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ABSTRACT

Applying the fractional Fourier transform and the Wigner distribution on a signal in a cascade fashion is

equivalent with a rotation of the time and frequency parameters of the Wigner distribution. This report

presents a formula for all unitary operators that are related to energy preserving transformations on the

parameters of the Wigner distribution by means of such a cascade of operators. Furthermore, such operators

are used to solve certain type of energy localization problems via the Weyl correspondence.

1991 Mathematics Subject Classification: 20C35, 33D45, 42A38, 43A65, 94A12.

Keywords and Phrases: Fractional Fourier transform, Heisenberg group, Wigner distribution, symplectic

transformation, energy localisation.

Note: Work carried out under project PNA 4.2 ”Wavelets”.

1. INTRODUCTION

For analysing signalsf ∈ L2(IR) one may use the Fourier transform. This transform maps a functionf to
a functionf̂ . For a function of time (a signal),̂f represents the intensity of the fluctuations (frequencies) in
the signalf . Analysing a signal in this way is called spectral analysis. Besides the representation in timef
and the representation in frequencyf̂ , there exists transformationsf 7→ f̃ to represent a signal both in time
and in frequency. Amongst others a well-known time-frequency transformation is the Wigner distribution.

The Wigner distribution is defined by

WV [f ](x, ω) =
1
2π

∫
IR

f(x + t/2)f(x− t/2)e−itω dt, ∀x,ω∈IR (1.1)

The Wigner distribution is in fact the Fourier transform of the function

Rf,x(t) = f(x + t/2) f(x− t/2)/
√

2π.

Consequently, the Wigner distribution is non-linear and it also represents a signal redundantly in time and
frequency. Therefore, a signal can be reconstructed from its Wigner distribution, but this cannot be done in
a unique way. The Wigner distribution is discussed extensively in Section 2.

A representation of a signal in a domain different from the time or frequency domain is given by the
fractional Fourier transform (FRFT). This transform is given by

Fα[f ](x) =
Cα√

2π | sinα|

∫
IR

f(u) ei ((u2+x2)·(cotα)/2−ux csc α) du, (1.2)
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for some parameterα 6= kπ, k ∈ ZZ and a constantCα, with |Cα| = 1. This transform may seem a bit
peculiar, however representation (1.2) can be derived by defining

Fα = Fα, (1.3)

whereF denotes the Fourier transform. In Section 3 we discuss the definition and properties of the FRFT.
There we also show that taking the Wigner distribution ofFαf corresponds to the Wigner distribution of
the functionf followed by a rotation over an angleα in the Wigner plane.

The rotation property of the FRFT inspired mathematicians in the past to study also other transformations
in the Wigner plane, that correspond to linear operators onL2(IR). However, already before the introduc-
tion of the FRFT De Bruijn proposed in [2] a class of operators that are related to linear operators in the
Wigner plane. In Section 4 we study this problem for then-dimensional Wigner distribution. Furthermore,
we show that the FRFT is a special element of this class, since it is the only transformation that corresponds
to an orthogonal symplectic transformation in the one-dimensional case.

We derive a classification of all unitary operators onL2(IRn) that correspond to linear energy preserving
transformations in the2n-dimensional Wigner plane. Using this classification we present a representation
formula for these unitary operators. This is done in Section 5.

Sections 6 and 7 are devoted to a celebrated problem in signal analysis, namely energy localization in time
and frequency. In Section 6 two well-known problems are discussed rigorously, namely maximalization
of the energy of time-limited signal within a compact frequency interval and maximalization of a signal’s
energy within a disc in the Wigner plane. In Section 7 we show how a generalization of the FRFT can be
used to solve a class of localization problems in the phase plane, if the solution of one problem in such a
class is known. This procedure is illustrated by using it for the classical localization problems of Section 6.

The sequel of this introductory section is devoted to mathematical preliminaries, namely the Fourier trans-
form and Lie group theory.

1.1 The Fourier transform
To obtain information on the frequency behaviour of a function we may consider its Fourier transform.
This transform computes the frequency spectrum of a given function. We discuss the Fourier transform
first for functions inL1(IR) and subsequently for functions inL2(IR).

Forf ∈ L1(IR) its Fourier transform̂f is given by

f̂(ω) =
1√
2π

∫
IR

f(x)e−iωx dx. (1.4)

Formally, an inverse Fourier transform exists and is given by

f(x) =
1√
2π

∫
IR

f̂(ω)eixω dω. (1.5)

However, convergence of the integral in (1.5) is not guaranteed. Indeed, the following example shows that
f̂ is not necessarily inL1(IR) if f ∈ L1(IR).

Example 1.1 Let f ∈ L1(IR) be given by

f(x) =
{ √

2π e−x, x ≥ 0,
0, x < 0.

Then its Fourier transform is given by

f̂(ω) =
1

1 + iω
,

which is not inL1(IR).



1. Introduction 3

Following [3, 11], we present additional conditions onf and f̂ , that are necessary for a well-defined
inversion formula.

Theorem 1.2 Letf ∈ L1(IR) and f̂ ∈ L1(IR). Then

f(x) =
1√
2π

∫
IR

f̂(ω)eixω dω a.e., x ∈ IR.

Moreover, the latter results holds for everyx ∈ IR if alsof ∈ C(IR).

A useful property of the Fourier transform is given by the following lemma.

Lemma 1.3 Letf ∈ L1(IR), thenf̂ ∈ C(IR) and‖f̂‖∞ ≤ ‖f‖1/
√

2π.

Proof
Let f ∈ L1(IR). Then

|f̂(ω1)− f̂(ω2)| =
1√
2π

∣∣∣∣∣∣
∫
IR

f(x)(e−iω1x − e−iω2x) dx

∣∣∣∣∣∣
≤ 1√

2π

∫
IR

|f(x)| · |1− ei(ω1−ω2)x| dx

=

√
2
π

∫
IR

|f(x)| · | sin((ω1 − ω2)x/2)| dx.

Applying the dominated convergence theorem on the latter result yields

|f̂(ω1)− f̂(ω2)| → 0 (ω1 → ω2),

which shows that̂f is continuous. Furthermore, we have

|f̂(ω)| ≤ 1√
2π

∫
IR

|f(x)e−iωx| dx =
1√
2π

∫
IR

|f(x)| dx = ‖f‖1/
√

2π.

Taking the supremum overω establishes the proof. 2

In the sequel of this report we will focus ourselves on functions inL2(IR). Starting form the defini-
tion of the Fourier transform onL1(IR) the Fourier transform onL2(IR) can only be defined iff ∈
L1(IR) ∩ L2(IR). To come to a definition of the Fourier transform onL2(IR) we will define the Fourier
transform first on a dense subspace of bothL1(IR) andL2(IR) and then extend it uniquely toL2(IR).

A dense subspace of bothL1(IR) andL2(IR) is given by the Schwartz classS(IR), see [32, 33].

Definition 1.4 The Schwartz classS(IRn) is the space of rapidly decreasingC∞-functions onIRn, i.e.,
for eachk, l ∈ IN

sup
|α|≤k,|β|≤l,x∈IRn

|xβ1
1 · · ·xβn

n ∂α1
x1
· · · ∂αn

xn f(x)| <∞ ∀f∈S(IRn).

It can be shown that the Fourier transformF , when restricted toS(IR), is a bounded linear mapping on
S(IR) as a subspace ofL2(IR). Moreover,F is an isometry onS(IR), with respect to the inner product in
L2(IR), see [11, 36]. So, we have Parseval’s formula

(f, g)2 = (Ff,Fg)2,
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with (·, ·)2 the inner product inL2(IR).

SinceS(IR) is dense inL2(IR), F can be uniquely extended to a Hilbert space isometry ofL2(IR). It can
be shown that this definition is equivalent with the following expression, which we shall refer to as the
definition of the Fourier transform onL2(IR).

Definition 1.5 Letf ∈ L2(IR). Then its Fourier transform̂f = Ff is given by

F [f ](ω) = l.i.m.N→∞
1√
2π

N∫
−N

f(x)e−iωx dx, (1.6)

where l.i.m. stands for limit inL2 mean.

Remark, that this definition coincides with (1.4) iff ∈ L1(IR) ∩ L2(IR). Also we observe that by this
definitionFf is a function, defined almost everywhere onIR and belonging toL2(IR). Moreover, with this
construction Parseval’s formula can be extended toL2(IR).

∫
IR

f(x)g(x) dx =
∫
IR

f̂(ω)ĝ(ω) dω, (1.7)

for all f, g ∈ L2(IR). As a result we also have Plancherel’s formula∫
IR

|f(x)|2 dx =
∫
IR

|f̂(ω)|2 dω, (1.8)

for all f ∈ L2(IR). The two equal sides of (1.8) give the energy off ∈ L2(IR).

Sincef̂ ∈ L2(IR) for f ∈ IR, we can derive an inversion formula using the same construction as for (1.6),
i.e.,

f(x) = l.i.m.N→∞
1√
2π

N∫
−N

f̂(ω)eixω dω. (1.9)

Another result on the Fourier transform that is used in the sequel of this report deals with convolution prod-
ucts. The following lemma presents two relations between convolution products and the Fourier transform.
For a proof we refer to [46].

Lemma 1.6 Convolution products and the Fourier transform are related by

1. (f ∗ g)̂ (ω) =
√

2π f̂(ω) · ĝ(ω), for f ∈ L1(IR) ∪ L2(IR) andg ∈ L1(IR),

2.
√

2π (f · g)̂ (ω) = (f̂ ∗ ĝ)(ω), for f, g ∈ L2(IR).

A subspace ofL2(IR), which is of special interest in signal analysis isL2
comp(IR), i.e., the space of all

functions inL2(IR) with compact support. Related to this space we can define two types of signals.

Definition 1.7 A signalf ∈ L2(IR) is called time-limited iff ∈ L2
comp(IR). If f̂ ∈ L2

comp(IR), thenf is
called band-limited.

Another special class of functions inL2(IR) is the class of functions of exponential type.
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Definition 1.8 A functionf ∈ L2(IR) is called of exponential type if it extends to a holomorphic function
onC/ and if there are two positive constantsC andΩ such that

|f(z)| < CeΩ|Im z|, ∀z ∈ C/ .

Functions of exponential type can be related to band-limited functions by means of the Paley-Wiener
theorem; for a proof, see [45].

Theorem 1.9 (Paley-Wiener)If f ∈ L2(IR) is holomorphic and of exponential type, thenf is band-
limited. Conversely, iff is band-limited, thenf is holomorphic and of exponential type.

Since a holomorphic functionf ∈ L2(IR), vanishing at a certain interval, has to be identically zero, the
Paley-Wiener theorem immediately yields

Corollary 1.10 If f ∈ L2(IR) is both time-limited and band-limited, thenf = 0.

The previous corollary states that there does not exist a non-trivial time-limited signalf , whose energy is
contained within a finite interval in the frequency domain, say[−ω0, ω0]. In Section 6.1 we will deal with
this phenomenon. There, we will consider the problem of maximizing the energy of a band-limited signal
within a finite interval[−ω0, ω] in the frequency domain.

1.2 Lie Group Theory and the Heisenberg Group
In this section we will discuss Lie groups. In particular the Heisenberg group will be studied. In the fol-
lowing section we will see that this group can be related to time-frequency operators.

We start with some standard definitions on Lie group theory, that can be found in e.g. [38, 41].

Definition 1.11 A setG having both a topological and a group structure is called a topological group if
the mapping

(x, y) 7→ xy−1 (1.10)

is a continuous mapping fromG × G ontoG. A topological groupG is called a Lie group if there is a
differentiable structure onG, compatible with its topology, such thatG converts into aC∞-manifold and
for which the mapping (1.10) isC∞.

Related to a Lie groupG we can also look for a Lie subgroupG′ defined as a Lie group that is a subgroup
of the groupG and aC∞-submanifold of theC∞-manifoldG. In the following example we shall consider
a well-known Lie group and some of its Lie subgroups.

Example 1.12 Consider the groupGL(n) = {M ∈ IRn×n | detM 6= 0}. It can be verified rather easily
thatGL(n) is a Lie group using the fact that the mappingM 7→ detM is continuous. Some well-known
Lie subgroups ofGL(n) are given by

1. SL(n) = {M ∈ GL(n) | det M = 1},

2. O(n) = {M ∈ GL(n) |MT M = I},

3. SO(n) = {M ∈ O(n) | det M = 1}.

Another example of a well-known Lie group is the Heisenberg group, which is defined as follows.

Definition 1.13 The2n + 1-dimensional Heisenberg groupHn is identified withIRn × IRn × IR with the
multiplication law

(p1, q1, t1) (p2, q2, t2) = (p1 + p2, q1 + q2, t1 + t2 + ((q1, p2)− (p1, q2))/2). (1.11)



6

To relate a topological group to an operator on a separable Hilbert space, we use the concept of topological
group representations.

Definition 1.14 LetG be a topological group,H be a Hilbert space andB(H) be the space of all bounded
operators onH. Then a representation ofG in H is a mappingµ : G→ B(H) for which

1. µ(x)µ(y) = µ(xy), for all x, y ∈ G,

2. µ(e) = I, with e the identity ofG andI the identity operator onH,

3. x 7→ µ(x)f is a continuous mapping fromG to H, for all f ∈ H.

Note, that Definition 1.14 yields thatµ is a group homomorphism, which is continuous in the strong oper-
ator topology ofB(H).

Topological group representations may satisfy several important properties. A first desirable property of a
representation is that it is unitary, i.e.µ(x) ∈ U(H), for all x ∈ G, whereU(H) denotes the space of all
unitary operators onH. Furthermore,µ is said to be irreducible if{0} andH are the only closed subspaces
of H that are invariant under the action ofµ(x), for all x ∈ G. A last property concerns the equivalence
of two representations. A representationµ is said to be equivalent with a representationρ : G→ B(H) if
there exists an operatorV ∈ U(H), such that

ρ(x) = V∗µ(x)V ∀x∈G. (1.12)

Note that a unitary representationµ is a group homomorphism, which is continuous in the strong operator
topology ofU(H). Also we observe, that for unitary representations it can be proved, see e.g. [16], thatµ
is irreducible if and only if forρ = µ, (1.12) only holds forV = CI, with |C| = 1.

An irreducible unitary representation ofHn in the spaceL2(IRn) is given by the Schr¨odinger representation

µ(p, q, t)[f ](x) = ei(p,x)ei(t+(p,q)/2)f(x + q). (1.13)

In the sequel of this section the representationµ will denote the Schr¨odinger representation.

