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ABSTRACT

The criterion for con
uence using decreasing diagrams is a generalization of several well-known con
uence

criteria in abstract rewriting, such as the strong con
uence lemma. We give a new proof of the decreasing

diagram theorem based on a geometric study of in�nite reduction diagrams, arising from unsuccessful attempts

to obtain a con
uent diagram by tiling with elementary diagrams.
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1. Introduction

Abstract rewriting is the initial part of the theory of rewriting where objects have no structure and
the rewrite relation is just a binary relation on the set of objects. Usually there is not just one rewrite
relation, but an indexed family of rewrite relations present. There are several useful and well-known
lemmas for such abstract rewrite systems that give conditions for con
uence: Newman's Lemma [10],
Huet's strong con
uence lemma [7], Staples' request lemmas [14], the lemma of Hindley-Rosen [6].
A common generalization of all these lemmas has been obtained in van Oostrom [12, 11], elaborating

an unpublished note of de Bruijn [5]. De Bruijn's original proof was a complicated nested induction,
while van Oostrom used a certain invariant for the diagram construction called decreasing diagrams. A
slightly di�erent invariant called trace-decreasing diagrams was used in Bezem et al. [2]; this invariant
will be used in the present paper. The theorem of de Bruijn and van Oostrom is concerned with labeled
reductions. For a version of the theorem where points instead of edges are labeled, see Bognar [3],
with a proof checked by the Coq proof checker.
In this paper we give a proof of this `con
uence by decreasing diagrams' theorem that is totally

di�erent from the two mentioned above. The proof is by an analysis of the geometry of, possibly
in�nite, reduction diagrams, resulting from two co-initial diverging �nite reduction sequences, by
`tiling' with elementary reduction diagrams. In�nite diagrams arise this way when we have a failure
of con
uence.
Such in�nite reduction diagrams are interesting geometric objects themselves; the simplest one is

the diagram in Figure 1 that we will call the Escher diagram. In the sequel we will give several more
examples of in�nite reduction diagrams, some of them exhibiting an interesting fractal-like boundary,
some of them reminiscent to the pictures of M.C. Escher, with a repetition of the same pattern,
receding in in�nity.
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Figure 1: The Escher diagram

Actually, we consider an enrichment of mere reduction diagrams, namely diagrams with a `tree
covering'. A tree covering of a diagram determines an ancestor-descendant relation between the
edges appearing in a reduction diagram. By means of a tree covering an edge can be traced back
to its ancestor edge on one of the original divergent reduction sequences. The theorem proved in
this paper states the impossibility of certain in�nite diagrams with a tree-covering. Since an in�nite
reduction diagram composed of (trace-)decreasing diagrams would give rise in a natural way to a tree
covering|of the impossible kind|we have as an immediate corollary then the theorem of con
uence by
decreasing diagrams. The method of proof of our theorem is purely geometric. It employs topological
notions such as condensation points of point sets in the real plane.

2. Abstract reduction systems

An abstract reduction system (ARS) A is a set A equipped with a collection of rewrite or reduction
relations !�, indexed by some set I of indexes: A = hA; (!�)�2Ii. The index set I is a well-
founded partial order. In examples, we will use the set of natural numbers with the usual ordering as
index set. The union of the rewrite relations !� is denoted by !. We use the notation !! for the
transitive-re
exive closure of !. Idem !!� with respect to !�.
The ARS A is called con
uent or CR (Church-Rosser), if

8a; b; c 2 A (a!! b ^ a!! c ) 9d 2 A (b!! d ^ c!! d)):

A, non-equivalent, weaker version of CR is WCR: A is called locally con
uent or WCR (weakly
Church-Rosser), if

8a; b; c 2 A (a! b ^ a! c ) 9d 2 A (b!! d ^ c!! d)):

The CR and WCR properties are depicted respectively in Figure 2, the picture of WCR giving rise to
the notion of elementary diagram, which will be de�ned in the next section.
It is well-known that in strongly normalizing ARSs (i.e., ARSs without in�nite reduction sequences)

we have WCR) CR (Newman's Lemma [10]). The essence of Newman's lemma is that because of the
strong normalization condition the process of tiling with elementary diagrams must terminate. The
decreasing diagrams method studied in this paper amounts essentially to giving a weaker condition,
yet yielding the termination of tiling.
For more on abstract reduction systems we refer to Klop [8].

