
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Counting, Enumerating, and Sampling of Execution Plans in
a Cost-Based Query Optimizer

F. Waas and C. A. Galindo-Legaria

Information Systems (INS)

INS-R9913 October 31, 1999

Report INS-R9913
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Counting, Enumerating, and Sampling of Execution Plans in a
Cost-Based Query Optimizer

Florian Waas1,2

flw@cwi.nl

1CWI

P.O. Box 94079

1090 GB Amsterdam

The Netherlands

César Galindo-Legaria2

cesarg@microsoft.com

2Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

U.S.A.

ABSTRACT

Testing an SQL database system by running large sets of deterministic or stochastic SQL

statements is common practice in commercial database development. However, code defects

often remain undetected as the query optimizer’s choice of an execution plan is not only

depending on the query but strongly influenced by a large number of parameters describing

the database and the hardware environment. Modifying these parameters in order to steer

the optimizer to select other plans is difficult since this means anticipating often complex

search strategies implemented in the optimizer.

In this paper we devise algorithms for counting, exhaustive generation, and uniform

sampling of plans from the complete search space. Our techniques allow extensive validation

of both generation of alternatives, and execution algorithms with plans other than the

optimized one—if two candidate plans fail to produce the same results, then either the

optimizer considered an invalid plan, or the execution code is faulty. When the space of

alternatives becomes too large for exhaustive testing, which can occur even with a handful

of joins, uniform random sampling provides a mechanism for unbiased testing.

The technique is implemented in Microsoft’s SQL Server, where it is an integral part of

the validation and testing process.

1991 ACM Computing Classification System: H.2.4 Database Systems, G.2.1 Combinatorics

Keywords and Phrases: Cost-based query optimization, Random Sampling, Verification of

Optimizers.

Note: Funded by HPCN/IMPACT project.

1. Introduction

Cost-based query optimizers typically consider a large number of candidate
execution plans, and select one for execution. The choice of an execution plan
is the result of various, interacting factors, such as database and system state,
current table statistics, calibration of costing formulas, algorithms to generate
alternatives of interest, and heuristics to cope with the combinatorial explosion
of the search space. Normally, experimental validation and testing of the query
processor is limited to consider the one plan that was chosen by the optimizer
for execution. This is a severe limitation, as this plan is only a minuscule
fraction of the space of alternatives. In fact, during regular development and

1. Introduction 2

maintenance of a query processor, it has been our experience that some code
defects can remain undetected for a long time, until the right combination of
factors steer the optimizer to chose a plan that exposes the problem.

Rather than waiting for these problem scenarios to occur, or trying to manu-
ally influence optimizer choices towards ”potentially problematic” cases, we gen-
erate alternative execution plans by enumeration and sampling, from the space
of alternatives considered by the optimizer. The plans are generated indepen-
dently from optimizer decisions and provide a large set of test cases for both the
optimizer—are the alternatives considered really valid execution plans?—and
the execution engine—do different but semantically equivalent plans produce
the same output?

This approach to testing is similar to that taken by Slutz [11], in which a
large number random SQL statements are submitted to the database. Random
statements can be generated quickly, and extensive coverage of the code can
be achieved in a short time. Multiple execution plans for a given query test
smaller system components; it shows the result of arbitrary combinations of
optimization rules, and exercises execution algorithms in configurations that
are less common. Starting from a query with that has specific properties, e.g.
joins and outerjoins, or joins and aggregations, an ”area” of the optimizer and
execution code is targeted and exercised in a variety of combinations.

We develop a general approach based on ranking elements of a space, which
allows enumeration and sampling of plans. The basic idea is to establish a one-
to-one mapping between integers 0, . . . ,N − 1 and the N elements of a space.
Ranking an element, e.g. an execution plan, means finding its number; unrank-
ing a number means constructing the corresponding plan. Once an unranking
mechanism is available, uniform sampling of elements in the space reduces to
random generation of numbers in the range 0, . . . ,N − 1.

None of the known ranking and unranking techniques for tree structures
apply to the current problem [10, 2], as the space of alternatives considered
by industrial query optimizers is not restricted to an abstract combinatorial
problem, such as join reordering. Multiple execution algorithms, index utiliza-
tion, reordering of grouping operators, special-purpose physical operators, and
heuristics to control the time spent on searching, all make up for an actual space
that is hard to describe succinctly using abstract, regular structures.