2. THE WIGNER DISTRIBUTION

A well-known representation of a signalf in both time and frequency is the Wigner distribution. This is a
quadratic time-frequency representation given by

WV [f ](x, ω) =
1
2π

∫
IR

f(x + t/2)f(x− t/2)e−itω dt, (2.1)

for all f ∈ L2(IR). In the sequel we will refer to the domain of the Wigner distribution as the Wigner plane.

This representation was already introduced in 1932 by Wigner in his paper [43]. He presented this repre-
sentation in the field of quantum mechanics. In 1948, Ville introduced the representation in the fields of
signal analysis in [39]. Therefore, this representation is also known in the literature as the Wigner-Ville
distribution.

Later in this report we will also use the mixed Wigner distribution given by

WV [f, g](x, ω) =
1
2π

∫
IR

f(x + t/2)g(x− t/2)e−itω dt, (2.2)

for all f, g ∈ L2(IR). Obviously, this representation coincides with the Wigner distribution iff = g.
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Then-dimensional Wigner distribution is defined from a straightforward generalization of (2.1) by

WV [f ](x, ω) = (2π)−n

∫
IRn

f(x + t/2)f(x− t/2)e−i(t,ω) dt, (2.3)

for all f ∈ L2(IRn) and with(·, ·) the inner product inIRn. For simplicity we only discuss properties of
the Wigner distribution forf ∈ L2(IR). Generalizations of these results for functions inL2(IRn) can be
made in a rather direct way.

The Wigner distribution is invariant under the action of both translationTb and frequency modulationMω0 ,
given by

Tb[f ](x) = f(x− b) (2.4)

Mω0 [f ](x) = eiω0xf(x), (2.5)

for b ∈ IR andω0 ∈ IR. A straightforward calculation shows

WV [Tbf ](x, ω) =WV [f ](x− b, ω) and WV [Mω0f ](x, ω) =WV [f ](x, ω − ω0).

Furthermore, by a change of variables in (2.1) it follows immediately that the Wigner distribution is real-
valued, i.e.,WV [f ] =WV [f ], and that

WV [f ](x, ω) =WV [f ](x,−ω), (2.6)

for all f ∈ L2(IR). In particular Relation (2.6) yieldsWV [f ](x, ω) = WV [f ](x,−ω) for all real-valued
f ∈ L2(IR). Rewriting (2.1) enables us to derive more useful properties of the Wigner distribution.

By defininghx,ω(t) = f(x + t/2)e−itω/2/
√

2π, for f ∈ L2(IR), we can also write (2.1) as

WV [f ](x, ω) =
∫
IR

hx,ω(t)hx,ω(−t) dt.

Now, Parseval’s formula (1.7) yields

WV [f ](x, ω) =
∫
IR

ĥx,ω(θ) ĥx,ω(−θ) dθ =
1
2π

∫
IR

f̂(ω + θ/2) f̂(ω − θ/2)eiθx dθ, (2.7)

for all f ∈ L2(IR). Relation (2.7) shows thatWV [f ](·, ω) is the Fourier transform of a function inL1(IR).
Consequently, Lemma 1.3 can be applied. This yields thatWV [f ](·, ω) is bounded and continuous for
fixed ω ∈ IR. In the same manner it follows from (2.1) thatWV [f ](x, ·) is bounded and continuous for
fixedx ∈ IR. Moreover, we can show thatWV [f ] ∈ C(IR2), for all f ∈ L2(IR), see e.g. [24]. Concluding,
we haveWV [f ] ∈ L∞(IR2) ∩ C(IR2), for all f ∈ L2(IR).

Also Relation (2.7) yields immediately

WV [Ff ](x, ω) =WV [f ](−ω, x), (2.8)

for all f ∈ L2(IR).

By rewriting the integrand in (2.7) we get

f̂(ω + θ/2) f̂(ω − θ/2) =
1
2π

∫
IR

∫
IR

f(x) f(y) e−ix(ω+θ/2) eiy(ω−θ/2) dx dy =

1
2π

∫
IR

∫
IR

f(u + t/2) f(u− t/2) e−iuθ e−itω du dt =
1√
2π

∫
IR

M [f ](−θ, t)e−itω dt,
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with

M [f ](θ, t) =
1√
2π

∫
IR

f(u + t/2) f(u− t/2)eiuθ du. (2.9)

The functionM [f ] is called the characteristic function of the Wigner distribution. Note thatM [f ](−·, t) is
the Fourier transform off(· + t/2) f(· − t/2), which is inL1(IR) for all t ∈ IR. Using this characteristic
function we obtain

WV [f ](x, ω) = (2π)−3/2

∫
IR

∫
IR

M [f ](θ, t)e−iθxe−itω dθ dt. (2.10)

Introducing the functionRf,x of f ∈ L2(IR) by

Rf,x(t) = f(x + t/2) f(x− t/2)/
√

2π

gives the last representation of the Wigner distribution which we discuss in this report. We have

WV [f ](x, ω) = F [Rf,x](ω). (2.11)

We proceed our discussion of the Wigner distribution with a counterpart of Plancherel’s formula. To deduce
such a formula for the Wigner distribution we use relation (2.11).

Lemma 2.1 Letf ∈ L2(IR). Then∫
IR

|f(x)|2 dx

2

= 2π

∫
IR

∫
IR

|WV [f ](x, ω)|2 dω dx.

Proof
We derive∫

IR

|f(x)|2 dx

2

=
∫
IR

|f(u)|2 du

∫
IR

|f(v)|2 dv

=
∫
IR

∫
IR

|f(x + t/2)|2 |f(x− t/2)|2 dt dx

=
∫
IR

∫
IR

|f(x + t/2) f(x− t/2)|2 dt dx

= 2π

∫
IR

∫
IR

|Rf,x(t)|2 dt

 dx.

Applying Plancherel’s formula on the inner integral of the latter result yields∫
IR

|f(x)|2 dx

2

= 2π

∫
IR

∫
IR

|F [Rf,x](ω)|2 dω dx

= 2π

∫
IR

∫
IR

|WV [f ](x, ω)|2 dω dx,

which follows from (2.11). 2

We observe that this lemma also yieldsWV [f ] ∈ L2(IR2) for all f ∈ L2(IR). A counterpart of Parseval’s
formula also exists. This is given by Moyal’s formula, which we present in the following theorem.
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Theorem 2.2 (Moyal) Letf, g ∈ L2(IR). Then

|(f, g)|2 = 2π

∫
IR

∫
IR

WV [f ](x, ω)WV [g](x, ω) dω dx.

Proof
First we observe thatWV [f ](x, ω)WV [g](x, ω) ∈ L1(IR2). This follows from Schwarz’s inequality and
Lemma 2.1∫

IR

∫
IR

|WV [f ](x, ω)WV [g](x, ω)| dω dx ≤ ‖WV [f ]‖2 ‖WV [g]‖2

= ‖f‖22 ‖g‖22/2π.

Using Parseval’s formula we derive as a corollary of Fubini’s theorem∫
IR

WV [f ](x, ω)WV [g](x, ω) dω =
∫
IR

F [Rf,x](ω)F [Rg,x](ω) dω

=
∫
IR

Rf,x(t)Rg,x(t) dt.

Integrating the latter result overx yields

2π

∫
IR

∫
IR

WV [f ](x, ω)WV [g](x, ω) dω dx =

∫
IR

∫
IR

f(x + t/2)g(x + t/2) f(x− t/2)g(x− t/2) dt dx =

∫
IR

∫
IR

f(u)g(u) f(v)g(v) du dv = |(f, g)|2.

2

For signal analysis a further desirable property of the Wigner distribution is given in the following theorem.

Theorem 2.3 Letf ∈ L2(IR). Then

|f(x)|2 =
∫
IR

WV [f ](x, ω) dω, if f̂ ∈ L1(IR) (2.12)

|f̂(ω)|2 =
∫
IR

WV [f ](x, ω) dx, if f ∈ L1(IR). (2.13)

Proof
We derive from (2.7)∫

IR

|WV [f ](x, ω)| dω ≤ 1
2π

∫
IR

∫
IR

|f̂(ω + θ/2)| |f̂(ω − θ/2)| dθ dω

=
1
2π

∫
IR

∫
IR

|f̂(u)| |f̂(v)| du dv = ‖f̂‖21/2π.

Fix x ∈ IR. ThenWV [f ](x, ·) ∈ L1(IR) if f̂ ∈ L1(IR). Equivalently,FRf,x ∈ L1(IR) if f̂ ∈ L1(IR), cf.
(2.11). AlsoRf,x ∈ C(IR), sincef is continuous. This follows from applying Theorem 1.3 onf̂ . Finally
we haveRf,x ∈ L1(IR) sincef ∈ L2(IR). Now, Theorem 1.2 can be applied. This yields

|f(x)|2 =
√

2πRf,x(0) =
∫
IR

F [Rf,x](ω)dω =
∫
IR

WV [f ](x, ω) dω.
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This proves (2.12). Relation (2.13) is proved in the same manner by replacingf̂ by f . 2

Relations (2.12) and (2.13) are called the time-frequency marginals, see also [5].

A last result on the energy density of the Wigner distribution is obtained from integrating (2.13) overω.
This yields

‖f‖22 =
∫
IR

WV [f ](x, ω) dx dω, (2.14)

for f ∈ L1(IR) ∩ L2(IR) or f̂ ∈ L1(IR) ∩ L2(IR).

For a comprehensive list of other properties of the one dimensional Wigner distribution we refer to[4, 13].

In the sequel of this report we will use a group theoretical approach for the Wigner distribution. This
approach uses a relation between the Heisenberg group and the Wigner distribution. This relation can be
derived using the characteristic functionM [f ] for then-dimensional Wigner distribution. We derive

M [f ](p, q) = (2π)−n/2

∫
IRn

f(u + q/2) f(u− q/2)ei(p,u) du

= (2π)−n/2ei(p,q)/2

∫
IRn

f(u + q) f(u)ei(p,u) du

= (2π)−n/2(µ(p, q, 0)f, f)2. (2.15)

This yields

WV [f ](x, ω) = (2π)−n/2F [M [f ]](x, ω) = (2π)−nF [(µ(·, ·, 0)f, f)2](x, ω), (2.16)

withWV then-dimensional Wigner distribution andF then-dimensional Fourier transform. By polariza-
tion, we see that (2.16) also holds for the mixed Wigner distribution, i.e.,

WV [f, g](x, ω) = (2π)−nF [(µ(·, ·, 0)f, g)2](x, ω). (2.17)

Sinceµ is irreducible, we have for unitary operatorsV , as a corollary of (2.19),

WV [f ] =WV [Vf ] ⇐⇒ V = CI, |C| = 1. (2.18)

We have seen that the Wigner distribution is related to the Schr¨odinger representation by means of the
characteristic function. Now, assume that there exists a unitary representationρ of Hn in U(L2(IRn)), for
whichµ = V∗ρV , for someV ∈ U(L2(IRn)). Then

WV [Vf ](x, ω) = (2π)−nF [(µ(·, ·, 0)Vf,Vf)2](x, ω)
= (2π)−nF [(V∗µ(·, ·, 0)Vf, f)2](x, ω)
= (2π)−nF [(ρ(·, ·, 0)f, f)2](x, ω), .

for all f ∈ L2(IRn). This yields

WV [Vf ](x, ω) = (2π)−2n

∫
IRn

∫
IRn

(ρ(p, q, 0)f, f)2 e−i(p,x)e−i(q,ω) dθ dv. (2.19)

We will return to the latter relation in Section affiensect.
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3. THE FRACTIONAL FOURIER TRANSFORM

The fractional Fourier transform (FRFT) was introduced by Namias in [23] as a Fourier transform of frac-
tional order. This was done starting from fractional powers of the eigenvalues of the Fourier transform and
their corresponding eigenvalues. With this formalism he derived in a heuristic manner an integral repre-
sentation of this operator. In [15, 19], McBride and Kerr provided a rigorous mathematical framework in
which the formal work of Namias could be situated. We discuss this mathematical framework and Namias
formal work in the first part of this section.

Recently, the FRFT turned out to be an interesting transformation for time-frequency signal processing and
optical engineering. This growing interest for the FRFT is the consequence of a series of papers that deal
with the relation of the FRFT to time-frequency representations of a signal, like the Wigner distribution,
see e.g. [1, 22, 25, 26]. This relation is discussed in the second part of this section.

3.1 Definition and Properties
We start with the definition of the FRFT for functions inL2(IR).

Definition 3.1 Takef ∈ L2(IR). Its fractional Fourier transform of orderα ∈ (−π, π] is given by

Fα[f ](x) =
Cα√

2π | sinα|

∫
IR

f(u) ei ((u2+x2)·(cotα)/2−ux csc α) du, (3.1)

for 0 < |α| < π, with

Cα = ei (π4 sgnα−α/2). (3.2)

Furthermore, forα = 0 andα = π the FRFT is defined by

F0[f ](x) = f(x) and Fπ[f ](x) = f(−x).

For α 6∈ (π, π] the FRFT is defined by periodicityFα+2π = Fα.

Particularly, we have from this definition

Fπ/2 = F and Fnπ/2 = Fn ∀n∈ZZ,

with F the Fourier transform onL2(IR).

The factorCα in (3.2) is chosen to guarantee thatFα is properly normalized and thatFα is continuous in
α. Indeed, it can be shown that

lim
β→α
‖Fβf −Fαf‖2 = 0, (3.3)

for all f ∈ L2(IR) and for this particular choice ofCα.

This result is obtained by combining two properties of the FRFT. The first property of the FRFT is known
as the index law, i.e.,

FαFβf = Fα+βf, (3.4)

for all α, β ∈ IR andf ∈ L2(IR). A rigorous proof of this property for functions in the Schwartz space
S(IR) is given in [19]. Consequently, this result can be extended to functions inL2(IR).

The second property we need for proving the continuity ofFα is the continuity of the FRFT either inα = 0
or α = π. In [15], it is proven that

lim
α→0
‖Fαf − f‖2 = 0, (3.5)
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for all f ∈ L2(IR). Result (3.3) can now be obtained in a straightforward way by combining (3.4) and
(3.5). We observe, that (3.3) also holds for other choices ofCα, see e.g. [1].

Considering again Relation (3.4) we have in particularFαF−α = I andF−αFα = I. Consequently, the
inverse ofFα is given byF−α, for all α ∈ IR.

