
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Partial Servicing of On-line Jobs

R. van Stee, H. La Poutré

Software Engineering (SEN)

SEN-R0016 June 23, 2000

Report SEN-R0016
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Partial Servicing of On-line Jobs

Rob van Stee∗

Han La Poutré

Centre for Mathematics and Computer Science (CWI)

Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

ABSTRACT

We consider the problem of scheduling jobs online, where jobs may be served partially in order to optimize

the overall use of the machines. Service requests arrive online to be executed immediately; the scheduler must

decide how long and if it will run a job (that is, it must fix the Quality of Service level of the job) at the

time of arrival of the job: preemption is not allowed. We give lower bounds on the competitive ratio and

present algorithms for jobs with varying sizes and for jobs with uniform size, and for jobs that can be run for

an arbitrary time or only for some fixed fraction of their full execution time.

2000 Mathematics Subject Classification: 68M20,90B35

1998 ACM Computing Classification System: F.2.2.

Keywords and Phrases: on-line scheduling, partial scheduling, quality of service

Note: Work carried out under project SEN4 “Evolutionary Computation and Applied Algorithmics”.

1. Introduction

Partial execution or computation of jobs has been an important topic of research in several
papers [2, 4, 5, 6, 7, 8, 9, 11, 12]. Problems that are considered are e. g. imprecise computation,
anytime algorithms and two-level jobs (see below).

In this paper, we study the problem of scheduling jobs online, where jobs may be served
only partially in order to increase the overall use of the machines. This e. g. also allows
downsizing of systems. The decision as to how much of a job to schedule has to be made at
the start of the job.

This corresponds to choosing the Quality of Service (QoS) in multimedia systems. One
could e. g. consider the transmission of pictures or other multimedia data, where the quality
of the transmission has to be set in advance (like quality parameters in JPEG), cannot be
changed halfway and transmissions should not be interrupted.

Another example considers the scheduling of excess services. For instance, a (mobile)
network guarantees a basic service per request. Excess quality in continuous data streams
can be scheduled instantaneously if and when relevant, and if sufficient resources are available
(e. g. available buffer storage at a network node).

Finally, when searching in multimedia databases, the quality of the search is adjustable.
The decision to possibly use a better resolution quality on parts of the search instances can
only be made on-line and should be serviced instantly if excess capacity is available [3].
∗Supported by SION/NWO, project number 612-30-002

1. Introduction 2

In the paper, we consider the following setting. Service requests have to be accepted or
rejected at the time of arrival; when (and if) they are accepted, they must be executed
right away. We use competitive analysis to measure the quality of the scheduling algorithms,
comparing the online performance to that of an offline algorithm that knows the future
arrivals of jobs.

We first consider jobs with different job sizes. In that case, the amount by which the sizes
can differ is shown to determine how well an algorithm can do: if all job sizes are between
1 and M , the competitive ratio is Ω(lnM). We adapt the algorithm Harmonic from [1] and
show a competitive ratio of O(lnM).

Subsequently, and most important, we focus on scheduling uniform sized jobs. We prove
a randomized lower bound of 1.5, and we present a deterministic scheduling algorithm with
a competitive ratio slightly above 2

√
2− 1 ≈ 1.828. Finally, we consider the case where jobs

can only be run at two levels: α < 1 and 1. We derive a lower bound of 1 + α− α2.

1.1 Related Work
Imprecise computation In overloaded real-time systems, imprecise computation[7] is a well-
known method to ensure graceful degradation. In this model, each task is assumed to consist
of a mandatory subtask and an optional subtask. The mandatory subtask must be scheduled
before the deadline of the task, but the optional subtask does not need to be completed and
can be stopped at any time, producing an imprecise result.

The main difference compared to the model in this paper is that we require the running
time of all jobs to be determined in advance; an algorithm must decide how long a job will
run before that job starts. So it cannot just stop a job when that is convenient. Also, most
results are about offline versions of this problem.

In the imprecise computation model, a scheduler must schedule all mandatory subtasks. It
should try to minimize the errors created by stopping optional subtasks prematurely. Many
scheduling algorithms achieve an optimal tradeoff between result quality and execution time,
basing this tradeoff on minimizing average error, total error, maximum error, number of
discarded optional tasks, number of tasks completed late, or average response time[6].

On-line scheduling is studied in [9], but mostly on task sets that satisfy the feasible manda-
tory contraint : at the time of arrival of every new on-line task, its mandatory portion, together
with the yet-to-be-completed mandatory portions of already arrived tasks, can always be pre-
cisely scheduled to complete by their deadlines. Algorithms are shown that are optimal on
such task sets, and a lower bound is given for the problem of scheduling task sets that do not
satisfy this constraint.

In [2], the weak feasible mandatory constraint is introduced: the mandatory portions of
all tasks in the task set can be scheduled to complete by their deadlines by an optimal
off-line algorithm. This constraint does not depend on the decisions made by a particular
on-line scheduling algorithm, and is more realistic but still quite strong. Not completing some
mandatory part now only means that no value is obtained for that job.

Anytime algorithms are introduced in [5]. This is a type of algorithm that may be in-
terrupted at any point to return a result whose quality is a function of the execution time.
This was later extended to algorithms whose quality depends on execution time and input
quality[12].

2. Definitions and notations 3

Scheduling jobs that can run at two levels In [4], a model similar to the one in this paper is
studied, but on a single machine and using stochastic processes and analysis. Jobs arrive in
a Poisson process and can be executed in two ways, full level or reduced level. If they cannot
start immediately, they are put in a queue. This problem is studied both for the case where
the execution of a job can be switched from one level to the other, and where it cannot (as
is the case in our model).