The technique we devised, achieves an unranking mechanism off a compact
representation of multiple alternatives, in the style of the MEMO structure of
Volcano [7, 5], used in Microsoft’s SQL Server and Tandem’s NonStop SQL. Ini-
tially introduced in a transformation-based system, this data structure simply
captures the multiple choices available to a cost-based optimizer, not necessar-
ily constructed using transformation rules—a bottom-up enumeration approach
implicitly uses a similar data structure.

After performing the regular optimization of a query, we modify this data
structure to facilitate the counting of all possible plans and the subsequent
generation of a particular plan. The overhead incurred by this kind of post
processing is negligible for both, counting and extracting a certain plan. Fur-
thermore, we extended the SQL syntax to allow the specification of a plan, i.e.,

2. Preliminaries 3

the specification of a the plan’s number, within the standard interfaces.
Its marginal overhead together with a simple and easy to use interface have

made this technique a valuable tool and integral part of the testing process in
the SQL Server development.

In addition to its immediate use for testing, we also used this mechanism
to perform some experiments in a largely unexplored field of query processing:
The cost distribution of query plans. Cost distributions are of interest, because
they can be taken as obvious indicators of the stochastic difficulty of a problem,
by simply considering the ratio of high quality to low quality plans [6].

The remainder of this paper is organized as follows. In Section 2, we briefly
outline the optimizer framework and the MEMO structure. The counting and
unranking schemes are introduced in Section 3. In Section 4, we report on the
experience with using the tools in the ongoing development of Microsoft’s SQL
Server. We present initial results on cost distributions computed for TPC-H
queries in Section 5. Section 6 concludes the paper.

2. Preliminaries

In this section we review the concept of a compact representation of the plan
space in form of the MEMO structure. This concept was developed by Graefe
and DeWitt in the context of transformation-based query optimization [4, 5, 1].
Independent of this development, a similar structure has been developed for
bottom-up enumeration of join trees in Starburst [8]. Our technique is based
on the MEMO but could be transferred easily to the Starburst enumerator.

We will briefly introduce the essential aspects of the MEMO and refer the
interested reader to [3] for further reading.

A query plan determines the execution order of a set of relational algebra
operators which implements a given, declarative query. Query plans are n-ary
trees whose nodes correspond to algebra operators and are therefore referred to
as operators too. Due to the tree structure, every operator represents a sub-goal
of the plan, that is, the partial query evaluation done by the sub-tree rooted in
it.

A cost function computes a cost value for a query plan which is for instance
the time needed to execute the plan. The goal of the optimization is to generate
the query plan with the least cost value, i.e. to solve the associated combina-
torial optimization problem. Cost based query optimizers like the ones used in
Microsoft’s SQL Server, Tandem’s NonStopSQL or IBM’s DB2 generate partial
query plans, cost them and—if a partial plan is a candidate to be part of the
optimal plan—store them in a lookup table. The generation of sub-plans and
their alternatives is guided by strategies and can be implemented for instance
in a transformation-based framework or with dynamic programming.

In the following we outline the optimization process as implemented in SQL
Server, which is similar to that of Volcano. We distinguish two kinds of oper-
ators: (1) logical operators that map to relational algebraic operators, e.g. join
operator, and (2) physical operators that represent a particular implementation
of a logical operator, e.g. hash join. Only physical operators may be used in the
final query plan. Following Volcano, we call the aforementioned lookup table

2. Preliminaries 4

Group

Group

Group

Group

Group

Group

Group
Scan A

Scan B

Join

Scan C

Join

Join

Scan A Scan B

Scan C

Join

1

3

4

5

6

7

2

1 2

3 4

1.1

2.1

3.1

4.1

7.1

Figure 1: Copying the initial plan into the MEMO structure.

MEMO structure. It is a data structure that manages a system of groups, which
represent different sub-goals of a query plan, i.e. every group corresponds to the
root of a sub-plan.