For a better understanding of the action of the FRFT we introduce two unitary operators onL2(IR). For
t ∈ IR, we define the operatorCt onL2(IR) by

Ct[f ](x) = eitx2/2f(x). (3.6)

Obviously,Ct multiplies a given functionf ∈ L2(IR) with a quadratic chirp, i.e., a Fourier mode with a
quadratic argument. Furthermore, we introduce fora 6= 0 the dilation operatorDa onL2(IR) by

Da[f ](x) =
1√
|a|

f
(x

a

)
. (3.7)

Using the operatorCcotα andDsin α, we can writeFα, α ∈ (−π, π), also as

Fαf = Cα Ccot αDsin αFCcotα. (3.8)

The fact that all operators in the right-hand side of (3.8) are unitary operators onL2(IR) and that|Cα| = 1
yields thatFα is a unitary operator onL2(IR), for all α ∈ IR. Note, thatF0 andFπ are also unitary, which
follows directly from Definition 3.1. As a consequence we also have Parseval’s formula for the FRFT∫

IR

f(x)g(x) dx =
∫
IR

Fα[f ](x)Fα[g](x) dx, (3.9)

for all α ∈ IR andf, g ∈ L2(IR). Furthermore, as a result we have Plancherel’s formula for the FRFT∫
IR

|f(x)|2 dx =
∫
IR

|Fα[f ](x)|2 dx, (3.10)

for all α ∈ IR andf ∈ L2(IR).

From the preceding derivations and the definition ofF0 it follows thatGfr = {Fα | α ∈ IR} is a strongly
continuous subgroup of unitary operators onL2(IR). A cyclic subgroup of order 4 is given by the integer
powers of the Fourier transform{Fn | n = 0, 1, 2, 3}. Consequently, the discrete cyclic group with gener-
ating elementF is embedded in the continuous groupGfr.

A further relation with the classical Fourier transform onL2(IR) can be obtained by considering the formal
derivation of the FRFT by Namias in [23]. His starting point was to consider the eigenvalues and eigen-
functions of the Fourier transform.

It is known, see e.g. [9], that the eigenfunctions of the Fourier transform are given by the Hermite functions

hk(x) =
(
2kk!
√

π
)−1/2

e−x2/2Hk(x), (3.11)

whereHk are the Hermite polynomials given by

Hk(x) = (−1)kex2
(

d

dx

)k

e−x2
. (3.12)

The Hermite functions form an orthonormal basis forL2(IR) and they satisfyFhk = eikπ/2hk. The first
idea of an FRFT was to define an operatorFα, satisfying

Fαhk = eikαhk, (3.13)
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for α ∈ IR. For α = mπ/2, with m ∈ ZZ, we haveFmπ/2 = Fm. Particularly, ifm mod4 = 0, then
Fm = I. For a formal representation ofFα, with 0 < α < π/2, we follow Namias in [23].

We writef ∈ L2(IR) asf =
∞∑

k=0

(f, hk)2hk. Consequently, we have

Fα[f ](x) =
∞∑

k=0

(f, hk)2Fα[hk](x) =
∞∑

k=0

(f, hk)2 eikαhk(x)

=
∫
IR

f(u)

( ∞∑
k=0

eikαhk(u)hk(x)

)
du

=
∫
IR

f(u)

( ∞∑
k=0

eikα

2kk!
√

π
Hk(u)Hk(x)e−u2/2−x2/2

)
du.

The latter expression can be rewritten using Mehler’s formula, see [20],

∞∑
k=0

zk

2kk!
√

π
Hk(u)Hk(x) =

1√
π(1− z2)

exp
(

2xuz − z2(x2 + u2)
1− z2

)
. (3.14)

Here1/(1− z2) lies in the right half plane and the square root in1/(1− z2) is the branch that is positive
for z > 0. Furthermore, we observe that the series converges inL2 with respect tou, for all x andz, see
[9]. Using Mehler’s formula in the previous result yields

Fα[f ](x) =
1√

πeiα ·
√

e−iα − eiα

∫
IR

f(u) exp
(

i
2ixu− i(eiα + e−iα)(x2 + u2)/2

eiα − e−iα

)

=
eiπ/4−iα/2

√
2π sinα

∫
IR

f(u) ei ((u2+x2)·(cot α)/2−ux cscα) du.

For a rigorous framework in which this formal work of Namias can be studied we refer to [15, 19].

3.2 The FRFT and the Wigner Plane
For time-frequency analysis it is interesting to consider the relation of the FRFT with time-frequency op-
erators like the Wigner distribution. Therefore, we compute the Wigner distribution of the FRFT. This
will give us insight in how the FRFT acts in the Wigner plane, i.e., the phase space related to the Wigner
distribution.

For this computation we need the following lemma.

Lemma 3.2 Let Tb andMω, b, ω ∈ IR, denote respectively the shift operator and frequency modulation
on L2(IR) as given in (2.4) and (2.5) respectively. Furthermore, letFα, α ∈ IR, the fractional Fourier
transform onL2(IR) as given in Definition 3.1. Then

FαTb = eib2(sin 2α)/4M−b sin α Tb cos αFα, (3.15)

FαMω = e−iω2(sin 2α)/4Mω cos α Tω sin αFα. (3.16)

Proof
Forα = 0 both results are trivial, sinceF0 = I. Forα = π both results follow directly from Definition 3.1.
Furthermore, equation (3.16) follows from (3.15) by observing thatFMω = TωF , with F the Fourier
transform. Indeed, if (3.15) holds, this observation yields

FαMω = FαF∗TωF = Fα−π/2TωFπ/2

= eiω2(sin(2α−π))/4M−ω sin(α−π/2) Tω cos(α−π/2)Fα−π/2Fπ/2

= e−iω2(sin 2α)/4Mω cos α Tω sin αFα,
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using (3.4). Consequently, the proof is established by showing that (3.15) holds for0 < |α| < π. We
derive forf ∈ L2(IR), b ∈ IR and0 < |α| < π

FαTb[f ](x) =
Cα√

2π | sinα|

∫
IR

f(u− b) ei ((u2+x2)·(cot α)/2− ux csc α) du

=
Cα√

2π | sinα|

∫
IR

f(u) ei ((u2+x2+b2+2ub)·(cot α)/2− (u+b)x csc α) du

=
Cα√

2π | sinα|
ei(b2·(cos α)/2−bx)(1−cos2 α) cscα ×∫

IR

f(u) ei ((u2+(x−b cos α)2)(cot α)/2− (u(x−b cos α)) cscα) du

= ei(b2(sin 2α)/4−bx sin α) Fα[f ](x− b cosα)

= eib2(sin 2α)/4M−b sin α Tb cos αFα[f ](x).

2

Using this lemma, we can compute the action of the FRFT in phase space by means of the Wigner distri-
bution. For this we write

WV [f ](x, ω) =
1
2π

∫
IR

f(x + t/2)f(x− t/2)e−itω dt

=
1
π

∫
IR

f(t + x)f(x− t)e−2itω dt = (M−ωT−xf,MωTxFπf)/π.

Using Lemma 3.2 we derive

F−αMωTx = ei(ω2−x2)·(sin 2α)/4Mω cos α T−ω sin αMx sin α Tx cos αF−α

= ei(ω2−x2)·(sin 2α)/4 eixω sin2 αMx sin α+ω cos α Tx cos α−ω sin αF−α.

Combining these two results yields

WV [Fαf ](x, ω) = (M−ωT−xFαf,MωTxFπFαf)/π =
(F−αM−ωT−xFαf,F−αMωTxFπFαf)2/π =
(M−x sin α−ω cos α T−x cos α+ω sin αf,Mx sin α+ω cos α Tx cos α−ω sin αFπf)/π =
WV [f ](x cosα− ω sinα, x sinα + ω cosα) =WV [f ](Rα(x, ω)), (3.17)

whereRα(x, ω) represents the matrix vector product with matrix

Rα =
(

cosα − sinα
sinα cosα

)
. (3.18)

We conclude from this derivation that the FRFT of orderα acts like a rotation byα in the Wigner plane.
In particular, we have a rotation byπ/2 in the Wigner plane forFπ/2, which is a result that coincides with
(2.8).

The action of the FRFT in the Wigner plane leads us in a natural way to the question which operators on
L2(IR) act like a linear transformation in the Wigner plane. The following section is devoted to this ques-
tion. However, instead of operators onL2(IR) we consider operators acting onL2(IRn). It will turn out
that finding a solution for then-dimensional problem does not follow straightforwardly from the solution
for the one-dimensional case.
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Since we want to give an answer to our problem for operators onL2(IRn), we introduce the fractional
Fourier transform onL2(IRn) by

Fα1,... ,αn = F̃α1 · · · F̃αn , (3.19)

for α1, . . . , αn ∈ IR. HereF̃αi is given by

F̃αi [f ](x1, . . . , xi−1, y, xi+1, . . . , xn) = Fαi [gx1,... ,xi−1,xi+1,... ,xn ](y),

with gx1,... ,xi−1,xi+1,... ,xn(y) = f(x1, . . . , xi−1, y, xi+1, . . . , xn), for fixedx1, .., xi−1, xi+1, .., xn ∈ IR.
Computing then-dimensional Wigner distribution of this FRFT yields

WV [Fα1,... ,αnf ](x, ω) =WV [f ](Rα1,··· ,αn(x, ω)), (3.20)

with

Rα1,··· ,αn =



cosα1 0 − sinα1 0
...

...
0 cosαn 0 − sinαn

sinα1 0 cosα1 0
...

...
0 sinαn 0 cosαn


. (3.21)

This result follows in a straightforward way from (3.17).

4. AFFINE TRANSFORMATIONS IN THEWIGNER PLANE

Inspired by the fractional Fourier transform and its action in the Wigner plane, we search for linear opera-
torsV onL2(IRn) such that there exist a matrixA ∈ IRn×n and a vectorb ∈ IRn for which

WV [Vf ](x, ω) =WV [f ](A(x, ω) + b), (4.1)

holds for allf ∈ L2(IRn). We observe, that De Bruijn already considered this problem in [2] where he
dealt with a new class of generalized functions. Here we will follow an approach based on group theory, see
[30, 31, 40]. These results will be placed within the concept of the FRFT in order to embed this transform
in a larger class of unitary transformations. Also new results will be added.

We restrict ourselves to matricesA for whichdetA = ±1. For these matrices we have∫
IRn

∫
IRn

WV [f ](A[x, ω] + b) dω dx =
∫

IRn

∫
IRn

WV [f ](x, ω) dω dx.

We shall refer to such affine transformations in the Wigner plane as energy preserving affine transforma-
tions. Indeed, for these transformations the corresponding operatorsV onL2(IRn) satisfy

(Vf,Vf) =
∫

IRn

∫
IRn

WV [Vf ](x, ω) dω dx =
∫

IRn

∫
IRn

WV [f ](A(x, ω) + b) dω dx

=
∫

IRn

∫
IRn

WV [f ](x, ω) dω dx = (f, f),

for f ∈ L1(IRn) ∩ L2(IRn) or f̂ ∈ L1(IRn) ∩ L2(IRn) which follows from (2.14). We observe that
L1(IRn) ∩ L2(IRn) is a dense subspace ofL2(IRn). Concluding, an operator onL2(IRn) that yields an
energy preserving affine transformation in the Wigner plane has to be an isometry onL2(IRn). On the other
hand, Equation (4.1) follows directly from applying (2.14) on both sides of the equation(Vf,Vf) = (f, f),
for f ∈ L1(IRn) ∩ L2(IRn) or f̂ ∈ L1(IRn) ∩ L2(IRn).
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Before dealing with a classification of all unitary operators that satisfy (4.1), we present some well-known
operators for which (4.1) holds.

Multiplication
We start our set of unitary operators onL2(IRn) with a trivial one, namely multiplication by a constantC
with |C| = 1. Result (2.18) already showed thatWV [f ] = WV [Cf ], for all |C| = 1. Consequently, this
multiplication operator satisfies (4.1) withA = I2n, the(2n× 2n) identity matrix, andb = 0.

Complex conjugation
Besides linear operators there also exists a non-linear operator for which (4.1) holds, namely the operator
f 7→ f . For the one-dimensional case we have already seen in (2.6) that

WV [f ](x, ω) =WV [f ](x,−ω).

For f ∈ L2(IRn) this result also holds. This follows from a straightforward generalization of (2.6). We
conclude, that taking the complex conjugate also satisfies (4.1) with

A =
(

In 0
0 −In

)
and b = 0.

We observe that we havedetA = (−1)n for the complex conjugation. Later in this section it will turn out
that a necessary condition on a linear operatorV , such that (4.1) holds, is given bydetA = 1.

Space and frequency shift
Forx0, ω0 ∈ IRn we introduce the shift operator and the frequency shift operator onL2(IRn) by

Tx0[f ](x) = f(x− x0) and Mω0 [f ](x) = ei(ω0,x)f(x)

respectively, withf ∈ L2(IRn). Remark, that these operators coincide with the shift and frequency shift
operators (2.4) and (2.5) in the one-dimensional case.

We combine the introduced unitary operatorsTx0 andMω0 into one unitary operator onL2(IRn), given by

N(x0,ω0)[f ](x) = Tx0Mω0 [f ](x) = ei(ω0,x)f(x− x0). (4.2)

Computing the Wigner transform of this operator yields

WV [N(x0,ω0)f ](x, ω) =WV [f ](x− x0, ω − ω0),

which is a result we have seen before in discussing the one-dimensional Wigner distribution. From this
result we conclude, that (4.1) holds forN(x0,ω0), namely by takingA = 0 andb = (x0, ω0).

We observe that all possible translationsb ∈ IRn in (4.1) can be obtained fromNb. This means, that if we
are looking for a unitary operatorV on L2(IRn) such that (4.1) holds, then we only have to find a linear
operatorU onL2(IRn) such that

WV [Uf ](x, ω) =WV [f ](A(x, ω)), (4.3)

for all f ∈ IRn. The operatorV we are looking for is then given byV = NbU . Therefore, we will restrict
ourselves from now on to operatorsU that satisfy (4.3) withdetA = ±1.

The Fourier transform
In Section 2 we already derived for the Fourier transformF onL2(IR)

WV [Ff ](x, ω) =WV [f ](−ω, x). (4.4)

Forf ∈ L2(IRn) and then-dimensional Fourier transformF this relation remains the same, which follows
directly from a generalization of Relation (2.7) for then-dimensional Wigner distribution. Consequently,
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the Fourier transform onL2(IRn) satisfies (4.3) withA = JT
n . HereJn denotes the(2n×2n) matrix given

by

Jn =
(

0 In

−In 0

)
. (4.5)

In the sequel of this section this matrix will play an important role in classifying all unitary operatorsU
that satisfy (4.3).

The dilation operator
ForB ∈ IRn×n, with det B 6= 0, the dilation operatorDB onL2(IRn) is defined by

DB[f ](x) =
1√
| detB|

f(B−1x), (4.6)

with inverse
D−1

B [f ](x) =
√
| detB|f(Bx).