3. Elementary diagrams

As said, the property WCR inspires the notion of elementary diagram, which we now de�ne. It
originates from Klop [9], where also the notion of improper elementary diagram was introduced.



3

a b

c d

a b

c d

Figure 2: CR and WCR

De�nition 1 An elementary diagram (e.d.) is a con�guration of two reduction steps a ! b and
a ! c, issuing from the same object a, and reductions b ! b1 ! � � � bm � d and c ! c1 ! � � � cn � d

that join b and c. (Note that m and/or n may be zero: if, e.g., m = 0 we have b � d.)

This is the abstract notion of elementary diagram. An e.d. can be rendered geometrically as a rectangle
with some nodes on its sides as in Figure 3 (from left to right we have in the �rst diagram m = n = 1,
in the second m = 3, n = 2, in the third m = 2, n = 0 and in the last one m = n = 0).

Figure 3: Elementary diagrams

To distinguish the abstract notion of e.d. in de�nition 1 from its geometric representation, we call
the latter a geometric e.d. So in a geometric e.d. we have the original steps a ! b and a ! c as
upper and left-hand sides, and the converging reductions b ! b1 ! � � � bm � d on the right and
c ! c1 ! � � � cn � d on the lower side, d in the lower right corner. Objects are rendered as nodes,
reduction steps as edges (with arrow). In case m = 0 or n = 0 the corresponding side is a so-called
empty step, drawn as a dashed line. We need empty steps in order to keep our diagram constructions
rectangular.
The geometric e.d.'s will be used as `tiles' with the intention to obtain a completed reduction diagram

as in Figure 6 (see the next section). To make this tiling process successful we need also e.d.'s with
empty steps as upper or left-hand side. Hence empty steps give rise to trivial geometric e.d.'s as in
Figure 4. Following Klop [9], we call these improper e.d.'s.

Figure 4: Improper elementary diagrams

We sum up the main characteristics of geometric e.d.'s and some conventions for dealing with them.

1. A geometric e.d. is a rectangle with some nodes on its sides.
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2. Nodes represent objects. (These may be added as labels, but are mostly suppressed.)

3. Drawn edges connecting adjacent nodes represent reduction steps, always downward or from left
to right. (This may or may not be indicated by an arrowhead and the index of the reduction
step as label.)

4. The upper and left sides of a geometric e.d. are called its initial sides, the lower and right the
converging sides.

5. There are nodes on the four corner points of the rectangle. The left-upper node is the initial

node.

6. The converging sides may contain a �nite number of extra nodes (the initial sides may not).

7. The converging sides may also consist of a dashed line (with no extra nodes on it); dashed lines
represent empty steps, and therefore the nodes connected by a dashed line represent the same
object.

8. In a geometric e.d. also one or both of the initial sides may be dashed; in that case the e.d. is
called improper.

9. In an improper e.d. each converging side is identical to the opposite initial one.

10. Geometric e.d.'s are supposed to be scalable: they can be stretched or shrunk horizontally and
vertically, as long as they keep their rectangular form. (Nodes on converging sides are in general
placed equidistantly, but this is not essential.)

Now, since in this paper we look for su�cient conditions for the implication WCR ) CR, we will
in fact assume WCR for all considered ARSs. This amounts to the following. Given an object a and
reduction steps a !� b and a !� c, there is an e.d. with a as initial node and a !� b and a !� c

as initial steps. Geometrically this means that any con�guration of a node with two adjacent edges,
one to the left and one downward, but without converging sides|to be called an open corner|can
be �lled with an appropriate e.d. In the terminology of Bezem et al. [2], we have a full set of e.d.'s:

The supply of tiles (geometric e.d.'s) is such for each open corner there is at least one
�tting tile.

Note that because of the symmetry of WCR, with each tile T in our supply, we also have the tile
that results by mirroring T on the diagonal through its initial node.