We start out with an initial query plan that consists of logical operators only.
This plan is a direct translation of a declarative query given in SQL. We map the
initial query plan to the groups of the MEMO so that every operator is assigned
to one group. The group that contains the initial plan’s root operator is referred
to as root group. We substitute the original references to an operator’s children
by references to the respective groups. Figure 1 shows an initial tree and its
equivalent after copying it into the MEMO structure. Operators in the MEMO
are depicted as rounded boxes with the references to the children’s groups in the
lower right corner and a unique identifier in the lower left corner. The references
to the children’s groups are ordered, that is, the left number represents the first
child’s groups, and if available, the right is the second child’s. For simplicity,
we use only unary and binary operators in the examples, however, the methods
we present are not limited to any given degree. To avoid renumbering of groups
at a later point in time we put the root operator immediately into group 7 in
this example. Thus, group 7 becomes the root group. Notice, in the actual
implementation, groups are not ordered but only referred to by their numbers.
However, putting it directly into group 7 and maintaining an order makes this
example more intuitive and easier to understand.

Once the initial plan is copied into the MEMO, we derive alternatives by
applying transformations to the logical operators. A transformation rule can
generate:

1. a logical operator in the same group, e.g. join(A,B) → join(B,A);

2. a physical operator in the same group, e.g. join → hash join;

2. Preliminaries 5

Group

Group

Group

Group

Group

Group

Physical Operator

Logical Operator

Group
Scan A TableScan SortedIDXScan Sort

TableScan SortedIDXScan

SortedIDXScanTableScan

Scan B

Scan C

Join Join

Join

Join

JoinJoin

Join

Join

Join

HashJoin

HashJoin

HashJoin HashJoin

SortMergeJoin

SortMergeJoinNestedLoop

NestedLoop Sort

HashJoin NestedLoop

12 1 2

1

3

4

5

6

7

2

64 2 4 2

41

42

41 41

1

34 34

1 4 14

2442

523 4 61

1 2 21

1.31.2 1.4

2.1 2.2 2.3

3.1 3.2 3.3 3.4

4.1 4.2 4.3

5.1 5.2 5.3 5.4 5.5

6.1 6.2 6.3 6.4 6.5 6.6

7.1 7.2 7.3 7.7 7.8

1.1

Figure 2: MEMO structure representing alternative solutions.

3. a set of logical operators that form a connected sub-plan; the root goes
to the original group, other operators may go to any group, includ-
ing the creation of new groups as necessary, e.g. join(A,join(B,C) →
join(join(A,B),C).

In Figure 2, a partially expanded MEMO structure is depicted. The physical
operators are shaded and an example plan is shown with darkened operators.

We do not apply rules to transform physical operators since everything that
could be derived from a physical operator can also be derived from the logical
one. A technicality that needs special attention is the fact that operators of
the same group—i.e. with the same logical properties—may differ in physical
properties. For instance, one operator may deliver a sort order whereas another
operator of the same group does not, or it may deliver a sort order on a dif-
ferent attribute. In case the parent operator requires a sort order on a certain
attribute, not all operators may be chosen as potential children.

The MEMO framework includes routines that analyze the results of a rule
application and assign it to the groups, detect and eliminate duplicates, and
create new groups. Furthermore, it also provides costing techniques that es-
timate and assign costs to each operator in the MEMO, that is, the costs of
the sub-plan rooted in each operator. For every group we keep track of the
best physical operator for a each set of physical properties. When costing a
new operator we compute the costs using the children’s best implementations.
Moreover, the MEMO contains scheduler primitives that implement different
strategies as to when to apply what rule. A cost based pruning heuristic helps
avoid expansion of very costly alternatives that, given the current state of op-
timization, cannot be a sub-plan of the optimal plan, and therefore need not to
be explored.

The optimal query plan is the one rooted in the most cost effective operator in

3. Counting and Unranking Query Plans 6

the root group. To extract this plan, we follow the references to the children’s
groups and select the most cost effective operator of each group, observing
compatibility of physical properties. This step is repeated until we reach the
terminal operators. Note, this plan was already implicitly used for costing the
best operator in the root group.

Though we described the use of transformations to generate alternative sub-
plans form an initial plan, also other techniques like bottom-up enumeration [8]
could be used to populate a structure functionally equivalent to the MEMO.
The methods developed in the following are independent of the algorithms to
construct the MEMO structure, and simply rely on this structure as a compact
representation of the candidate plans considered by the optimizer. Some opti-
mizers by default discard suboptimal expressions. For our technique to be most
effective, it is useful to have the optimizer keep each alternative generated, so
they can be freely used, regardless of their cost.

3. Counting and Unranking Query Plans

Once all alternatives are generated, the MEMO structure contains all operators
but does not keep track of how many combinations of operators there are,
and only the optimal plan is completely assembled. That is, at the end of
the optimization, the MEMO contains a concise and compact encoding of the
complete search space that was considered during the optimization.