We use the definition of the Wigner distribution to derive the action ofDB in the Wigner plane. We compute

WV [DBf ](x, ω) =
1

(2π)n| detB|

∫
IRn

f(B−1(x + τ/2))f(B−1(x− τ/2))e−i(τ,ω) dτ

=
1

(2π)n

∫
IRn

f(B−1x + τ/2)f(B−1x− τ/2)e−i(τ,BTω) dτ

= WV [f ](B−1x, BT ω). (4.7)

Concluding, alsoDB corresponds to a linear transformation in the Wigner plane. ForDB Relation (4.3)
holds with

A =
(

B−1 0
0 BT

)
.

Multiplication with a chirp
The last example of a unitary operator that satisfies (4.3) is the operator that multiplies a function inL2(IRn)
with a quadratic chirp. This operator is given by

CS[f ](x) = ei(Sx,x)/2f(x), (4.8)

with S ∈ IRn×n symmetric. Remark, that we have seen this operator already for the one-dimensional case
in (3.6), which coincides with (4.8) forn = 1. Obviously its inverse is given by

C−1
S [f ](x) = C∗S [f ](x) = e−i(Sx,x)/2f(x).

We use (2.19) to derive the action ofCS in the Wigner plane

WV [CSf ](x, ω) = (2π)−2n

∫
IRn

∫
IRn

((C∗Sµ(p, q, 0)CS)f, f)2 e−i(p,x)e−i(q,ω) dp dq.

In a direct way we get

(C∗Sµ(p, q, 0)CS)[f ](x) = e−i(Sx,x)/2ei(p,x)ei(p,q)/2ei(S(x+q),x+q)/2f(x + q)
= ei(p+Sq,x)ei(p+S(q,q))/2f(x + q)
= µ(p + Sq, q, 0)[f ](x),

which yields

WV [CSf ](x, ω) = (2π)−2n

∫
IRn

∫
IRn

(µ(p + Sq, q, 0)f, f)2 e−i(p,x)e−i(q,ω) dp dq

= (2π)−2n

∫
IRn

∫
IRn

(µ(p, q, 0)f, f)2 e−i((p,q),A(x,w)) dp dq

= WV [f ](A(x, ω)), (4.9)
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with A =
(

In 0
−S In

)
. Consequently, alsoCS satisfies (4.3) withA as given before.

4.1 A Group Theoretical Approach
In the latter example we have already seen that the relation between a unitary operator onL2(IRn) and its
affine action in the Wigner plane can be given by using (2.19). This relation can also be used to translate
our problem in terms of group theory. This can be done in the following way.

Given a unitary operatorV on L2(IRn), we define a unitary representationρ of the Heisenberg groupHn

by ρ(g) = V∗µ(g)V , for all g ∈ Hn andµ the Schr¨odinger representation. Then by (2.19) we have for
suchρ andV

WV [Vf ](x, ω) = (2π)−2n

∫
IRn

∫
IRn

((V∗µ(p, q, 0)V)f, f)2 e−i(p,x)e−i(q,ω) dp dq.

= (2π)−2n

∫
IRn

∫
IRn

(ρ(p, q, 0)f, f)2 e−i(p,x)e−i(q,ω) dp dq.

Consequently, if there exists a linear transformationA such thatµ(g, 0) = ρ(AT g, 0) for all g ∈ H ′n, with

H ′n = {g ∈ IR2n | ∀t∈IR(g, t) ∈ Hn},

then

WV [Vf ](x, ω) = (2π)−2n

∫
IRn

∫
IRn

(µ(A−T (p, q), 0)f, f)2 e−i(p,x)e−i(q,ω) dp dq.

= | detA| · WV [f ](A(x, ω)), (4.10)

using the notationA−T = (A−1)T .

This derivation shows that the problem we are considering is equivalent to the problem of finding operators
V ∈ U(L2(IRn)) for which there exist matricesA ∈ IRn×n such that

V∗µ(g, t)V = µ(A−T g, t), (4.11)

for all g ∈ H ′n andt ∈ IR.

Besides the Lie groups in Example 1.12 we introduce another Lie group for solving this problem, namely
the symplectic groupSp(n). This group is defined by

Sp(n) = {M ∈ GL(2n) | JnMTJT
n = M−1}, (4.12)

with Jn as given in (4.5). Note that by definitionMT ∈ Sp(n) anddetM = ±1 for anyM ∈ Sp(n).
Moreover, it can be shown thatSp(n) is connected, see [9]. This yields thatdetM = 1 if M ∈ Sp(n).
Furthermore, we observe, thatSp(n) ⊂ SL(2n), butSp(1) = SL(2). It will turn out later in this section,
that this property of the symplectic group causes the fact that solutions for then-dimensional problem do
not follow straightforwardly from the solution for the one-dimensional case.

To solve our problem we start with the introduction ofG, the subgroup ofU(L2(IRn)) given by

G = {V ∈ U(L2(IRn)) | ∀g∈IR2n∀t∈IR∃g′∈IR2n : V∗µ(g, t)V = µ(g′, t)}. (4.13)

Obviously,G is a semi-group. Later we will show that everyg ∈ G has an inverse element inG, which
yields thatG is a group. This group can be equipped with the strong operator topology ofU(L2(IRn)). Fur-
thermore, it is clear from (1.13) thatg′ in (4.13) is uniquely determined. So a mappingν(V) : IR2n → IR2n

can be defined, which depends onV ∈ G. Thisν(V) is given byν(V)g = g′, with g, g′ ∈ IR2n. Alsoν(V)
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is a homomorphism for allV ∈ G. This is shown in the following way.

Forα, β ∈ IR andp1, p2, q1, q2 ∈ IRn we have

V∗µ(αp1, αq1, 0)µ(βp2, βq2, 0)V =
V∗µ(αp1 + βp2, αq1 + βq2, (αq1, βp2)/2− (αp1, βq2)/2)V =
µ(ν(V)(αp1 + βp2, αq1 + βq2), (αJn(p1, q1), β(p2, q2))/2).

On the other hand we also have

V∗µ(αp1, αq1, 0)µ(βp2, βq2, 0)V =
µ(αν(V)(p1, q1), 0)µ(βν(V)(p2, q2), 0) =
µ(αν(V)(p1, q1) + βν(V)(p2, q2), (y1, x2)/2− (x1, y2)/2),

with (x1, y1) = αν(V)(p1, q1) and(x2, y2) = βν(V)(p2, q2). Taking these results together yields

µ(ν(V)(αp1 + βp2, αq1 + βq2), (αJn(p1, q1), β(p2, q2))/2) =
µ(αν(V)(p1, q1) + βν(V)(p2, q2), (y1, x2)/2− (x1, y2)/2). (4.14)

A necessary condition such that (4.14) holds for allα, β, p1, p2, q1 andq2 is given by the linearity ofν(V)
for all V ∈ G. Consequently,ν(V) : IR2n → IR2n is a homomorphism, that satisfies

V∗µ(p, q, t)V = µ(ν(V)(p, q), t). (4.15)

Using this relation we can show, thatν(V) is also injective. To do this, we assumeν(V)g = 0, or equiva-
lently µ(g, t)V = µ(0, t). Thenµ(g, t) = Vµ(0, t)V∗ = µ(0, t), which yieldsg = 0.

Furthermore,ν satisfies

µ(ν(CV)(p, q), t) = (CV∗)µ(p, q, t)(CV) = µ(ν(V)(p, q), t)

and

µ(ν(V1V2)(p, q), t) = V∗2 (V∗1µ(p, q, t)V1)V2 = V∗2µ(ν(V1)(p, q), t)V2

= µ(ν(V2)ν(V1)(p, q), t),

for all V1,V2 ∈ U(L2(IRn)) and|C| = 1. In the following lemma we deal with some other properties of
the mappingν.

Lemma 4.1 Let G be the subgroup ofU(L2(IRn)) as defined in (4.13) and letν be the mapping as
defined in (4.15). Thenν is a continuous mapping fromG onto Sp(n) in the subspace topology of
G ⊂ U(L2(IRn)). The kernel ofν is given by Kerν = {CI | |C| = 1}.

Proof
Sinceg′ is uniquely determined in (4.13) it follows thatν(V) is a non-singular mapping onIR2n, or
equivalentlyν(V) ∈ GL(2n) for all V ∈ G. To show thatν(V) ∈ Sp(n), we takeT = ν(V) and
p1, p2, q1, q2 ∈ IRn. Then by (4.14) we get forα = 1 andβ = 1

µ(T (p1 + p2, q1 + q2), (Jn(p1, q1), (p2, q2))/2) =
µ(T (p1 + p2, q1 + q2), (Jn(x1, y1), (x2, y2))/2) =
µ(T (p1 + p2, q1 + q2), (T T JnT (p1, q1), (p2, q2))/2).

This result must hold for allp1, p2, q1, q2 ∈ IRn. This implies thatT T JnTJT
n = I, which is equivalent

with the condition in (4.12).
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To compute the kernel ofν we takeV such thatν(V) = I. This yieldsVµV∗ = µ. Sinceµ is irreducible
this equation yieldsV = CI, with |C| = 1.

To complete this proof we show the continuity of the mapping. LetV1,V2 ∈ G andW = V2 − V1. Then
for all p, q ∈ IRn

µ((ν(V2)− ν(V1))(p, q), t) = µ(ν(V2)(p, q), 0)µ(ν(V1)(−p,−q), 0)
= V∗2µ(p, q, 0)(W + V1)V∗1µ(−p,−q, 0)V1

= I − V∗2W + V∗2µ(p, q, 0)WV∗1µ(−p,−q, 0)V1,

with t = −(ν(V1)T Jnν(V2)(p, q), (p, q)). Consequently,

∀ε>0∃δ>0∀p,q∈IRn : ‖V2 − V1‖2 < δ =⇒ ‖µ((ν(V2)− ν(V1))(p, q), t)− µ(0, 0, 0)‖2 < ε.

It can be shown, see e.g. [40], that‖µ(p, q, t)−µ(0, 0, 0)‖2→ 0 implies(p, q, t)→ (0, 0, 0). Since the lat-
ter result must hold for allp, q ∈ IRn, we get‖ν(V2)− ν(V1)‖2 → 0. This condition is not only necessary
to obtain‖µ(x, y, t)− µ(0, 0, 0)‖2 → 0. It is also sufficient, sincet→ −(ν(V1)T Jnν(V1)(p, q), (p, q)) =
−(Jn(p, q), (p, q)) = 0, if ν(V2)→ ν(V1). 2

For solving our original problem, namely to find unitary operators onL2(IRn) that act like affine transfor-
mations in the Wigner plane, we combine (4.10), (4.11) and Lemma 4.1. This results into the following
theorem.

Theorem 4.2 LetV be a unitary operator onL2(IRn) andA a linear transformation onIR2n. Then

WV [Vf ](x, ω) =WV [f ](A(x, ω)). (4.16)

if and only if

(i) V ∈ G, with G as defined in (4.13),

(ii) A ∈ Sp(n),

(iii) A = ν(V)−T , with ν the continuous mapping fromG ontoSp(n) as defined in (4.15).

Theorem 4.2 tells us under which conditions unitary operators onL2(IRn) act like affine transformations
in the Wigner plane, namely if they belong toG. However, Theorem 4.2 does not tell us explicitly which
unitary operators satisfy (4.16), e.g. by means of a representation formula for such operators. In the fol-
lowing examples we revisit three operators, that have been considered in the beginning of this section. We
show that these three operators are elements ofG and we computeν(V). These three operators will give
us some insight in the type of operators, thatG consists of. In Section 5 we will present a representation
formula that gives us an explicit formula for all operators inG.

Example 4.3 The first unitary operator we consider is the Fourier transform onL2(IRn). We derive

(F∗µ(p, q, t)F)[f ](x) =
∫

IRn

f̂(ω + q)ei((p,ω)+(x,ω)+(p,q)/2+t) dω

=
∫

IRn

f̂(ω)ei((p,ω)+(x,ω)−(p,q)/2−(q,x)+t) dω

= ei((−q,x)+(−q,p)/2+t)

∫
IRn

f̂(ω)ei(x+p,ω) dω

= µ(−q, p, t)[f ](x),

for all f ∈ L2(IRn). Consequently,F ∈ G and

ν(F) = JT
n . (4.17)
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According to Theorem 4.2 the symplectic transformation in the Wigner plane corresponding to the Fourier
transform is given by

A = ν(F)−T = (JT
n )−T = JT

n ,

which corresponds with (4.4).

Example 4.4 The second unitary operator we consider is the dilation operatorDB onL2(IRn), with B ∈
IRn×n anddetB 6= 0. We derive

(D∗Bµ(p, q, t)DB)[f ](x) = ei(p,Bx)ei(t+(p,q)/2)f(x + B−1q)

= ei(BT p,x)ei(t+(BT p,B−1q)/2)f(x + B−1q)
= µ(BT p, B−1q, t)[f ](x).

this shows that alsoDB ∈ G for B ∈ GL(n). Moreover, we have

ν(DB) =
(

BT 0
0 B−1

)
. (4.18)

Now, Theorem 4.2 states that the action of the dilation operator in the Wigner plane is given by

A = ν(DB)−T =
(

BT 0
0 B−1

)−T

=
(

B−1 0
0 BT

)
.

We observe that this result corresponds to the linear transformation that we derived in (4.7).

Example 4.5 The last unitary operator we consider here is the operatorCS with S ∈ IRn×n symmetric, as
defined in (4.8). We have already seen

(C∗Sµ(p, q, t)CS)[f ](x) = µ(p + Sq, q, t)[f ](x),

for t = 0. A straightforward computation shows that this result also holds fort 6= 0. This result yields that
CS ∈ G for S ∈ IRn×n symmetric. Furthermore, we have

ν(CS) =
(

I S
0 I

)
. (4.19)

Theorem 4.2 can also be applied to this operator. This yields

A = ν(CS)−T =
(

I S
0 I

)−T

=
(

I 0
−S I

)
,

which is the same result we derived in (4.9).

We observe that the fractional Fourier transform onL2(IRn) is a combination of the three unitary operators
discussed in the previous examples. We have for0 < |αi| < π, i = 1, . . . , n,

Fα1,... ,αn = Cα1 · · ·Cαn CS(α)DB(α)FCS(α), (4.20)

with
S(α) = diag(cotα1, . . . , cotαn) and B(α) = diag(sinα1, . . . , sinαn).

Starting from (4.20) a limit process determines the FRFT ifαi = 0 or αi = π for somei = 1, . . . , n.

The following theorem classifies all possible elements ofSp(n). A proof of this result can be found in
[9, 40].
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Theorem 4.6 (Bruhat Decomposition)Let G be the group as defined in (4.13) and letν be the anti-
homomorphism fromG ontoSp(n) as defined in (4.15). Thenν is surjective. Moreover, letJn, ν(DB) and
ν(CS) be the real valued(n× n) matrices as given in (4.5), (4.18) and (4.19) and let

G1 = {ν(CS) | S ∈ IRn×n, ST = S}

and
G2 = {ν(DB) |B ∈ IRn×n, detB 6= 0},

thenSp(n) is generated byG1 ∪G2 ∪ {Jn}.

