4.2 the symplectic transformation in the Wigner plane corresponding to the Fourier
transform is given by
A=v(F) T =T =7,

which corresponds with (4.4).

Example 4.4 The second unitary operator we consider is the dilation opefatoon L?(IR"), with B €
IR™*™ anddet B # 0. We derive

(Dpulp,0,)Dp)[f](x) = ®EDHEOD sz 4 B1g)
B ) it+(BTp.B79)/2) £ (5 4 B1g)

— u(BTp, B g 0)f]().

this shows that als®p € G for B € GL(n). Moreover, we have

V(Dp) = ( BOT i ) (4.18)

Now, Theorem 4.2 states that the action of the dilation operator in the Wigner plane is given by

_ BT o \* B-1 0
A=V(DB)T=<0 B—l) :< 0 BT>'

We observe that this result corresponds to the linear transformation that we derived in (4.7).

Example 4.5 The last unitary operator we consider here is the ope€tovith S € IR"*" symmetric, as
defined in (4.8). We have already seen

(Csu(p,q,t)Cs)[fI(x) = wplp+ Sq¢,q,t)[fl(x),

fort = 0. A straightforward computation shows that this result also holds $60. This result yields that
Cs € Gfor S € R™*™ symmetric. Furthermore, we have

I S
v(Cs) = ( 0 I ) . (4.19)
Theorem 4.2 can also be applied to this operator. This yields

amves = (0 7) =50,

which is the same result we derived in (4.9).

We observe that the fractional Fourier transformi@ii/R™) is a combination of the three unitary operators

discussed in the previous examples. We hav@far|a;| < m,i=1,...,n,
For,..,an = Cay -+ Ca,, Cs(0)PB(a) FCs(a)s (4.20)
with
S(a) =diagcot aq, ... ,cot ay,) and B(a) = diag(sinay, ... ,sinay,).
Starting from (4.20) a limit process determines the FRFT; = 0 or o; = 7 forsomei = 1,... ,n.

The following theorem classifies all possible element$pfr). A proof of this result can be found in
[9, 40].
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Theorem 4.6 (Bruhat Decomposition)Let G be the group as defined in (4.13) and lebe the anti-
homomorphism frory onto Sp(n) as defined in (4.15). Thenis surjective. Moreover, lel,,, v(Dg) and
v(Cs) be the real valuedn x n) matrices as given in (4.5), (4.18) and (4.19) and let

Gy ={v(Cs)| S € R, ST =8}

and
Go ={v(Dgp) | B € R"", det B # 0},

thenSp(n) is generated by, U G2 U {J,,}.

This result is a corollary of the generalized Bruhat decomposition with respect to a suitable maximal
parabolic subgroup [42].

The next corollary combines Theorem 4.2 and Theorem 4.6. It characterizes all unitary operators on
L?(IR™) that correspond to linear transformations in the Wigner plane.

Corollary 4.7 Letf,g € L?(IR"). Then
WVg(z,w) = WV[f|(T (z,w)),

for somel’ € Sp(n) if and only if
g=ClUy---UnF,

with |C| = 1 andl{; = Cs,U; = D orlU; = F,with S € IR"*™ symmetric and3 € IR™*™ non-singular,
fori=1,...,N,andN € IN.

We omit the proof of this corollary since it follows immediately from Theorem 4.2 and Theorem 4.6 by
observing that(F)~7 = v(F), v(Dp) T =v(Dp-r) andv(Cs)~T = JTv(Cs)J, = v(FCsF*).

The classification presented in Corollary 4.7 also holds for the mixed Wigner distribution. For a unitary
operator) on L2(IR™) that corresponds to a linear transformatidin the Wigner plane we also have by
polarization

WYV, Vyl(z,w) = WVIf, g](A(z, w)), (4.21)
with A € Sp(n) and forf, g € L?(IR"™).

In Section 5 this relation is used to come to a representation formula for the unitary operators as discussed
in Corollary 4.7.

4.2 The FRFT Generalized

As we have seen in (4.20) the fractional Fourier transform k™) can be decomposed into four unitary
operators, namely a chirp multiplication, the Fourier transform, a dilation and again a chirp multiplication.
Both the chirp multiplications and the dilation depend on a set of parameters. , a,,, that determine

the FRFT. Therefore, a natural generalization of the FRFT is given by

Fr,a = CCrDaFCr, (4.22)

for some|C| = 1, T, A € IR™*™, both symmetric and\ non-singular. We observe, thatis not required
to be symmetric in (4.6). Here we require the symmetnAadb obtain a symmetrical representation for-
mula for the generalized FRFT.

We observe, that (4.22) generalizes thdimensional FRFT, which was introduced in Section 3.2. Indeed,
by taking

I’ = diag(cot aq, ... ,cot ap,) and A = diag(sinay, ... ,sinay,) (4.23)
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the generalized FRFT with the definition of thedimensional FRFT.

As a consequence of Corollary 4.7, we have for all operafprs
WV[Fr afl(z,w) = WV[f](A(z,w)),
for someA € Sp(n). Using (4.17), (4.18) and (4.19) we compute straightforwardly
A = v(CrDaFCr) T =v(Cr) Tv(F) Tv(Da) Tv(cr)™T

AT ~A
- (—FAF+A1 rA ) (4.24)

TakingI’ andA as in (4.23) we arrive at the matrikxas given in (3.21).

A special property of the FRFT is that for its corresponding transformation in the Wigner plane we have
A € Sp(n) N SO(2n), the orthonormal symplectic group . One may ask whether the generalized FRFT is
also related to an orthogonal transformation in the Wigner plane. The answer to this question is given in
the following lemma.

Lemma 4.8 Let Fr o be the generalized FRFT as defined in (4.22), for certain symmetric real valued
(n x n) matricesI’ and A. ThenA as given by (4.24) is orthogonal if and only if

() A2 -T2 =1,
(i) TA~!is symmetric.

Proof
We compute

r. (X Y
AA—(yTZ )

X = TAT —TAI’AT + A2 - A7'TAT —TATA!,
Y = ATTA-TA? —TAI?A,
Z = A+ AT?A.

with

For orthonormald we should haveX = Z = I andY = 0. The conditionZ = I yieldsA~'ZA~! =
A~2, which equals (i). Obviously, Condition (i) is also sufficient to guaraifee I. Substituting (i) into
the matrixY” yields

Y=0++=TA'=A"T «—= 1A' = (TA HT.