For both cases, a threshold method is proposed: the approach consists of executing jobs
on a particular level depending on whether the length of the queue is more or less than a
parameter M . If the algorithm is allowed to lower the level of a running job, it does this as
soon as the queue length exceeds some threshold M ; otherwise it waits for the current job to
complete and serves the next jobs at the reduced level, until the queue length drops below
M again.

The performance of this algorithm, which depends on the choice of M , is studied in terms
of mean task waiting time, the mean task served computation time, and the fraction of tasks
that reveice full level computation. The user can adapt M to optimize his desired objective
function. There are thus no time constraints (or deadlines) in this model, and the analysis is
stochastic. In [11], this model is studied on more machines, again using probabilistic analysis.

Periodic tasks In [8], besides imprecise computation, also deferred deadlines for periodic
tasks are studied: the deadline of some tasks is then deferred by e. g. one period, so that the
lateness of all tasks is acceptably small during an overload.

Several error measures have been studied for periodic jobs:

• error-non-cumulative: only the average error of the jobs is important

• error-cumulative: the effects of errors in the result produced in different periods are
cumulative, so that some optional parts must be completed in order to get a valid
result at the end

• limitedly-cumulative error: the maximal error is limited

A further extension to this model is studied in [6], namely error propagation. Here it is
assumed that the output of one task is the input to a following task. Also the case where
groups of tasks have deadlines in stead of individual tasks (so called end-to-end deadlines)
are studied there.

2. Definitions and notations

The number of machines is n. The performance measure used is the total usage of all the
machines (the total amount of time that machines are busy). For each job, a scheduling
algorithm earns the time that it serves that job. The goal is to use the machines most
efficiently, in other words, to serve as many requests as possible for as long as possible. The
earnings of an algorithm A on a job sequence σ are denoted by A(σ). The adversary is
denoted by ADV. The competitive ratio of an algorithm A, denoted by r(A), is defined as

r(A) = sup
σ

ADV (σ)
A(σ)

.

If jobs can only be run for two specific lengths of time, we take them to be 1 and 0 < α < 1.
Throughout this paper, ε > 0 is an arbitrarily small constant.

3. Different job sizes 4

3. Different job sizes

We will first show that if the jobs can have different sizes, the competitive ratio of an online
algorithm is not helped much by having the option of scheduling jobs partially. The most
important factor is the size of the accepted and rejected jobs, and not how long they run.
This even holds when the job sizes are bounded.

The proofs in this section hold both when α is fixed, and when jobs may be run for an
arbitrary length of time between 0 and 1.

Lemma 1 If job sizes can vary without bound, no algorithm to schedule jobs on n machines
can attain a finite competitive ratio.

Proof. Suppose there is a r-competitive online algorithm A, and the smallest occurring job
size is 1. The following job sequence is given to the algorithm:

x1 = 1,
x2 = r,

xi = ri−1 (i = 3, . . . , n),
xn+1 = 2r(1 + · · ·+ rn+1).

All jobs arrive at time t = 0. As soon as A refuses a job, the sequence stops and no more
jobs arrive.

Suppose A refuses job xi, where i ≤ n. Then A earns at most 1 + r+ · · ·+ ri−2, while the
adversary earns 1 + r + · · ·+ ri−1. We have

1 + r + · · · + ri−1

1 + r + · · · + ri−2
> 1 +

ri−1 − 1
1 + r + · · · + ri−2

= 1 + r − 1 = r.

This implies A must accept the first n jobs. However, it then earns at most 1 + · · ·+ rn−1.
The adversary serves only the last job and earns 2r times as much. �

Note that this lemma holds even when all jobs can only run completely.

3.1 Two machines
Lemma 2 If for all job sizes x we have 1 ≤ x ≤ M , then for all algorithms A on two
machines we have

r(A) ≥ r2,M =
√

4M + 1− 1.

Proof. Consider any online algorithm A. The job sequence used is 1,
√

4M+1−1
2 ,

√
4M+1−1

2 ,
M,M , where all jobs arrive at t = 0. The first job must be accepted by A to attain a finite
competitive ratio, the second or the third to attain

√
4M + 1 − 1. (If only the first job is

accepted, the adversary can earn
√

4M + 1− 1.) The adversary then serves the last two jobs
and earns 2M , while A earns at most

√
4M+1+1

2 (less if some job is not run completely). �

Algorithm AM for two machines is defined as follows: if both machines are available, it
accepts any job. Otherwise, it accepts only jobs with size at least

√
M + 1− 1. All accepted

jobs are run completely.
Since AM runs all jobs completely, the strongest adversary is one that may serve jobs for

any length of time. This adversary is used in the following lemma.

3. Different job sizes 5

Lemma 3 r(AM) = 2
√
M + 1.

Proof. If AM can accept every job, there is nothing to prove, because it runs all jobs
completely. Suppose it refuses some jobs, then we need to show that AM earns enough from
the jobs it accepted. We can do this by allocating the missed earnings to the accepted jobs,
and never allocating more than (2

√
M + 1 − 1)x of missed earnings to a job of size x. We

distinguish two cases.

Case 1. For intervals in which AM serves only one job at a time (it keeps one machine
available during the complete execution of the jobs), we allocate all the jobs that arrive during
such a job to that job. Say AM runs job x, then all of the jobs arriving while x runs have
sizes less than

√
M + 1− 1.