This result is a corollary of the generalized Bruhat decomposition with respect to a suitable maximal
parabolic subgroup [42].

The next corollary combines Theorem 4.2 and Theorem 4.6. It characterizes all unitary operators on
L2(IRn) that correspond to linear transformations in the Wigner plane.

Corollary 4.7 Letf, g ∈ L2(IRn). Then

WV [g](x, ω) =WV [f ](T (x, ω)),

for someT ∈ Sp(n) if and only if
g = C U1 · · · UNf,

with |C| = 1 andUi = CS, Ui = DB or Ui = F , withS ∈ IRn×n symmetric andB ∈ IRn×n non-singular,
for i = 1, . . . , N , andN ∈ IN .

We omit the proof of this corollary since it follows immediately from Theorem 4.2 and Theorem 4.6 by
observing thatν(F)−T = ν(F), ν(DB)−T = ν(DB−T ) andν(CS)−T = JT

n ν(CS)Jn = ν(FCSF∗).

The classification presented in Corollary 4.7 also holds for the mixed Wigner distribution. For a unitary
operatorV onL2(IRn) that corresponds to a linear transformationA in the Wigner plane we also have by
polarization

WV [Vf,Vg](x, ω) =WV [f, g](A(x, ω)), (4.21)

with A ∈ Sp(n) and forf, g ∈ L2(IRn).

In Section 5 this relation is used to come to a representation formula for the unitary operators as discussed
in Corollary 4.7.

4.2 The FRFT Generalized
As we have seen in (4.20) the fractional Fourier transform onL2(IRn) can be decomposed into four unitary
operators, namely a chirp multiplication, the Fourier transform, a dilation and again a chirp multiplication.
Both the chirp multiplications and the dilation depend on a set of parametersα1, . . . , αn, that determine
the FRFT. Therefore, a natural generalization of the FRFT is given by

FΓ,∆ = C CΓD∆FCΓ, (4.22)

for some|C| = 1, Γ, ∆ ∈ IRn×n, both symmetric and∆ non-singular. We observe, that∆ is not required
to be symmetric in (4.6). Here we require the symmetry of∆ to obtain a symmetrical representation for-
mula for the generalized FRFT.

We observe, that (4.22) generalizes then-dimensional FRFT, which was introduced in Section 3.2. Indeed,
by taking

Γ = diag(cotα1, . . . , cotαn) and ∆ = diag(sinα1, . . . , sinαn) (4.23)
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the generalized FRFT with the definition of then-dimensional FRFT.

As a consequence of Corollary 4.7, we have for all operatorsFΓ,∆

WV [FΓ,∆f ](x, ω) =WV [f ](A(x, ω)),

for someA ∈ Sp(n). Using (4.17), (4.18) and (4.19) we compute straightforwardly

A = ν(CΓD∆FCΓ)−T = ν(CΓ)−T ν(F)−T ν(D∆)−T ν(CΓ)−T

=
(

∆Γ −∆
−Γ∆Γ + ∆−1 Γ∆

)
. (4.24)

TakingΓ and∆ as in (4.23) we arrive at the matrixA as given in (3.21).

A special property of the FRFT is that for its corresponding transformation in the Wigner plane we have
A ∈ Sp(n) ∩ SO(2n), the orthonormal symplectic group . One may ask whether the generalized FRFT is
also related to an orthogonal transformation in the Wigner plane. The answer to this question is given in
the following lemma.

Lemma 4.8 Let FΓ,∆ be the generalized FRFT as defined in (4.22), for certain symmetric real valued
(n× n) matricesΓ and∆. ThenA as given by (4.24) is orthogonal if and only if

(i) ∆−2 − Γ2 = I,

(ii) Γ∆−1 is symmetric.

Proof
We compute

AT A =
(

X Y
Y T Z

)
,

with

X = Γ∆Γ− Γ∆Γ2∆Γ + ∆−2 −∆−1Γ∆Γ− Γ∆Γ∆−1,

Y = ∆−1Γ∆− Γ∆2 − Γ∆Γ2∆,

Z = ∆ + ∆Γ2∆.

For orthonormalA we should haveX = Z = I andY = 0. The conditionZ = I yields∆−1Z∆−1 =
∆−2, which equals (i). Obviously, Condition (i) is also sufficient to guaranteeZ = I. Substituting (i) into
the matrixY yields

Y = 0 ⇐⇒ Γ∆−1 = ∆−1Γ ⇐⇒ Γ∆−1 = (Γ∆−1)T .

After substituting Condition (i) and (ii) in the matrixX we getX = I. So for the equationX = I no
further conditions are required. 2

We observe that Conditions (i) and (ii) in Lemma 4.8 are equivalent with

(∆−1 + Γ)(∆−1 − Γ) = I.

It follows from this relation, that we haven2/2 + n degrees of freedom for choosing symmetric matrices
Γ and∆, such that the matrixA corresponding toFΓ,∆ is orthogonal. Therefore, for higher dimensional
function spaces we may expect more variety in the class of operatorsFΓ,∆ that yield orthogonal symplectic
transformations in the Wigner plane. For the one-dimensional case the one-parameter family of the FRFT
turns out to be the only transformation up to a constant, that is in the class of generalized FRFT and that
acts like an orthogonal transform in the Wigner plane.
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Lemma 4.9 LetFΓ,∆ be the unitary operator onL2(IR) as given in (4.22), withΓ, ∆ ∈ IR. ThenA =
ν(FΓ,∆)−T is orthonormal if and only ifFΓ,∆ = C Fα, for someα ∈ IR andC with |C| = 1.

Proof
In the case thatΓ and∆ are scalars, the conditions in Lemma 4.8 reduce to

∆−2 = 1 + Γ2.

This equation can be parameterized by takingΓ = cotα and∆ = sinα, for someα ∈ IR. Substituting
this parameterization into (4.22) leaves the FRFTFα up to a constant of absolute value 1, which does not
affectA. 2

As we expected from the considerations before Lemma 4.9, this lemma cannot be extended in a canonical
way to higher dimensions. This is shown by the following example forn = 2. Moreover, by extending
the example to higher dimensions in a natural way it follows that the preceding lemma can only hold for
FΓ,∆ ∈ U(L2(IR)).

Example 4.10 We considerFΓ,∆ onL2(IR2), with

Γ =
(

r2
1 cos2 α + r2

2 sin2 α (r1 − r2) cosα sinα
(r1 − r2) cosα sinα r2

1 sin2 α + r2
2 cos2 α

)
and

∆ =
(

ρ2
1 cos2 α + ρ2

2 sin2 α (ρ1 − ρ2) cosα sinα
(ρ1 − ρ2) cosα sinα ρ2

1 sin2 α + ρ2
2 cos2 α

)−1

,

with α ∈ IR andρ2
i = 1 + r2

i , i = 1, 2. Then

∆−2 − Γ2 =
(

ρ2
1 − r2

1 0
0 ρ2

2 − r2
2

)
= I,

and

Γ∆−1 =
(

r2
1ρ

2
1 cos2 α + r2

2ρ
2
2 sin2 α (r1ρ1 − r2ρ2) cosα sinα

(r1ρ1 − r2ρ2) cosα sinα r2
1ρ

2
1 sin2 α + r2

2ρ
2
2 cos2 α

)
= (Γ∆−1)T .

Consequently, the matricesΓ and∆ satisfy the conditions in Lemma 4.8. The orthogonal symplectic
transformation in the Wigner plane, that corresponds toFΓ,∆ is now given byA = U(α)T MU(α), with

M =


−r1/ρ1 0 −1/ρ1 0

0 −r2/ρ2 0 −1/ρ2

1/ρ1 0 −r1/ρ1 0
0 1/ρ2 0 −r2/ρ2


and

U(α) =


cosα sinα cosα sinα
− sinα cosα − sinα cosα
cosα sinα cosα sinα
− sinα cosα − sinα cosα

 .

Resuming, we have extended the FRFT to a unitary transformation onL2(IRn) given byFΓ,∆, where
Γ, ∆ ∈ IRn×n, both symmetric and∆ non-singular. So the set of all generalizations of the FRFT on
L2(IRn) of this kind are given by the set

Vn = {FΓ,∆ | Γ, ∆ ∈ IRn×n symmetric, det ∆ 6= 0}.
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Furthermore, a subset ofVn is defined consisting of allFΓ,∆ ∈ Vn that act like orthogonal transformations
in the Wigner plane. This subset is given by

Wn = {FΓ,∆ ∈ Vn |∆−2 − Γ2 = I, Γ∆ = (Γ∆)T }.

For the FRFT we haveFα1,... ,αn ∈Wn ⊂ Vn. Moreover, for the one-dimensional case we have

W1 = {C Fα | α ∈ IR, |C| = 1}

and
Wn\{µFα1,... ,αn | α1, . . . , αn ∈ IR, |µ| = 1} 6= ∅,

for n ≥ 2.

5. A REPRESENTATIONFORMULA

In this section we present a representation formula for all unitary operatorsV on L2(IRn) for which there
exists a transformationA onIR2n such that

WV [Vf,Vg](x, ω) =WV [f, g](A(x, ω)). (5.1)

We observe, that for the particular choicef = g, (5.1) coincides with (4.3). We have already shown that
(5.1) can only be realized for symplectic transformationsA. Therefore, we start with some properties of
symplectic matrices.

Given a matrixA ∈ Sp(n), then we can representA by its2× 2 block decomposition

A =
(

A11 A12

A21 A22

)
. (5.2)

SinceA is symplectic, it has to satisfy (4.12). This yields for the block decomposition

A−1 =
(

AT
22 −AT

12

−AT
21 AT

11

)
, (5.3)

or equivalently

AT
22 A11 −AT

12 A21 = I, (5.4)

AT
11 A21 −AT

21 A11 = 0, (5.5)

AT
22 A12 −AT

12 A22 = 0. (5.6)

Using these relation we prove the following less known properties of symplectic matrices.

Lemma 5.1 LetA ∈ Sp(n) be given by its2× 2 block decomposition (5.2). Then the following relations
hold

(i) (AT
22))

←(Ran(AT
12)) = Ran(A12),

(ii) dimA22(Ker(A12)) = dim Ker(A12),

(iii) A22(Ker(A12)) = (Ran(A12))⊥,

with Ker(B) andRan(B) denoting respectively the null space and range of a linear transformationB and
with B←(W ) denoting the inverse image of a subspaceW under the linear transformationB.

Proof
Let v ∈ (AT

22)
←(Ran(AT

12)). Then there exists anu ∈ IRn such thatAT
22 v + AT

12 u = 0. Hence,

AT

(
u
v

)
=

(
AT

11 AT
21

AT
12 AT

22

)(
u
v

)
=

(
AT

11 u + AT
21 v

0

)
.
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SinceA is symplectic, we can apply (5.3). This yields(
u
v

)
=

(
A22 −A21

−A12 A11

)(
AT

21 v + AT
11 u

0

)
.

Consequently,v = −A12 (AT
21 v + AT

11 u) ∈ Ran(A12). On the other hand, ifv ∈ Ran(A12), then there
exists aw ∈ IRn such thatv = A12 w. Using (5.6) we get

AT
22 v = AT

22 A12 w = AT
12 A22 w ∈ Ran(AT

12),

which proves Property (i).

In order to prove (ii), it is sufficient to show that, ifA22 u = 0, for u ∈ Ker(A12), thenu = 0. Using (5.4),
this follows from

u = In u = AT
11 A22 u−AT

21 A12 u = 0.

For proving Property (iii), we takeu ∈ A22(Ker(A12)) andv ∈ Ran(A12). Then there exist vectors
x ∈ Ker(A12) andw ∈ IRn, such thatu = A22x andv = A12w. For proving (iii) we use the following
results.

Given a linear transformationB in IRn and a linear subspaceV of IRn. Then

dimB←(V ) ≥ dimV, (5.7)

BT (V ⊥) ⊂ (B←(V ))⊥. (5.8)

For proving these relations, we putW = B←(V ). Then, from

dimW = dimV ∩Ran(B) + dim Ker(B),

it follows that

dimW = dim V + dim Ran(B)− dim(V + Ran(B)) + dim Ker(B) =
dimV + n− dim(V + Ran(B)) ≥ dimV,

which proves (5.7). Now, letx ∈ BT (V ⊥), andy ∈W . ThenB y ∈ V , x = BT u for anu ∈ V ⊥ and

(x, y) = (BT u, y) = (u, B y) = 0.

Hence,BT (V ⊥) ⊂ W⊥, which proves (5.8). Our next step is to show that ifdimBT (V ⊥) = dimV ⊥

thenBT (V ⊥) = (B→(V ))⊥. If this result is established, Property (iii) follows immediately from (i) and
(ii) by takingB = AT

22 andV = Ran(AT
12). Due to (5.8) we only have to show that

dim(B→(V ))⊥ ≤ dimBT (V ⊥),

if dim BT (V ⊥) = dim V ⊥. From (5.7) it follows that

dim(B→(V ))⊥ = n− dim(B→(V )) ≤ n− dimV

= dimV ⊥ = dimBT (V ⊥),

which completes the proof. 2

For deriving a representation formula we also need the following result.

Lemma 5.2 LetW be a subspace ofIRn and letB be a linear transformation onIRn, such that

dim(B(W )) = dim(W ) = d.

Then ∫
W

f(Bx) dx =
1

qW (B)

∫
B(W )

f(x) dx, ∀f∈S(IRn), (5.9)

with qW (B) the d-dimensional volume of the simplex generated byB e1, . . . , B ed, with e1, . . . ed an
orthonormal basis inW .
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The proof of this lemma is omitted, since it is straightforward. We observe, thatqW (B) is positive. Fur-
thermore, ifW is the null space andB is non-singular, then by settingqW (B) = 1 the definition ofqW (B)
is extended in a consistent way.

The last lemma we need to derive our representation formula is as follows.

Lemma 5.3 Let f ∈ S(IRn) andA ∈ Sp(n) with block decomposition (5.2). Also letdim Ran(A12) =
d > 0. Then,∫

Ker(A12)

∫
IRn

f(u) ei (v,AT22 u) du dv =
(2 π)n−d

qKer(A12)(A22)

∫
Ran(A12)

f(v) dv. (5.10)

Proof
SincedimA22(Ker(A12)) = dim Ker(A12) = n − d, cf. Property (ii) of Lemma 5.1, we may apply
Lemma 5.2. This yields∫

Ker(A12)

 ∫
IRn

f(u) ei (v,AT22 u) du

 dv = (2 π)n/2

∫
Ker(A12)

f̂(A22 v) dv =

(2 π)n/2

qKer(A12)(A22)

∫
A22(Ker(A12))

f̂(v) dv. (5.11)

From Fourier theory we have as a result

(2π)−dim(W )/2

∫
W

f̂(v) dv = (2π)−(n−dim(W ))/2

∫
W⊥

f(v) dv,

for all f ∈ S(IRn) and linear subspacesW of IRn. By takingW = A22(Ker(A12)) this result becomes∫
A22(Ker(A12))

f̂(v) dv = (2π)n/2−d

∫
A22(Ker(A12))⊥

f(v) dv.

