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ABSTRACT
We give a new characterization of sober spaces in terms of their completely distributive lattice of
saturated sets. This characterization is used to extend Abramsky’s results about a domain logic for
transition systems. The Lindenbaum algebra generated by the Abramsky finitary logic is a distributive
lattice dual to an SFP-domain obtained as a solution of a recursive domain equation. We prove that
the Lindenbaum algebra generated by the infinitary logic is a completely distributive lattice dual to the
same SFP-domain. As a consequence soundness and completeness of the infinitary logic is obtained
for a class of transition systems that is computational interesting.
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1. Introduction

Complete partial orders were originally introduced as a mathematical structure to model computa-
tion [Sco70], in particular as domains for denotational semantics [SS71]. Successively, Scott’s presenta-
tion of domains as information systems [Sco82] suggested a connection between denotational semantics
and logics of programs. Based on the fundamental insight of Smyth [Smy83] that a topological space
may be seen as a ‘data type’ with the open sets as ‘observable predicates’, and functions between
topological spaces as ‘computations’, Abramsky [Abr87, Abr91a], Zhang [Zha91] and Vickers [Vic89]
developed a propositional program logic from a denotational semantics.

Abramsky [Abr87, Abr91a] uses Stone duality to relate two views of SFP-domains (a special kind
of complete partial orders): one in terms of logic theories and one in terms of semantic models.
Abramsky’s starting point is that for an algebraic cpo P , its compact elements completely determine
P , whereas for a logic the Lindenbaum algebra provides a model from which the logic can be recovered.

If P is an SFP-domain, then the collection KO(P) of all Scott compact open subsets of P ordered
by subset inclusion forms a distributive lattice. The distributive lattice KO(P) can be viewed as the
Lindenbaum algebra of a logic.

Conversely, every logic such that its Lindenbaum algebra is a distributive lattice L gives rise to
a spectral space by taking the collection of all prime filters of L as points together with the filter
topology [Joh82]. Spectral spaces include SFP-domains when taken with the Scott topology.

Abramsky [Abr87] gives a duality for SFP-domains that can be built up in a modular way. He
considers a number of basic constructors of domain theory, including lift, coalesced and separated
sum, products, function space, Hoare, Smyth and Plotkin powerdomains, and recursion. Using the
duality he shows that these constructors can be applied to Lindenbaum algebras dual to SFP-domains,
and hence can be used to generate logics for constructors applied to SFP-domains. Abramsky’s theory
applies therefore to all SFP-domains freely generated by the constructors.

Although mathematically very attractive, the logics of compact opens considered by Abramsky are
weak in expressive power, and inadequate as a general specification formalism according to [Abr87].
What is needed is a language, with an accompanying semantic framework, which permits to go beyond
compact open sets. In particular, there is the need for an infinitary propositional logic with infinite
disjunctions and infinite conjunctions.

Since the spaces considered by Abramsky are spectral, the introduction of infinite disjunctions does
not require a major adjustment of the semantic framework: we can consider the whole frame of open
sets which is free over the distributive lattice of compact opens [Joh82].

The addition of infinite conjunctions is more difficult because it requires new mathematical tools
which we present in this paper. We use the theory of observation frames [BJK95] to derive a new
characterization of sober spaces in terms of the completely distributive lattice of saturated sets. This
result allows us to freely extend the finitary logic of compact opens to the infinitary logic of saturated
sets. The extension is conservative in the sense that the topological space represented by a finitary
logic coincides with the one represented by its infinitary extension. The techniques involved are general
and can be applied to every logic based on a topological interpretation.

As an application we treat Abramsky’s domain logic for labeled transition systems with diver-
gence [Abr91b]. Abramsky’s domain logic for transition systems is equivalent to the Hennessy-Milner
logic in the infinitary case, and hence it characterizes bisimulation for every transition system. How-
ever in the finitary case it is more satisfactory than the Hennessy-Milner logic in the sense that it
characterizes a finitary preorder (the finitary observable part of bisimulation) for every transition
system. Abramsky’s infinitary logic can be used to characterize the class of transition systems for
which the bisimulation preorders are algebraic, in the sense that they coincide with the finitary pre-
orders. These transition systems are called finitary and satisfy two axiom schemes: one about bounded
nondeterminism and another one about finite approximation.

We prove soundness and completeness of the infinitary logic for the class of all finitary transition
systems. The same completeness result holds also for the infinitary Hennessy-Milner logic because the
latter is equivalent to Abramsky’s infinitary logic. On the way to proving our completeness result, we
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also show soundness and completeness of Abramsky’s logic with infinite disjunctions for the class of
compactly branching transition systems.

The paper is based on [BK97] and it is organized as follows. In Section 2 we give some basic
definitions and facts about distributive lattices. All material presented in this section is standard,
except for the construction of the free completely distributive lattice over a set. Next we give in
Section 3 a classification of topological spaces in terms of their completely distributive lattice of
saturated sets. We consider spectral spaces and sober spaces. Using a duality between T0 spaces
and observation frames, we characterize (1) spectral spaces as those spaces for which their completely
distributive lattice of saturated sets is free over the distributive lattice of compact opens, and (2) sober
spaces as those spaces for which their completely distributive lattice of saturated sets is free over the
frame of opens. In Section 4 we discuss how these two characterizations allow for an infinitary logic
of domains which extend the finitary framework of Abramsky [Abr87].

A concrete example of infinitary logic of domains involving the Plotkin powerdomain construction
is treated in the subsequent sections. In Section 5 we introduce Abramsky’s infinitary domain logic for
labeled transition systems, and prove the completeness of its finitary restriction. Then, in Section 6 we
prove the completeness of the restricted logic with arbitrary disjunctions and finite conjunctions for
the class of compactly branching transition systems. Finally, in Section 7 we prove the completeness
of the entire infinitary logic for the class of finitary transition systems.

Acknowledgments The authors are grateful to Jaco de Bakker, Bart Jacobs, Michael Mislove and
Yde Venema for several fruitful discussions on the contents of this paper. We also thank Achim Jung
and the anonymous referees for their constructive comments.

2. Completely distributive lattices

In this section we give some basic definitions and facts about distributive lattices, and show how to
construct frames from distributive lattices, and completely distributive lattices from frames. These
constructions will be used in the next section to characterize classes of topological spaces in terms of
free properties satisfied by their completely distributive lattice of saturated sets.

A subset S of a poset P is lower closed if x ∈ S and y ≤ x implies y ∈ S . Dually, S is upper closed
if x ∈ S and x ≤ y implies y ∈ S . The set S is said to be directed if for each pair of elements x and
y in S there exists z ∈ S such that x ≤ z and y ≤ z . Below we write

∨
S and x ∨ y for the join

of an arbitrary subset S of P and the binary join of two elements in P , respectively, if they exist.
Dually, we denote by

∧
S and x ∧ y the meet of an arbitrary subset S of P and the binary meet of

two elements in P , respectively.
A lattice L is called distributive if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b and c in L. The above equation holds for a lattice if and only if so does its dual [Sc890],
where we substitute meets for joins and joins for meets. The class of all distributive lattices together
with functions preserving both finite meets and finite joins defines a category, denoted by DLat.

If the lattice L has join for arbitrary subsets, and not just finite ones, and it satisfies the infinite
distributive law

a ∧
∨

S =
∨
{a ∧ s | s ∈ S}

for all a ∈ L and all subsets S ⊆ L then it is called a frame. Frames with functions preserving arbitrary
joins and finite meets form a category called Frm. There is an obvious forgetful functor from Frm to
DLat.

Proposition 2.1 For each distributive lattice L, the poset Idl(L) of all directed and lower closed
subsets of L ordered by subset inclusion forms a frame. Moreover, the assignment L 7→ Idl(L) can be
extended to a functor from DLat to Frm which is left adjoint to the forgetful functor Frm→ DLat.
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Proof: See Corollary II .2.11 in [Joh82]. ut

A complete lattice L is completely distributive if, for all sets A of subsets of L,∧
{
∨

S | S ∈ A} =
∨
{
∧

f (A) | f ∈ Φ(A)},

where f (A) denotes the set {f (S ) | S ∈ A} and Φ(A) is the set of all functions f :A →
⋃
A such that

f (S ) ∈ S for all S ∈ A. The above equation holds for a lattice if and only if so does its dual [Ran52],
where we substitute meets for joins and joins for meets. Completely distributive lattices with functions
preserving both arbitrary meets and arbitrary joins form a category, denoted by CDL. Clearly every
completely distributive lattice is a frame.

Next we construct the free completely distributive lattice over a set. The construction we present
is similar to the free frame construction and differs only slightly from the construction presented
(without proof) in [Mar79]. For a set X , let CDL(X ) denote the collection of all lower closed subsets
of the poset (P(X ),⊇) ordered by subset inclusion. Since CDL(X ) is closed under arbitrary unions
and arbitrary intersections, it is a complete sub-lattice of P(P(X )). Hence CDL(X ) is a completely
distributive lattice.

The set X can be mapped into CDL(X ) by the function θX :X → CDL(X ) defined by

θX (x ) = {S ⊆ X | x ∈ S},

for every x ∈ X . The above construction is universal.