After substituting Condition (i) and (ii) in the matriX we getX = I. So for the equatiotX = I no
further conditions are required. ]

We observe that Conditions (i) and (ii) in Lemma 4.8 are equivalent with
(AT 4T)(AT -T) =1

It follows from this relation, that we have? /2 + n degrees of freedom for choosing symmetric matrices

I’ and A, such that the matrix corresponding to&Fr A is orthogonal. Therefore, for higher dimensional
function spaces we may expect more variety in the class of operatotghat yield orthogonal symplectic
transformations in the Wigner plane. For the one-dimensional case the one-parameter family of the FRFT
turns out to be the only transformation up to a constant, that is in the class of generalized FRFT and that
acts like an orthogonal transform in the Wigner plane.
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Lemma 4.9 Let Fr A be the unitary operator oi.?(IR) as given in (4.22), with’, A € IR. ThenA =
v(Fr.a)~ T is orthonormal if and only ifFr o = C F,,, for somen € IR andC with |C| = 1.

Proof
In the case thdf andA are scalars, the conditions in Lemma 4.8 reduce to

A2 =1+T2

This equation can be parameterized by taing cot « andA = sin «, for somea € IR. Substituting
this parameterization into (4.22) leaves the FREJTup to a constant of absolute value 1, which does not
affectA. 0

As we expected from the considerations before Lemma 4.9, this lemma cannot be extended in a canonical
way to higher dimensions. This is shown by the following exampleifer 2. Moreover, by extending

the example to higher dimensions in a natural way it follows that the preceding lemma can only hold for
Fra € U(L*(IR)).

Example 4.10 We considetFr  on L?(1R?), with

r— r? cos?a+ 73 sin?a (1 —ry) cosasina and
(ry —r2) cosasina  r? sin® a + r3 cos? a

2

A— p3 cos?a+ p3 sin®a (p1 — p2) cosasina -1
N (p1 — p2) cosasina  p? sin® a + p3 cos® o ’

with o € Randp? = 1+ 12, i =1,2. Then
2.2
-2 _p2_( P1—T 0 _
e (A gl )=
and

2

PA-1 r3p? cos? a +r3p3 sinfa  (rip; —rope) cosasina \ ra-YT
(rip1 —rap2) cosasina  rip? sin® o+ r3p3 cos® a ’

Consequently, the matricds and A satisfy the conditions in Lemma 4.8. The orthogonal symplectic
transformation in the Wigner plane, that correspond&ita, is now given byA = U(a)T MU («), with

—r1/p1 0 —1/p1 0
M= 0 —7’2//)2 0 —l/pg
1/p 0 —r1/p1 0
0 1/p2 0 —r2/p2
and
cosa  Sina  cosa  sina
—sina cosa —sina  cosa
U(a) cosa  Sina  cosa  sina
—sina cosa —sina  cosa

Resuming, we have extended the FRFT to a unitary transformatiai’ 6R™) given by Fr A, where
A € R™ ™, both symmetric and\ non-singular. So the set of all generalizations of the FRFT on
L?(IR™) of this kind are given by the set

Vo ={Fra|T,A € R"™ symmetric det A # 0}.
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Furthermore, a subset &f, is defined consisting of alfr Ao € V,, that act like orthogonal transformations
in the Wigner plane. This subset is given by

W, ={FracV,|A2-T?2=I[TA=("A)"}.
For the FRFT we havé&,, ... ., € W, C V,. Moreover, for the one-dimensional case we have
Wi ={CFy|lae R, |C|l=1}

and

Wn\{ﬂfa1,~~~,an |0‘1a ., an € R, |N| = 1} #0,
forn > 2.
5. A REPRESENTATIONFORMULA

In this section we present a representation formula for all unitary openatons.?(IR™) for which there
exists a transformatiod on IR?" such that

WYV, Vgl(z,w) = WV, gl(A(z, w)). (5.1)

We observe, that for the particular choife= g, (5.1) coincides with (4.3). We have already shown that
(5.1) can only be realized for symplectic transformatignsTherefore, we start with some properties of
symplectic matrices.

Given a matrixA € Sp(n), then we can represedtby its 2 x 2 block decomposition

A= ( A e ) . (5.2)
SinceA is symplectic, it has to satisfy (4.12). This yields for the block decomposition

A = ( —Af%ﬂ _A‘%T? ) (5.3)
or equivalently

Ap A — A Ay = 1, (5.4)

Al} Aoy — AL A = 0, (5.5)

AL Ay — AT, Ay

0. (5.6)
Using these relation we prove the following less known properties of symplectic matrices.

Lemma5.1 Let A € Sp(n) be given by it® x 2 block decomposition (5.2). Then the following relations
hold

() (A3))" (Ran(4fy)) = Ran(Aiz),
(II) dim AQQ(Ker(Alg)) = dim Ker(Alg),
(lll) AQQ(Ker(Alg)) = (Rar(Alg))l,

with Ker(B) andRanB) denoting respectively the null space and range of a linear transforméatiand
with B (W) denoting the inverse image of a subsp&¢ainder the linear transformatiors.

Proof
Letv € (A%,) (Ran(AT,)). Then there exists am € IR" such thatAl, v + A%, u = 0. Hence,

ar (v AT AT uw o\ _ AL u+ AL v
v AL, AL v 0 ’
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SinceA is symplectic, we can apply (5.3). This yields

w ) Ay —Ax Af v+ Afju
v N —A12 A11 0 ’
Consequentlyy = —Ajs (AL, v + AT, u) € Ran(A4;2). On the other hand, if € Ran(A;,), then there
exists aw € IR™ such that = A;» w. Using (5.6) we get
AgQ v = AgQ Apw = A,{Q Ay w € Rar(A{Q),
which proves Property (i).
In order to prove (ii), it is sufficient to show that, a2 u = 0, for u € Ker(A;2), thenu = 0. Using (5.4),

this follows from
uZInUZA,{lAQQU—AglAlgu:O.

For proving Property (i), we take € As(Ker(Ap2)) andv € RanA;). Then there exist vectors
z € Ker(A;2) andw € IR", such thaty = Assx andv = Ajpw. For proving (iii) we use the following
results.
Given a linear transformatioB in IR™ and a linear subspadé of IR". Then
dim B~ (V) > dim V, (5.7)
BT (V) c (B=(V))*. (5.8)
For proving these relations, we pidt = B (V). Then, from
dim W = dim V N Ran B) + dim Ker(B),
it follows that
dim W = dim V + dim RanB) — dim(V + Ran(B)) + dim Ker(B) =
dimV +n — dim(V + RanB)) > dimV,
which proves (5.7). Now, let ¢ BT (V+),andy € W. ThenBy € V,z = BT uforanu € V* and
(z,y) = (BT u,y) = (u,By) = 0.