4. Reduction diagrams

4.1 Finite reduction diagrams

The e.d.'s are used as building blocks (`tiles') in the construction of reduction diagrams, in an attempt
to construct for given (initial) �nite reductions a!! b and a!! c issuing from the same object a, two
convergent reductions b!! d and c!! d. This attempt is successful if we arrive at a �nite, completed

reduction diagram as in the example of Figure 6.
The construction of such a diagram (by tiling) starts by setting out the initial reductions, one

horizontally, one vertically, both starting at the same node representing a; and then proceeds by
subsequently adjoining e.d.'s, as in Figure 5, at an open corner in which an e.d. can be �tted. (Here,
by an open corner we mean a node with two adjacent edges, one to the left and one downward,
without converging sides.) An e.d. �ts if its initial node and initial sides match with the open corner,
i.e., represent, respectively, the same object, and reduction steps with the same index from I . (The
geometric �tting is accomplished by scaling the e.d.)
Each stage in the tiling process just described is called a reduction diagram. A reduction diagram

is completed if it has no open corners. With a completed diagram the tiling process terminates. It is
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Figure 5: Adjoining e.d.'s to reduction diagrams

easy to see that a completed reduction diagram with initial reductions a!! b, a !! c has convergent
reductions for b and c at the bottom and right.1

Figure 5 shows that adjunction of e.d.'s at di�erent open corners of a reduction diagram commutes.
It is not hard to see that, as a consequence, the �nal outcome of the construction process is independent
of the order of picking corners to be �lled with e.d.'s. It is not independent, though, of the choice of
e.d.'s to �t in, if there is a choice.
Note that we can distinghuish again, as we did with e.d.'s, the notions of abstract and of geometric

reduction diagram. When drawing (geometric) reduction diagrams, we will again mostly omit the
direction of the reduction arrows, which always is down or to the right|see Figure 6. Nodes always
represent objects, and edges, representing reduction steps, bear an index. This information may be
supplied in labels. It will become relevant to do so in Section 8.
One may think of such a geometric reduction diagram as the point set in the real plane, obtained

by the union of the point sets of the geometric e.d.'s involved. (As a matter of fact two point sets:
that of the edges and that of the nodes.)

4.2 In�nite reduction diagrams

In�nite reduction diagrams arise if the process of tiling with elementary reduction diagrams does not
terminate, i.e., when at each �nite stage open corners remain. Now we can take an in�nite reduction
diagram to be the union of the reduction diagrams at the stages of an in�nite tiling process. This
makes sense in both the abstract and the geometric sense, where our notion of limit is just the union
of point sets in the plane. This way the result (or limit) of a tiling process always exists. The limit is
either �nite and completed, or in�nite.
A familiar example of an in�nite reduction diagram is the Escher diagram in Figure 1. It arises from

the ARS in Figure 7, the �gure also illustrating the cyclic process that leads to the in�nite diagram.
Just as in the �nite case, a completed in�nite reduction diagram is de�ned as one having no open

corners. However, observe that in contrast to the �nite case, a completed in�nite reduction diagram
with initial reductions a!! b and a!! c does not yield converging reductions for b and c.
It is important to note that in the in�nite case a limit diagram may still not be completed; namely,

when a certain open corner, that has to be �lled in, is forever neglected in the diagram construction.

1The stepwise construction of reduction diagrams is somehow reminiscent of the process of completion via proof
reduction, cf. Bachmair et al. [1].
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Figure 6: Completed reduction diagrams
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In two ways completed in�nite diagrams can always be obtained, however. The �rst is to allow
trans�nite tilings. By elementary set-theoretic considerations it follows that regardless of a strategy
a completed diagram can always be obtained by trans�nitely prolonging the tiling procedure. This
way a completed diagram would even be obtained by a trans�nite random tiling. The second is by
following a fair tiling strategy, not persistently forgetting any open corners. It is not di�cult to design
such a fair strategy. By Corollary 4 each trans�nite construction can be `compressed' to one that has
length !.

De�nition 2

1. Two tiling processes, starting with the same initial reductions, will be called compatible if at
the same open corner always the same e.d. is adjoined. Here open corners correspond in two
di�erent tiling constructions if they have the same geometric position, to be measured, e.g.,
relative to the initial node of the whole diagram.