Theorem 2.2 Let X be a set and L be a completely distributive lattice. For any function f :X → L
there exists a unique morphism f †:CDL(X )→ L in CDL such that f † ◦ θX = f .

Proof: For every element q in CDL(X ), it holds

q =
⋃
{
⋂
{θX (x ) | x ∈ S} | S ∈ q}. (1)

Since f †:CDL(X )→ L preserves arbitrary joins and arbitrary meets, and f †◦θX = f , its only possible
definition is given, for J ∈ CDL(X ), by

f †(q) =
∨
{
∧
{f (x ) | x ∈ S} | S ∈ q}.

From the form of the above definition it follows that f † preserves arbitrary joins. So it remains to
prove that f † preserves all meets. Let qi ∈ CDL(X ) for all i in an arbitrary set I , and let h:P(X )→ L
be the function mapping every subset S of X to

⋂
{f (x ) | x ∈ S}. It is not hard to see that h preserves

arbitrary meets. Moreover f †(q) =
∨
{h(S ) | S ∈ q}. We have∧

{f †(qi) | i ∈ I } =
∧
{
∨
{h(S ) | S ∈ qi} | i ∈ I }

=
∨
{
∧
{h(g(i)) | i ∈ I } | g ∈ Φ(I )} [complete distributivity]

=
∨
{h(

∧
{g(i) | i ∈ I }) | g ∈ Φ(I )} [h preserves meets]

=
∨
{h(S ) | S ∈

⋂
{qi | i ∈ I }} [all qi ’s are lower sets]

= f †(
⋂
{qi | i ∈ I }),

where Φ(I ) is the set of all functions g: I →
⋃

I qi such that g(i) ∈ qi . ut

The above theorem implies that the assignment X 7→ CDL(X ) can be extended to a functor CDL:Set→
CDL which is a left adjoint to the forgetful functor CDL→ Set. It follows that the category CDL
is algebraic, because CDL is clearly equationally presentable (i.e. its objects can be described by
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a proper class of operations and equations) [Man76, Chapter 1]. Also the category Frm is alge-
braic [Joh82, Theorem II .1.2]. Hence the forgetful functor CDL → Frm has a left adjoint denoted
by (·):Frm→ CDL. Next we give a more direct proof of this fact.

For a frame F define F̂ to be the set {x̂ | x ∈ F}, and let ≡F be the least congruence (with respect
to arbitrary meets and arbitrary joins) on CDL(F̂ ) such that∧

x∈S
x̂ ≡F

∧̂
x∈S

x for every finite subset S of F (2)

∨
x∈S

x̂ ≡F

∨̂
x∈S

x for every subset S of F . (3)

Define F = CDL(F̂ )/ ≡F . Because ≡F is a congruence, we have that F is a completely distributive
lattice. Finally, define ζF :F → F , for each x ∈ F , as follows

ζF (x ) = [x̂ ]F ,

where [x̂ ]F denotes the set of elements of CDL(F̂ ) equivalent to x̂ under ≡F . By the equivalences (2)
and (3) above, it follows that ζF is a frame morphism.

Lemma 2.3 For every frame F, the completely distributive lattice F is order generated by the image
of F under ζF :F → F.

Proof: It is enough to prove that each element of F is the meet of elements in ζF (F ). Let [q]F ∈ F .
By Equation (1) and the dual of the complete distributive law (which holds for every completely
distributive lattice) we obtain that in CDL(F̂ ),

q =
∧
I

∨
Ji

x̂i,j

for some sets I and Ji , and elements xi,j ∈ F . Because ≡F is a congruence we obtain

[q] =
∧
I

[
∨
Ji

x̂i,j ]F .

For each i ∈ I , let xi =
∨

Ji
xi,j . By definition of ≡F , x̂i ≡F

∨
Ji

x̂i,j . Thus ζF (xi) = [
∨

Ji
x̂i,j ]F , from

which it follows that [q] =
∧

I ζF (xi). ut

We can use the above lemma to prove the following.

Theorem 2.4 The assignment F 7→ F can be extended to a functor from Frm to CDL which is a
left adjoint to the forgetful functor CDL→ Frm. The unit of the adjunction is given by the function
ζF :F → F.

Proof: Let L be a completely distributive lattice, and let f :F → L be a frame morphism. We need
to find a unique morphism h:F → L in CDL such that f ◦ ζF = h. Because F is order generated by
ζF , and h must preserve arbitrary meets, the only possible definition for h is

h(q) =
∧
{f (x ) | x ∈ F and q ≤ ζF (x )} .

Clearly h(ζF (x )) = f (x ), and h preserves arbitrary meets. Preservation of arbitrary joins can be
proved using the complete distributive law. ut

It should be remarked here that we do not know of any direct construction adding the “missing”
codirected meets to a frame while preserving both the existing finite meets and arbitrary joins. The
intuitively appealing filter completion of a frame does not work as is shown in [Bon97, Chapter 9].
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3. Completely distributive lattices and topological spaces

In this section we give a classification of topological spaces in terms of their completely distributive
lattice of saturated sets. Our purpose is to derive a new characterization of sober spaces which will be
the key mathematical ingredient of the next sections, where it will be used to prove the completeness
of an infinitary propositional theory based on an existing completeness result of its finitary restriction.

For a frame F let ζF :F → F be the unit of the adjunction between Frm and CDL. We have seen
that ζF is a frame morphism and that every element of the completely distributive lattice F is the
meet of elements in ζF (F ), that is, F is order generated by ζF (F ). In general we call a map with
these properties an observation frame.

Definition 3.1 An observation frame is a frame morphism α:F → L between a frame F and a
completely distributive lattice L such that, for every q ∈ L,

q =
∧
{α(x ) | x ∈ F and q ≤ α(x )}.

Observation frames can be organized into a category, denoted by OFrm, with arrows defined as
follows. A morphism between two observation frames α:F → L and β:G → H is a pair 〈f , g〉
consisting of a frame morphism f :F → G and a complete distributive lattice morphism g:L → H
such that g ◦ α = β ◦ f [BJK95, Bon97].

There is a functor Dom:OFrm → Frm mapping an observation frame α:F → L to the frame
Dom(α) = F and a morphism 〈f , g〉 in OFrm to the frame morphism Dom(〈f , g〉) = f .

Theorem 3.2 The functor Dom:OFrm→ Frm has a left adjoint.

Proof: Let F be a frame and consider the observation frame ζF :F → F defined as the unit of
the adjunction given in Theorem 2.4. The identity function idF :F → Dom(ζF ) is clearly a frame
morphism. Moreover for every other observation frame β:G → H and frame morphism f :F →
Dom(β) by Theorem 2.4 there exists a unique morphism g:F → H such that g ◦ ζF = β ◦ f . Hence
〈f , g〉 is the unique morphism in OFrm from ζF to β such that Dom(〈f , g〉) ◦ idF = f . ut

Observation frames were introduced in [BJK95] in order to represent abstractly topological spaces:
if X is a topological space, the inclusion O(X ) ↪→ Q(X ) mapping the frame of open sets into the
completely distributive lattice of the saturated subsets of X forms an observation frame. We denote
it by Ω(X ). Moreover, if f :X → Y is a continuous function between spaces X and Y (i.e. a map in
the category of topological spaces Sp) then

Ω(f ) = 〈f −1:O(Y )→ O(X ), f −1:Q(Y )→Q(X )〉

is a morphism in OFrm between Ω(Y ) and Ω(X ). Thus we have a functor Ω:Sp→ OFrmop .
Next we show that Ω has a right adjoint. For an observation frame α:F → L, a filter F of F is said

to be an M-filter if, for all x ∈ F ,∧
α(F) ≤ α(x )⇒ x ∈ F .

We denote by CPMF (α) the set of all completely prime M-filters of an observation frame α, and by
CPF (F ) the set of all completely prime filters of a frame F . Clearly, for α:F → L, CPMF (α) ⊆
CPF (F ).

Lemma 3.3 The collection of all completely prime filters of a frame F coincides with the collection
of all completely prime M-filters of the free observation frame ζF :F → F.

Proof: We need to prove that each completely prime filter of F is an M-filter of ζF :F → F .
As a consequence of Theorem 3.2 and Theorem 2.4, the assignment f 7→ 〈f , f 〉 is an isomorphism,

natural in both F and α, between

Frm(F ,Dom(α)) ∼= OFrm(ζF , α) . (4)
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Let 2 = {⊥,>} be the two point completely distributive lattice (with ⊥ ≤ >) and id2: 2 → 2 the
identity function on 2. Clearly id2 is an observation frame. By the above isomorphism f ∈ Frm(F , 2)
if and only if there exists a morphism g:F → 2 between completely distributive lattices such that
〈f , g〉 ∈ OFrm(ζF , id2).

Recall that completely prime filters of a frame F can be characterized as sets of the form f −1(>) for
f ∈ Frm(F , 2) [Vic89, Proposition 5.4.7], and, similarly, completely prime M-filters of an observation
frame α:F → L are exactly sets of the form f −1(>) for 〈f , g〉 ∈ OFrm(α, id2) [BJK95, Lemma 3.16].
Hence CPMF (ζF ) coincides with CPF (F ). ut

For an observation frame α:F → L we denote by OPt(α) the topological space given by the set
CPMF (α) of all completely prime M-filters of α together with a topology with open sets defined, for
every x ∈ F , by

{F ∈ CPMF (α) | x ∈ F}.