Hence,BT(V+) c W+, which proves (5.8). Our next step is to show thatiih BT (V1) = dim V+
thenBT (V+) = (B~ (V))=. If this result is established, Property (iii) follows immediately from (i) and
(i) by taking B = AZ, andV = Ran(A7;). Due to (5.8) we only have to show that

dim(B~(V))* < dim BT(V1),
if dim BT (V+) = dim V+. From (5.7) it follows that
dim(B~(V)t = n—dim(B~(V)) <n—dimV

dim V+ = dim BT (V4),
which completes the proof. ]
For deriving a representation formula we also need the following result.
Lemma 5.2 LetW be a subspace dR™ and letB be a linear transformation o™, such that

dim(B(W)) = dim(W) = d.

Then
1
Bzx)dx = / x)dz, V nY, (5.9
JrBe)de = — [ @dn Vyesm
W B(W)
with gy (B) the d-dimensional volume of the simplex generatedBw;, ... ,Beg, With e1,...¢e4 an

orthonormal basis iV .
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The proof of this lemma is omitted, since it is straightforward. We observegihéB) is positive. Fur-
thermore, ifiV is the null space an8 is non-singular, then by settingy (B) = 1 the definition ofgy (B)
is extended in a consistent way.

The last lemma we need to derive our representation formula is as follows.

Lemma5.3 Let f € S(IR") and A € Sp(n) with block decomposition (5.2). Also kim Ran(4;2) =
d > 0. Then,

) . 2 n—d

/ Fu) et (420 gy dy = _emmr / f(v) dv. (5.10)
qur(Alz)(AQQ)

Ker(A12) R" Rar(Alg)

Proof
Sincedim Ags(Ker(A;2)) = dimKer(A4;12) = n — d, cf. Property (ii) of Lemma 5.1, we may apply
Lemma5.2. This yields

/ ( / f(u)e! (.45, w) du) dv = (2m)"/? / f(Agz ) dv =

Ker(A:2) \R" Ker(Aiz)

(2m)/? .
_— v) dv. 511
QKer(A12) (A22) f( ) ( )
A22(Ker(A12))

From Fourier theory we have as a result

(2m) = /2 [ f0) do = (2m)~ =m0/ [ pw)av,
/ ]

forall f € S(IR™) and linear subspacé® of IR". By takingl?V = Aa.(Ker(A;2)) this result becomes

Fv) dv = (2m)n/2—1 / F(v) dv.

Azz(Ker(A12)) Agz(Ker(Aqz)) L

SinceAss (Ker(Ajs))+ = Ran(A;,), we have, cf. Property (iii) of Lemma 5.1,

Fv) dv = (2 7)n/2— / (o) do.

Aza(Ker(Ai2)) Ran(A;2)

In combination with (5.11) the latter result establishes the proof. |

The starting point for the derivation of our representation formula is the characteristic function of the
Wigner distribution (2.9). For the-dimensional mixed Wigner distribution, we can also define a charac-
teristic function by

M{f.g)(0,t) = (2m) /2 / Flu+1t/2) glu—t/2)e’™ du,
R

or equivalently

M(f, g)(0,t) = (2m)""/? / fu+t) g(u)el /29 gy, (5.12)
o

with £, g € L?(IR™). By the inverse Fourier transform we have

f(@)9() = (2m) 2 / Mf, g)(0, 2 — y)e~i@+0)/2 g, (5.13)

R™
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For then-dimensional mixed Wigner distribution we have

WV[f](z,w) = (2r)~3"/2 / / M{f](0,t)e O e=itw) 4g dt. (5.14)
R™ R"
Now, letV be a unitary operator satisfying (5.1). It follows from (5.14) together with (5.1) that
MV, Vgl = M[f,g)o (AT (5.15)
Combining (5.15) with (5.3) and (5.13) we arrive at

VIf(z) Vigl(y) = (27T)’"/2/M[f,g]((Afl)T(e,x_y))e*i<91w+y>/2d9
an

(277')_" //f(U—A120/2+ A11($—y)/2) X
R”L R”L
glu+ A120/2 — A1 (x —y)/2) Eo(u, 8, x,y) dudf, a.e..
for all f andg in L2(IR"), with
Eo(u,0,2,y) = exp(i (A2 0 — Aoy (x — y),u) —i (0, z +1y)/2).

This last relation only holds formally for generglg € L2(IR"), but it holds rigorously forf, g € S(IR™).
Therefore, we assumg g € S(IR™) from now on. After this derivation, we will show that the representa-
tion formula also hold foif € L2(IR"™).

By takingv = w — Aj1(z + y)/2 in the previous result, we have
VI[f1(z) Vigl(y) =

(27‘()7” / /f(v—A129/2+A11x)g(v—|—A129/2+ Ally) X
R e
exp(i B1(v,0,z,y)) dv db,

with Ey(v,0,2,y) = (A220 — Ao1 (. —y),v + A (x +y)/2) — (0,2 + y)/2. Using Relations (5.4) -
(5.6), we can writdv; as

Ei(v,0,2,y) = (A220— Az (z—y),v)+ (A120, 421 (z +y))/2 -
(A212, A1 2)/2 + (Any, A y)/2.
HenceV[f](z) V[g](y) can be rewritten as

VIf1(z) V[g](y) = et (A212,A112)/2 i (A21y,A119)/2 HIf, 9](z, ), (5.16)

with

HIf, gl(z,y) = (2m)™" / / J(o—A120/2+ A x)g(v+ A120/2+ A y) x
R B
et (A12 0,421 (2+1))/2 i (A22 0—A21 (2—¥),v) 70, 4.

Our aim is now to write}{ in a possible degenerate form. If this is established, then the representation
formulaforV f can be read off from this form. To come to such a form we substitute in the latter expression
0 = 01 + 02, with 6, € Ran(A%,) andé, € Ker(A;2). This yields

KIS g)(x,y) =
(277')_” / / /f(v—A1201/2+A11 Z‘)g(U+A1291/2+A11y) X

Ran(AT,) Ker(Az) R™

¢ (A22 01=Aa1 (@=y)v) (i (Ar2 01,421 (241))/2+(A22 02,0)) 10, 1, 6.
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We are now in the position to apply Lemma 5.3 with respect to the function

V= f(v — Aqo 91/2 + A (E) g(v + A1z 91/2 + A y) et (A22 01— Az (Iiy)’v).
By applying this lemma, we arrive at

27) ¢
—( ) / / f(U—A1291/2+A11])) X
qur(A12) (A22)

Ran(A7,) Ran(Ai2)

glv+ A1201/2+ Aj1y) %
ei((A12 01,401 (24y))/2+ (A22 01— A2:1 (z—y),v)) g, o,

with d =dim Rar{A;»). Sincev € Ran(A;,), we may substitute = A5 w with w € RanA%,), since
Ay, restricted to Rap4’,) is a linear bijection onto Rdnt;»). We obtain

HIf, gl(x,y) =
Ci / / f(Algw—A1201/2+A11 ],‘) X

Ran(AT,) Ran(Af,

g(Arow+ A1261/2+ A y) X
et ((A12 01,421 (2+Y))/2+(A22 01— A1 (—y),A12w)) g, dbs,

with

CA _ S(Alg)
(271—)11 qur(Alz) (A22)

Heres(A;2) denotes the product of the nonzero singular value$,ef or equivalently

(5.17)

5(A12) = qranaz,)(A12).-
Our next step is to substitute = w — 0, /2 andty = w + 61 /2. Then, by using (5.4) - (5.6) one has

A1201, Ao (. +y))/2 + (A2 01 — Aoy (x —y), A w) =

Ao (ta — 1), A21 (+ 1)) /2 + (A22 (t2 — t1), A12 (t1 + t2))/2 —

Aoi (z —y), Arz (L1 +12))/2 =

—(Agaty, A1at)/24 (Axata, Aiats)/2 — (Araty, Aoy ) + (A1 y, A1 ta).