2. A, possibly trans�nite, tiling strategy is called complete if in the limit it leads to a completed
reduction diagram.

The following proposition says that a completed diagram for two given initial reductions is unique,
that is, independent of the order in which open corners are �lled, as long as one takes care that at the
same open corner always the same e.d. is adjoined.

Proposition 3 Given two initial reductions, and two complete tiling strategies that are compatible,
the resulting completed reduction diagram is unique.

Proof Let a diagram be ordered below another, if the latter arises from the former by adjoining
e.d.'s. By uniqueness of �lling open corners, this is easily seen to yield a lattice. It can be normally

completed into D in a way preserving least upper bounds (see e.g. Davey & Priestley [4]). By the
Knaster-Tarski �xed point theorem any monotone operation on D has a �xed point. Since adjunction
of an e.d. at a given open corner is easily de�ned on D and seen to be a monotone operation, it
follows that any tiling strategy has a �xed point. We conclude by remarking that a diagram is a �xed
point of a complete tiling strategy i� it has no open corners. This is only the case for the top of the
lattice. Hence all �xed points and all completed reduction diagrams reached by any tiling strategy
are identical. 2

An alternative way of formalizing all this would be to use the theory of !-algebraic cpo's, as
developed in Plotkin [13]. Since there are only countably many �nite diagrams, their completion will
be an !-algebraic cpo. As a consequence all in�nite diagrams are the limit of an !-chain of �nite
diagrams. This could make for an interesting case study in in�nite diagram construction. Anyhow,
for the moment we need only the conception of an in�nite diagram as a plane �gure, being the limit
of a tiling process. This should be su�ciently clear by now.

Corollary 4 (compression) The result of any trans�nite tiling process leading to a completed dia-
gram could also be obtained in ! many steps.

Proof Since the adoption of a fair strategy leads to a completed diagram in at most ! many steps,
this follows from the last proposition. 2

Remark 5 This compression result leads to a simple but fundamental observation concerning in�nite
reduction diagrams. Each node (or edge or e.d., for that matter), since it occurs at a �nite stage of
a diagram construction of length !, has a �nite `history'. A consequence is that, as illustrated in
Figure 8, above an elementary diagram (the shaded rectangular zone in Figure 8) there can not occur
a condensation point of the diagram. The elementary diagram together with the zone above it must
be part of some �nite stage of the in�nite reduction diagram.
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Figure 8: Part of the reduction diagram above an e.d.

The simplest in�nite reduction diagram is the Escher diagram in Figure 1. Some more examples
are given in Figures 9, 10 and 11. Note the fractal-like boundaries that arise in Figure 10. In each
example, the diagram construction involves a certain recursion that is not hard to read o� from the
drawings.

Figure 9: In�nite reduction diagrams

Remark 6 Since we admit also empty steps, it is not immediately clear that an in�nite diagram
contains in�nitely many non-empty edges. However, this is indeed the case; Bezem et al. [2] proves
the stronger fact that an in�nite diagram possesses an in�nite reduction containing in�nitely many
splitting steps. (An elementary diagram is splitting if one of the converging sides contains two or more
steps which then are called splitting steps. Recall that by point 7 of the characterization of geometric
e.d.'s in Section 3 splitting steps are always non-empty.)

5. Towers in infinite reduction diagrams

A notion that will be needed in our analysis of in�nite reduction diagrams is that of a tower. Roughly,
a tower in an in�nite reduction diagram is the result of adjoining elementary diagrams in a linear way,
as suggested in Figure 12. Towers are either horizontal or vertical. These notions are dual, so we need
only to de�ne horizontal towers. We will only be interested in in�nite towers.
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Figure 10: In�nite reduction diagram with fractal-like boundary

Figure 11: In�nite diagram construction with diagonal border

De�nition 7 Consider an in�nite reduction diagram D, completed or not. A horizontal tower T is
a conglomerate (or: the union) of a countably in�nite set E = fE1; E2; : : : g of e.d.'s that are already
present in D, satisfying the following two conditions:

1. The left side of E1 is one of the initial reduction steps of D.

2. For each n � 1 the left initial side of En+1 coincides with one of the edges on the right (con-
verging) side of En.

A vertical tower is de�ned dually.
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Figure 12: Horizontal and vertical tower

Figure 13 displays two towers in the �rst fractal-like diagram of Figure 10; Figure 14 displays the two
towers constituting the Escher diagram of Figure 1. The horizontal tower is shaded, the vertical tower
is blank.