An observation frame α:F → L is called spatial if for each x , y ∈ F whenever x 6≤ y then there exists
F ∈ CPMF (α) such that x ∈ F but y 6∈ F .

Theorem 3.4 The assignment α 7→ OPt(α), where α:F → L is an observation frame, can be extended
to a functor from OFrmop to Sp which is right adjoint of Ω. The unit of the adjunction is given by
the assignment

x 7→ {o ∈ O(X ) | x ∈ o} .

Furthermore, the adjunction restricts to an equivalence between the full subcategories Sp0 of T0 spaces
and SOFrm of spatial observation frames.

Proof: See Theorem 3.23 and Corollary 3.30 in [BJK95]. ut

3.1 Sober spaces
Traditionally, topological spaces can be represented abstractly by considering the frame of open sets.
There is a functor O(−):Sp→ Frmop which maps every topological space to its lattice of open sets
and every continuous function to its inverse restricted to the open sets. Conversely, given a frame F ,
we can construct a topological space FPt(F ) by taking the set CPF (F ) of all completely prime filters
of F , together with a topology with open sets defined, for every x ∈ F , by

{F ∈ CPF (F ) | x ∈ F}.

The space FPt(F ) is sober, where a space X is said to be sober if the assignment

x 7→ {o ∈ O(X ) | x ∈ o}

defines an isomorphism between X and CPF (O(X )). Also, a frame F is called spatial if for each x
and y in F , whenever x 6≤ y then there exists F ∈ CPF (F ) such that x ∈ F but y 6∈ F .

Proposition 3.5 The assignment F 7→ FPt(F ) defines a functor Frmop → Sp which is a right
adjoint of O(−):Sp→ Frmop . Furthermore we have that

1. the adjunction restricts to a duality between the full subcategories Sob of sober spaces and SFrm
of spatial frames;

2. the inclusion Sob ↪→ Sp0 has left adjoint FPt(O(−)).

Proof: See Theorem II .1.4 and Corollary II .1.7 in [Joh82]. ut
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By Lemma 3.3, a frame F is spatial if and only if the observation frame ζF :F → F is spatial. Hence
the adjunction of Theorem 3.2 restricts to an adjunction between the category of spatial frames SFrm
and the category of spatial observation frames SOFrm. Since adjoints are defined uniquely (up to
natural isomorphisms), the above implies that commutativity of the rounded squares below.

Sp0

FPt(O(−))

��

Ω(−)

22' SOFrmop

Dom(−)op

��

OPt(−)

ss

a a

Sob
5�

i

VV

O(−)

22' SFrmop

ζop
(−)

VV

FPt(−)

ss

The functor Dom:OFrm → Frm can therefore be considered as the pointless sobrification of an
abstract topological space. Now we use the above results to derive a new characterization of sober
spaces.

Theorem 3.6 A T0 space X is sober if and only if the completely distributive lattice of saturated sets
Q(X ) is free over the frame of open sets O(X ).

Proof: Assume X is a sober space. By the commutativity of the above diagram it follows that the
observation frames Ω(X ):O(X )→Q(X ) and ζO(X ):O(X )→ O(X ) are isomorphic in OFrm. Hence
O(X ) is isomorphic to Q(X ) in CDL. But O(X ) is the free completely distributive lattice over the
frame O(X ), by Theorem 2.4.

For the converse, assume X is a T0 space and Q(X ) is the free completely distributive lattice over
the frame O(X ). Then the set of all completely prime M-filters of Ω(X ) coincides with the set of all
completely prime M-filters of ζO(X ), which, by Lemma 3.3, coincides with the set of all completely
prime filters of O(X ). Since X is a T0 space, the assignment

x 7→ {o ∈ O(X ) | x ∈ o}

is an isomorphism between X and CPMF (Ω(X )). But

CPF (O(X )) = CPMF (Ω(X )),

hence X is a sober space. ut

3.2 Spectral spaces
A T0 space X is spectral if the set KO(X ) of compact open subsets of X forms a basis for the topology
of X , and it is closed under finite intersections. Since basic opens are closed under finite unions,
KO(X ) is a distributive lattice. The class of all spectral spaces together with continuous functions
preserving compact opens under inverse image defines a category, denoted by Spec. If f :X → Y is
a morphism in Spec then

KO(f ) = f −1:KO(Y )→ KO(X )

is a lattice morphism. Thus we have a functor KO(−):Spec→ DLatop.
Conversely, for a distributive lattice L, let Spec(L) be the topological space of prime filters over L

with topology generated by the sets

{F ∈ Spec(L) | a ∈ F} ,

for a ∈ L. The above sets are compact in the space Spec(L) and closed under finite unions and finite
intersections.
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Proposition 3.7 For every distributive lattice L, Spec(L) is isomorphic to FPt(Idl(L)) in Sp. Fur-
thermore, the duality of Proposition 3.5 restricts to a duality between the categories Spec of spectral
spaces and DLat of distributive lattices.

Proof: See Corollary II .3.3 in [Joh82]. ut

Combining the above result with Proposition 2.1 and Theorem 3.6 we obtain the following.

Theorem 3.8 For a T0 space X the following are equivalents:

1. X is spectral;

2. the frame of open sets O(X ) is free over the distributive lattice of compact opens KO(X );

3. the completely distributive lattice of saturated sets Q(X ) is free over the distributive lattice of
compact opens KO(X ). ut

4. Domain theory in logical form

In this section we briefly discuss Abramsky’s framework [Abr87, Abr91a] for connecting denotational
semantics and program logic, and explain how the results of the previous section can be used to extend
it.

Abramsky’s starting point is that a lattice can be thought of as the Lindenbaum algebra LA of a
propositional theory L = (L,≤), where L is a set of formulae and ≤ is the relation of logical entailment
between formulae. The elements of LA are equivalence classes of formulae provably equivalent in L,
meets are logical conjunctions, and joins are logical disjunctions.

A model of L is a set X together with a satisfaction relation |=⊆ X ×L that is consistent with the
logic of L, i.e. such that an element of X satisfies a disjunction of formulae if and only if it satisfies
at least one of them, and it satisfies a conjunction of formulae if and only if it satisfies all of them.
This interpretation is automatically sound, in the sense that whenever φ ≤ ψ in L then x |= φ implies
x |= ψ. Conversely, the interpretation is complete if whenever x |= φ implies x |= ψ for every x ∈ X
then φ ≤ ψ in L. If (X , |=) is a sound and complete model of L then the Lindenbaum algebra LA
must be distributive. This follows because the set of all [[φ]] for φ ∈ L ordered by subset inclusion is
a sub-lattice of P(X ) and hence is distributive, where [[φ]] = {x ∈ X | x |= φ}. By Proposition 3.7, if
LA is distributive then there exists a sound and complete model for L, namely the set of prime filters
of LA together with the satisfaction relation

F |= φ if and only if [φ] ∈ F

where F is a prime filter of LA, φ a formula in L, and [φ] ∈ LA is the equivalence class of formulae
logically equivalent to φ.

Abramsky considers a typed language together with a denotational interpretation which maps each
type σ of the language to an SFP-domain D(σ). The language has several type constructors which
are interpreted denotationally as the standard domain constructors, such as products, coproducts,
function space and powerdomains. Since D(σ) is an SFP-domain, the set of its Scott compact open
subsets ordered by subset inclusion forms a distributive lattice, that is, D(σ) taken with the Scott
topology is a spectral space [Plo81a, Chapter 8, Theorem 6].

A second logical interpretation associates to each type σ of the language a propositional theory
L(σ) = (L(σ),≤σ). Each theory has axioms and rules which enforce a distributive lattice structure
with finite meets and finite joins. Moreover, for each type constructor there is a corresponding
constructor between propositional theories.

The logical interpretation and the denotational interpretation are connected as follows. For any
type σ Abramsky defines a function

[[·]]σ:L(σ)→ KO(D(σ))
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which interprets formulae of L(σ) as compact open sets in the Scott topology of the SFP-domain
D(σ). This function induces a satisfaction relation

|=σ⊆ D(σ)× L(σ)

for each d ∈ D(σ) and φ ∈ L(σ) by

d |=σ φ if and only if d ∈ [[φ]]σ .

For each type of the language Abramsky proved that the model (D(σ), |=σ) is sound and complete.
This result is obtained for each type of the language in a uniform way via a number of steps including
the following:

1. Soundness. Axioms and rules in L(σ) translate via [[·]]σ in valid statements about Scott compact
opens of D(σ).

2. Normal form. Using the axioms and the rules each formula in L(σ) is proved equivalent to
a disjunction of formulae which are join-primes in the Lindenbaum algebra of L(σ). Here an
element a of a lattice L is said to be join-prime if whenever a ≤

∨
S for some finite subset

S of L then a ≤ b for some b ∈ S . By the soundness above, it follows that [[·]]σ restricts and
corestricts to a map [[·]]0σ from formulae that are join-primes in the Lindenbaum algebra of L(σ)
to join-primes Scott compact opens of D(σ).