With this result we can rewrité([f, g](z, y) in the degenerate form
H(f, g)(xz,y) = CA)* Holf](z) Ho[g](y), (5.18)

with

(
(
(

Ho[f(x) = / F(Arat + Ay ) et (A b AR D/2+ (A2 LAz o) gy

Ran(A7,)

Finally, combining (5.16) and (5.18) yields the degenerate formv{gt(x) V[g](v)

VIf1() VIgl(y) = C3 Ho[f1(z)Ho[g](y)- (5.19)

In a natural way this derivation results into the definition of an oper&iothat satisfies (5.1). We will
define this operator oh?(/R") and show that it indeed corresponds to the unitary operator we have been
searching for.
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Definition 5.4 Let A € Sp(n) with block decomposition (5.2). Then the linear operafor on L?(IR")
is defined as follows. Him(Ran(4,2)) > 0, then

Falfl(x) = Ca et (A Anz,2)/2
/ FArat + Ay ) et (Alz A2z t,0/2-0 (1AL An @) gy (5.20)
Ran(A7,)
forall f € L?(IR") and withC4 as given in (5.17). Furthermore, dfim(Ran(4;5)) = 0 then
Falfl(@) = V/Tdet Ay |7 (i A0 0/2 (A, ), (5.21)

forall f € L?(IR™).

The main theorem of this section can be stated as follows.

Theorem 5.5 Let A € Sp(n) andF4 be given as in Definition 5.4. Then
WVIFaf, Fagl(z,w) = WIf, g](A(z, w)),

forall f,g € L?>(IR").

Proof
If dim(Ran(A;2)) > 0 then we conclude from (5.19) and the definition/f that a unitary operatoy,
for whichW[Vf, Vg|(z,w) = W|[f, g](A(z,w)) holds for all f, g € S(IR™), must satisfy

V[f1(x) Vgl(y) = Falfl(z) Falgl(y) a.e.onR",

forall f,g € S(IR™). Hence)V defined onS(IR™) is equal taF 4 up to a constant’, with |C| = 1. Note,
thatC may depend onl. SinceS(IR") is dense inL?(IR™), we obtain

Vf = CfAfv
forall f € L2(IR™). The proof fordim(RanA412)) > 0 is completed by assuming, thetsatisfies (5.1).

If dim(Ran(A;2)) = 0, we haveAd;, = 0. Then (5.4) and (5.5) yield, that;; is non-singular and
thatAfl1 = Asy’. Moreover,A;, " Ay is symmetric. Using these observations, we compute the mixed
Wigner distribution ofF 4 f andF 4 ¢ as follows.

WIFaf, Fag)(z,w) = [det Au| /f(A1115+A11t/2) X
i

@)

g(An T — A11 t/2) e_i’ (AlTl Az 2,t) e_i (t.w) dt =
(2m)" / F(An @+ 1/2) g(Ar @ — £2) 7 (Al A ATO+ (AT 00) g,
IRn

Hence,
WVIFaf, Fagl(z,w) = WV, gl(A11 z, Ag1 © + Azp w).

This establishes the proof fdim(Ran(A2)) = 0. O

At the end of this section, we present two well-known examples of unitary operators, that satisfy (5.1).

Example 5.6 We recall, that for a set of parameters, ... ,«, € (0,7) the n-dimensional fractional
Fourier transform is given by

Caei (Bz,x)/2

]:alan[f](x) =

/ flu)e((Buw)/2=(Ca)) gy, (5.22)
V(2 [sinay - - sin o, 2

n
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with B = diag(cot g, ... ,cot ay ), C = diag(csc a, . .. ,cscay) @andCy = Cly, - - - Cy,,, WhereC,, is

given by (3.2). The symplectic matrix, that corresponds to this transform in the Wigner plane is given by
the rotation matrix,, ... »,, as givenin (3.21). We observe, that in this particular céges non-singular.

This yieldsgker(a,,)(A22) = 1 ands(A;2) = det(A;2). Using these simplifications and the substitution

u = Aot + Ajrx, Formula (5.20) simplifies to

Falf](z)

—i (A Ay,
_ e (Al Az, 2)/2 / f(u) ol (A2 AT wyu)/2— (o, A w)) du.
(27)"72 /[ det A

Taking A11 = Age = diag(cos v, ... ,cosay,) andA;e = diag(—sinayg, . .. , —sinay, ), the latter repre-
sentation formula turns into thedimensional FRFT as given in (5.22).

IR™

Example 5.7 The second example is the unitary operatorZ3/R?), which corresponds in the Wigner
plane to the symplectic matrix
00 O
0 0 -1
A= 01 0
10 0

Remark, that all matrices in the block decompositiomadire singular.

1
0
0
0

It can be verified in a straightforward way, thgder(a,,)(A22) = 1 ands(A;2) = 1. By substituting the
block matrices of4 into (5.20), the unitary operator, we are dealing with, reads

Falflforas) = <= [ foneiee as
R

which is the one-dimensional Fourier-transformfdfc;,-). We observe, that this operator can also be
derived from (5.22) by taking; — 0 andas — 7/2.

We observe that in [9] and [10] also a representation formula is presented for unitary operators that corre-
spond to symplectic transformations in the Wigner plane. However, both references do not give a formula
that can also handle symplectic transformations with a block decomposition, that consists of four singular
block matrices, which is the case in the second example.

6. LOCALIZATION PROBLEMS IN PHASE SPACE
A celebrated problem in signal processing is the problem of maximizing energy in both time and frequency.
This problem already has received much attention in the literature, see e.qg. [6, 8, 12, 18].