SinceA22(Ker(A12))⊥ = Ran(A12), we have, cf. Property (iii) of Lemma 5.1,∫
A22(Ker(A12))

f̂(v) dv = (2 π)n/2−d

∫
Ran(A12)

f(v) dv.

In combination with (5.11) the latter result establishes the proof. 2

The starting point for the derivation of our representation formula is the characteristic function of the
Wigner distribution (2.9). For then-dimensional mixed Wigner distribution, we can also define a charac-
teristic function by

M [f, g](θ, t) = (2π)−n/2

∫
IRn

f(u + t/2) g(u− t/2)ei(u,θ) du,

or equivalently

M [f, g](θ, t) = (2π)−n/2

∫
IRn

f(u + t) g(u)ei(u+t/2,θ) du, (5.12)

with f, g ∈ L2(IRn). By the inverse Fourier transform we have

f(x)g(y) = (2π)−n/2

∫
IRn

M [f, g](θ, x− y)e−i(θ,x+y)/2 dθ. (5.13)
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For then-dimensional mixed Wigner distribution we have

WV [f ](x, ω) = (2π)−3n/2

∫
IRn

∫
IRn

M [f ](θ, t)e−i(θ,x)e−i(t,ω) dθ dt. (5.14)

Now, letV be a unitary operator satisfying (5.1). It follows from (5.14) together with (5.1) that

M [Vf,Vg] = M [f, g] ◦ (A−1)T . (5.15)

Combining (5.15) with (5.3) and (5.13) we arrive at

V [f ](x)V [g](y) = (2π)−n/2

∫
IRn

M [f, g]((A−1)T (θ, x− y))e−i(θ,x+y)/2 dθ

= (2 π)−n

∫
IRn

∫
IRn

f(u−A12 θ/2 + A11(x− y)/2) ×

g(u + A12 θ/2− A11(x− y)/2)E0(u, θ, x, y) du dθ, a.e..

for all f andg in L2(IRn), with

E0(u, θ, x, y) = exp(i (A22 θ −A21(x− y), u)− i (θ, x + y)/2).

This last relation only holds formally for generalf, g ∈ L2(IRn), but it holds rigorously forf, g ∈ S(IRn).
Therefore, we assumef, g ∈ S(IRn) from now on. After this derivation, we will show that the representa-
tion formula also hold forf ∈ L2(IRn).

By takingv = u− A11(x + y)/2 in the previous result, we have

V [f ](x)V [g](y) =

(2 π)−n

∫
IRn

∫
IRn

f(v −A12 θ/2 + A11 x) g(v + A12 θ/2 + A11 y) ×

exp(i E1(v, θ, x, y)) dv dθ,

with E1(v, θ, x, y) = (A22 θ − A21 (x− y), v + A11 (x + y)/2)− (θ, x + y)/2. Using Relations (5.4) -
(5.6), we can writeE1 as

E1(v, θ, x, y) = (A22 θ −A21 (x− y), v) + (A12 θ, A21 (x + y))/2−
(A21 x, A11 x)/2 + (A21 y, A11 y)/2.

Hence,V [f ](x)V [g](y) can be rewritten as

V [f ](x)V [g](y) = e−i (A21 x,A11 x)/2 ei (A21 y,A11 y)/2H[f, g](x, y), (5.16)

with

H[f, g](x, y) = (2π)−n

∫
IRn

∫
IRn

f(v −A12 θ/2 + A11 x) g(v + A12 θ/2 + A11 y) ×

ei (A12 θ,A21 (x+y))/2 ei (A22 θ−A21 (x−y),v) dv dθ.

Our aim is now to writeH in a possible degenerate form. If this is established, then the representation
formula forVf can be read off from this form. To come to such a form we substitute in the latter expression
θ = θ1 + θ2, with θ1 ∈ Ran(AT

12) andθ2 ∈ Ker(A12). This yields

H[f, g](x, y) =

(2π)−n

∫
Ran(AT12)

∫
Ker(A12)

∫
IRn

f(v −A12 θ1/2 + A11 x) g(v + A12 θ1/2 + A11 y) ×

ei (A22 θ1−A21 (x−y),v) ei ((A12 θ1,A21 (x+y))/2+(A22 θ2,v)) dv dθ2 dθ1.
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We are now in the position to apply Lemma 5.3 with respect to the function

v 7→ f(v −A12 θ1/2 + A11 x) g(v + A12 θ1/2 + A11 y) ei (A22 θ1−A21 (x−y),v).

By applying this lemma, we arrive at

H[f, g](x, y) =
(2π)−d

qKer(A12)(A22)

∫
Ran(AT12)

∫
Ran(A12)

f(v −A12 θ1/2 + A11 x) ×

g(v + A12 θ1/2 + A11 y)×
ei( (A12 θ1,A21 (x+y))/2+ (A22 θ1−A21 (x−y),v)) dv dθ1,

with d =dim Ran(A12). Sincev ∈ Ran(A12), we may substitutev = A12 w with w ∈ Ran(AT
12), since

A12 restricted to Ran(AT
12) is a linear bijection onto Ran(A12). We obtain

H[f, g](x, y) =

C2
A

∫
Ran(AT12)

∫
Ran(AT12)

f(A12 w −A12 θ1/2 + A11 x) ×

g(A12 w + A12 θ1/2 + A11 y)×
ei( (A12 θ1,A21 (x+y))/2+(A22 θ1−A21 (x−y),A12 w)) dw dθ1,

with

CA =

√
s(A12)

(2π)d qKer(A12)(A22)
. (5.17)

Heres(A12) denotes the product of the nonzero singular values ofA12, or equivalently

s(A12) = qRan(AT12)(A12).

Our next step is to substitutet1 = w − θ1/2 andt2 = w + θ1/2. Then, by using (5.4) - (5.6) one has

(A12 θ1, A21 (x + y))/2 + (A22 θ1 −A21 (x− y), A12 w) =
(A12 (t2 − t1), A21 (x + y))/2 + (A22 (t2 − t1), A12 (t1 + t2))/2−
(A21 (x− y), A12 (t1 + t2))/2 =
−(A22 t1, A12 t1)/2 + (A22 t2, A12 t2)/2− (A12 t1, A21 x) + (A21 y, A12 t2).

With this result we can rewriteH[f, g](x, y) in the degenerate form

H[f, g](x, y) = C(A)2H0[f ](x)H0[g](y), (5.18)

with

H0[f ](x) =
∫

Ran(AT12)

f(A12 t + A11 x) e−i ((A22 t,A12 t)/2+ (A12 t,A21 x)) dt.

Finally, combining (5.16) and (5.18) yields the degenerate form forV [f ](x)V [g](y)

V [f ](x)V [g](y) = C2
AH0[f ](x)H0[g](y). (5.19)

In a natural way this derivation results into the definition of an operatorFA that satisfies (5.1). We will
define this operator onL2(IRn) and show that it indeed corresponds to the unitary operator we have been
searching for.
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Definition 5.4 Let A ∈ Sp(n) with block decomposition (5.2). Then the linear operatorFA on L2(IRn)
is defined as follows. Ifdim(Ran(A12)) > 0, then

FA[f ](x) = CA e−i (AT11 A21 x, x)/2 ×∫
Ran(AT12)

f(A12 t + A11 x) e−i (AT12 A22 t, t)/2−i (t,AT12 A21 x) dt, (5.20)

for all f ∈ L2(IRn) and withCA as given in (5.17). Furthermore, ifdim(Ran(A12)) = 0 then

FA[f ](x) =
√
| detA11| e−i (AT11 A21 x, x)/2 f(A11 x), (5.21)

for all f ∈ L2(IRn).

The main theorem of this section can be stated as follows.

Theorem 5.5 LetA ∈ Sp(n) andFA be given as in Definition 5.4. Then

WV [FAf,FAg](x, ω) = W [f, g](A(x, ω)),

for all f, g ∈ L2(IRn).

Proof
If dim(Ran(A12)) > 0 then we conclude from (5.19) and the definition ofFA that a unitary operatorV ,
for whichW [Vf,Vg](x, ω) = W [f, g](A(x, ω)) holds for allf, g ∈ S(IRn), must satisfy

V [f ](x)V [g](y) = FA[f ](x)FA[g](y) a.e. on IRn,

for all f, g ∈ S(IRn). Hence,V defined onS(IRn) is equal toFA up to a constantC, with |C| = 1. Note,
thatC may depend onA. SinceS(IRn) is dense inL2(IRn), we obtain

Vf = C FAf,

for all f ∈ L2(IRn). The proof fordim(Ran(A12)) > 0 is completed by assuming, thatV satisfies (5.1).

If dim(Ran(A12)) = 0, we haveA12 = 0. Then (5.4) and (5.5) yield, thatA11 is non-singular and
thatA−1

11 = A22
T . Moreover,A11

T A21 is symmetric. Using these observations, we compute the mixed
Wigner distribution ofFAf andFAg as follows.

W [FAf,FAg](x, ω) =
| detA11|
(2 π)n

∫
IRn

f(A11 x + A11 t/2) ×

g(A11 x−A11 t/2) e−i (AT11 A21 x, t) e−i (t,ω) dt =

(2π)−n

∫
IRn

f(A11 x + t/2) g(A11 x− t/2) e−i ((AT11 A21 x,A−1
11 t)+ (A−1

11 t,ω)) dt.

Hence,
WV [FAf,FAg](x, ω) =WV [f, g](A11 x, A21 x + A22 ω).

This establishes the proof fordim(Ran(A12)) = 0. 2

At the end of this section, we present two well-known examples of unitary operators, that satisfy (5.1).

Example 5.6 We recall, that for a set of parametersα1, . . . , αn ∈ (0, π) the n-dimensional fractional
Fourier transform is given by

Fα1,... ,αn [f ](x) =
Cαei (B x,x)/2√

(2 π)n | sinα1 · · · sinαn|

∫
IRn

f(u)ei((Bu,u)/2−(Cx,u)) du, (5.22)
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with B = diag(cotα1, . . . , cotαn), C = diag(cscα1, . . . , cscαn) andCα = Cα1 · · ·Cαn , whereCαk is
given by (3.2). The symplectic matrix, that corresponds to this transform in the Wigner plane is given by
the rotation matrixRα1,··· ,αn as given in (3.21). We observe, that in this particular caseA12 is non-singular.
This yieldsqKer(A12)(A22) = 1 ands(A12) = det(A12). Using these simplifications and the substitution
u = A12t + A11x, Formula (5.20) simplifies to

FA[f ](x) =
e−i (A−1

12 A11 x, x)/2

(2 π)n/2
√
| detA12|

∫
IRn

f(u) e−i( (A22 A−1
12 u, u)/2− (x, A−1

12 u)) du.

TakingA11 = A22 = diag(cosα1, . . . , cosαn) andA12 = diag(− sinα1, . . . ,− sinαn), the latter repre-
sentation formula turns into then-dimensional FRFT as given in (5.22).

Example 5.7 The second example is the unitary operator onL2(IR2), which corresponds in the Wigner
plane to the symplectic matrix

A =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 .

Remark, that all matrices in the block decomposition ofA are singular.

It can be verified in a straightforward way, thatqKer(A12)(A22) = 1 ands(A12) = 1. By substituting the
block matrices ofA into (5.20), the unitary operator, we are dealing with, reads

FA[f ](x1, x2) =
1√
2 π

∫
IR

f(x1, ξ) e−i ξ x2 dξ,

which is the one-dimensional Fourier-transform off(x1, ·). We observe, that this operator can also be
derived from (5.22) by takingα1 → 0 andα2 → π/2.

We observe that in [9] and [10] also a representation formula is presented for unitary operators that corre-
spond to symplectic transformations in the Wigner plane. However, both references do not give a formula
that can also handle symplectic transformations with a block decomposition, that consists of four singular
block matrices, which is the case in the second example.

6. LOCALIZATION PROBLEMS IN PHASE SPACE

A celebrated problem in signal processing is the problem of maximizing energy in both time and frequency.
This problem already has received much attention in the literature, see e.g. [6, 8, 12, 18].

In this section we discuss two classical problems. The first problem concerns the maximization of energy
of time-limited signals within a frequency band, i.e. finite interval in the Fourier domain. For this problem
we revisit a series of papers by Slepian and co-workers, [17, 27, 35]. Furthermore, we give a rigorous proof
of a conjecture by Slepian [34]. The second problem concerns the maximization of energy within a disk
in the Wigner plane, i.e., the phase space related to the Wigner distribution. Although this problem is dis-
cussed in several papers [6, 8, 9, 14], we also present alternative proofs and additional results in this section.

In Section 7 the generalized FRFT will be used to relate several classes of energy maximization problems
in phase space to the two classical problems, that are discussed in this section.

6.1 Slepian’s Energy Problem
The first problem to be considered in this part of the chapter is the concentration of energy in a certain
frequency band of a time-limited signal. So we consider forf ∈ L2([−x0, x0]), for some fixedx0 > 0, the
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ratio

Ef (ω0) =

ω0∫
−ω0

|f̂(ω)|2 dω∫
IR

|f̂(ω)|2 dω
, (6.1)

with [−ω0, ω0] the frequency band we are looking at in this problem. Obviously,Ef (ω0) ≥ 0, for all
f ∈ L2(IR). Moreover, Corollary 1.10 yieldsEf (ω0) < 1.

SinceEf (ω0) < 1 for all f ∈ L2(IR), the problem arises of maximizing this energy ratio over all
f ∈ L2([−x0, x0]).

For solving this problem we introduce two operators. The first operator we discuss is the integral operator
B(ω0) : L2(IR)→ L2(IR). Forω0 > 0 fixed, this operator is given by

B(ω0)[f ](x) =

√
2
π

∫
IR

sin(ω0(x− u))
(x− u)

f(u)du, (6.2)

for all f ∈ L2(IR). We observe that

F−1[χ[−ω0,ω0]](x) =

√
2
π

sin(ω0x)
x

.

According to Lemma 1.6 the latter result yields

FB(ω0)f = χ[−ω0,ω0] · Ff a.e. on IR. (6.3)

HenceB(ω0) is a Hermitian projection operator; in fact it is an orthonormal projection.