3. Prime completeness. The function [[·]]0σ is proved order-reflecting.

4. Prime definability. The function [[·]]0σ is proved surjective.

From the above results it follows that (D(σ), |=σ) is sound and complete, and that [[·]]σ is an order
pre-isomorphism [Abr91a] (see also [AJ94, Chapter 7]).

As a consequence of the Abramsky theory, an element of an SFP-domain can be considered equiva-
lent to the set of all properties satisfied by that element, which therefore gives a logical characterization
of it. Even more, the order of the SFP-domain can be characterized in terms of the properties satis-
fied by the elements, that is, one element is smaller or equal to a second element if and only if every
property satisfied by the first element is also satisfied by the second one.

4.1 Towards an infinitary logic of domains
It is important to stress here that the propositional theories used by Abramsky for the logical inter-
pretation of his type language are finite. They describe the logics of compact open sets which are
mathematically very attractive because they are decidable and they represent the logics of observable
properties [Abr87]. However they have weak expressive power and cannot specify typical safety and
liveness properties of interest in computer science. In the next sections we will give some examples of
properties that cannot be specified by Scott compact opens.

What is needed are propositional theories which allow for infinitary joins and infinitary meets. Next
we informally discuss how infinitary propositional theories can be used for characterizing domains
without major adjustments to Abramsky’s framework. This is a consequence of the results of the
Section 2 and Section 3. For each type σ of Abramsky’s language we can proceed as follows:

1. Definition. This is the most ‘creative’ part of the ‘enterprise’. We have to define a new logical
interpretation L(σ)∞,∞ which allows for infinite joins and infinite meets, and an accompanying
semantic function mapping formulae of the theory to saturated sets of D(σ).

2. Coherence. The restricted theory with finite joins and finite meets must coincide with Abramsky
original theory L(σ), and the semantic interpretation of a formula φ in L(σ) is the original
interpretation [[φ]]σ.
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3. Soundness. We have to prove that axioms and rules of L(σ)∞,∞ translate via the semantic
function to valid statements about saturated sets of D(σ). It follows that meets are interpreted
as conjunctions and joins as disjunctions.

4. Conjunctive normal form. Let L(σ)ω,∞ be the restricted theory with infinite joins and finite
meets. If we can prove in L(σ)∞,∞ that each formula is equivalent to an (infinite) meet of formu-
lae in L(σ)ω,∞, then it follows that the Lindenbaum algebra of L(σ)∞,∞ is the free completely
distributive lattice over the frame induced by L(σ)ω,∞.

5. Disjunctive normal form. If we can prove in L(σ)ω,∞ that each formula is equivalent to an
(infinite) join of formulae in L(σ), then it follows that the Lindenbaum algebra of L(σ)ω,∞ is
the free frame over the distributive lattice induced by L(σ). Furthermore, by ‘soundness’ and
‘coherence’ the above implies that formulae in L(σ)ω,∞ are interpreted as Scott open subsets of
D(σ).

6. Isomorphism, I. Since SFP-domains are spectral spaces when taken with the Scott topology,
by Theorem 3.8 the lattice O(D(σ)) of Scott open subsets of D(σ) is the free frame over the
distributive lattice KO(D(σ)) of Scott compact open subsets of D(σ). Since [[·]]σ is a pre-
isomorphism between formulae in L(σ) and Scott compact opens of D(σ), the restriction of the
semantic function to formulae in L(σ)ω,∞ and its corestriction to Scott open sets of D(σ) is also
a pre-isomorphism.

7. Isomorphism, II. Since spectral spaces are sober spaces, by Theorem 3.6 the lattice Q(D(σ)) of
saturated subsets of D(σ) (with respect to the Scott topology of D(σ)) is the free completely
distributive lattice over the frame O(D(σ)) of Scott open subsets of D(σ). By the above pre-
isomorphism it follows that the semantic function is also a pre-isomorphism between formulae
in L(σ)∞,∞ and upper closed sets of D(σ).

From the above results it follows that we can define a satisfaction relation |=σ such that (D(σ), |=σ)
is a sound and complete model for the theory L(σ)∞,∞.

5. Domain logic for transition systems

As an application of the techniques discussed above, we treat Abramsky’s domain logic for labeled
transition systems with divergence [Abr91b].

5.1 Labeled transition systems
We begin by recalling some basic notions about labeled transition systems.

Definition 5.1 A labeled transition system with divergence 〈P ,Act ,−→,⇑〉 is defined by a set P of
processes, a set Act of atomic actions, a transition relation −→⊆ P ×Act × P, and a predicate ⇑ on
P. The predicate ⇑ is called the divergence predicate. The convergence predicate ⇓ on P is defined
to be the complement of the divergence predicate, that is ⇓= P\ ⇑. We use p ⇑ and p ⇓ to denote
that the process p diverges and converges, respectively.

Transition systems can be used for modeling computations of programming languages [Plo81b] and
to identify processes with the same observable behavior. One of the most well-known behavioral
equivalences on processes is bisimulation [Mil80, Par81].

Definition 5.2 Given a transition system 〈P ,Act ,−→,⇑〉, a relation R ⊆ P × P is called a partial
bisimulation whenever, if 〈p, q〉 ∈ R then for all a ∈ Act

1. p a−→ p′ ⇒ ∃q ′ ∈ P : q a−→ q ′ and 〈p′, q ′〉 ∈ R;

2. p ⇓ ⇒q ⇓ and (q a−→ q ′ ⇒ ∃p′ ∈ P : p a−→ p′ and 〈p′, q ′〉 ∈ R).
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We write p <∼
B q if there exists a partial bisimulation R with 〈p, q〉 ∈ R.

Partial bisimulations can also be described in terms of iteration [Par81], but in general one needs
to consider a non-countable sequence of relations (in the complete lattice P(P ×P) ordered by subset
inclusion) approximating <∼

B . By considering only countable approximants of <∼
B one obtains the

so-called observable equivalence <∼
ω=

⋂
ω

<∼
n [Mil80], where

• <∼
0= P × P , and

• p <∼
n+1 q if and only if for all a ∈ Act

1. p a−→ p′ ⇒ ∃q ′ ∈ P : q a−→ q ′ and p′ <∼
n q ′;

2. p ⇓ ⇒q ⇓ and (q a−→ q ′ ⇒ ∃p′ ∈ P : p a−→ p′ and p′ <∼
n q ′).

In general for a transition system T , <∼
B⊆<∼

ω. However, if T is image-finite then the two notions
coincide [HM85].

A particular example of a transition system is given by the collection of all (finite) synchronization
trees over an alphabet Act of actions. Define the set (t ∈)ST (Act) of finitary synchronization trees
over Act by

t ::= ΣIai ti | ΣI ai ti + Ω,

where I is a finite index set, and all the ai ’s are actions in Act for i ∈ I . The set of all finitary
synchronization trees can be turned into a transition system ST (Act) = 〈ST (Act),Act ,−→,⇑〉, where

• t ⇑ if and only if Ω is included as a summand of t , and

• t ai−→ ti for each summand ai ti of t .

Synchronization trees can be used to define a finitary preorder on processes of more general transition
systems [Gue81].

Definition 5.3 For a transition system 〈P ,Act ,−→,⇑〉 define the finitary preorder <∼
F⊆ P × P by

p <∼
F q if and only if ∀t ∈ ST (Act): t <∼

B p ⇒ t <∼
B q.

Since finite synchronization trees are a model for finite processes, the finitary preorder can be
considered as the finite observable part of partial bisimulation. For every transition system T , it
holds that

<∼
B⊆<∼

ω⊆<∼
F .

In general, these inclusions are strict [Abr91b, page 191].
Another example of a transition system is given by the SFP-domain D obtained as the initial (and

final) solution in the category SFP of the recursive domain equation

X ∼= (1)⊥ ⊕Pco
c

( ∑
a∈Act

X

)
,

where 1 is the one-point cpo, Act is a countable set of actions, (−)⊥ is the lift, ⊕ is the coalesced sum,∑
a∈Act is the countable separated sum, and Pco

c (−) is the Plotkin powerdomain. Below we will omit
the isomorphism pair relating the left and the right hand side of the solution D of the above domain
equation. The SFP-domain D can be seen as the transition system 〈D,Act ,−→,⇑〉 where

• d a−→ d ′ if and only if 〈a, d ′〉 ∈ d and
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• d ⇑ if and only if ⊥ ∈ d .

The SFP-domain D, seen as a transition system, plays the role of canonical model for the Abramsky’s
logic for transition systems. Furthermore it can be used as a semantic domain for every transition
system modulo the equivalence generated by the finitary preorder [Abr91b].

The order on the domain D coincides with the bisimulation preorder when D is seen as transition
system. This fact was first proved by Abramsky [Abr91b, Proposition 3.11] using an elementwise
characterization of D as the ‘internal colimit’ of a sequence of projections. Below, after Lemma 7.2,
we will obtain the same result using only the logical interpretation of D.

5.2 Abramsky logic for transition systems
Like the Hennessy-Milner logic [HM85], the idea of Abramsky’s infinitary logic L∞,∞ for transition
systems [Abr91b] is to obtain a suitable characterization of partial bisimulation in terms of a notion
of property of processes: p <∼

B q if and only if every property satisfied by p is also satisfied by q.
However, the finitary restriction of Abramsky’s logic differs from the finitary Hennessy-Milner logic
in the sense that it characterizes the finitary observable part of partial bisimulation for all transition
systems.