The worst case is when the adversary runs two jobs of size x for x− ε time, and then two
jobs of size

√
M + 1 − ε, which arrive at time t = 1 − ε, completely. We have ADV (σ)

AM (σ) =
2(x+

√
M+1−1−2ε)
x → 2

√
M + 1 for x = 1 and ε→ 0.

Case 2. If AM is running a job x, and another job arrives that AM serves as well, we
can allocate the missed earnings to this pair of jobs. Take x = 1, y =

√
M + 1 − 1, where

the adversary can serve two jobs of size 1 for 1 − ε time, and then two jobs of size M . If
x = 1 + x1, the adversary can earn 2x1 more while AM earns x1 more than when x = 1,
so that its relative performance improves. If y >

√
M + 1 − 1, the adversary earns nothing

more. This shows that our choices of x and y represent the worst case.
We have ADV (σ)

AM (σ) = 2M+2√
M+1

= 2
√
M + 1.

Suppose a job arrives after x or y is finished, but before both are finished. Only if AM
serves it do the possible missed earnings of AM increase, because this creates a new interval
in which AM cannot serve any jobs. However, in this case the new job has size at least√
M + 1 and the missed earnings increase by at most

√
M + 1, because the time at which

the adversary starts the jobs of size M can move by at most that much. �
Note that an online algorithm can do at best only slightly better than AM if it runs some

jobs partially, because Lemma 2 implies AM is already almost optimal.

3.2 n > 2 machines
Lemma 4 For M > 2n, we have r(A) > n for all algorithms A on n machines.

Proof. Let x = n
√
M − 1 and suppose A maintains a competitive ratio of n. If M > 2n, then

x > 1. Consider the following sequence of jobs: 1, xi = x(1 + x)i−1(i = 1, . . . , n− 1), where
instances of every job xi arrive repeatedly until A accepts one. A has to accept the first job
and one of every xi. For instance, if it refuses n jobs of size x2, it earns at most 1+x1 = 1+x
while the adversary can earn nx2, and then r(A) ≥ nx2

1+x = nx > n, a contradiction.
Finally, n jobs of sizeM arrive. A earns at most 1+x1+· · ·+xn−1 = (1+x)n−1 = (n

√
M)n−1,

and we have r(A) ≥ nM
(n
√
M)n−1

= n n
√
M > nx > n. �

Corollary For M > 2n, we have r(A) > n(n
√
M − 1) for all algorithms A.

We can also show a bound of lnM by using a method similar to [1]. This bound holds for
all M and n (also if n is large). However, if M > 2n, the bound above is still the strongest.

3. Different job sizes 6

Theorem 1 For the competitive ratio r of this scheduling problem with different job sizes we
have r > lnM .

We will first introduce a job sequence, and then show that it implies the theorem. The
adversary generates the job sequence in steps; in each step i, n jobs arrive of size i. This
process ends when (and if) the online algorithm has assigned each machine to a job.

Suppose there is a r-competitive online algorithm A. To maintain a competitive ratio of
r, A has to serve at least n/r jobs of the first n jobs. In the second step, it must serve x jobs
so that 2n/(n/r + 2x) ≤ r. It follows that x ≥ n/2r. In step i, A has to serve n/ir jobs,
earning n/r in each step. This means that A will exhaust its supply of machines in step k,
where k is the smallest solution of n

r (1 + 1
2 + · · · + 1

k) ≥ n. It follows that

r ≤ Hk =
k∑
i=1

1
i
, (3.1)

and that A has then earned kn/r. Note that serving some jobs partially only lowers A’s
profit! We must have k ≤ M for this method to work, otherwise not all machines are busy
after the jobs of size M .

On the other hand, if this method works the adversary can serve a job of size M on every
machine after A has used all its machines. Then we have r ≥ nM

kn/r , implying that k ≥ M .
We conclude that k = M in this case. We are now ready to prove the theorem.

Proof. Suppose there exists an online algorithm A with competitive ratio r ≤ HM−1. Then
the above job sequence will cause A to use all its machines in the final step, since (3.1) is
satisfied with k = M . Consider step k− 1. After this step, n jobs of size M arrive, which are
all served by the adversary. We find that

r ≥ Mn
n(k−1)

r +M(n− nHk−1

r)
⇒ r ≥ 1 +Hk−1 +

1
M

> HM−1.

This is a contradiction. We conclude r > HM−1 ≥ lnM. �
Compare this result to [1], where a central server had to decide which movies to show on

a limited number of channels. Each movie has a certain value determined by the amount of
people that have requested that movie, and the goal is to use the channels most profitably.
The result there is r ≥ lnµ, where µ is the total number of customers divided by the number
of channels.

Algorithm Harmonic[1] divides the machines into M − 1 sets S1, . . . , SM−1. Each set Si
contains b n

iHM−1
c machines. Machines in set Si serve only jobs of size at least i. They are

served completely.
Again we use the strongest possible adversary, that can run jobs for any length of time, in

the following proof. We will show that Harmonic is only a factor of 2 away from the optimal
competitive ratio. This implies that an algorithm that serves some jobs partially could do at
most a factor of 2 better, and probably less. This is independent of which running times are
allowed for the jobs.

Theorem 2 r(Harmonic) = 2HM−1 + 1.

4. Uniform job sizes 7

Proof. For every amount of sets that are busy in Harmonic’s schedule, we will show that the
adversary cannot earn more than 2HM−1 + 1 times what Harmonic earns on the busy sets.
We distinguish two cases.