In this section we discuss two classical problems. The first problem concerns the maximization of energy
of time-limited signals within a frequency band, i.e. finite interval in the Fourier domain. For this problem
we revisit a series of papers by Slepian and co-workers, [17, 27, 35]. Furthermore, we give a rigorous proof
of a conjecture by Slepian [34]. The second problem concerns the maximization of energy within a disk
in the Wigner plane, i.e., the phase space related to the Wigner distribution. Although this problem is dis-
cussed in several papers [6, 8, 9, 14], we also present alternative proofs and additional results in this section.

In Section 7 the generalized FRFT will be used to relate several classes of energy maximization problems
in phase space to the two classical problems, that are discussed in this section.

6.1 Slepian’s Energy Problem
The first problem to be considered in this part of the chapter is the concentration of energy in a certain
frequency band of a time-limited signal. So we considerffar L?([—xo, xo]), for some fixedry > 0, the
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ratio

Tlfepa
Ef(wo) = W’ (6.1)
R

with [—wo, wo] the frequency band we are looking at in this problem. Obviousk(w,) > 0, for all
[ € L?(IR). Moreover, Corollary 1.10 yieldE s (wy) < 1.

Since E¢(wo) < 1 forall f € L2?(IR), the problem arises of maximizing this energy ratio over all
f S LQ([—J,‘Q,J?()D.

For solving this problem we introduce two operators. The first operator we discuss is the integral operator
B(wo) : L*(IR) — L?*(IR). Forw, > 0 fixed, this operator is given by

\/7/sm wo(x —u) f(u)du, 6.2)
(x —u)

for all f € L?(IR). We observe that

F X 0] (@) = \/g sin(woz)

T

According to Lemma 1.6 the latter result yields
FB(wo)f = X[-wowo) - Ff a.e.onIR. (6.3)

HenceB(wy) is a Hermitian projection operator; in fact it is an orthonormal projection.

The second operator we introduce in relation to the energy localization problem is the prafection
L*(IR) — L*(IR). Forz, > 0 fixed, this operator is defined by

_ [ f@), i ] < o,
By combining the introduced operators we arrive at
bm(wo(c u)) <
PlanBlanPlanfle) = { V2L PSRl < an ©5)
0 |.’E| > o,

forall f € L?(IR). Since the integral kernel in (6.5) is It? ([~ ¢, 70]?), we have thaP (x()B(wo)P(xo)
is a Hilbert-Schmidt operator. HencB(xo)B(wo)P(z0) is a compact operator. AlsB(zo)B(wo)P (zo)
is positive definite or.?([—zo, o)), which is shown as follows. Using (6.3) we derive

(P(z0)B(wo)P(x0) f, )2 (B(wo)P (o) f, P(x0)f)2

(FB(wo)P(xo) f, FP(x0) )2

(X [—wo,wo] - FP(xo)fy, FP(x0)f)2

(X[=wo.wo] * FP(@0) f5 X[=wo.wo] - FP(x0)f)2 = 0.

If we have, for some € L?(IR),

(P(w0)B(wo)P(z0)f, )2 =0,

then FP(zo)[f](w) = 0, for almost allw € [—wq, wo]. However,FP(x¢)f is holomorphic by Theo-
rem 1.9. This yields in combination with the latter resfilP(z()f = 0, or equivalentlyf(z) = 0 for
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almost all|z| < zo.

Following Pollack and Slepian [27, 34], we consider possible solutRns) fmax, With fuax € L2(IR),
that maximize (6.1). To find these solutions we derive

E’P(mo)fmﬂx (WO) ' (-Fp(xO)fmaX;fP(xO)fmax)Q = (X[—wo,wo] ' fp(xO)fmaxva(xO)fmax)2~

Equivalently, using Parseval’s theorem and (6.3),

E’P(Io)fmax (UJQ) : (P(xo)fmamP(xo)fmax)Q = (B(WO)P(xO)fnlaX7P(xﬂ)fnlax)Q-

Sincef .« IS a stationary solution of this equation, it must satisfy

B(WO)P(mO)fnlax = )\’P(xo)fmax; (6.6)

a homogeneous Fredholm equation of the first kind. In f&Et;o) fmax Should be an eigenfunction of
B(wo) andEp (5) f..... (wo) is the largest eigenvalue &(wo).

We recall thatP (z¢)B(wo)P(z0) is compact. Furthermore, it is positive definite bA([—z¢, zo]). These
considerations yield that solutio®z) f for equation (6.6) only exist for a discrete set of real positive
values of), with the properties that

1> > A > > ...

andlim;_.., A\r, = 0. In general, the eigenvalues of a compact Hermitian operator are not necessarily
distinct. However, for this particular Fredholm operator, Pollack and Slepian have shown in [27], that its
eigenvalues are distinct. Also Slepian showed, see [34], that the kernel of the integral opésator
commutes with the second order differential operator

d

D(xowo) = %(1 - xQ)% — (wowo)?z>. (6.7)

Since both operators have the same spectrum, they must have the same eigenvectors.

Differential operator (6.7) is a well-known operator. It arises on separating the 3-dimensional scalar
wave equation in a prolate spheroidal coordinate system. Its real-valued eigenfungtignsys, ...

are known as prolate spheroidal wave functions (PSWF), see [7]. We observe, that the concentration of
energy problem is solved b9 (z0)vo and thatEp ;) 1. (wo) is given byg.

Some useful properties of the PSWF have been derived in the past. We present some of them in the
following lemma. For a proof of these properties we refer to [17, 27, 35].

Lemma 6.1 Let ¢, Y1, ¢, ... be the eigenfunctions 0% (xo)B(wo)P(x¢) and let their corresponding
eigenvalues be given by, A1, Ao, .... Then

() ¥r € L*([~wo,wo]) Vren,

@) | on@)dn(@)de = Mdpn,

—X0

i) [ ¥r(2)n(z) dz = Sk p.
R

Other properties for the PSWF follow from this lemma, e.g. Theorem 1.9 and (i) yield thatholomor-
phic. However, this lemma does not provide us with an explicit expressionfand consequently for
Ax. More insight in the behaviour of the eigenvalugsis given by a conjecture of Slepian, which can be
proven rigorously by using the following classical result, that is due to Landau and Widom, see [18].
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Lemma 6.2 Let H(zowo) : L*(IR) — L?(IR) be given by
H(xowo) = P(.ﬁowo)B(l)P(.ﬁowo).

Furthermore, letN (H(xowp),p), 0 < p < 1, denote the number of eigenvaluesHfrowy) which are
greater than or equal tp. Then

2%00]0 1

+ = 1085(%) log(zowo) + R(wowo), (6.8)

N(H(xOWO)ap) = 2

71'
with R(z) of ordero(log(z)) asz — oc.

In [34] Slepian already noted that this lemma proves his conjecture on the asymptotic behavior of the
eigenvalues, k € IN. Here we prove Slepian’s conjecture in a rigorous way.