Figure 13: Towers in in�nite reduction diagram

Proposition 8 Every in�nite diagram contains an in�nite horizontal tower and an in�nite vertical
tower.

Proof Consider the in�nite diagram, and draw in each tile arrows from the left side to the steps in
the right side (see Figure 15). In this way �nitely many trees arise. By the pigeon-hole principle and
K�onig's Lemma, one of these trees must have an in�nite branch. This branch determines an in�nite
horizontal tower. Dually we �nd an in�nite vertical tower. 2

Consider again the left-to-right trees in the preceding proof. Their branches are linearly ordered
according to whether the one is `above' the other. A branch s is above branch t, when after running
together for some (possibly 0) steps, s branches o� to above compared to t.
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Figure 14: Towers in Escher diagram

Figure 15: Finding an in�nite horizontal tower

Furthermore it is clear that there is a highest in�nite branch in the left-to-right trees of an in�nite
diagram. It is constructed in the obvious way: to start, choose the highest root of the left-right trees
that has an in�nite branch, then choose the highest successor with the same property, and so on.
Since branches in the left-right trees correspond with horizontal towers, there also exists a highest

horizontal in�nite tower. (And a leftmost vertical tower, for that matter.) This will play an important
rôle later on.

Remark 9 In fact, the horizontal towers of a reduction diagram are linearly ordered by the relation
`above'. There may be continuum many towers. For example in Figure 16 there are continuum many
vertical towers.

Figure 16: Continuum many towers
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6. Tree coverings of reduction diagrams

In this section we de�ne the concept of a tree covering of a reduction diagram. Tree coverings are the
result of composing tracing patterns in the elementary diagrams in the reduction diagram.

De�nition 10 Given an e.d. E , a tracing pattern P for E is a collection of arrows leading from initial
edges of E to the converging edges. The pattern P has to be such that:

1. For each edge on a converging side there is precisely one arrow leading to it.

2. An arrow leading to an empty side originates in the opposite initial side.

We say that an edge on a converging side is traced back, by backwards following an arrow, to one of
the two initial edges.

So each converging edge can be traced back uniquely according to a given pattern. By contrast,
an initial edge can trace forward to several converging edges, to one, or even to none. Examples of
tracing patterns are given in Figure 17.

Figure 17: Elementary diagrams with tracing patterns

If all e.d.'s constituting a reduction diagram D are equipped with a tracing pattern, then in a
natural way a pattern of branches emerges, by composing the ingoing and the outgoing arrows. We
call such a pattern a tree covering. It is important to note that by following the branches backwards,
each edge, anywhere in D, can be traced back uniquely to one of the initial edges of D.
Figure 18 shows an example of a �nite, completed reduction diagram with a tree covering. Observe

that the branches of the trees may intersect. Figure 19 contains a number of `periodic' tree coverings

Figure 18: A tree covering

of the Escher diagram. The upper part of Figure 19 gives some of the possible tracing patterns (not
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exhaustive) of the elementary diagram of which the Escher diagram is built. (Note that the Escher
diagram is indeed built from e.d.'s of a single shape.) These e.d.'s with trace patterns are then used to
build the Escher diagram in various combinations 11, 12, etc. For example 23 means that the e.d. with
trace pattern 2 is used, next the e.d. with trace pattern 3 (after mirroring); then the 23 con�guration
is recursively repeated.

1 2 3 4

11

13

22

24

34

12

33

14

23

44

Figure 19: Periodic tree coverings

De�nition 11

1. An arrow in a branch is straight if it leads from an initial edge to an opposing edge.

2. A branch B changes orientation in an e.d. E , if it enters E on a vertical edge, and exits at a
horizontal edge, or vice versa (equivalently, if B's arrow in E is not straight).