Definition 5.4 Let (a ∈)Act be a set of actions. The language L∞,∞ over Act has two sorts: π
(processes) and k (capabilities). We write (φ ∈)Lπ∞,∞ for the class of formulae of sort π, and (ψ ∈
)Lk
∞,∞ for the class of formulae of sort k, which are defined inductively as follows:

φ :: =
∨
I

φi |
∧
I

φi | 2ψ | 3ψ

ψ :: =
∨
I

ψi |
∧
I

ψi | a(φ),

where I is an arbitrary index set. If I = ∅ then we write tt for
∧

I φi and
∧

I ψi , and we write ff for∨
I φi and

∨
I ψi .

In order to prove properties by induction on the structure of formulae of L∞,∞, we define the height
of a formula as the following ordinal:

ht(
∨

I φi) = ht(
∧

I φi ) = sup{ht(φi) | i ∈ I }+ 1
ht(2ψ) = ht(3ψ) = ht(ψ) + 1

ht(
∨

I ψi) = ht(
∧

I ψi) = sup{ht(ψi) | i ∈ I }+ 1
ht(a(φ)) = ht(φ).

For example, ht(tt) = ht(ff ) = 1 and ht(2a(tt) ∨ a(3b(ff ))) = 2.
Before we interpret the language L∞,∞ we need the following definitions. For a transition system
〈P ,Act ,−→,⇑〉 define the set Cap of capabilities by

Cap = {⊥} ∪ (Act × P).

The set of capabilities of a process p ∈ P is given by

C (p) = {⊥ | p ⇑ } ∪ {〈a, q〉 | p a−→ q}.
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For a transition system T = 〈P ,Act ,−→,⇑〉, we interpret the language L∞,∞ by means of satis-
faction relations |=π⊆ P ×Lπ∞,∞ and |=k⊆ Cap ×Lk

∞,∞ defined as follows:

p |=π

∨
I φi ⇐⇒ ∃i ∈ I : p |=π φi

p |=π

∧
I φi ⇐⇒ ∀i ∈ I : p |=π φi

p |=π 2φ ⇐⇒ p ⇓ and ∀c ∈ C (p): c |=k φ
p |=π 3φ ⇐⇒ ∃c ∈ C (p): c |=k φ

c |=k

∨
I φi ⇐⇒ ∃i ∈ I : c |=k φi

c |=k

∧
I φi ⇐⇒ ∀i ∈ I : c |=k φi

c |=k a(φ) ⇐⇒ c = 〈a, q〉 and q |=π φ.

For a transition system T = 〈P ,Act ,−→,⇑〉 and formula φ of Lπ∞,∞ we write [[φ]]πT for {p ∈ P | p |=π

φ}. Assertions A over the language Lσ∞,∞ are of the form φ ≤σ ψ or φ =σ ψ for σ in {π, k} with φ
and ψ in Lσ∞,∞. The satisfaction relation between transition systems T and assertions is defined by

T |= φ ≤π ψ ⇐⇒ ∀p ∈ P : p |=π φ implies p |=π ψ
T |= φ =π ψ ⇐⇒ ∀p ∈ P : p |=π φ if and only if p |=π ψ

T |= φ ≤k ψ ⇐⇒ ∀c ∈ Cap: c |=k φ implies c |=k ψ
T |= φ =k ψ ⇐⇒ ∀c ∈ Cap: c |=k φ if and only if c |=k ψ.

As usual, the satisfaction relation can be extended to classes of transition systems T by

T |= A ⇐⇒ ∀ T ∈ T : T |= A.

If T is the class of all transition systems then we simply write |= A.
Let Lω,ω be the sub-language of L∞,∞ obtained by the restriction to finite conjunctions and finite

disjunctions.

Theorem 5.5 For a transition system 〈P ,Act ,−→,⇑〉 and p, q in P,

(i) p <∼
B q if and only if ∀φ ∈ Lπ∞,∞: p |= φ⇒ q |= φ;

(ii) p <∼
F q if and only if ∀φ ∈ Lπω,ω: p |= φ⇒ q |= φ.

Proof: See Theorems 5.6 and 5.8 in [Abr91b]. ut

Next we present a proof system for assertions over L∞,∞. (We omit the sort subscripts.) The following
logical axioms give to the language the structure of a large completely distributive lattice.

(≤ −ref ) φ ≤ φ

(≤ −trans)
φ ≤ ψ and ψ ≤ χ

φ ≤ χ

(= −I )
φ ≤ ψ and ψ ≤ φ

φ = ψ
(= −E)

φ = ψ

φ ≤ ψ and ψ ≤ φ

(∧ − I )
{φ ≤ ψi}i∈I
φ ≤

∧
I

ψi
(∧ − E)

∧
I φi ≤ φk (k ∈ I )

(∨ − I )
{φi ≤ ψ}i∈I∨

I

φi ≤ ψ (∨ − E) φk ≤
∨

I φi (k ∈ I )
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(∧ − dist)
∧

I

∨
Ji

φi,j =
∨

f∈Φ({Ji |i∈I})
∧

I φi,f (i).

The following modal axioms relate constructors with the logical structure.

(a− ≤)
φ ≤ ψ

a(φ) ≤ a(ψ)

(a − ∧)
(i) a(

∧
I φi ) =

∧
I a(φi ) (I 6= ∅)

(ii) a(φ) ∧ b(ψ) = ff (a 6= b)

(a − ∨) a(
∨

I φi) =
∨

I a(φi )

(2− ≤)
φ ≤ ψ

2φ ≤ 2ψ

(2− ∧) 2
∧

I φi =
∧

I 2φi (I 6= ∅)

(2− ∨) 2(φ ∨ ψ) ≤ 2φ ∨3ψ

(3− ≤)
φ ≤ ψ

3φ ≤ 3ψ

(3− ∧) 2φ ∧3ψ ≤ 3(φ ∧ ψ)

(3− ∨) 3
∨

I φi =
∨

I 3φi .

We write L∞,∞ ` A if the assertion A of L∞,∞ is derivable from the above axioms and rules.

Theorem 5.6 (Soundness) If L∞,∞ ` A then |= A.

Proof: See Theorem 4.2 in [Abr91b]. ut

Next we turn to the finitary logic Lω,ω in order to prove the reverse of the above result for the class
of all transition systems.

Let LAπω,ω be the Lindenbaum algebra of Lπω,ω, and let [φ] denote the set of all formulae provably
equivalent in Lπω,ω to φ ∈ Lπω,ω. The following fundamental result shows that the finitary logic Lπω,ω
does indeed correspond exactly to the SFP-domain D taken with the Scott topology.

Theorem 5.7 Let KO(D) be the distributive lattice of Scott compact open sets of D ordered by subset
inclusion. The function γ:LAπω,ω → KO(D) defined, for φ in Lπω,ω, by

γ([φ]) = [[φ]]πD

is a well-defined order isomorphism.

Proof: See Theorem 4.3 in [Abr91b]. ut

The proof of the spatiality of the distributive lattice LAπω,ω is equivalent to (strong) completeness of
the underlying logical system.

Theorem 5.8 (Completeness) Let T be any class of transition systems containing D. For φ1 and φ2

in Lπω,ω, T |= φ1 ≤ φ2 if and only if Lπω,ω ` φ1 ≤ φ2.
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Proof: For φ1 and φ2 in Lπω,ω we have,

D |=π φ1 ≤π φ2 ⇐⇒ [[φ1]]
π
D ⊆ [[φ2]]

π
D

⇐⇒ γ([φ1]) ⊆ γ([φ2]) [definition of γ]
⇐⇒ [φ1] ≤ [φ2] [γ is an order isomorphism]
⇐⇒ Lπω,ω ` φ1 ≤π φ2 [definition of LAπω,ω].

ut

We conclude this section by showing that the SFP-domain D can be used as semantic domain for all
transition systems. Let T = 〈P ,Act ,−→,⇑〉 be a transition system and let p ∈ P . The set

TS(p) = {[φ] ∈ LAπω,ω | p |=π φ}

is a prime filter of the distributive lattice LAπω,ω. Hence, by Theorem 5.7, it corresponds uniquely
to an element in D. Therefore, the assignment p 7→ TS(p) defines a function TS[[·]]:P → D which is
unique among all functions f :P → D such that

p |=π φ if and only if f (p) |=π φ,

for all p ∈ P and φ ∈ Lπω,ω [Abr91a, Theorem 5.21]. By the characterization Theorem 5.5, it follows
that p and TS[[p]] are equivalent in the finitary preorder <∼

F . Hence the function TS[[·]]:P → D can
be regarded as a syntax-free semantics which is universal because it is defined for every transition
system.

6. Compactly branching transition systems

Theorem 5.8 gives a completeness result for Lω,ω. In this section we derive a completeness result for
Lω,∞, the sub-language of L∞,∞ which allows infinite disjunctions but has only finite conjunctions.
It is possible to express useful properties in this language that cannot be expressed in Lω,ω. Consider
properties of a transition system 〈P ,Act ,−→,⇑〉 like ‘the process p converges’, ‘every a-path starting
from p is finite’, or ‘along every a-path starting from p eventually ψ holds’. The finitary language Lπω,ω
is too weak to formalize these properties, which however can be expressed in the infinitary language
Lπω,∞ by

• p |=π 2
∨

a∈Act a(tt);

• p |=π

∨
n∈ω φn , where

{
φ0 = ff and
φn+1 = 2(a(φn ) ∨

∨
Act\{a} b(tt)) ;

• p |=π

∨
n∈ω φn , where

{
φ0 = ff and
φn+1 = ψ ∨ (3a(tt) ∧2(a(φn ) ∨

∨
Act\{a} b(tt))) .