Case 1 Suppose all machines are in use by Harmonic. Then it earns at least n(M−1)/HM−1,
while an adversary can earn at most nM + n(M−1)

HM−1
. The adversary can earn this amount

from the following job sequence: at times t = i (i = 0, . . . ,M − 2), n
(M−1−i)HM−1

jobs of size
M − 1− i arrive. The adversary serves all of these jobs until time t = M − 1− ε.

Finally, n jobs of size M arrive at time t = M − 1 − ε, when all of Harmonic’s machines
are still busy. See figure 1.

0 M 2M
t

m
ac

hi
ne

s

Figure 1: Worst case for Harmonic

In this case, we have ADV (σ)
Harmonic(σ) ≤

nM+n(M−1)/HM−1

n(M−1)/HM−1
= M

M−1HM−1 + 1 < 2HM−1 + 1.

Case 2 If not all machines are in use, Harmonic will only refuse jobs that are currently too
small for any non-filled set. Suppose all sets S1, . . . , Sk are in use. Then Harmonic earns at
least nk/HM−1. The adversary can earn at most n(k+ 1− ε) additionally, by serving n jobs
of size k+ 1− ε, which arrive just before all of Harmonic’s machines become available again.
We have ADV (σ)

Harmonic(σ) = n(k+1+k/HM−1)
nk/HM−1

. This is 2HM + 1 for k = 1. �
Note that again, an algorithm could do at best only slightly better than Harmonic by

serving jobs partially, because Harmonic is almost optimal.

4. Uniform job sizes

We will now study the case of identical job sizes, which we take to be 1. From this point
onwards, we assume that the scheduling algorithm is completely free in choosing how long it
serves any job.

4.1 Lower bounds
The simplest algorithm is Greedy, which serves all jobs completely if possible. Clearly, Greedy
maintains a competitive ratio of 2, because it can miss at most 1 in earnings for every job
that it serves. The following lemma shows that, like in section 3, the case of two machines
forms an exception where partial scheduling is not advantageous.

Lemma 5 For two machines and jobs of size 1, Greedy is optimal among algorithms that
are free to choose the execution times of jobs between 0 and 1, and it has a competitive ratio
of 2.

4. Uniform job sizes 8

Proof. Assume some algorithm A has a competitive ratio less than 2, say 2− δ where δ > 0.
The adversary lets two jobs arrive at time t = 0. Say A serves them for 0 < α1 ≤ 1 and
α1 ≤ α2 ≤ 1 time respectively. (If α1 = 0, A earns at most 1 and has a competitive ratio of
at least 2.) At time t = α1 − ε, two jobs arrive. The adversary can now earn 2(1 + α1 − ε),
while A earns α1 + α2. We have 2(1+α1−ε)

α1+α2
≥ 2(1 − ε

1+α1
) > 2 − δ for ε small enough: a

contradiction. �
We give a lower bound for the general case, which even holds for randomized algorithms.

Lemma 6 For jobs of size 1 on n > 2 machines, no (randomized) algorithm that is free to
choose the execution times of jobs between 0 and 1 can have a lower competitive ratio than
3/2.

Proof. We use Yao’s Minimax Principle [10].
We examine the following class of random instances. At time 0, n jobs arrive. At time

0 < t ≤ 1, n more jobs arrive, where t is uniformly distributed over the interval (0, 1]. The
expected optimal earnings are 3n/2: the first n jobs are served for such a time that they
finish as the next n jobs arrive, which is expected to happen at time 1/2; those n jobs are
served completely.

Consider a deterministic algorithm A and say A earns x on running the first n jobs (par-
tially). If A has v(t) machines available at time t, when the next n jobs arrive, it earns
at most an additional v(t). Its expected earnings are at most x +

∫ 1
t=0 v(t)dt = n, since∫ 1

t=0 v(t)dt is exactly the earnings that A missed by not serving the first n jobs completely:
x = n−

∫ 1
t=0 v(t)dt. Therefore r(A) ≥ 3/2. �

4.2 Algorithm SL
We now present an algorithm SL which makes use of the possibility of choosing the execution
time. Although SL could run jobs for any time between 0 and 1, it runs all jobs either
completely (long jobs) or for 1

2

√
2 of the time (short jobs). We denote the number of running

jobs of these types at time t by l(t) and s(t). The arrival time of job j is denoted by tj.
The idea is to make sure that each short job is related to a unique long job which starts

earlier and finishes later. To determine which long jobs to use, marks are used. Short jobs are
never marked. Long jobs get marked to enable the start of a short job, or when they have run
for at least 1− 1

2

√
2 time. The latter is because a new short job would always run until past

the end of this long job. In the algorithm, at most s0 = d(3−
√

2)n/7e ≈ 0.22654 · n jobs are
run short simultaneously at any time. We will ignore the rounding and take s0 = (3−

√
2)n/7

in the calculations. The algorithm is as follows.

Algorithm SL If a job arrives at time t, refuse it if all machines are busy.
If a machine is available, first mark all long jobs j for which t − tj ≥ 1 − 1

2

√
2. Then if

s(t) < s0 and there exists an unmarked long job x, run the new job for 1
2

√
2 time and mark

x. Otherwise, run it completely.

Theorem 3 SL maintains a competitive ratio of

R = 2
√

2− 1 +
8
√

2− 11
n

≈ 1.8284 +
0.31371

n
,

5. Analysis of Algorithm SL 9

where n is the number of machines.

Proof. We will give the proof in the next section.