3. An in�nite branch is meandering if it changes orientation in�nitely often.

4. An in�nite branch is eventually straight if it is not meandering. That is, if|possibly after some
initial meandering| all its constituting arrows are straight.
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5. Let t; s be branches that are concurrent for some steps but separate in the e.d. E , where t is
straight and horizontal. Then we say that t branches o� downward at E to branch s, if s leaves
E at a lower opposing edge than t does, or if s changes orientation. Dually we de�ne t branches
o� to the right at E to s.

Observe that in each reduction diagram there is exactly one tree covering all of whose steps are
straight. We call it the canonical tree covering. An example is given by Figure 20.

Figure 20: A reduction diagram with its canonical tree covering

Remark 12 Obviously, for an eventually straight branch there is always a tower that eventually
contains it. Note that conversely an in�nite horizontal tower does not always eventually contain an
eventually in�nite straight branch; see e.g. in Figure 19 the tree covering 34.

Figure 21: In�nite branch, eventually in a horizontal tower, branching only downward

Now consider an in�nite reduction diagram, with a tree covering, and an in�nite horizontal tower
in it. Consider of each elementary diagram in the tower, its upper edge (see the heavy edges in
Figure 22). Trace back each of these upper edges all the way to the initial diverging reductions of
the diagram. Then, by a simple argument using the fact that the covering trees in the diagram are
�nitely branching, at least one in�nite branch arises that we will call an upper boundary branch of the
tower under consideration. It has the property that from any point on it in�nitely many upper edges
of the tower are reachable (by some branch of the tree covering).
The following de�nition and propositions formalize this account of the construction of an upper

boundary branch.

De�nition 13 Let D be an arbitrary in�nite reduction diagram, with a tree covering, and let T be
a horizontal tower in D.

1. By an upper edge of T we mean an upper edge of one of the e.d.'s in T .
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Figure 22: Upper edges and upper edge branches

2. Each upper edge of T can be traced, along a branch of the given tree covering, all the way back
to the initial diverging reductions of the diagram D. Such a path from an upper edge back to
one of the initial edges of D is called an upper edge branch of T .

3. An upper boundary branch of T is an in�nite branch s of the tree covering, such that each initial
segment of s coincides with an initial segment of an upper edge branch of T .

Note that an upper boundary branch is itself not an upper edge branch, since the latter are all �nite.
Figure 22 shows upper edge branches. Figure 23 gives an example of an in�nite horizontal tower with
upper boundary branch, unique in this case; note that it is not eventually straight. This con�guration
can actually be found in the periodic tree coverings 22, 23, 24, 33, 34 and 44 of Figure 19. Figure 24

Figure 23: An upper boundary branch

gives an example of an in�nite horizontal tower with exactly two upper boundary branches, one of
them straight, the other one not.

Proposition 14 Every horizontal tower T has an upper boundary branch.

Proof Consider the upper edge branches of T . Since there are in�nitely many of these, and since
there are only �nitely many initial edges of D, by pigeon holing at least one initial edge will be the
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Figure 24: Horizontal tower with two upper boundary branches

origin of in�nitely many upper edge branches. Choose such an initial edge and consider the in�nite
tree formed by all the upper edge branches originating from that edge. Since this is a �nitely branching
in�nite tree, by K�onig's Lemma it must have an in�nite branch, say s. We claim that s will be an
upper boundary branch of T .
To prove the claim we must show that each initial segment of s is also the initial segment of in�nitely

many upper edge branches. So consider an initial segment s1 of s. By the construction of s as a union
of upper edge branches, s1 can be extended to an upper edge branch e1. Since any upper edge branch
is �nite, there must be a (�rst) further point on s that is not on e1. Consider the initial segment s2
corresponding to that further point, and repeat the construction, resulting in a second upper edge
branch e2 and a still further point on the upper boundary branch. Continuing this process inde�nitely
yields in�nitely many upper edge branches e1; e2; : : : that all extend the original initial segment s1. 2

Corollary 15 From any point on an upper boundary branch of T in�nitely many upper edges of the
tower T are reachable.