Theorem 6.3 (Slepian’s conjecture)Let P (xzq)B(wo)P(zo) be as defined in (6.5) and I8, k£ € IN, be
its eigenvalues. Then for all e € (0, 1) there exists aM € IN such that

(i) A\ <efork > (1+6)22e20, andzowy > M,
(i) 1— X\, <eandl <k < (1—6)2e2 for zgwy > M.
Moreover, for alle > 0 andé € IR, there exis > 0 andM € IN such that
(i) [\ — (1+e™) 7| < for [k — 2220 — £og(zgw))| < & log(zowp) andzowy > M.

Proof
We definepy (x) = ¥, (z/wo). Then, for|z| < zowo, we derive

A (@) \f / = ““’;“_xu;:%)m(uwo) du

Zowo

Slnx—v
d
\f/ vy O
—ZTowo

or equivalently

H(zowo)dr = Medk Yienw\{o}-
Consequently, Lemma 6.2 can also be applied on the eigenval®&s:@f53(wo)P (zo).
Let0 < e < 1and0 < ¢ < 1. We takeM > 0 such that

log ( ) log x ﬂ'R(x)
21w 2x

5> , (6.9)

forz > M. Then

2zowo 1 1—¢ 2900600

N(H(zowo), ) = + — log(T) log(zowo) + R(xowp) < (14 6)——

s

for zowo > M. Consequently, it > (1 + &) 2222 thenN (H(zowo), €) < k. This result yields\,, < e.

For proving Property (ii) we also takél > 0 such that (6.9) holds. Then

1- 2xow
_ F1 (T)log(xowo) + R(wowo) > (1 — 5)%,
for zowy > M. Therefore, ifl < k < (1 — )22, thenN(H(wowo), 1 — £) > k, which leads to
1— X <e.

N(H(xowo), 1— E) = 2%0&]0
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Finally, lete > 0 andf € IR. Furthermore, také > 0 andM € IN such that

0
5<ilog(1+€+ge ) R(x)
i

2 1—¢c—ce ™ logz’

for z > M. Then we have

N(H(Z‘Qwo), (1 + 6779)_1 + 6) =

2:30(4}0 1 0 1—e— 66771’9
o (o7 S ) tsten) + Rezoun) =
2 0 1 1 0
x;)rwo 4 - log(zowo) — = log (%) log(xzowo) + R(xowo) <
2%0&)0 0
Y + p log(zowo) — dlog(zowo)

for zowg > M. Consequently, if

k> 2%0&)0

0
+- log(zowo) — dlog(zowo),

or equivalently, if

2 0
Towo | —log(wowo) — k < dlog(zowo),

then\y — (1 4+¢e™)~! < e.

In the same way, we derive

N(H(zowo), (1 +€™) ! —¢) =

9 P 1 1 o
_x;)rwo + —log(zowo) + —5 log (%) log(zowo) + R(zowo) >
2xowo

0
+ = log(zowo) + 0 log(zowo)
for xgwg > M. Therefore, if

k< 2%0&)0

0
+ - log(zowo) + 0 log(zowo),
or equivalently, if

2%‘0&)0 0

k - log(zowo) < ¢ log(zowo),

™

then), — (1 + e™)~1 > —¢. Combining these two results establishes the proof of Property (jii). O

From this theorem it follows, that for largeyw, approximately the firstzow, /7 eigenvalues that cor-
respond to the PSWF attain a value close to unity. For index numbers in a region argundn the
eigenvalues plunge to zero and attain values close to zero afterwards. The number of eigenvalues in the
region where the eigenvalues decrease from close to one to close to zero is proporfienajie. Re-

mark, that the eigenvalues depend on the prodgct.

In Figure 1 the eigenvalues &f(zowg) are depicted for a}owo = 25 and b)xowy = 50 respectively. We
observe that in both figures the number of eigenvalues close to unity is ginby/7. Forzowy = 25,
approximately the first 16 eigenvalues are close to unity. alhap = 50, this number is approximately

32. The number of eigenvalues in the plunge region in Figure 1.b is approximately 1.25 times the number
of eigenvalues in this region in Figure 1.a. This corresponds with the observation we have made after
Theorem 6.3, namely that the multiplication factor is approximately givelo®$2/ log 16 = 5/4.
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eigenvalue
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(a) index number (b) index number

Figure 1: Eigenvalues corresponding to the PSWF fara), = 25, b) zqwo = 50.

6.2 Energy Concentration on a Circle in the Wigner Plane
The second problem to be considered is the concentration of energy in a circular region in the Wigner
plane. So we consider a region

Cr={(z,w) € R*|2* +w? < R} (6.10)

and search for functiong € L?(IR) for which

Ey(R) = / WV, w)dade | | 13 (6.11)
Cr

is maximized. An upperbound fdf;(R) follows from an upperbound farVV[f] which can be derived
from (3.16) in the following way

WV[fl(z,w)] = [(M-oTof, MUTFf)|/7 < || f]3/7.

This result yields
Es(R) < R*.

Of course a better and more natural upperboundig(R) would be given by 1, i.e., if£;(R) is the total
amount of energy of . A conjecture of Flandrin states that such an upperbound indeed exists, not only for
integrals over circular regions, but in general for integrals over convex regions, see [8]. As far as we know,
a proof of this conjecture has not been given yet. For non-convex regions this conjecture does not hold,
which follows from various examples in [28].

We observe that from (2.14) it follows that
Ef(R) — 1 (R — o0),

ifalso f € L'(IR) or f € L'(IR). Since the Wigner distribution can attain both positive and negative
values, this result is not sufficient to prove Flandrin’s conjecture.
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In order to solve this energy localization problem, we introduce the localization opéiatpon L?(IR),
associated with a bounded symbol &3, by

(L(0)f,9)2 = o(z,w) W[f, gl(z,w) dz dw, (6.12)
1

for all f, g € L?(IR) and withWWV[f, g] the mixed Wigner distribution of andg. Then

Ep(R) = (L(0)f, f)2 /([ )2,

with ¢ = x¢,,. Furthermore, we observe thato) is a Weyl transform with symbet € L?(IR?), see [44].

It can be proved, see e.g. [44], thats) is compact forr € LP(IR?), 1 < p < 2. Moreover, Flandrin
showed in [8] thatl(c) is self-adjoint foro real-valued. This means théfc) is a compact Hermitian
operator onL.2(IR) for real-valuedr € LP(IR?), 1 < p < 2. Consequently, the eigenvectors(fr) can

be chosen to form an orthonormal basis £3( IR), the set of real-valued eigenvalues is countable and the
only possible accumulation pointis 0.

These considerations yield that the functif,., that maximizesZ; (R) is given by the eigenvecta,
of L(xcy) corresponding to the largest eigenvalgeof L(xc ). Moreover,Ey, . (R) is given by).