5. Analysis of Algorithm SL

A

A

A

A

A

B

A

B

A

A

A

A

A

A

time

m
ac

hi
ne

s

Figure 2: A run of SL

Below, we analyze the performance of algorithm SL, which was given in Section 4, and
prove Theorem 3.

Consider a run of SL as in Figure 2. We introduce the following concepts.

• A job is of type A if at some moment during the execution of the job, all machines are
used; otherwise it is of type B. (The jobs are marked accordingly in Figure 2.)

• Lost earnings are earnings of the adversary that SL misses. (In Figure 2, the lost
earnings are marked grey.) Lost earnings are caused because jobs are not run or because
they are run too short.

• A job or a set of jobs compensates for an amount x of lost earnings, if SL earns y on
that job or set of jobs and (x + y)/y ≤ R (or x/y ≤ R − 1). I. e., it does not violate
the anticipated competitive ratio R.

A job of type B can only cause lost earnings when it is run short, because no job is refused
during the time a job of type B is running. However, this causes at most 1 − 1

2

√
2 of lost

earnings, so there is always enough compensation for these lost earnings from this job itself.
When jobs of type A are running, the adversary can earn more by running any short jobs

among them longer. But it is also possible that jobs arrive while these jobs are running,
so that they have to be refused, causing even more lost earnings. We will show that SL
compensates for these lost earnings as well. We begin by deriving some general properties of
SL.

Note first of all that if n jobs arrive simultaneously when all of SL’s machines are empty,
it serves s0 of them short and earns 1

2s0

√
2 + (n − s0) = (6 + 5

√
2)n/14 ≈ 0.93365n. We

denote this amount by x0.

Properties of SL

1. Whenever a short job starts, a (long) job is marked that started earlier and that will
finish later. This implies l(t) ≥ s(t) for all t.

5. Analysis of Algorithm SL 10

2. When all machines are busy at some time t, SL earns at least x0 from the jobs running
at time t. (Since s(t) ≤ s0 at all times.)

3. Suppose that two consecutive jobs, a and b, satisfy that tb − ta < 1 − 1
2

√
2 and that

both jobs are long. Then s(tb) = s0 (and therefore s(ta) = s0), because b was run long
although a was not marked yet.

Lemma 7 If at some time t all machines are busy, at most n − s0 jobs running at time t
will still run for 1

2

√
2 or more time after t.

Proof. Suppose all machines are busy at time t. Consider the set L of (long) jobs that will
be running for more than 1

2

√
2 time, and suppose it contains x ≥ n− s0 + 1 jobs. We derive

a contradiction.
Denote the jobs in L by j1, . . . , jx, where the jobs are ordered by arrival time. At time tjx,

the other jobs in L must have been running for less than 1− 1
2

√
2 time, otherwise they would

finish before time t + 1
2

√
2. This implies that jobs in L can only be marked because short

jobs started.
Also, if at time tjx we consider jx not to be running yet, we know not all machines are

busy at time tjx , or jx would not have started. We have

n > s(tjx) + l(tjx) ≥ s(tjx) + n− s0,

so s(tjx) < s0. Therefore, between times tj1 and tjx, at most s(tjx) ≤ s0 − 1 short jobs can
have been started and as a consequence, less than s0 jobs in L are marked at time tjx . But
then there is an unmarked job in L at time tjx, so jx is run short. This contradicts jx ∈ L.�

Definition A critical interval is an interval of time in which SL is using all its machines,
and no jobs start or finish.

We call such an interval critical, since it is only in such an interval that SL refuses jobs,
causing possibly much lost earnings. From Lemma 7, we see that the length of a critical
interval is at most 1

2

√
2.

We denote the jobs that SL runs during I by jI1 , . . . , j
I
n, where the jobs are ordered by

arrival time. We denote the arrival times of these jobs by tI1, . . . , t
I
n; I starts at time tIn. We

will omit the superscript I if this is clear from the context. We denote the lost earnings that
are caused by the jobs in I by XI ; we also sometimes say simply that XI is caused by I. We
say that a job sequence ends with a critical interval, if no more jobs arrive after the end of
the last critical interval that occurs in SL’s schedule.

Lemma 8 If a job sequence ends with a critical interval I, and no other jobs besides jI1 , . . . , j
I
n

arrive in the interval [tI1, . . . , t
I
n], then SL can compensate for the lost earnings XI .

Proof. Note that j1 is long, because a short job implies the existence of an earlier, long job
in I by Property 1. SL earns at least x0 from j1, . . . , jn by Property 2. There are three cases
to consider, depending on the size and timing of j2.

Case 1. j2 is short. See Figure 3, where we have taken t2 = 0. Note that j1 must be the
job that is marked when j2 arrives, because any other existing jobs finish before I starts and
hence before j2 finishes. Therefore, t2 − t1 < 1 − 1

2

√
2, so before time t2 the adversary and

5. Analysis of Algorithm SL 11

��������������������

2/30 t 5/3

critical interval

Figure 3: j2 is short

SL earn less than 1− 1
2

√
2 from job 1. After time t2, the adversary earns at most (1+ 1

2

√
2)n

from j1, . . . , jn and the jobs that SL refuses during I. We have

(1 +
1
2

√
2)n+ (1− 1

2

√
2) = R · x0,

so SL compensates for XI .

Case 2. j2 is long and t2 − t1 < 1− 1
2

√
2.