Adding expressive power to the finitary logic should not change our main motivation for its intro-
duction: it should characterize the finitary observable part of partial bisimulation. We introduce the
following scheme over Lω,∞ which restricts the class of transition systems and allows to write any
formula in Lω,∞ as disjunctions (possibly infinite) of finitary formulae in Lω,ω:

(BN ) 2
∨

I φi ≤
∨

J∈Fin(I ) 2
∨

J φj with φi ∈ Lω,ω for each i ∈ I ,

where Fin(I ) is the set of all finite subsets of I . The intuition behind the above axiom scheme is that
of bounded nondeterminism. We will see in Lemma 6.4 below that (BN ) is equivalent to requiring
that the 2 operator distributes over directed joins, a condition that, semantically, corresponds to a
statement of compactness (and hence of bounded non-determinism [Plo81a, Smy83]).

A transition system is called compactly branching if it satisfies all instances of (BN ). It is immediate
to see that every weakly finitely branching transition system is compactly branching, where a transition
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system T = 〈P ,Act ,−→,⇑〉 is said to be weakly finitely branching if for all p ∈ P such that p ⇓ the
set

Br(p) = {q ∈ P | ∃a ∈ Act : p a−→ q}

is finite. Since the set of finite synchronization trees is weakly finite branching, it satisfies all instances
of (BN ).

Clearly not every transition system is compactly branching. For example, for a given enumeration
on Act , consider the transition system

〈IN,Act ,−→, ∅〉

where 0 an−→ n for n > 0, and an is the n-th element in the enumeration of Act . Pictorially the above
transition system can be represented as follows:

0

a1
iiiiiiiiii

ttiiiiiiiiii a2
nnnnnnn

wwnnnnnnn an

��
1 2 · · · n · · · .

Then

0 |=π 2
∨
n∈ω

φn where
{

φ1 = a1(tt) and
φn+1 = φn ∨ an(tt) .

However, for every n ≥ 1, 0 6|= 2φn . Hence not every instance of (BN ) is a valid axiom for the above
transition system.

Next we show that the transition system induced by the SFP-domain D is compactly branching.
Notice that D is not weakly finite branching.

Lemma 6.1 The transition system induced by the SFP-domain D is compactly branching.

Proof: By the isomorphism of Theorem 5.7 each formula in Lω,ω is interpreted as a Scott compact
open subset of D. Hence the validity of all instances of (BN ) for D follows if, for each d ∈ D, the
following holds:

d ⊆
⋃
I

oi ⇒ ∃J ⊆ Fin(I ): d ⊆
⋃
J

oj ,

where all the oi ’s are Scott compact subsets of
∑

a∈Act D. The case for d = 1 or ⊥ is immediate.
Otherwise d is an element of the Plotkin powerdomain, and hence, by its definition, a Scott compact
subset of

∑
a∈Act D. Therefore the above statement holds, and D satisfies all instances of the axiom

scheme (BN ). ut

Following the steps described in Section 4.1, our next step is to prove that each formula in the extended
language is equivalent to a disjunction of formulae of the finitary language.

Lemma 6.2 (Disjunctive normal form) For every formula φ in Lπω,∞ there exist formulae φi ∈ Lπω,ω
with i ∈ I such that Lπω,∞ + (BN ) ` φ =

∨
I φi .

Proof: By induction on the height ht of formulae in Lω,∞. ut

As an immediate consequence we have the following corollary.

Corollary 6.3 For every formula φ in Lπω,∞, Lπω,∞ + (BN ) ` φ =
∨
{ψ ∈ Lπω,ω | ψ ≤ φ}.
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Proof: By Rule (∨ − I ) we have Lπω,∞ `
∨
{ψ ∈ Lπω,ω | ψ ≤ φ} ≤ φ. The other direction follows

because by Lemma 6.2 there exists φi ∈ Lπω,ω with i ∈ I such that Lπω,∞ + (BN ) ` φ =
∨

I φi and
hence Lπω,∞ + (BN ) ` φi ≤ φ for all i ∈ I . ut

The above lemma together with the soundness Theorem 5.6, the definition of the satisfaction rela-
tion, and the characterization Theorem 5.5, imply that for compactly branching transition systems
〈P ,Act ,−→,⇑〉 and processes p, q in P ,

p <∼
F q if and only if ∀φ ∈ Lπω,∞: p |= φ⇒ q |= φ.

We are now ready to give a topological characterization of compactly branching transition systems.
Let T = 〈P ,Act ,−→,⇑〉 be a transition system and let O(T ) denote the set of all [[φ]]πT for φ in Lπω,∞.
Clearly, O(T ) forms a topology on P . Transition systems together with a topology are introduced in
the context of modal logic in [Esa74], where, in a restricted form, the implication from (iii) to (ii) of
the next lemma is proved (the proof of the other direction can been found in [BK95]).

Lemma 6.4 For a transition system T = 〈P ,Act ,−→,⇑〉 the following are equivalents:

(i) it satisfies all instances of the axiom scheme (BN );

(ii) for all p ∈ P such that p ⇓, the set

Br(p) = {q ∈ P | ∃a ∈ Act : p a−→ q}

is compact in the topology O(T );

(iii) it satisfies all instances of the following axiom scheme:

(BN ′) 2
∨

I φi ≤
∨

J∈Fin(I ) 2
∨

J φj with φi ∈ Lω,∞ for each i ∈ I .

Proof: Clearly every instance of (BN ) is an instance of (BN ′). Hence (iii) implies (i). In order to
prove (i) implies (ii) assume T satisfies (BN ). Take a p ∈ P with p ⇓ and Br(p) ⊆

⋃
I [[φi ]]

π
T , where

φi ∈ Lω,ω for each i ∈ I . Then p |=π 2
∨

I φi . Hence, by (BN ), p |=π

∨
J∈Fin(I ) 2

∨
J φj , that is,

Br(p) ⊆
⋃

J [[φj ]]
π
T for a finite subset J of I . By Lemma 6.2, the soundness Theorem 5.6, and because

T satisfies (BN ), the interpretations of formulae in Lω,ω form a basis for O(T ). Hence every cover of
Br(p) by basic opens has a finite subcover, from which it follows that Br(p) is compact in O(T ).

It remains to prove that (ii) implies (iii). Assume that if p ⇓ then the set Br(p) is compact in
the topology O(T ), and let p |=π 2

∨
I φi , where φi in Lω,∞ for each i ∈ I . Since p converges,

Br(p) ⊆
⋃

I [[φi ]]
π
T . But Br(p) is compact, hence Br(p) ⊆

⋃
J [[φj ]]

π
T for some finite subset J of I . It

follows that p satisfies (BN ′). ut

The next step is to prove the completeness of the logic Lπω,∞ for the class of compactly branching
transition systems. We proceed as for the finite case: let LAπω,∞ be the Lindenbaum algebra of Lπω,∞
with as elements equivalence classes of formulae provably equivalent in Lπω,∞ + (BN ). The poset
LAπω,∞ is a frame with meets and joins defined as expected.

Lemma 6.5 The frame LAπω,∞ is free over the distributive lattice LAπω,ω.

Proof: For any frame F and function f :LAπω,ω → F preserving finite meets and finite joins, define
h:LAπω,∞ → F by

h([φ]) =
∨
{f ([ψ]) | ψ ∈ Lπω,ω and ψ ≤ φ} .

By definition, h([ψ]) = f ([ψ]) for all ψ in Lπω,ω.
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In order to prove that h preserves arbitrary joins first we note that for ψ ∈ Lπω,ω and φi ∈ Lπω,∞
with i ∈ I ,

ψ ≤
∨
I

φi if and only if ∃J ∈ Fin(I ) .ψ ≤
∨
J

ψj . (5)

The implication from right to left is immediate. To prove the other direction we can use Corollary 6.3
in order to restrict our attention only to formulae φi ∈ Lπω,ω. Because the SFP-domain D is compactly
branching we have

ψ ≤
∨
I

φi ⇒ [[ψ]]πD ⊆ [[
∨
I

φi ]]
π
D =

⋃
I

[[φi ]]
π
D .

By Theorem 5.7, [[ψ]]πD and [[φi ]]
π
D, for all i ∈ I , are compact open subsets of D. Hence there exists a

finite subset J of I such that

[[ψ]]πD ⊆
⋃
J

[[φj ]]
π
D = [[

∨
J

φj ]]
π
D .

By the completeness Theorem 5.8 it follows that ψ ≤
∨

J φj .
Now we can prove that h preserves directed joins. Let S ⊆ LAπω,∞ be directed. We have

h([
∨

S ]) =
∨
{f ([ψ]) | ψ ∈ Lπω,ω and ψ ≤

∨
S} [definition of h]

=
∨
{f ([ψ]) | ψ ∈ Lπω,ω and ∃φ ∈ S .ψ ≤ φ} [property (5)]

=
∨
{h([φ]) | φ ∈ S} [definition of h].