The second operator we introduce in relation to the energy localization problem is the projectionP(x0) :
L2(IR)→ L2(IR). Forx0 > 0 fixed, this operator is defined by

P(x0)[f ](x) =
{

f(x), if |x| ≤ x0,
0, if |x| > x0.

(6.4)

By combining the introduced operators we arrive at

P(x0)B(ω0)P(x0)[f ](x) =


√

2
π

x0∫
−x0

sin(ω0(x−u))
(x−u) f(u)du, |x| ≤ x0,

0 |x| ≥ x0,
(6.5)

for all f ∈ L2(IR). Since the integral kernel in (6.5) is inL2([−x0, x0]2), we have thatP(x0)B(ω0)P(x0)
is a Hilbert-Schmidt operator. Hence,P(x0)B(ω0)P(x0) is a compact operator. AlsoP(x0)B(ω0)P(x0)
is positive definite onL2([−x0, x0]), which is shown as follows. Using (6.3) we derive

(P(x0)B(ω0)P(x0)f, f)2 = (B(ω0)P(x0)f,P(x0)f)2
= (FB(ω0)P(x0)f,FP(x0)f)2
= (χ[−ω0,ω0] · FP(x0)f,FP(x0)f)2
= (χ[−ω0,ω0] · FP(x0)f, χ[−ω0,ω0] · FP(x0)f)2 ≥ 0.

If we have, for somef ∈ L2(IR),

(P(x0)B(ω0)P(x0)f, f)2 = 0,

thenFP(x0)[f ](ω) = 0, for almost allω ∈ [−ω0, ω0]. However,FP(x0)f is holomorphic by Theo-
rem 1.9. This yields in combination with the latter resultFP(x0)f = 0, or equivalentlyf(x) = 0 for
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almost all|x| < x0.

Following Pollack and Slepian [27, 34], we consider possible solutionsP(x0)fmax, with fmax ∈ L2(IR),
that maximize (6.1). To find these solutions we derive

EP(x0)fmax(ω0) · (FP(x0)fmax,FP(x0)fmax)2 = (χ[−ω0,ω0] · FP(x0)fmax,FP(x0)fmax)2.

Equivalently, using Parseval’s theorem and (6.3),

EP(x0)fmax(ω0) · (P(x0)fmax,P(x0)fmax)2 = (B(ω0)P(x0)fmax,P(x0)fmax)2.

Sincefmax is a stationary solution of this equation, it must satisfy

B(ω0)P(x0)fmax = λP(x0)fmax, (6.6)

a homogeneous Fredholm equation of the first kind. In fact,P (x0)fmax should be an eigenfunction of
B(ω0) andEP(x0)fmax(ω0) is the largest eigenvalue ofB(ω0).

We recall thatP(x0)B(ω0)P(x0) is compact. Furthermore, it is positive definite onL2([−x0, x0]). These
considerations yield that solutionsP(x0)f for equation (6.6) only exist for a discrete set of real positive
values ofλ, with the properties that

1 > λ0 > λ1 > λ2 > . . .

and limk→∞ λk = 0. In general, the eigenvalues of a compact Hermitian operator are not necessarily
distinct. However, for this particular Fredholm operator, Pollack and Slepian have shown in [27], that its
eigenvalues are distinct. Also Slepian showed, see [34], that the kernel of the integral operatorB(ω0)
commutes with the second order differential operator

D(x0ω0) =
d

dx
(1− x2)

d

dx
− (x0ω0)2x2. (6.7)

Since both operators have the same spectrum, they must have the same eigenvectors.

Differential operator (6.7) is a well-known operator. It arises on separating the 3-dimensional scalar
wave equation in a prolate spheroidal coordinate system. Its real-valued eigenfunctionsψ0, ψ1, ψ2, . . .
are known as prolate spheroidal wave functions (PSWF), see [7]. We observe, that the concentration of
energy problem is solved byP(x0)ψ0 and thatEP(x0)fmax(ω0) is given byλ0.

Some useful properties of the PSWF have been derived in the past. We present some of them in the
following lemma. For a proof of these properties we refer to [17, 27, 35].

Lemma 6.1 Let ψ0, ψ1, ψ2, . . . be the eigenfunctions ofP(x0)B(ω0)P(x0) and let their corresponding
eigenvalues be given byλ0, λ1, λ2, . . . . Then

(i) ψ̂k ∈ L2([−ω0, ω0]) ∀k∈IN ,

(ii)
x0∫
−x0

ψk(x)ψn(x) dx = λkδk,n,

(iii)
∫
IR

ψk(x)ψn(x) dx = δk,n.

Other properties for the PSWF follow from this lemma, e.g. Theorem 1.9 and (i) yield thatψk is holomor-
phic. However, this lemma does not provide us with an explicit expression forψk and consequently for
λk. More insight in the behaviour of the eigenvaluesλk is given by a conjecture of Slepian, which can be
proven rigorously by using the following classical result, that is due to Landau and Widom, see [18].
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Lemma 6.2 LetH(x0ω0) : L2(IR)→ L2(IR) be given by

H(x0ω0) = P(x0ω0)B(1)P(x0ω0).

Furthermore, letN(H(x0ω0), p), 0 < p < 1, denote the number of eigenvalues ofH(x0ω0) which are
greater than or equal top. Then

N(H(x0ω0), p) =
2x0ω0

π
+

1
π2

log(
1− p

p
) log(x0ω0) + R(x0ω0), (6.8)

with R(x) of ordero(log(x)) asx→∞.

In [34] Slepian already noted that this lemma proves his conjecture on the asymptotic behavior of the
eigenvaluesλk, k ∈ IN . Here we prove Slepian’s conjecture in a rigorous way.

Theorem 6.3 (Slepian’s conjecture)LetP(x0)B(ω0)P(x0) be as defined in (6.5) and letλk, k ∈ IN, be
its eigenvalues. Then for allδ, ε ∈ (0, 1) there exists anM ∈ IN such that

(i) λk < ε, for k ≥ (1 + δ)2x0ω0
π , andx0ω0 > M ,

(ii) 1− λk < ε, and1 ≤ k ≤ (1− δ)2x0ω0
π , for x0ω0 > M .

Moreover, for allε > 0 andθ ∈ IR, there existδ > 0 andM ∈ IN such that

(iii) |λk − (1 + eπθ)−1| < ε, for |k − 2x0ω0
π − θ

π log(x0ω0)| < δ log(x0ω0) andx0ω0 > M .

Proof
We defineφk(x) = ψk(x/ω0). Then, for|x| < x0ω0, we derive

λkφk(x) =

√
2
π

x0∫
−x0

ω0 sin(x− uω0)
(x− uω0)

φk(uω0) du

=

√
2
π

x0ω0∫
−x0ω0

sin(x− v)
(x− v)

φk(v) dv

or equivalently

H(x0ω0)φk = λkφk ∀k∈IN\{0}.

Consequently, Lemma 6.2 can also be applied on the eigenvalues ofP(x0)B(ω0)P(x0).

Let 0 < ε < 1 and0 < δ < 1. We takeM > 0 such that

δ >
log

(
1−ε

ε

)
log x

2πx
+

πR(x)
2x

, (6.9)

for x > M . Then

N(H(x0ω0), ε) =
2x0ω0

π
+

1
π2

log(
1− ε

ε
) log(x0ω0) + R(x0ω0) < (1 + δ)

2x0ω0

π
,

for x0ω0 > M . Consequently, ifk ≥ (1 + δ)2x0ω0
π , thenN(H(x0ω0), ε) < k. This result yieldsλk < ε.

For proving Property (ii) we also takeM > 0 such that (6.9) holds. Then

N(H(x0ω0), 1− ε) =
2x0ω0

π
− 1

π2
log(

1− ε

ε
) log(x0ω0) + R(x0ω0) > (1− δ)

2x0ω0

π
,

for x0ω0 > M . Therefore, if1 ≤ k ≤ (1 − δ)2x0ω0
π , thenN(H(x0ω0), 1 − ε) > k, which leads to

1− λk < ε.
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Finally, letε > 0 andθ ∈ IR. Furthermore, takeδ > 0 andM ∈ IN such that

δ <
1
π2

log
(

1 + ε + εeπθ

1− ε− εe−πθ

)
− R(x)

log x
,

for x > M . Then we have

N(H(x0ω0), (1 + eπθ)−1 + ε) =
2x0ω0

π
+

1
π2

log
(

eπθ · 1− ε− εe−πθ

1 + ε + εeπθ

)
log(x0ω0) + R(x0ω0) =

2x0ω0

π
+

θ

π
log(x0ω0)−

1
π2

log
(

1 + ε + εeπθ

1− ε− εe−πθ

)
log(x0ω0) + R(x0ω0) <

2x0ω0

π
+

θ

π
log(x0ω0)− δ log(x0ω0)

for x0ω0 > M . Consequently, if

k >
2x0ω0

π
+

θ

π
log(x0ω0)− δ log(x0ω0),

or equivalently, if
2x0ω0

π
+

θ

π
log(x0ω0)− k < δ log(x0ω0),

thenλk − (1 + eπθ)−1 < ε.

In the same way, we derive

N(H(x0ω0), (1 + eπθ)−1 − ε) =
2x0ω0

π
+

θ

π
log(x0ω0) +

1
π2

log
(

1 + ε + +εeπθ

1− ε− εe−πθ

)
log(x0ω0) + R(x0ω0) >

2x0ω0

π
+

θ

π
log(x0ω0) + δ log(x0ω0)

for x0ω0 > M . Therefore, if

k <
2x0ω0

π
+

θ

π
log(x0ω0) + δ log(x0ω0),

or equivalently, if

k − 2x0ω0

π
− θ

π
log(x0ω0) < δ log(x0ω0),

thenλk − (1 + eπθ)−1 > −ε. Combining these two results establishes the proof of Property (iii). 2

From this theorem it follows, that for largex0ω0 approximately the first2x0ω0/π eigenvalues that cor-
respond to the PSWF attain a value close to unity. For index numbers in a region around2x0ω0/π the
eigenvalues plunge to zero and attain values close to zero afterwards. The number of eigenvalues in the
region where the eigenvalues decrease from close to one to close to zero is proportional tolog x0ω0. Re-
mark, that the eigenvalues depend on the productx0ω0.

In Figure 1 the eigenvalues ofH(x0ω0) are depicted for a)x0ω0 = 25 and b)x0ω0 = 50 respectively. We
observe that in both figures the number of eigenvalues close to unity is given by2x0ω0/π. Forx0ω0 = 25,
approximately the first 16 eigenvalues are close to unity. Forx0ω0 = 50, this number is approximately
32. The number of eigenvalues in the plunge region in Figure 1.b is approximately 1.25 times the number
of eigenvalues in this region in Figure 1.a. This corresponds with the observation we have made after
Theorem 6.3, namely that the multiplication factor is approximately given bylog 32/ log 16 = 5/4.
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Figure 1: Eigenvalues corresponding to the PSWF for a)x0ω0 = 25, b) x0ω0 = 50.

6.2 Energy Concentration on a Circle in the Wigner Plane
The second problem to be considered is the concentration of energy in a circular region in the Wigner
plane. So we consider a region

CR = {(x, ω) ∈ IR2 | x2 + ω2 ≤ R} (6.10)

and search for functionsf ∈ L2(IR) for which

Ef (R) =
∫

CR

WV [f ](x, ω)dxdω / ‖f‖22 (6.11)

is maximized. An upperbound forEf (R) follows from an upperbound forWV [f ] which can be derived
from (3.16) in the following way

|WV [f ](x, ω)| = |(M−ωT−xf,MωTxFf)|/π ≤ ‖f‖22/π.

This result yields
Ef (R) ≤ R2.

Of course a better and more natural upperbound forEf (R) would be given by 1, i.e., ifEf (R) is the total
amount of energy off . A conjecture of Flandrin states that such an upperbound indeed exists, not only for
integrals over circular regions, but in general for integrals over convex regions, see [8]. As far as we know,
a proof of this conjecture has not been given yet. For non-convex regions this conjecture does not hold,
which follows from various examples in [28].

We observe that from (2.14) it follows that

Ef (R)→ 1 (R→∞),

if also f ∈ L1(IR) or f̂ ∈ L1(IR). Since the Wigner distribution can attain both positive and negative
values, this result is not sufficient to prove Flandrin’s conjecture.
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In order to solve this energy localization problem, we introduce the localization operatorL(σ) onL2(IR),
associated with a bounded symbol onIR2, by

(L(σ)f, g)2 =
∫
IR

∫
IR

σ(x, ω)W [f, g](x, ω) dx dω, (6.12)

for all f, g ∈ L2(IR) and withWV [f, g] the mixed Wigner distribution off andg. Then

Ef (R) = (L(σ)f, f)2 /(f, f)2,

with σ = χCR . Furthermore, we observe thatL(σ) is a Weyl transform with symbolσ ∈ L2(IR2), see [44].

It can be proved, see e.g. [44], thatL(σ) is compact forσ ∈ Lp(IR2), 1 ≤ p ≤ 2. Moreover, Flandrin
showed in [8] thatL(σ) is self-adjoint forσ real-valued. This means thatL(σ) is a compact Hermitian
operator onL2(IR) for real-valuedσ ∈ Lp(IR2), 1 ≤ p ≤ 2. Consequently, the eigenvectors ofL(σ) can
be chosen to form an orthonormal basis forL2(IR), the set of real-valued eigenvalues is countable and the
only possible accumulation point is 0.

These considerations yield that the functionfmax, that maximizesEf (R) is given by the eigenvectorφ0

of L(χCR) corresponding to the largest eigenvalueλ0 of L(χCR). Moreover,Efmax(R) is given byλ0.

The eigenvectors ofL(χCR) are given by the Hermite functionshk, k ∈ IN , as introduced in (3.11). This
result was already given by Janssen in [14]. In the following lemma we come to the same result using a
proof based on a property of the fractional Fourier transform.

Lemma 6.4 Let CR = {(x, ω) ∈ IR2 | x2 + ω2 ≤ R} andL(χCR) as defined in (6.12). Then the
eigenvectors ofL(χCR) are given by

{hk | k ∈ IN}
with hk the Hermite functions as defined in (3.11).

Proof
SinceχCR is rotation invariant, we have for allα ∈ [0, 2π)

(L(χCR)Fαf,Fαg)2 =
∫

CR

WV [Fαf,Fαg](x, ω) dx dω

=
∫

CR

WV [f, g](Rα(x, ω)) dx dω

=
∫

CR

WV [f, g](x, ω) dx dω = (L(χCR)f, g)2,

with Rα the rotation matrix as given in (3.18). Consequently, we have for allα ∈ [0, 2π)

FαL(χCR) = L(χCR)Fα.