To illustrate the counting framework, let us assume a final state of the MEMO
—after generation of alternatives is complete— as given in Figure 3.

3.1 Preparatory Steps
In order to facilitate later operations we extract all physical operators and
materialize the links between operators and their possible children. In Figure 3,
the materialized links for all children of the previous example’s root (operator
7.7) are shown. The resulting structure describes all possible execution plans
that can be rooted in this operator.

Due to the differences in physical properties some operators of a group may
qualify as potential children while others do not. For instance operator 3.3 in
Figure 3, can have any operator from group 1 and 2 as left and right child,
respectively. Operator 3.4 however can use only the darkened operators 2.3
and 1.3 or 1.4.

3.2 Counting Query Plans
We compute the total number of possible plans bottom-up by computing the
individual numbers of possible plans that can be extracted from each operator.
We denote the number of children of operator v by |v|, and the j-th alternative
for the i-th child of v by w

(v)
i,j . For example, in Figure 3, take v = 7.7, then w

(v)
1,1

= 4.2, and w
(v)
2,2 = 3.4.

To compute the number of plans N(v) rooted in an operator v, we first
determine the number of possible alternatives for each child i as

bv(i) =
∑
j

N(w(v)
i,j).

3. Counting and Unranking Query Plans 7

Group

Group

Group

Group

Group

Group

Group

Physical Operator

1

1 1

1

1 1

2

1 * 3 = 32 * 4 = 8

2 * 11 = 22

1

3

4

5

6

7

2

64 2 4 2

41

42

41 41

1

12

34 34

21

1.2 1.3 1.4

2.2 2.3

3.3 3.4

4.2 4.3

5.3 5.4 5.5

6.3 6.4 6.5 6.6

7.7 7.8

Figure 3: MEMO Structure with materialized links between operators and
children, for possible plans rooted in operator 7.7.

Operator v will take any of the available alternatives for each child, indepen-
dently, so the number of combined choices is given by a product. The numbers
of plans we can generate using only the first k children is

Bv(k) =
k∏
i=1

bv(i).

Hence, the number of plans rooted in v is

N(v) =

{
1, if |v| = 0
Bv(|v|), otherwise

In Figure 3, this process is illustrated for operator 7.7. The upper right corner
of operators has the computation of the number of alternatives that can be
extracted using it as a root.

The total number of plans is the sum of possible plans rooted in any of the
root group’s operators:

N =
∑
i

N(vi), vi ∈ Groot

where Groot denotes the root group.
Computing the counts for operators takes linear time on the size of the

MEMO, as each operator has to be visited exactly once.1 In practice, the
time needed for counting never exceeded 1 second even for large queries.

1For the number of logical operators for the problem of join reordering, see [8, 9]. There
are a few physical operators for each logical joins, implementing different alternatives of hash
join, merge join, and index lookups, so the number of physical joins is usually a small multiple
of the count of logical joins.

3. Counting and Unranking Query Plans 8

3.3 Unranking Plans
Before we describe the unranking mechanism in detail, it might be helpful to
give a short outline of the idea:

Starting with the root group and the rank r, we choose an operator of the
group to be the root of the tree. We then compute a local rank for this operator.
This local rank for an operator v is in the interval 0, . . . ,N(v).

Now, assume operator v has children alternatives

{w(v)
1,1 , . . . , w

(v)
1,j1
}, . . . , {w(v)

n,1, . . . , w
(v)
n,jn
},

with n = |v|. n sub-ranks are computed, and used in each child choice to
recursively unrank a sub-plans. The resulting tree is assembled from unranked
sub-plans, using v as the root.

Detailed steps are described next.

1. Given a pair (r,G) consisting of a rank and a group we determine which
operator of this group becomes the root of the sub-plan.

The first physical operator in the group covers the plans 0, 1, . . . ,N(v1)−
1, the second N(v1),N(v1) + 1, . . . ,N(v1) + N(v2)− 1 and so on. Thus,
the sought operator has index

k = max{i|
∑
i

N(vi) ≤ r}.

vk becomes the root of the (sub-)plan. The local rank rl of vk is

rl = r −
k−1∑
i=1

N(vi)

The local rank is necessary to determine the sub-ranks for the children in
the next step.