Proof Consider the initial segment corresponding to a point P on the upper boundary branch. By
De�nition 3 there are in�nitely many upper edge branches that extend it. All end points of these
upper edge branches are reachable from P and are on an upper edge of T . 2

7. Impossible tree coverings

Now, getting to the heart of the argument of this paper, we demonstrate the impossibility of certain
tree coverings for in�nite reduction diagrams. In Theorem 16 three properties of tree coverings of
in�nite diagrams are listed, and it is proved that no tree covering can have all these three properties
together. It is instructive to consider the ten cases of Figure 19. For each of these cases Table 1 sums
up which of the properties 1-3 of theorem 16 are satis�ed. Indeed, no case has all three properties.

Theorem 16 An in�nite reduction diagram does not possess a tree covering such that:

1. All in�nite branches are eventually contained in towers.

2. In�nite branches eventually contained in horizontal towers split, eventually, only downwards.
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(i) (ii) (iii)

11 + - -
12 + - +
13 + - +
14 + - +
22 - + +
23 - + +
24 - + +
33 - + +
34 - + +
44 - + +

Table 1: Properties of tree coverings

3. In�nite branches eventually contained in vertical towers split, eventually, only to the right.

Proof For a proof by contradiction, assume that D is an in�nite reduction diagram with a tree
covering satisfying clauses 1-3. Consider in D the highest in�nite horizontal tower T . Let s be an
upper boundary branch of T ; by proposition 14 we know that there must exist one. By clause 1 the
branch s must be eventually contained in a tower T 0, which may be horizontal or vertical.

Case 1. T 0 is horizontal. Since T is the highest horizontal tower, T 0 must be T or be lower than T .
Both cases are contradictory, since by the second clause s can branch o� (after some steps) only
in downward direction, hence can never be a boundary branch of T .

Case 2. T 0 is vertical. This requires more argument to show its impossibility. Consider the relative
position of the towers T , T 0; there are three possibilities, captured in Figures 25, 26, 27.

T'

T

border of infinite diagram

Figure 25: Relative positions: intersecting towers
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condensation point
T

T'

Figure 26: Relative positions: passing without intersection

T

T'

Figure 27: Relative positions: no passing, no intersection

- The �rst case, Figure 25, where the vertical tower T 0 intersects the horizontal tower T , is
impossible: the part of the upper boundary branch s contained in T 0 below the intersection
can never reach the upper edges of T .

- Figure 26, where the horizontal tower T proceeds beyond the vertical line starting at a conden-
sation point of T 0, is equally impossible. This situation would contradict the observation
in Remark 5.
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- So only the case of Figure 27 remains as possibility. But in this case the branch s contained
in tower T 0, can not reach more than �nitely many upper edges of T , since eventually s

branches o� only to the right. This contradicts Corollary 15.

2

8. Confluence by decreasing diagrams

De Bruijn [5] gave a very strong con
uence criterion for abstract reduction systems with indexed
reduction relations. It consists of a combinatorial property of the distribution of indexes in the
elementary diagrams. The original formulation in de Bruijn [5] was asymmetrical; van Oostrom [12, 11]
gave a symmetrical version, as follows.

De�nition 17 De�ne an elementary diagram to be decreasing, if it has the form as shown in Figure 28.
This means that given two diverging steps a !n b and a !m c with indices n;m there is a common

≡

a b

c

n

m

<n

m

<n or <m

<m n <n or <m
≡

d

Figure 28: Elementary decreasing diagram

reduct d such that

b !!<n � !
�

m � !!<n or<m d, and

c !!<n � !
�

n � !!<n or<m d:

So from b we take �nitely many (possibly zero) steps with indices < n, followed by zero or one steps
with index m, followed by some steps with index < n or < m, with result d. Dually, from c we have
a reduction to d as indicated.

In Figure 29(a) some non-decreasing elementary diagrams are given; in (b) some decreasing elemen-
tary diagrams. (The labels are subject to the usual ordering < on natural numbers.)
We will now connect the present de�nition with the tree coverings of above, by supplying decreasing

diagrams with tracing patterns. Recall that according to De�nition 10, such a pattern traces the
converging steps back to the two initial, diverging steps. In doing so, it will be helpful to use a heavy
arrow in case the index remains the same, and a light arrow in case the index decreases.
The heavy and light arrows are determined as follows. Consider the vertical reduction b!!<n � !