Since no job arrives between j1 and j2, we have by Properties 3 and 1 that s(t1) = s0 and
l(t1) ≥ s0. Denote the sets of these jobs by S1 and L1, respectively. All these jobs finish
before I. (During I, SL does not start or finish any jobs.)

t 1 +1

L 1

0 t 1 t 1 +2

S1

I

Figure 4: j2 is long

Case 2a. There is no critical interval while the jobs in S1 and L1 are running.
Hence, the jobs in S1 and L1 are of type B. We consider the jobs that are running at time

t1 and the later jobs. Note that L1 contains at least s0 jobs, say it contains x jobs. After
time t1 the adversary earns at most 2n, because I ends at most at time t1 + 1. SL earns
1
2s0

√
2 + x from S1 and L1 and at least x0 on the rest. For the adversary, we must consider

only the earnings on S1 and L1 before time t1; this is clearly less than 1
2s0

√
2 + x.

We have
2n+ 1

2s0

√
2 + x

x0 + 1
2s0

√
2 + x

< R for x ≥ s0.

This shows SL compensates for XI (as well as for the lost earnings caused by S1 and L1).

5. Analysis of Algorithm SL 12

Case 2b. There exists a critical interval before I which includes a job from S1 or L1.
Call the earliest such interval I2. If I2 starts after t1, we can calculate as in Case 2a.

Otherwise, we consider the earnings on each machine after the jobs in I2 started. Say the
first job in S1 starts at time t′. We have tn − t′ < 1. See Figure 5.

L

t’ tn
max. 1

1

2
1

2

L 2

S2 S1

I 2 I

Figure 5: j2 is long and there is another critical interval

Say I2 contains x short jobs that are not in S1 (0 ≤ x ≤ s0). Then it contains s0− x short
jobs from S1, and therefore at least s0 − x (long) jobs from L1. This implies it contains at
most n − 2s0 + x long jobs not from L1. It also implies there are x short jobs in S1 which
are neither in I nor in I2.

Using these observations, we can derive a bound on the earnings of the adversary and of
SL from the jobs in I2 and later. We divide their earnings into parts as illustrated in Figure
5 and have that the adversary earns at most

(2 +
1
2

√
2)n (after t′)

+ n− 2s0 + x (from the long jobs not in L1)

+ (1− 1
2

√
2)s0 (from L1 before t′)

+
1
2
x
√

2 (from the short jobs not in S1)

= (3 +
1
2

√
2)n− (1 +

1
2

√
2)s0 + x(1 +

1
2

√
2),

while SL earns 2x0 (from the jobs in I and I2) +1
2x
√

2 (from the x short jobs from S1

between I2 and I). We have

(3 + 1
2

√
2)n− (1 + 1

2

√
2)s0 + x(1 + 1

2

√
2)

2x0 + 1
2x
√

2
≤ R for 0 ≤ x ≤ s0

so SL compensates for all lost earnings after I2.

Case 3. j2 is long and t2 − t1 ≥ 1− 1
2

√
2. We consider job j3.

• If j3 is short, then after time t1 + (1− 1
2

√
2) the adversary earns at most (1 + 1

2

√
2)n−

(n − 2)((t3 − t1)− (1 − 1
2

√
2)) − ((t2 − t1)− (1 − 1

2

√
2)). Before that time, it earns of

course (1− 1
2

√
2) (only counting the jobs in I). So in total, it earns less than it did in

Case 1.

5. Analysis of Algorithm SL 13

• If j3 is long, we have two cases. If t3 − t2 < 1 − 1
2

√
2, then again the sets S1 and

L1 are implied and we are in Case 2. Finally, if t3 − t2 ≥ 1 − 1
2

√
2 we know that

t4 − t3 < 1− 1
2

√
2, so this reduces to Case 1 or 2 as well.

In all cases, we can conclude that SL compensates for XI . �

Lemma 9 If a job sequence ends with a critical interval I, then SL can compensate for the
lost earnings XI .

Proof. We can follow the proof of Lemma 8. However, it is now possible that a short job j′1
starts after j1, but finishes before I.

Suppose the first short job in I arrives at time t′ = t1 + x. If the job sets S1 and L1 exist,
we can reason as in Case 2 of Lemma 8. Otherwise, all long jobs in I that arrive before time
t′1 save one are followed by short jobs not in I. (If there are two such long jobs, they arrived
more than 1− 1

2

√
2 apart, and the adversary earns less than in Case 1 of Lemma 8 (cf. Case

3 of that lemma).)
For each pair (ai, bi), where ai is long and bi 6∈ I is short, we have that bi will run for at

least 1
2

√
2−x more time after t′, while ai has run for at most x time. One such pair is shown

in Figure 6.

������������
������������
������������
������������

��
��
��
�� ai

i
b

t t 1

x

Figure 6: Pairs of long and short jobs

We compare the adversary’s earnings now to its earnings in Case 1 of Lemma 8. Since
bi 6∈ I, it earns less on the machine running bi and more on the machine running ai (because
there it earns something before time t′, which was not taken into account earlier). If x ≤ 1

4

√
2,

the adversary loses more on the machines running these pairs than it gains. On the other
hand, if x > 1− 1

2

√
2, then I is shorter than 1

2

√
2: the adversary earns x− (1− 1

2

√
2) less on

every machine. �
It is possible that two or more critical intervals follow one another. In that case, we cannot

simply apply Lemma 9 repeatedly, because some jobs may be running during two or more
successive critical intervals. Thus, they would be used twice to compensate for different lost
earnings. We now show that SL compensates for all lost earnings in this case as well.

Definition A group of critical intervals is a set {Ii}ki=1 of critical intervals, where Ii+1 starts
at most 1 time after Ii finishes (i = 1, . . . , k − 1).