2. Using the concepts introduced in the previous section, we can write the
sub-rank for the i-th child as

sv(i) =

Rv(i), if i = 1⌊
Rv(i)
Bv(i−1)

⌋
, else

with

Rv(i) =

{
rl , if i = |v|
Rv(i + 1) mod Bv(i), otherwise

3. We add operator vk to plan and repeat this step for each child, i.e. for the
i-th child we unrank (sv(i), Gi) where Gi is the group for this child.

4. We repeat steps 1 through 3 recursively until we reach the terminal op-
erators.

Unranking is in O(m), m being the number of operators in the tree which
is limited by the number of groups in the MEMO. In terms of running time,
unranking takes only a small fraction of the time needed for counting and is
thus negligible.

4. Verifying Query Processors 9

4. Verifying Query Processors

In [11], Slutz presents a tool to generate SQL statements probabilistically, to
increase the test coverage of the database engine. One simple advantage of this
approach is the sheer speed at which new, different tests are generated, making
it a very effective testing tool. The same claim can be made for our schema of
selection and execution of multiple plans given a single query, which increases
even further the coverage of query optimizer and execution logic.

In our current implementation in Microsoft’s SQL Server, we extend the
SQL syntax with an option to specify what plan to use for the execution. The
following SQL statement causes the optimizer to build the MEMO structure,
count the possible plans, and select plan number 8 for execution.

SELECT *
FROM Professors P, Students S, Enrolled E, Courses C
WHERE S.Name = “Sam White” AND

S.SID = E.SID AND
E.Title = C.Title AND
C.By = P.PID

OPTION (USEPLAN 8)

Using scripting primitives, any given query can be extended easily with the
OPTION clause and a loop construct that iterates over a deterministically
or randomly selected set of possible plans. This way developers are able to
generate test cases for specific queries, instantly extending existing test libraries
substantially.

The main advantages of using these techniques in testing are:

1. It is easy to generate large test sets for the engine to scrutinize both
correctness of the query execution and its performance.

2. The results are simple to verify since all plans should deliver the same
outcome. The probability that an incorrect result is overlooked is rather
small as opposed to conventional testing where each result requires manual
verification.

3. It is possible to test operator implementations that the optimizer would
not chose for the current state of the test database.

4. Optimizer decisions and correct assembling of plans by the optimizer can
be easily verified. This point is of particular importance when extending
the set of both operators and their implementations.

5. The verification and calibration of cost formulas is no longer restricted to
one single plan per query but can also check cost values of sub-optimal
plans.

6. The enumeration of complete search spaces for small queries helps check
and analyze optimizer principles like cost-bound pruning and search
strategies.

The features described are part of the routine testing in the development of
Microsoft’s SQL Server.

5. Cost Distributions 10

In a sample of 10000

Query #Plans Min◦ Mean◦ Max◦ costs◦≤ 2 costs◦≤ 10

Q5 68572049 1.14 17098 4034135 0.47% 12.15%
Q7 228107572 1.15 3318 178720 0.11% 44.55%
Q8 20112521035 1.01 111 609 1.11% 14.7%
Q9 67503460 1.10 4107 109825 0.11% 4.08%

Q5∗ 455348910 1.23 105418 1287700 0.29% 5.70%
Q7∗ 3907373772 1.48 1793052 1523086611 0.03% 2.79%
Q8∗ 4432829940185 1.31 28159718 32595091399 0.06% 1.85%
Q9∗ 250657568 1.30 38363213 35866936219 0.02% 7.00%

◦as factor of the optimum (=scaled costs); ∗including Cartesian products

Table 1: Parameters of search spaces of TPC-H join queries.

5. Cost Distributions

Besides their practical application to testing which was the driving force be-
hind our efforts, the techniques presented are of importance for the experimental
analysis of cost distributions, which we believe to be a promising area of re-
search. Cost distributions capture the frequency of plans of certain costs, and
they can be indicators of the difficulty of a query in that they show how many
plans of what quality there are in the whole space.

Ioannidis and Kang were the first to report on cost distributions explicitly,
i.e. they performed a sampling of the search space for the restricted problem of
join ordering [6]. They pointed out that knowledge of the cost distribution helps
understanding certain effects occurring in optimization, specifically needed for
the tuning of probabilistic optimization techniques. They developed a search
space model based on this analysis which provides useful insights into the work-
ing of randomized join ordering. The distributions they found were asymmetric
and resembled Gamma-distributions implying certain topological structures in
the search space. They attributed their findings to the particular cost model
used.