�

m

� !!<n or<m d. If this reduction is empty, then the right side of the ensuing e.d. is an empty step,
which we trace back with a heavy arrow to the vertical initial step a ! c. If it is not empty we do
the following:
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1

2

1 2

2

1

2

1

1 1

1

2

1

2 2

1 1

2

1

1 1

1

2

2

3

2 2 2

1

3

2

not devreasing:

decreasing:

Figure 29: Decreasing and non-decreasing elementary diagrams

- We let the �rst part of this reduction, consisting of steps with index less than the index n of the
horizontal step a!n b, trace back lightly to that step.

- If the second part consists of one step with label m, it is traced back heavily to the vertical step

- The part consisting of steps with label less than n or m is treated as follows. If the step label
is less than n we trace back lightly to a ! b, if less than m then lightly to a ! c, if both then
we choose one.

Likewise dually.
So a decreasing elementary diagram with the tracing arrows has one of the shapes of Figure 30:

containing two heavy arrows, or one, or none. It is important that heavy arrows (along which the
indices remain the same) are straight, while the light arrows (along which the indices decrease) may
involve a change of orientation. See Figure 31, consisting of the decreasing elementary diagrams of

Figure 30: Elementary diagrams with tree covering

Figure 29 but now enriched with the tracing arrows (with the convention for heavy and light just
mentioned). Note that the tracing pattern (the tree covering) is not uniquely determined by the
decreasing elementary diagram; e.g. Figure 32 contains two tracings for the same elementary diagram.

We now have the following proposition.

Proposition 18 Every diagram construction using decreasing elementary diagrams will terminate
eventually in a �nite con
uent diagram.

Proof Equip the decreasing elementary diagrams with heavy and light arrows as explained above.
Note that heavy arrows preserve indices and are straight, while light ones decrease indices and may
change orientation. Note furthermore that a horizontal heavy arrow cannot split o� in upward direc-
tion (see Figure 30) and likewise dually.
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2

1

1 1

1

2

1

2 2

1 1

2

3

2 2 2

1

3

2

Figure 31: Decreasing diagrams of Figure 29 with tracing arrows

1

2 2

1 1

1

2 2

1 1

Figure 32: One elementary decreasing diagram with alternative tracings

Now consider an in�nite branch in the diagram enriched with heavy and light arrows. Because
the partial order I is well-founded, eventually only heavy (index-preserving) arrows can occur in this
branch. But these are straight. So, every in�nite branch must be eventually straight (and thus
contained in a tower).
Furthermore, from in�nite horizontal branches we can eventually only have split o�s in downward

direction (either by straight light arrows, or by a change in orientation, see Figure 30). Likewise
dually. That is, the three hypotheses of Theorem 16 are ful�lled. According to this theorem the
diagram cannot be in�nite. 2

Corollary 19 (Con
uence by decreasing diagrams) Every ARS with reduction relations indexed
by a well-founded partial order I , and satisfying the decreasing criterion for its elementary diagrams,
is con
uent.

9. Eliminating empty steps

Tiling with elementary diagrams, the way we did it in this paper, and as it was introduced in Klop [9],
involves the use of improper e.d.'s in order to cope with empty steps. In van Oostrom [12, p. 30]
it was noted that empty steps can be avoided, by passing from a rewrite relation ! to its re
exive
closure!�. Indeed, to prove con
uence of an ARS is equivalent to proving con
uence of its re
exive
closure. Even stronger, it is easy to see that an ARS has decreasing diagrams if and only if its re
exive
closure has decreasing diagrams with only non-empty converging sides (if a side would be empty, then
a `re
exive step' can be inserted). It is not hard to see that working with the re
exive closure would
yield exactly the same constructions as now in the paper; technically there would be no di�erence.
One could say allegorically that we have introduced empty steps `at run time' (making them more

tangible and understandable) while they could have been introduced `at compile time' (making for
more e�cient and compact code).

Remark 20 The construction above implies that removing the re
exive closures in the converging
sides in the elementary decreasing diagrams as de�ned by Figure 28, would not decrease the power of
the decreasing diagrams theorem, Corollary 19.
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