Preservation of finite joins is immediate. Hence h preserves arbitrary joins.
Next we prove that h preserves finite meets. We use ψ, ψ′ and ψ′′ to denote formulae ranging over
Lπω,ω. For formulae φ′ and φ′′ in Lπω,∞ we have

h([φ′] ∧ [φ′′]) =
∨
{f ([ψ]) | [ψ] ≤ [φ′] ∧ [φ′′]} [definition of h]

=
∨
{f ([ψ′] ∧ [ψ′′]) | [ψ′] ≤ [φ′] and [ψ′′] ≤ [φ′′]} [easy calculation]

=
∨
{f ([ψ′]) ∧ f ([ψ′′]) | [ψ′] ≤ [φ′] and [ψ′′] ≤ [φ′′]} [f preserves meets]

=
∨
{f ([ψ′]) | [ψ′] ≤ [φ′]} ∧

∨
{f ([ψ′′]) | [ψ′′] ≤ [φ′′]} [distributivity]

= h([φ′]) ∧ h([φ′′]) [definition of h].

By Corollary 6.3 and the definition of h it follows that h is the unique frame morphism such that
h ◦ ι = f , where ι:LAπω,ω → LAπω,∞ is the obvious inclusion function. ut

We can now lift the isomorphism of Lemma 5.7 to an isomorphism which maps formulae of Lπω,∞ to
Scott open sets of D.

Lemma 6.6 Let O(D) be the frame of Scott open subsets of D. The assignment [φ] 7→ [[φ]]πD defines
a unique order isomorphism γ+:LAπω,∞ → O(D) such that γ+([φ]) = γ([φ]) for all φ in Lπω,ω.

Proof: Because D is an SFP-domain, when taken with its Scott topology it forms a spectral space.
Hence, by Theorem 3.8, the lattice of Scott open sets O(D) is the free frame over the distributive
lattice of Scott compact open sets KO(D). Furthermore, the latter is, by Lemma 5.7, order isomorphic
to the Lindenbaum algebra LAπω,ω. But LAπω,∞ is the free frame over the distributive lattice LAπω,ω
(Lemma 6.5), hence O(D) is order isomorphic to LAπω,∞. The isomorphism is given by the unique
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extension γ+ of the function γ:LAπω,ω → KO(D) given in Theorem 5.7. For all φ in Lπω,∞, it can be
characterized by

γ+([φ]) = γ+(
∨
{[ψ] | ψ ∈ Lπω,ω and ψ ≤ φ}) [Corollary 6.3]

=
⋃
{γ([ψ]) | ψ ∈ Lπω,ω and ψ ≤ φ} [γ+ preserves arbitrary joins and comutativity]

=
⋃
{[[ψ]]πD | ψ ∈ Lπω,ω and ψ ≤ φ} [Theorem 5.7]

= [[
∨
{ψ | ψ ∈ Lπω,ω and ψ ≤ φ}]]πD [definition of [[−]]πD]

= [[φ]]πD [D is compactly branching].

ut

Soundness of the logical system associated to Lπω,∞ extended with the scheme (BN ) follows from
Theorem 5.6 and the definition of compactly branching transition systems. In a way similar to the
completeness Theorem 5.8, completeness follows from the duality Lemma 6.6.

Theorem 6.7 (Completeness) Let CB be any class of compactly branching transition systems con-
taining D. For φ1 and φ2 in Lπω,∞, CB |= φ1 ≤ φ2 if and only if Lπω,∞ + (BN ) ` φ1 ≤ φ2. ut

An immediate consequence of Lemma 6.4 and the above completeness result is that each instance of
the axiom scheme (BN ′) is provable in Lω,∞ extended with the axiom scheme (BN ).

7. Finitary transition systems

The language Lω,∞ is more expressive than the finitary language Lω,ω. Next we consider the even more
expressive language L∞,∞. For example, given a transition system 〈P ,Act ,−→,⇑〉 we can specify in
L∞,∞ properties like ‘there exists an infinite a-path starting from the process p’, and ‘at any point
of any path starting from p an a-transition is always possible’, respectively by

• p |=π

∧
n∈ω φn , where

{
φ0 = tt and
φn+1 = 3a(φn );

• p |=π

∧
n∈ω φn , where

{
φ0 = tt and
φn+1 = 3a(φn ) ∧

∧
Act(2b(φn ) ∨

∨
Act\{b} c(tt)).

By using the new characterization of sober spaces given in Theorem 3.6, we will now prove a com-
pleteness result for L∞,∞ following the same pattern as for the completeness result of Lω,∞.

First we introduce two finitary axiom schemes over L∞,∞ in order to prove a normal form for the
formulae in the language. These schemes are necessary for the domain D to be a sound and complete
model of L∞,∞. However they will also restrict the class of transition systems under consideration.
The two axiom schemes are

(BN ) 2
∨

I φi ≤
∨

J∈Fin(I ) 2
∨

J φj with φi ∈ Lω,ω for each i ∈ I
(FA)

∧
J∈Fin(I ) 3

∧
J φj ≤ 3

∧
I φi with φi ∈ Lω,ω for each i ∈ I ,

where, as before, Fin(I ) is the set of all finite subsets of I . The axiom scheme (FA) is the dual of
(BN ). While the axiom (BN ) is related to the width of a computation, the axiom (FA) is related to
its length. The latter is analogous to the requirement that we cannot distinguish a set from its closure
by means of compact open sets [Fin73] (thinking of each φi as a compact open set, or, equivalently,
as a finite observable property). It can be understood as a notion of finite approximation.

For example, the transition system induced by the set of finite synchronization trees satisfies all
instances of the two axiom schemes above. In general, a transition system which satisfies all instances
of (BN ) and (FA) is called finitary.
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We have already seen in the previous section an example of a transition system that does not satisfy
(BN ). Consider now the transition system 〈IN × IN,Act ,−→, {〈0, 0〉}〉 where 〈0, 0〉 a−→ 〈1,n〉 for all
n ≥ 0 and 〈n,m〉 a−→ 〈n + 1,m〉 if n ≤ m. Pictorially the above transition system can be represented
as follows:

〈0, 0〉
afffffffffffff

rrfffffffffffff aiiiiiiii

ttiiiiiiii a
��

〈1, 0〉 〈1, 1〉
a
��

· · · 〈1,n〉
a
��

· · · .

〈2, 1〉 〈2,n〉
a
��
...
a
��

〈n + 1,n〉

Then, for every finite subset J of ω,

〈0, 0〉 |=π 3
∧
J

φj where
{

φ1 = tt and
φn+1 = a(3φn ) .

However 〈0, 0〉 6|= 3
∧
ω φn . Hence the above transition system does not satisfy (FA). What is ‘missing’

is a branch with an infinite sequence of transitions all labeled by a.
Next we recall that the transition system induced by the SFP-domain D is finitary.

Lemma 7.1 The transition system induced by the SFP-domain D is finitary.

Proof: See Theorem 5.15 in [Abr91b]. ut

Semantically, finitary transitions systems are exactly those transition systems for which <∼
F and <∼

B

coincide (see Lemma 7.4). Logically, the axioms (BN ) and (FA) allow us to rewrite a formula in Lπ∞,∞
as a conjunction of disjunctions of formulae in Lω,ω. This fact will be essential in the proof of our
completeness result.

Lemma 7.2 For each φ in Lπ∞,∞ there exist formulae φi ∈ Lπω,∞, i ∈ I , such that Lπ∞,∞ + (BN ) +
(FA) ` φ =π

∧
I φi .

Proof: By induction on the height ht of formulae in L∞,∞. See also Lemma 5.17 of [Abr91b]. ut

The above lemma implies that, for every formula φ ∈ Lπ∞,∞, Lπ∞,∞ + (BN ) + (FA) ` φ =
∧
{ψ ∈

Lπω,∞ | φ ≤ ψ}.
Another immediate consequence of the above lemma is the following characterization property. For

a finitary transition system 〈P ,Act ,−→,⇑〉 and p, q in P ,

p <∼
F q if and only if ∀φ ∈ Lπ∞,∞: p |= φ⇒ q |= φ.

By Theorem 5.5 it follows that for finitary transition systems, <∼
F and <∼

B coincide, while, by the
duality Theorem 5.7, it follows that the order of D, which is equivalent to the specialization order
induced by Scott topology O(D) [GHK+80, Remark II .1.4], coincides with the finitary preorder <∼

F .
Therefore, in D, d1 ≤ d2 if and only if d1 <∼

B d2, that is, D is internally fully abstract with respect to
partial bisimulation.

Next we show that we can strengthen the conditions for finitary transition systems a bit more. This
lemma is the equivalent of Lemma 6.4 for compactly branching transition systems.
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Lemma 7.3 A transition system T = 〈P ,Act ,−→,⇑〉 satisfies all instances of the axiom schemes
(BN ) and (FA) if and only if it satisfies the following axiom schemes:

(BN ′) 2
∨

I φi ≤
∨

J∈Fin(I ) 2
∨

J φj with φi ∈ Lω,∞ for each i ∈ I
(FA′)

∧
J∈Fin(I ) 3

∧
J φj ≤ 3

∧
I φi with φi ∈ Lω,∞ for each i ∈ I .