The eigenvectors of (¢, ) are given by the Hermite functiorts,, & € IN, as introduced in (3.11). This
result was already given by Janssen in [14]. In the following lemma we come to the same result using a
proof based on a property of the fractional Fourier transform.

Lemma6.4LetCr = {(z,w) € R?|2? +w? < R} and L(xc,) as defined in (6.12). Then the
eigenvectors of (x¢,,) are given by
{hk | ke lN}

with h;, the Hermite functions as defined in (3.11).

Proof
Sinceyc,, is rotation invariant, we have for all € [0, 27)

(L(xcn)Fof. Fag)s = / WVIFo f, Fag)(z,w) dr du

Cr
/ WVY[f, 9](Ra(x,w)) dx dw
Cr

/ WV g, ) dirdeo = (£(xcn) f9)2.

Cr
with R,, the rotation matrix as given in (3.18). Consequently, we have far all[0, 27)
Fal(xcr) = L(xcr)Fa-
Let now¢y, be an eigenvector af(x ¢, ) and) its corresponding eigenvalue. Then
L(xcr)Fate = Fal(XCr)Pk = AeFadk-

This shows, that ity is an eigenvector of (x¢,, ), then alsaF, ¢y, is an eigenvector of (x¢,,) for all
a € [0,27). SinceL(xcy) is compact, the set of eigenvectors

{faqslc | (OAS [0727)}
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should be finite or countable. This can only be realizegkifs an eigenvector of,, for all « € [0, 27),
i.e., ¢ is a Hermite function, following (3.13). ]

The eigenvaluesy, of L(xc,) can be expressed in terms of Laguerre polynondiglgiven by

k
Li(x) = Ee’” (%) (e"a"). (6.13)

In the following lemma we present a recurrence relation involving Laguerre polynomials that we shall use
to compute the eigenvalugs.

Yy
Lemma 6.5 Definel,,(y) = /e‘”/QLn(x) dz. Then
0

Lis1(y) = —Iu(y) + 2672 (Lu(y) = Luta(y)) - (6.14)

Proof
First we observe thdt), (x) = L;, , ; (x)+ Ly (x), which follows from the recurrence relations for Laguerre
polynomials, and.,,(0) = 1, see e.g. [37]. Integration by parts yields

Y

L(y) = 2—2L,(y)e ¥/?+ 2/6’3”/2L;(x) dx
0
)
= 2-2L,(y)e Y% +2I,(y) + 2 / e 2L (x) da.
0
We conclude

Yy
2/€7I/2L%+1(£E) de = —I,(y) + 2L, (y)e ¥/? — 2.
0
Applying the same procedure dp,; yields

y
Lii(y) = 2—2L,1(y)e ¥+ 2/6_‘%/21/:#1(%) dr,
0

or equivalently

Y

2/6730/2%,“(%) dv = Ing1(y) +2Lnga(y)e ™/ - 2.
0

Combining these two results completes the proof. |

Using this lemma we come to the following recurrence relation for the eigenvalu¥sef, ).
Theorem 6.6 Let{)\, | k € IN} denote the set of eigenvaluesifyc,, ), with

Cr = {(z,w) € R? | 2* + w* < R},
with R > 0. Then

o« o= (1-¢"),

o Nor1 = Ak — (1) e (Liy(2R?) — L1 (2R?)) , k € IN\{0}.
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Figure 2: Eigenvalue behavior of the energy localization problem on a disk with r&dius/3.

Proof
The Wigner distributionVV[hi](z,w) can be expressed in terms of Laguerre polynomials, see e.g. [44].
This relation with Laguerre polynomials is given by

WY (@, w) = 2(=1)F (2m) 7 Li(2(a? + w?)) e+,
Using polar coordinates we get

Ak

(L(xcr)hi, hi)2 = /WV[hk](x,w)dxdw
Cr

R 1)k 2R?

= 2(-1)" ka(2p2)e_”2dp= — e "2 Ly (x) dx
/ >/

= (-1)*I(2R%)/2.

Consequently, we have

2R?
No = Io(2R?)/2 = 1/2 / e?/2 dy = (1 - e_Rz) :
0

Moreover, Lemma 6.5 yields
Moyt = (DM (2R?) /2
= (=1)*L(2R%)/2+ (=1)*"e™®* (L1(2R?) — Ly41(2R?))
= M — (=1)Fe R (Lp(2R?) — Ly11(2R?)) .
This gives the recurrence relation for the eigenvalues. m]
In Figure 2 the first 30 eigenvalues as given in Theorem 6.6 are depictéti for/3. To emphasize the

eigenvalue behavior a spline interpolation function is used in this figure. As we have seen before for the
eigenvalues Theorem 6.3, the first eigenvalues are closg tioater the values plunge down towards zero
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and remain close to zero for larger index numbers. For the Wigner distribution, the eigenvalues can be
negative, which can be observed in Figure 2 as well. Moreover, starting from a certain index number the
eigenvalues alternate around zero.

7. LOCALIZATION PROBLEMS AND THE GENERALIZED FRFT

In this section we return to the fractional Fourier transform as introduced in Section 4.2. This generalized
FRFT is used to solve two classes of energy localization problems that are related to the two problems,
which we discussed in the previous sections. These two classes of localization problems are related to the
discussed problems via the Weyl correspondence.

Although the problems we discuss concern signalsifi) we consider first localization problems for
signals inL?(IR™). For this we generalize the Weyl correspondence (6.12) to higher dimensions. Then a
bounded symbat on IR?" is associated with the localization operafdrr) on L?(IR™) by

(L(0)f,9)2 = o(z,w) W[f, gl(z,w) dz dw, (7.1)
1

forall f,g € L?(IR"). Consequently, i = xq, with Q C IR*", then

(L(o)f, f)2 = /W[f](x,w)dxdw
Q

represents the energy ¢fin the Wigner plane within the regidn.

Using the generalized FRFFr A as introduced in (4.22) we compute
(Fral(@)Frafi9)2 = (L(O)FE S FT A9)
| [ o) WiF sf F aglww) dod

R™ IR™

[ [ ot wis g @w) deds

Rn Rn

o( Al ) WIf, 9] () dar o
R?L R?L
= (L(oa)fr9)e,

with o4(z,w) = o(A(z,w)) andA as given in (4.24). Now, assuniey. |k € IN'} is the set of eigenvectors
of L(o) and{ )i | k € IN} the set of corresponding eigenvectors. Then

L(oa)Frave = (Fral(o)Fia)Fr.adk
= FraL(o)pr = MFr.adk. (7.2)

Consequently, the eigenvectors and eigenvalugX ef, ) are given by
{Fradr | ke N} and {\; |k € IN}

respectively. IfC(o) is a compact operator, both the eigenvectarsind Fr a ¢y, form an orthonormal set
in L2(IR™).