Lemma 10 If a job sequence ends with a group of two critical intervals, SL compensates for
the lost earnings XI1 and XI2 .

5. Analysis of Algorithm SL 14

Proof. If all jobs from I1 have finished before I2 starts, we know XI1 is compensated for by
Lemma 9. On I2 we can also use Lemma 9 to see that XI2 is compensated for as well. Note
that no jobs are used twice to compensate for lost earnings.

In case some jobs from I1 are still running in I2, I2 ends within 1 time of the start of I1.
We denote the set of long jobs that are running in I1 but not in I2 by L1, the set of long
jobs in I2 but not in I1 by L2 and the set of long jobs in both by L3. Define S1, S2 and S3

analogously. The sizes of these sets are denoted by l1, l2, l3, s1, s2 and s3, respectively. Of the
s1 jobs in S1, s11 jobs had jobs in L1 marked when they started, and s13 jobs had jobs in L3

marked.

L

L

L

S

S

S

S

1

3

2

11 23

13 22

I I2

Figure 7: The sets of jobs in a run of SL

Case 1. If I2 starts within 1
4

√
2 time after I1 has finished, the jobs that are in I1 but not

in I2 can compensate for XI1, since the size of such a job is at least twice the size of the lost
earnings following it on the same machine.

Case 2. Say I2 starts after 1
4

√
2, but within 1

2

√
2 time after I1 has finished. Ten XI1 ≤

1
2

√
2(s11 + l1) + (1− 1

2

√
2)s13. SL earns l1 +

√
2(s11 + s13)/2 from the jobs in S1 and L1. We

have
1
2

√
2(s11 + l1) + (1− 1

2

√
2)s13

l1 + 1
2

√
2(s11 + s13)

≤ R− 1 for all s13, l1 and s11.

(The worst case is s13 = 0 and l1 = s11, since l1 ≥ s11). In other words, SL earns enough on
S1 and L1 to compensate for XI1 . Lemma 9 shows that XI2 is compensated for too, again
without using jobs twice to compensate for different things: S1 and L1 are not in I2.

Case 3. Suppose I2 starts more than 1
2

√
2 time after I1 has finished. We have s3 = 0,

s2 ≤ s0 and l2 = n− l3 − s2.

Case 3a. If l3 ≤ s0, then l2 ≥ n− 2s0 ≥ n/R. In a figure like Figure 7, we can move jobs
around to aid in the calculations, without affecting profits. Here we move all the jobs in L2

and S2 forward, so that they start 1 time after the end of I1. We then see that after that
time, SL earns at least n/R while the adversary earns n, and before that time, we can apply
Lemma 9.

Case 3b. The last case is l3 > s0 and I2 starts more than 1
2

√
2 after I1. Since all jobs in L3

start within 1 − 1
2

√
2 time (because I1 and I2 are at least 1

2

√
2 apart), and l3 > s0, it must

be that s1 = s0, because each job in L3 is available to be marked for a short job before I1

starts. But then SL already earns x0 + 1
2s0

√
2 from S1, L2, S2 and L3 alone, because it earns

5. Analysis of Algorithm SL 15

at least x0 from the jobs in I2. Starting at the beginning of I1, the adversary earns at most
2n. Since

2n
x0 + 1

2s0

√
2

= R,

we have that SL compensates for both XI1 and XI2. �

Lemma 11 If a job sequence ends with a group of critical intervals, SL compensates for all
the lost earnings after the first critical interval.

Proof. We use an induction on the number of critical intervals k. We have already proven
the cases k = 1 and k = 2. Say k ≥ 3, and consider the last three critical intervals, I1, I2

and I3. See Figure 8.

L

L

L

S

S

S

S

1

3

2

11 23

13 22

I I 21 3I

Figure 8: A long sequence of critical intervals

There are a number of cases to consider. We will abuse notation and use Ii to refer both
to the i-th critical interval and the jobs that SL runs during Ii.

Case 1. There are no short jobs in I1 ∩ I2. Denote the number of long jobs in I2 ∩ I3 by l3.
Case 1a. There are no short jobs in I2 ∩ I3.
Case 1a1. l3 ≤ s0. Now the jobs in I3\I2 are worth at least n/R and (using induction) we
are done as in Lemma 10.
Case 1a2. l3 > s0. As in Lemma 10 we have that s2 = s0, where s2 is the number of the
short jobs in I2. We find that these jobs together with the jobs in I3 compensate for the lost
earnings after I2, and can use an induction for the rest, because we never need these jobs to
compensate for earlier lost earnings.
Case 1b. There are short jobs in I2 ∩ I3. The adversary earns at most (1 + 1

2

√
2)n after I2,

while SL earns at least x0 from all jobs after I1. We are again done using induction.

Case 2. There are short jobs in I1 ∩ I2.
Case 2a. I1 ∩ I3 = ∅. By induction we know that the jobs up to and including those from I1

can compensate for lost earnings until 1 time after the end of I1. Since I2 ends at most 1
2

√
2

after the start of I1, the jobs after I1 have to compensate only for the lost earnings starting
from 1− 1

2

√
2 after I2. From then on, the adversary earns at most (1+ 1

2

√
2)n while SL earns

at least x0 from the jobs in I3.
Case 2b. I1∩ I3 6= ∅. We have that I3 finishes at most 1 after I1 starts and we can treat this
as a special case of two critical intervals, thus reducing this case to k − 1 critical intervals.
Note that the analysis in Lemma 10 does not assume that there are no critical intervals
between I1 and I2. �

6. Extensions of this model 16

Theorem 4 SL maintains a competitive ratio of R = 2
√

2− 1 + 8
√

2−11
n .