However the question as to what degree do those results apply to the unre-
stricted, general case of query optimization is still open so far.

Using our framework we are able to perform a fair random sampling of costs
in the search spaces that are not limited to join ordering only but may include
arbitrary relational operators, various kinds of indexes and aggregates, and
even cover parallel processing. We carried out numerous experiments with
both standard benchmark queries like TPC-H and customer queries taken from
various applications. Under the precondition that the queries were of sufficiently
large size, i.e., involving more than 4 or 5 joins, the distributions obtained were
characterized by a relatively strong concentration of costs relatively close to the
optimum, asymmetric, and often resembling exponential distributions. These
shapes correspond to Gamma-distributions with shape parameter close to 1,
which were also observed by Ioannidis and Kang.

Figures presented here are the result of experiments with TPC-H queries 5,
7, 8, 9, which are the join-intensive queries of the benchmark, and have a larger
search space. Table 1 summarizes some of the relevant values obtained. The

5. Cost Distributions 11

TPC-H Q5

0

500

1000

1500

2000

2500

0.00E+00 6.24E+01 1.25E+02 1.87E+02 2.50E+02 3.12E+02

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00E+00 1.61E+02 3.23E+02 4.84E+02 6.45E+02 8.07E+02

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q8

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00E+00 4.28E+03 8.55E+03 1.28E+04 1.71E+04 2.14E+04

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

TPC-H Q9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.00E+00 4.49E+03 8.99E+03 1.35E+04 1.80E+04 2.25E+04

F
re

qu
en

cy
 [o

ut
 o

f 1
00

00
]

Scaled Costs

Figure 4: Cost distributions for TPC-H Query 5,7,8, and 9; lower 50% sampled
costs.

first four rows consider a space of alternatives that does not allow cross products;
while the last four rows allow cross products. Each experiment consists of a
random sample of 10,000 plans from the space. All costs are normalized to the
optimum plan found by the optimizer, which has cost 1.0.2 The ”min” column
shows that with a relatively small sample from the space, it is possible to find
plans that are pretty close to the optimum. In fact, the percentage of plans
that are within twice the optimum cost is non-trivial. Also, it should be noted
that the results are slightly different for the different queries, which vary in
their selectivity and other properties. But the same trends can be seen in all
the experiments.

Figure 4 shows histograms of the cost distributions discussed. The pictures
are actually zoom-ins to the lower 50% sampled costs; that is, the part of
the distribution that makes up for 50% of the space with the optimum as left
edge. The part clipped on the right hand side contains only outlying elements
extending far to the right. We clipped this part of the histogram as its displaying
would otherwise cause the interesting part of the distribution to be compressed

2The measure of a very large number of plans in the space considered by the optimizer does
not imply that a structure requires as many bytes—recall that the plans are obtained through
composition and reuse of operators, from the compact encoding of the MEMO structure.

6. Summary 12

on the left fringe of the figure. All four plots show a very strong resemblance
with exponential distributions.

Our findings lend strong support to the assumption that cost distributions
of the form detailed above are characteristic to query optimization and are of
a much more general nature than first suspected by Ioannidis and Kang.

The distributions of queries that contained few tables were of no particular
shape but consisted only of random noise (e.g. TPC-H 6). Although it is hypo-
thetically possible to devise queries of arbitrary size where the cost distribution
degenerates to a single point—e.g. the cross product of several instances of the
same table, with a space restricted to be linear joins—we never observed any
such tendency in practical instances or customer queries.

These results are only preliminary and further research is needed to investi-
gate this subject. Besides the observation that cost distributions are generally
of a certain shape, it would be particularly interesting to know what parameters
are responsible in order to predict the distribution analytically.

6. Summary

Query optimizers select one execution plan out of a large number of alternatives
considered, and traditional testing can verify only this one plan. In this paper
we developed primitives to generate either the whole space of alternatives, or a
uniform random sample within that space. The problem is challenging because
cost-based optimizers do not represent entire execution plans explicitly, but
rather rely on data structures that maximize sharing of common expressions
between candidate plans.

By opening up the space of alternatives to stocastic testing, we are able
to validate the optimizer logic, and exercise the execution engine effectively.
Unexpected interactions between different transformation rules can be seen,
and execution iterators are tested in uncommon, but possible configurations.
This provides a valuable tool to certify and increase the quality of a query
processor, which would be difficult to match using only hand-crafted examples,
either written by testers or obtained from customers.