7.1 The Rectangle/Parallelogram Case and the Rihaczek Distribution
The first problem we consider is to maximize
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for f € LQ(]R), with o = X[=0,20] X [~wo,wo] *

This problem may seem to be similar to Slepian’s energy problem in Section 6.1. However, results pre-
sented for Slepian’s energy problem cannot be related to the problem of localizing the energy on a rectangle
in the Wigner plane.

The two problems can only be related to each other if (7.3) is maximized over absolutely integrable
fe L%Omp(ﬂ%), with supf f) = [—zo, zo]. Using these constraints (7.3) is equal to (6.1), which follows
straightforwardly from Theorem 2.3. If we do not require these constraints on the maximizing fufiction
we are only provided with some asymptotical results on the eigenvalu&s¢f see [12, 28].

A less trivial relation with Slepian’s energy problem is given for

0 = X[—xo,.’l)o]x[—wo,wo] * 90) (74)
for somexg,wy € IRT and wherep is given by
—2izw

plr,w) =e
We observe thato||» < 1, and sar € L*°(IR?).
The following lemma shows that the localization operai@s), with o as in (7.4), can be rewritten as an
energy density operator related to the Rihaczek distribution, see [29].

Lemma 7.1 Let £(o) be the localization operator as defined in (7.1), witthe symbol as given in (7.4).
Thenforallf,g € L?(IR)

(L(0)f. )2 = / / Xm0l [ on) (2 WV RLF 91 (2, 0) dt doo,
R IR

with R][f, g] the mixed Rihaczek distribution given by
RIS, gl(x,w) = f(z)§(w)e ™" V2. (7.5)

Proof
We observe that

([’( )f7 )2 = (UO * @, WV[.ﬁ ])2 = (007 © * WV[.ﬁ g])27
with o9 = X[ WO]X[_W wo]- This expression can be rewritten by

_ o —2it(w—q) —
2772/// o(p,q)f(x —p+t)glx —p—t)e dtdpdq =

R R R
5 2/// —(u40)/2,q)f(x +u)g(x + v)e =D gy dy dg =
™

R R R

—iqx PYIRY —iu(w—q) ww —

47r2/// flu e dudv dq

RRR

—1iqx ~ 1 —iwT —iwT iqx

or [ € i - 03 da = 5o G [ fla)en dg -
m 27

R R
f(@)g(w)e™* [V 2.

This yields(L (o) f,9)2 = 5= Jg ﬂfzao(x,w) f(@)g(w)e ™ da dw O

Using this lemma we prove the following theorem, that rel#tes), with o as in (7.4), with the localization
operator of Slepian’s energy problem.



42

12
1 1
0.8 0.8
Iy Iy
S 06 g 06
=} =}
g 04 g 04
0.2 0.2
0 0
-0.2 02
0 05 1 0 0.5 1 15
(a) time (b) time
7 0
6
5 -2
> >
o o
g*
g3 g
£, E
-6
1
0 -8
0 1 2 3 0 0.2 0.4
(© time (d) time

Figure 3: Localisation on a rectangle/parallelogram: figr & 1 on|[0, 1] x [0, 1] and fig. b, ¢, dp 4 with
A=—-1/T,A=—-2/T andA = —1/T? respectively.

Theorem 7.2 Let L(o) be the operator as in (7.1), with the symbol as in (7.4). Then
L(o)* L(o) = P(x0)B(wo)P(x0),
with B(wg) andP(z) as defined in (6.2) and (6.4) respectively.

Proof
From the preceding lemma it follows immediately that

LO @) = X (@) 7= [ 867 do = Plao)Ble).

o
Since bothP(zy) andB(wy) are projection operators, we have
L(o) L(o) = P(x0)B(wo)P(xo).
O
Remark, that although € L>°(IR), L(o) is compact foro as in (7.4). This follows from the fact that
L(o)*L(o) is compact. Furthermore, we observe that the result of Theorem 7.2 was already given in [8].

However, our aim is not to investigate existing time-frequency distributions, but to consider the generalized
FRFT acting on these distributions. In this context, we return to the first part of this section.

We have seen that the eigenvalue€£¢(§) andL (o 4) coincide. In a direct way, we can also show that the
eigenvalues of(0)*L(c) andL(c4)*L(c4) coincide. This yields that the singular values@ir) and
L(c4) are the same. These singular values are given by

sk = VA,

where)\; denote the eigenvalues of the opera®dro)B(wo)P(zo). Since these, satisfy Theorem 6.3,
a similar result holds for the singular values. Moreover, the asymptotical behavipaofd \; is similar.
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Figure 4: Localisation on a circle/ellipse: fig. @)= 1 on {(z,w) € IR? | 2% + w? < 1}, fig. b, ¢, d)oa
with A = —1/T, A = —2/T'andA = —1/I"? respectively.

The eigenvectors af (o) do not follow from Theorem 7.2. Only the eigenvector€es)* £(o) are known,
namely the prolate spheroidal wave functiafys As before we can also show that the eigenvectors of
L(oa)*L(c4) are then given byFr a1. They can be computed as the eigenvectors of the operator

DI((EOwo) = J—'F,AD(xowo)Ffi}A,
which is also a second order differential operator that commutesayith )*L£(o4).

In Figure 3.b,c and d the domain ef; is depicted instead of, with the substitutionsA = —1/T,

A = —-2/T'andA = —1/T? and withT" = 3 in (4.24). We observe that with these substitutidlis 4)
represents the energy of the Rihaczek distribution within differently orientated parallelograms in phase
space. The singular values 6fo 4 ) for all A related to these parallelograms are the same and are given
by v/Ax, with \;, as in Theorem 6.3.

7.2 The Circle/Ellipse Case

In Section 6.2 we already discussed the energy localization problem on a circle. Moreover, we studied the
operatorL(xc,,), with Cr a circle in the Wigner plane concentrated around the origin and with radius

R > 0. Itturned out that its eigenvectors are given by the Hermite functigndefined by (3.12), and that

the corresponding eigenvalues are given by Theorem 6.6.

It follows from (7.2), that the eigenvectors @f{c4), with A as given in (4.24), are given b¥r ahx,
k € IN. The eigenvalues of (o 4) are given by the recurrence relation in Theorem 6.6.

In Figure 4.b,c and d the domain ef; is depicted witho the characteristic function @'z, with the sub-
stitutionsA = —1/T, A = —2/T andA = —1/I'? and with[' = 3. With these substitutiong(o 4)
represents the energy in the Wigner plane within differently orientated ellipses. The energy localization
problem for each of these ellipstail areas is now solved by the eigenvect®isa i, using the corre-
sponding substitutions, and the eigenvaligs
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