Let nowφk be an eigenvector ofL(χCR) andλk its corresponding eigenvalue. Then

L(χCR)Fαφk = FαL(χCR)φk = λkFαφk.

This shows, that ifφk is an eigenvector ofL(χCR), then alsoFαφk is an eigenvector ofL(χCR) for all
α ∈ [0, 2π). SinceL(χCR) is compact, the set of eigenvectors

{Fαφk | α ∈ [0, 2π)}
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should be finite or countable. This can only be realized ifφk is an eigenvector ofFα for all α ∈ [0, 2π),
i.e.,φk is a Hermite function, following (3.13). 2

The eigenvaluesλk of L(χCR) can be expressed in terms of Laguerre polynomialsLk given by

Lk(x) =
1
k!

ex

(
d

dx

)k (
e−xxk

)
. (6.13)

In the following lemma we present a recurrence relation involving Laguerre polynomials that we shall use
to compute the eigenvaluesλk.

Lemma 6.5 DefineIn(y) =

y∫
0

e−x/2Ln(x) dx. Then

In+1(y) = −In(y) + 2e−y/2 (Ln(y)− Ln+1(y)) . (6.14)

Proof
First we observe thatL′n(x) = L′n+1(x)+Ln(x), which follows from the recurrence relations for Laguerre
polynomials, andLn(0) = 1, see e.g. [37]. Integration by parts yields

In(y) = 2− 2Ln(y)e−y/2 + 2

y∫
0

e−x/2L′n(x) dx

= 2− 2Ln(y)e−y/2 + 2In(y) + 2

y∫
0

e−x/2L′n+1(x) dx.

We conclude

2

y∫
0

e−x/2L′n+1(x) dx = −In(y) + 2Ln(y)e−y/2 − 2.

Applying the same procedure onIn+1 yields

In+1(y) = 2− 2Ln+1(y)e−y/2 + 2

y∫
0

e−x/2L′n+1(x) dx,

or equivalently

2

y∫
0

e−x/2L′n+1(x) dx = In+1(y) + 2Ln+1(y)e−y/2 − 2.

Combining these two results completes the proof. 2

Using this lemma we come to the following recurrence relation for the eigenvalues ofL(χCR).

Theorem 6.6 Let{λk | k ∈ IN} denote the set of eigenvalues ofL(χCR), with

CR = {(x, ω) ∈ IR2 | x2 + ω2 ≤ R},

with R > 0. Then

• λ0 =
(
1− e−R2

)
,

• λk+1 = λk − (−1)k e−R2 (
Lk(2R2)− Lk+1(2R2)

)
, k ∈ IN\{0}.
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Figure 2: Eigenvalue behavior of the energy localization problem on a disk with radiusR =
√

3.

Proof
The Wigner distributionWV [hk](x, ω) can be expressed in terms of Laguerre polynomials, see e.g. [44].
This relation with Laguerre polynomials is given by

WV [hk](x, ω) = 2(−1)k (2π)−1 Lk(2(x2 + ω2)) e−(x2+ω2).

Using polar coordinates we get

λk = (L(χCR)hk, hk)2 =
∫

CR

WV [hk](x, ω) dx dω

= 2 (−1)k

R∫
0

ρLk(2ρ2) e−ρ2
dρ =

(−1)k

2

2R2∫
0

e−x/2Lk(x) dx

= (−1)k Ik(2R2)/2.

Consequently, we have

λ0 = I0(2R2)/2 = 1/2

2R2∫
0

e−x/2 dx =
(
1− e−R2

)
.

Moreover, Lemma 6.5 yields

λk+1 = (−1)k+1 Ik+1(2R2)/2

= (−1)k Ik(2R2)/2 + (−1)k+1e−R2 (
Lk(2R2)− Lk+1(2R2)

)
= λk − (−1)k e−R2 (

Lk(2R2)− Lk+1(2R2)
)
.

This gives the recurrence relation for the eigenvalues. 2

In Figure 2 the first 30 eigenvalues as given in Theorem 6.6 are depicted forR =
√

3. To emphasize the
eigenvalue behavior a spline interpolation function is used in this figure. As we have seen before for the
eigenvalues Theorem 6.3, the first eigenvalues are close toλ0. Later the values plunge down towards zero
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and remain close to zero for larger index numbers. For the Wigner distribution, the eigenvalues can be
negative, which can be observed in Figure 2 as well. Moreover, starting from a certain index number the
eigenvalues alternate around zero.

7. LOCALIZATION PROBLEMS AND THE GENERALIZED FRFT
In this section we return to the fractional Fourier transform as introduced in Section 4.2. This generalized
FRFT is used to solve two classes of energy localization problems that are related to the two problems,
which we discussed in the previous sections. These two classes of localization problems are related to the
discussed problems via the Weyl correspondence.

Although the problems we discuss concern signals inL2(IR) we consider first localization problems for
signals inL2(IRn). For this we generalize the Weyl correspondence (6.12) to higher dimensions. Then a
bounded symbolσ onIR2n is associated with the localization operatorL(σ) onL2(IRn) by

(L(σ)f, g)2 =
∫

IRn

∫
IRn

σ(x, ω)W [f, g](x, ω) dx dω, (7.1)

for all f, g ∈ L2(IRn). Consequently, ifσ = χΩ, with Ω ⊂ IR2n, then

(L(σ)f, f)2 =
∫
Ω

W [f ](x, ω) dx dω

represents the energy off in the Wigner plane within the regionΩ.

Using the generalized FRFTFΓ,∆ as introduced in (4.22) we compute

(FΓ,∆L(σ)F∗Γ,∆f, g)2 = (L(σ)F∗Γ,∆f,F∗Γ,∆g)

=
∫

IRn

∫
IRn

σ(x, ω)W [F∗Γ,∆f,F∗Γ,∆g](x, ω) dx dω

=
∫

IRn

∫
IRn

σ(x, ω)W [f, g](A−1(x, ω)) dx dω

=
∫

IRn

∫
IRn

σ(A(x, ω))W [f, g](x, ω) dx dω

= (L(σA)f, g)2,

with σA(x, ω) = σ(A(x, ω)) andA as given in (4.24). Now, assume{φk |k ∈ IN} is the set of eigenvectors
of L(σ) and{λk | k ∈ IN} the set of corresponding eigenvectors. Then

L(σA)FΓ,∆φk = (FΓ,∆L(σ)F∗Γ,∆)FΓ,∆φk

= FΓ,∆L(σ)φk = λkFΓ,∆φk. (7.2)

Consequently, the eigenvectors and eigenvalues ofL(σA) are given by

{FΓ,∆φk | k ∈ IN} and {λk | k ∈ IN}

respectively. IfL(σ) is a compact operator, both the eigenvectorsφk andFΓ,∆φk form an orthonormal set
in L2(IRn).

7.1 The Rectangle/Parallelogram Case and the Rihaczek Distribution
The first problem we consider is to maximize

(L(σ)f, f)2 /(f, f)2 (7.3)
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for f ∈ L2(IR), with σ = χ[−x0,x0]×[−ω0,ω0].

This problem may seem to be similar to Slepian’s energy problem in Section 6.1. However, results pre-
sented for Slepian’s energy problem cannot be related to the problem of localizing the energy on a rectangle
in the Wigner plane.

The two problems can only be related to each other if (7.3) is maximized over absolutely integrable
f ∈ L2

comp(IR), with supp(f) = [−x0, x0]. Using these constraints (7.3) is equal to (6.1), which follows
straightforwardly from Theorem 2.3. If we do not require these constraints on the maximizing functionf ,
we are only provided with some asymptotical results on the eigenvalues ofL(σ), see [12, 28].

A less trivial relation with Slepian’s energy problem is given for

σ = χ[−x0,x0]×[−ω0,ω0] ∗ ϕ, (7.4)

for somex0, ω0 ∈ IR+ and whereϕ is given by

ϕ(x, ω) = e−2ixω.

We observe that‖σ‖∞ ≤ 1, and soσ ∈ L∞(IR2).

The following lemma shows that the localization operatorL(σ), with σ as in (7.4), can be rewritten as an
energy density operator related to the Rihaczek distribution, see [29].

Lemma 7.1 LetL(σ) be the localization operator as defined in (7.1), withσ the symbol as given in (7.4).
Then for allf, g ∈ L2(IR)

(L(σ)f, g)2 =
∫
IR

∫
IR

χ[−x0,x0]×[−ω0,ω0](x, ω)R[f, g](x, ω) dx dω,

withR[f, g] the mixed Rihaczek distribution given by

R[f, g](x, ω) = f(x)ĝ(ω)e−iωx/
√

2π. (7.5)

Proof
We observe that

(L(σ)f, g)2 = (σ0 ∗ ϕ,WV [f, g])2 = (σ0, ϕ ∗WV [f, g])2,

with σ0 = χ[−x0,x0]×[−ω0,ω0]. This expression can be rewritten by

(ϕ ∗WV [f, g])(x, ω) =
1

2π2

∫
IR

∫
IR

∫
IR

ϕ(p, q)f(x− p + t)g(x− p− t)e−2it(ω−q) dt dp dq =

1
2π2

∫
IR

∫
IR

∫
IR

ϕ(−(u + v)/2, q)f(x + u)g(x + v)e−i(u−v)(ω−q) du dv dq =

1
4π2

∫
IR

∫
IR

∫
IR

e−iqxf(u)g(v)e−iu(ω−q)eivω du dv dq =

1
2π

∫
IR

e−iqxf̂(ω − q)ĝ(ω) dq =
1
2π

e−iωxĝ(ω)
∫
IR

e−iωxf̂(q)eiqx dq =

f(x)ĝ(ω)e−iωx/
√

2π.

This yields(L(σ)f, g)2 = 1√
2π

∫
IR

∫
IR

σ0(x, ω) f(x)ĝ(ω)e−iωx dx dω 2

Using this lemma we prove the following theorem, that relatesL(σ), with σ as in (7.4), with the localization
operator of Slepian’s energy problem.
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Figure 3: Localisation on a rectangle/parallelogram: fig. a)σ = 1 on [0, 1]× [0, 1] and fig. b, c, d)σA with
∆ = −1/Γ, ∆ = −2/Γ and∆ = −1/Γ2 respectively.

Theorem 7.2 LetL(σ) be the operator as in (7.1), withσ the symbol as in (7.4). Then

L(σ)∗L(σ) = P(x0)B(ω0)P(x0),

with B(ω0) andP(x0) as defined in (6.2) and (6.4) respectively.

Proof
From the preceding lemma it follows immediately that

L(σ)∗[g](x) = χ[−x0,x0](x) · 1√
2π

ω0∫
−ω0

ĝ(ω)eiωx dω = P(x0)B(ω0).

Since bothP(x0) andB(ω0) are projection operators, we have

L(σ)∗L(σ) = P(x0)B(ω0)P(x0).

2

Remark, that althoughσ ∈ L∞(IR), L(σ) is compact forσ as in (7.4). This follows from the fact that
L(σ)∗L(σ) is compact. Furthermore, we observe that the result of Theorem 7.2 was already given in [8].
However, our aim is not to investigate existing time-frequency distributions, but to consider the generalized
FRFT acting on these distributions. In this context, we return to the first part of this section.

We have seen that the eigenvalues ofL(σ) andL(σA) coincide. In a direct way, we can also show that the
eigenvalues ofL(σ)∗L(σ) andL(σA)∗L(σA) coincide. This yields that the singular values ofL(σ) and
L(σA) are the same. These singular values are given by

sk =
√

λk,

whereλk denote the eigenvalues of the operatorP(x0)B(ω0)P(x0). Since theseλk satisfy Theorem 6.3,
a similar result holds for the singular values. Moreover, the asymptotical behavior ofsk andλk is similar.
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Figure 4: Localisation on a circle/ellipse: fig. a)σ = 1 on {(x, ω) ∈ IR2 | x2 + ω2 ≤ 1}, fig. b, c, d)σA

with ∆ = −1/Γ, ∆ = −2/Γ and∆ = −1/Γ2 respectively.

The eigenvectors ofL(σ) do not follow from Theorem 7.2. Only the eigenvectors ofL(σ)∗L(σ) are known,
namely the prolate spheroidal wave functionsψk. As before we can also show that the eigenvectors of
L(σA)∗L(σA) are then given byFΓ,∆ψk. They can be computed as the eigenvectors of the operator

D′(x0ω0) = FΓ,∆D(x0ω0)F∗Γ,∆,

which is also a second order differential operator that commutes withL(σA)∗L(σA).

In Figure 3.b,c and d the domain ofσA is depicted instead ofσ, with the substitutions∆ = −1/Γ,
∆ = −2/Γ and∆ = −1/Γ2 and withΓ = 3 in (4.24). We observe that with these substitutionsL(σA)
represents the energy of the Rihaczek distribution within differently orientated parallelograms in phase
space. The singular values ofL(σA) for all A related to these parallelograms are the same and are given
by
√

λk, with λk as in Theorem 6.3.

7.2 The Circle/Ellipse Case
In Section 6.2 we already discussed the energy localization problem on a circle. Moreover, we studied the
operatorL(χCR), with CR a circle in the Wigner plane concentrated around the origin and with radius
R > 0. It turned out that its eigenvectors are given by the Hermite functionshk, defined by (3.12), and that
the corresponding eigenvalues are given by Theorem 6.6.

It follows from (7.2), that the eigenvectors ofL(σA), with A as given in (4.24), are given byFΓ,∆hk,
k ∈ IN . The eigenvalues ofL(σA) are given by the recurrence relation in Theorem 6.6.

In Figure 4.b,c and d the domain ofσA is depicted withσ the characteristic function ofCR, with the sub-
stitutions∆ = −1/Γ, ∆ = −2/Γ and∆ = −1/Γ2 and withΓ = 3. With these substitutionsL(σA)
represents the energy in the Wigner plane within differently orientated ellipses. The energy localization
problem for each of these ellipso¨ıdal areas is now solved by the eigenvectorsFΓ,∆hk, using the corre-
sponding substitutions, and the eigenvaluesλk.
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39. J. Ville, “Théorie et applications de la notion de signal analytique”,Cables et Transmissions, 2A,
61-74, 1948.

40. N.R. Wallach,Symplectic geometry and Fourier analysis, Math Sci Press, Brookline, 1977.

41. F.W. Warner,Foundations of differentiable manifolds, Springer, New York, 1983.

42. G. Warner,Harmonic analysis on semi-simple Lie groups, Springer, Berlin, 1972.

43. E.P. Wigner, “On the quantum correction for thermodynamic equilibrium”,Phys. Review, 40, 749-
759, 1932.

44. M.W. Wong,Weyl transforms, Springer, New York, 1998.

45. R.M. Young,An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.

46. A.C. Zaanen,Continuity, integration and Fourier theory, Springer, Berlin, 1989.