Our validation tool is unintrusive to the workings of the optimizer, and it
can be implemented separately, as long as it can access the table of alternatives
constructed during optimization. A small extension to the language provides
access to the functionality, so it is easy to write scripts to do the extensive
testing.

A further use of our enumeration and sampling primitives is the study of the
search space itself. What was it all that the optimizer considered, and how does
it compare with the actual optimal plan? We were able to obtain for the first
time some initial results on cost distributions of real search spaces. Results on
cost distributions are important for work on randomized query optimization,
and we are also interested in their use to characterize the difficulty of particular
problems —and the optimization effort required to solve them. This is a subject
for future research.

13

References

1. J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences Building the
Open OODB Query Optimizer. In Proc. of the ACM SIGMOD Int’l. Conf.
on Management of Data, Washington, DC, USA, May 1993.

2. C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten. Uniformly-
distributed Random Generation of Join Orders. In Proc. of the Int’l. Conf.
on Database Theory, pages 280–293, Prague, Czechia, January 1995.

3. G. Graefe. The Cascades Framework for Query Optimization. IEEE Data
Engineering Bulletin, 18(3):19–29, September 1995.

4. G. Graefe and D. J. DeWitt. The EXODUS Optimizer Generator. In Proc.
of the ACM SIGMOD Int’l. Conf. on Management of Data, San Francisco,
CA, USA, May 1987.

5. G. Graefe and W. J. McKenna. The Volcano Optimizer Generator: Ex-
tensibility and Efficient Search. In Proc. of the IEEE Int’l. Conf. on Data
Engineering, pages 209–218, Vienna, Austria, April 1993.

6. Y. E. Ioannidis and Y. C. Kang. Left-Deep vs. Bushy Trees: An Analysis
of Strategy Spaces and its Implications for Query Optimization. In Proc.
of the ACM SIGMOD Int’l. Conf. on Management of Data, pages 168–177,
Denver, CO, USA, May 1991.

7. W. J. McKenna. Efficient Search in Extenisble Database Query Otpimiza-
tion: The Volcano Optimizer Generator. PhD thesis, University of Col-
orado, Boulder, CO, USA, 1993.

8. K. Ono and G. M. Lohman. Measuring the Complexity of Join Enumaration
in Query Optimization. In Proc. of the Int’l. Conf. on Very Large Data
Bases, pages 314–325, Brisbane, Australia, August 1990.

9. A. Pellenkoft, C. A. Galindo-Legaria, and M. L. Kersten. The Complexity
of Transformation-Based Join Enumeration. In Proc. of the Int’l. Conf. on
Very Large Data Bases, pages 306–315, Athens, Greece, September 1997.

References 14

10. R. Ruskey and T. C. Hu. Generating Binary Tree Lexicographically. SIAM
Journal of Computation, 6(4):745–758, December 1977.

11. D. Slutz. Massive Stochastic Testing of SQL. In Proc. of the Int’l. Conf. on
Very Large Data Bases, pages 618–622, New York, NY, USA, September
1998.

1. Example 15

1. Example

This example describes the steps necessary to unrank a plan in detail for the
MEMO structure as shown in Figure 2. We unrank plan number 13 in group 7,
i.e. we unrank the pair (13, 7). First, we determine the operator which becomes
the root (operators that become part of the plan are underlined):

k = 1
vk = 7.7

and the local rank

rl = 13.

With

R7.7(2) = 13
R7.7(1) = 1

the sub-ranks for the children compute to

s7.7(2) = 6
s7.7(1) = 1.

We unrank the sub-ranks in the children’s groups, i.e. (s7.7(1), 4) and (s7.7(2), 3).

unranking (1, 4) gives

k = 1
vk = 4.3

As there are no further children, no sub-ranks need to be computed and un-
ranked.

unranking (13, 3) delivers

k = 1
vk = 3.4

The local rank is

rl = 0.

With

R3.4(2) = 0
R3.4(1) = 0

1. Example 16

the sub-ranks for the children compute to

s3.4(2) = 0
s3.4(1) = 0.

Finally, unranking (s3.4(,)2) yields

k = 1
vk = 2.3

and for (s3.4(,)1) we obtain

k = 1
vk = 1.3

In total we unranked the operators 7.7, 4.3, 3.4, 2.3, and 1.3. They span the
tree shown by darkened operators in Figure 2.