Proof. If no jobs arrive within 1 time after a critical interval, the machines of both SL
and the adversary are empty. New jobs arriving after that can be treated as a separate job
sequence. Thus we can divide the job sequence into parts. The previous lemmas also hold
for such a part of a job sequence.

Consider a (part of) a job sequence. All the jobs arriving after the last critical interval can
be disregarded, since they are of type B: they compensate for themselves. Moreover, they
can only decrease the amount of lost earnings caused by the last critical interval (if they start
less than 1 after a critical interval).

If there is no critical interval, we are done. Otherwise, we can apply Lemma 11 and remove
the last group of critical intervals from consideration. We can then remove the jobs of type
B at the end and continue in this way to show that SL compensates for all lost earnings. �

6. Extensions of this model

6.1 Fixed Levels
In this section, we study the case where jobs can only be run at two levels [4, 11]. This
reduces the power of the adversary and should lower the competitive ratio. If the jobs can
have different sizes, the proofs from Section 3 still hold. For the case of uniform jobs, we
have the following bound.

Theorem 5 If jobs can be run at two levels, α < 1 and 1, then no algorithm can have a
better competitive ratio than 1 + α− α2.

Proof. Note that each job is run either for 0, α or 1 time. Let n jobs arrive at time t = 0.
Say A serves φn jobs partially and the rest completely. It earns (1− φ+ αφ)n. If this is less
than n/(1 + α− α2) we are done. Otherwise, we have φ ≤ α

1+α−α2 . Another n jobs arrive at
time t = α. A earns at most (1 + αφ)n in total, while the offline algorithm can earn n+ nα.
Since φ ≤ α

1+α−α2 , we have r(A) ≥ 1+α
1+αφ ≥ 1 + α− α2. �

Note that for α = 1
2

√
2, SL yields a competitive ratio for this problem of at most 1.828

(but probably much better). Extending these results to more values of α is an open problem.

6.2 Nonlinear rewards
In many applications, it is reasonable to assume that serving a job partially, say for time
α, an algorithm earns more than α (but strictly less than 1). For instance, if a video is
transmitted using only half of all the pixel data, the perceived quality is much more than 1/2
and therefore the algorithm should earn more, say 3/4.

Consider rewards of the form f(α), where f(0) = 0, f(1) = 1, f(α) > α and f ′′(α) < 0
(concave) for all 0 < α < 1. One example is

f(α) =
√
α.

If α is fixed, the only change that this causes in the lower bounds is that all earnings of α are
replaced by f(α). The timing of the jobs by the adversary does not change, and the structure
of the proofs remains unchanged.

7. Conclusions and Future Work 17

7. Conclusions and Future Work

We have studied the problem of scheduling jobs that do not have a fixed execution time
on-line. We have first considered the general case with different job sizes.

Subsequently, we have given a randomized lower bound of 1.5 and a deterministic algorithm
with competitive ratio ≈ 1.828 for the scheduling of uniform jobs. An open question is by
how much either the lower bound or the algorithm could be improved. Especially using
randomization it could be possible to find a better algorithm.

An extension of this model is to introduce either deadlines or startup times, limiting either
the time at which a job should finish or the time at which it should start. Finally, algorithms
for fixed level servicing can be investigated.

8. Acknowledgement

The authors wish to thank Peter Bosch for useful discussions.

18

References

1. S. Aggarwal, J.A. Garay, and A. Herzberg. Adaptive video on demand. In Proc. 3rd
Annual European Symp. on Algorithms, LNCS, pages 538–553. Springer, 1995.

2. S.K. Baruah and M.E. Hickey. Competitive on-line scheduling of imprecise computations.
IEEE Trans. On Computers, 47:1027–1032, 1998.

3. H. G. P. Bosch, N. Nes, and M. L. Kersten. Navigating through a forest of quad trees
to spot images in a database. Technical Report INS-R0007, CWI, Amsterdam, February
2000.

4. E.K.P. Chong and W. Zhao. Performance evaluation of scheduling algorithms for impre-
cise computer systems. J. Systems and Software, 15:261–277, 1991.

5. T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings of
AAAI, pages 49–54, 1988.

6. Wu-Chen Feng. Applications and extensions of the imprecise-computation model. Tech-
nical report, University of Illinois at Urbana-Champaign, December 1996.

7. K.J.Lin, S. Natarajan, and J.W.S. Liu. Imprecise results: Utilizing partial computations
in real-time systems. In Proc. IEEE Real-Time Systems Symp., pages 255–263, 1998.

8. W.-K. Shih. Scheduling in real-time systems to ensure graceful degradation: the
imprecise-computation and the deferred-deadline approaches. Technical report, Univer-
sity of Illinois at Urbana-Champaign, December 1992.

9. W.-K. Shih and J.W.S. Liu. On-line scheduling of imprecise computations to minimize
error. SIAM J. on Computing, 25:1105–1121, 1996.

10. A. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In
Proc. 12th ACM Symposium on Theory of Computing, 1980.

11. W. Zhao, S. Vrbsky, and J.W.S. Liu. Performance of scheduling algorithms for multi-
server imprecise systems. In Proc. Fifth Int. Conf. Parallel and Distributed Computing
and Systems, 1992.

References 19

12. S. Zilberstein. Constructing utility-driven real-time systems using anytime algorithms.
In Proc. 1st IEEE Workshop on Imprecise and Approximate Computation, 1992.