Proof: If T satisfies all instances of (BN ′) and (FA′) then clearly it satisfies also all instances of
(BN ) and (FA). Conversely, assume T satisfies all instances of (BN ) and (FA). By Lemma 6.4 T
satisfies all instances of (BN ′).

Recall now that O(T ) denotes the topology with open sets of the form [[φ]]πT for φ in the restricted
language Lπω,∞. By Lemma 6.2, the soundness Theorem 5.6, and because T satisfies (BN ), the
interpretations of formulae in Lω,ω form a basis for O(T ).

Assume for some set I that p ∩
⋂

J oj 6= ∅ for all finite subsets J of I , where oi ∈ O(T ) for all
i ∈ I . We need to prove that p ∩

⋂
I oi 6= ∅. Since J is finite,

⋂
J oj is an open set for all J ∈ Fin(I ).

Hence, for each J ∈ Fin(I ), there exists a basic open uJ subset of
⋂

J oj such that p ∩ uJ 6= ∅.
Furthermore, by definition of basic open, uJ = [[φ]]πT for some formula φ in Lω,ω. Because T satisfies
(FA) it follows that p ∩

⋂
I ui 6= ∅, where ui = uJ if i ∈ J . By construction ui ⊆ oi for all i ∈ I , hence

also p ∩
⋂

I oi 6= ∅. It follows that p satisfies all instances of (FA′). ut

In general a finitary transition system does not satisfy the stronger axiom scheme where we allow
formulae φi to be in L∞,∞:

(BN ′′) 2
∨

I φi ≤
∨

J∈Fin(I ) 2
∨

J φj with φi ∈ L∞,∞ for each i ∈ I .

Indeed, consider the finitary transition system D, and let d = {〈a, d1,m〉 | m ∈ IN ∪ {ω}}, where

dn,m =
{

1 if n = m
{〈a, dn+1,m} if n < m.

The set d is an element of D [Abr91b, page 199] as it can be defined as the least fixed point of a
continuous function from D to D. Pictorially d can be represented as the following transition system:

d
agggggggggggg

ssgggggggggggg akkkkkkkk

uukkkkkkk a
��

a
SSSSSSSS

))SSSSSSS

1 d1,2

a

��

· · · d1,n

a
��

· · · d1,ω

a
��

1 d2,n

a
��

d2,ω

a
��

...
a

��

...

1

Consider the formula

2
∨

m∈IN∪{ω}
a(

∧
n<m

φn)

where φ0 = 2a(ff ) and φn+1 = 2a(φn ). Note that a(
∧

n<ω φn) is a formula in L∞,∞ but not in
Lω,∞. Informally, the formula φ is satisfied by a process p of a transition system only if p converges
and every path starting from p is a non-trivial a-path (possibly infinite). For example, the above d
satisfies φ because d converges and every path starting from d is an infinite or finite a-path of length
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greater than or equal to one. If the finitary transition system D were to satisfy all instances of the
axiom scheme (BN ′′) then d would satisfy also the formula∨

J∈Fin(IN∪{ω})
2

∨
m∈J

a(
∧

n<m

φn ) .

But this is not the case, because for every finite subset J of IN ∪ {ω} we can always find an a-path
starting from d with a length different from any m ∈ J .

Following the line of proof of Lemma 6.4, it is not hard to see that a transition system T =
〈P ,Act ,−→,⇑〉 satisfies all instances of the axiom scheme (BN ′′) if and only if for all convergent
p ∈ P , the set Br(p) is compact in the Alexandroff topology of P taken with the preorder <∼

F .
Finitary transition systems can also be characterized in terms of partial bisimulation as follows.

Lemma 7.4 For any transition system T = 〈P ,Act ,−→,⇑〉 the following conditions are equivalent:

1. T is finitary,

2. for all p ∈ P, p and TS[[p]] are equivalent in the bisimulation preorder <∼
B ,

3. the finitary preorder <∼
F coincides with bisimulation preorder <∼

B in the transition system ob-
tained as the disjoint union of T and D.

Proof: See Lemma 5.22 of [Abr91b]. ut

In the last condition of the above lemma we need to consider the disjoint union of T and D because
T alone may not have enough processes to prove the equivalence between <∼

F and <∼
B .

To prove the completeness of the logic Lπ∞,∞ for the class of finitary transition systems, consider
its Lindenbaum algebra LAπ∞,∞ with as elements equivalence classes of formulae provably equivalent
in Lπ∞,∞ + (BN ) + (FA). The logical axioms say that the poset LAπ∞,∞ is a completely distributive
lattice. By Lemma 7.2 and with a proof similar to the proof of Lemma 6.5, it is not hard to see that
LAπ∞,∞ enjoys universal properties.

Lemma 7.5 The completely distributive lattice LAπ∞,∞ is free over the frame LAπω,∞. ut

By Theorem 3.2 it follows that the inclusion function

ι:LAπω,∞ ↪→ LAπ∞,∞
is the free observation frame over LAπω,∞.

Lemma 7.6 Let Q(D) be the completely distributive lattice of saturated subsets of D with respect to the
Scott topology on D. The assignment [φ] 7→ [[φ]]πD defines the unique order isomorphism γ?:LAπ∞,∞ →
Q(D) such that γ?([φ]) = γ([φ]) for all φ ∈ Lπω,ω.

Proof: Because D is an SFP-domain, if it is equipped with the Scott topology then it forms a sober
space. Hence, by Theorem 3.6, the lattice of saturated sets Q(D) is the free completely distributive
lattice over the frame of Scott open sets O(D), which, by Lemma 6.6, is order isomorphic to the
Lindenbaum algebra LAπω,∞. But LAπ∞,∞ is the free completely distributive lattice over the frame
LAπω,∞ (Lemma 7.5), and hence Q(D) is order isomorphic to LAπ∞,∞. The isomorphism is given by
the unique extension γ? of the function γ+:LAπω,∞ → O(D) which can be characterized by

γ?([φ]) = γ?(
∧
{[ψ] | ψ ∈ Lπω,∞ and φ ≤ ψ}) [Lemma 6.2]

=
⋂
{γ+([φ]) | ψ ∈ Lπω,∞ and φ ≤ ψ} [γ? preserves meets and comutativity]

=
⋂
{[[φ]]πD | ψ ∈ Lπω,∞ and φ ≤ ψ} [Theorem 6.6]

= [[
∧
{ψ]]πD | ψ ∈ Lπω,∞ and φ ≤ ψ}]]πD [definition of [[−]]πD]

= [[φ]]πD [D is finitary].
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ut

As before, soundness of the logical system associated with Lπω,∞ including both the finitary schemes
(BN ) and (FA) follows from Theorem 5.6 and from the definition of finitary transition systems. In
a similar way to the proof of the completeness Theorem 5.8, completeness follows from the above
duality result.

Theorem 7.7 (Completeness) Let FT be any class of finitary transition systems containing D. For
φ1 and φ2 in Lπ∞,∞, FT |= φ1 ≤ φ2 if and only if Lπ∞,∞ + (BN ) + (FA) ` φ1 ≤ φ2. ut

As consequence of Lemma 7.3 and the above completeness result, each instance of the axiom schemes
(BN ′) and (FA′) is provable in L∞,∞ extended with the axiom schemes (BN ) and (FA).

8. Conclusion

In this paper we have given a new characterization of sober spaces which can be used for an infinitary
extension of every logic based on a topological interpretation, and in particular for an infinitary
extension of Abramsky’s logic of domains. We have treated an example of infinitary logic for a
particular domain involving the Plotkin powerdomain construction. An infinitary logical interpretation
of the whole typed language proposed by Abramsky (including the function space construction) will be
presented elsewhere. In this paper we concentrated on one example to illustrate the general technique.

Our main motivation for the introduction of an infinitary domain logic as a specification formalism
is not to improve over the known specification tools but rather to analyse them by means of general
and reusable mathematical notions from topology and domain theory (examples in this direction
include a domain logic for Gamma [GH94] which was originally formulated as a transition assertion
logic [EHJ93], and a domain logic for a shared-variable parallel language [Zha91] which was originally
formulated by Brookes [Bro85]). This is part of Abramsky’s general programme of connecting domain
theory and operational notions of observability with denotational semantics and program logics.

The present paper does not deal with a formal comparison between Abramsky’s logic and Hennessy-
Milner logic for transition systems. Such a comparison can be found in [Abr91b], where L∞,∞ is proved
equivalent to the infinitary Hennessy-Milner logic in the sense that a process of a transition system
satisfies a formula of Abramsky’s logic if and only if it satisfies the equivalent formula in the Hennessy-
Milner logic. Hence formulae of the infinitary Hennessy-Milner logic are interpreted as saturated sets
of the SFP-domain D. However it remains an open problem to give axioms and rules for the infinitary
Hennessy-Milner logic such that this interpretation is an order pre-isomorphism.

An intriguing exercise that we leave for future work is to see whether the compact ultrametric space
introduced by De Bakker and Zucker [BZ82] as unique solution of the domain equation

X ∼= Pco(Act × 1
2
· X ).

is finitary when interpreted as transition system [GR89].
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