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ABSTRACT

Perhaps the best known example of a random set is the Boolean model. It is the union
of ‘grains’ such as discs, squares or triangles which are placed at the points of a Poisson
point process. The Poisson points are called the ‘germs’. We are interested in estimating
the intensity, say lambda, of the Poisson process from a sample of a Boolean model of discs
(the bombing model). A natural estimate is the number of germs in the observation region
divided by the area of that region. Unfortunately, we do not observe the presence of a
given germ when its associated disc is completely covered by other discs. On the other
hand, we observe the exact location of a germ when we observe any part of its associated
disc’s boundary. We demonstrate how to apply Coupling From The Past to sample from the
conditional distribution, given the data, of the unobserved germs. Such samples allow us to
approximate the maximum likelihood estimator of the intensity. We discuss and compare
two methods to do so. The first method is based on a Monte Carlo approximation of the
likelihood function. The second is a stochastic version of the EM algorithm.
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1. INTRODUCTION
Many images found in microscopy, materials science and biology can be described by means
of random sets. Perhaps the best known model is the Boolean model (Matheron 1975)
formalizing a configuration of independent, randomly placed particles. A Boolean model is
formed by placing random closed sets at the points of a Poisson process and taking the union
of these sets. The points of the Poisson process are sometimes called the germs, the associated
random sets the grains or particles. In spite of the strong independence assumptions, inference
for Boolean models is far from trivial (Molchanov 1997). The difficulty is that as we observe
the union of the grains, certain grains may be completely covered by the others. In this
paper a method is presented to obtain samples from a Boolean model conditioned on certain
events. In particular, such an event might be coverage of a given set. We apply our method
to estimate the intensity of the Poisson process underlying a Boolean model of balls.
Molchanov (1997) distinguishes between two types of parameters of a Boolean model:
aggregate (or macroscopic) and individual (or microscopic). Typical examples of aggregate



parameters are the area fraction and the set-covariance. They can easily be estimated by
their empirical counterparts. The resulting estimators are unbiased and expressions for the
variance can be obtained from Robbins’ Theorem (cf. Stoyan, Kendall and Mecke 1995).
Under mild ergodicity assumptions they are strongly consistent (Molchanov 1997) as the
observation window expands to the entire plane. Aggregate functionals such as the contact
distribution and pair correlation function are of interest when fitting the Boolean model to
data. Usually, estimation is hampered by edge effects, but minus sampling ideas (Ripley
1988; Stoyan et al. 1995) are generally applicable as are Horvitz—Thompson style estimators
including the Kaplan—Meier (Baddeley and Gill 1997) and Hanisch estimators (Hanisch 1984).
Unbiasedness follows from the Campbell-Mecke Theorem (Stoyan et al. 1995) and asymptotic
results are available (Molchanov 1997).

Individual parameters, including the intensity of the germ process, are much harder to
estimate. Minimum contrast methods (Dupac 1980; Serra 1982) for the intensity are based
on minimizing the distance between an estimated aggregate parameter (e.g. the contact dis-
tribution) and an approximation expressed in terms of the intensity. Some asymptotic results
are available, but the expressions for the asymptotic variance are too complicated to be useful
in practice. An alternative is the method of moments based on coverage fraction, mean area,
boundary length and Euler—Poincaré characteristic. This method is computationally easy but
leads to biased estimators (Weil 1988). In the tangent point approach, the Euler—Poincaré
characteristic is replaced by the specific connectivity number resulting in easier asymptotics
(Molchanov and Stoyan 1994). Further details and some other special methods such as
Schmitt’s (Schmitt 1991) can be found in (Molchanov 1997) and the references therein.

In this paper we shall take a likelihood based approach using Monte Carlo methods to
perform the necessary computations. To do so, we need to sample from the conditional
distribution of a Boolean model given an observation of the union of its particles. In the next
section we show that this distribution is straightforward if the grains are balls. Unfortunately,
due to an intractable normalizing constant direct sampling usually is not possible. In section 3
we use Coupling From The Past (CFTP) (Propp and Wilson 1996) to obtain the desired
samples.

Section 4 is devoted to two approaches to maximum likelihood estimation through simu-
lation. The first method is based on a Monte Carlo approximation of the likelihood function
(Geyer 1999). The other approach is a stochastic version of the Expectation Maximization
(EM) algorithm (Dempster, Laird and Rubin 1977; Celeux and Diebolt 1986). At each E-
step the conditional expectation of the likelihood is replaced by a simulation average. This
approximate expectation is optimized in the M-step to obtain a new parameter value. Under
certain conditions an ergodic Markov chain on the parameter space is obtained. Coupling
from the past can again be applied to obtain exact samples from the stationary distribution
of the stochastic EM chain.

In section 5 we present the results of a modest simulation experiment which we conducted
to compare the two methods. Section 6 briefly discusses some generalizations to random set
models with stochastic primary grains as well as inter-particle interactions.

The possibility of sampling from conditional Boolean models is not only useful for the esti-
mation of the intensity. A typical application where such sampling methods could be applied
comes from the oil industry where a Boolean model is employed to represent the reservoir
geometry. Often it is known from test drilling or geological surveying that the reservoir has
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certain characteristics. Simulation studies into its further properties then amount to sam-
pling from a Boolean model under restrictions imposed by the outcome of the test drilling or
surveying. In section 3 we discuss how our sampling method is related to the work of others,
in particular Kendall and Mgller (2000).

2. A CONDITIONAL BOOLEAN MODEL

Suppose a realization of a Boolean model is observed and we want to estimate the intensity of
the underlying point process of germs. Direct maximum likelihood estimation seems impos-
sible because the conditional distribution of the germs given the observed union of particles
involves an intractable normalizing constant depending on the intensity parameter of interest
(cf. Lemma 1). However, if it were possible to sample from this conditional distribution,
Monte Carlo based maximum likelihood estimation would be an option.

In this paper, we focus our attention on the case where the particles are (random) balls.
Then, the location of a germ is identified upon observation of any part of the boundary of its
associated ball. The remaining, not directly identifiable germs turn out to be distributed as
a Poisson process conditioned to satisfy a coverage condition. The remainder of this section
makes this claim more precise. We start with a formal definition of the Boolean model of
balls.

Definition 1. Let X be a stationary Poisson process with intensity X\ > 0 on R?, and B =
B(0,1) the d-dimensional closed unit ball centered at the origin. Then, writing A ® B =
{a+b:a€ A, be B} for the Minkowski addition of A and B,

B(X) = Ugex(z ®rB)
is a Boolean model of balls with radius r > 0 on R%,

For d = 2, the process of Definition 1 is sometimes referred to as the bombing model
(Kolmogorov 1937; Matérn 1960) and hence the title of this paper. The underlying points
X are called the germs, the set B is the primary grain. More general Boolean models are
obtained by letting the germs be scattered according to a non-stationary Poisson process or
by allowing the grains to be arbitrary random closed sets (Matheron 1975). We will return
to this briefly in section 6.

The goal of this paper is to estimate the intensity A based on an observation of the inter-
section of B(X)NW for some compact sampling window W. By the local knowledge principle
(Serra 1982) and the symmetry of B,

B(XN(WeaerB)NW =B(X)NW.

In other words, the data Y = B(X) N W depend on X only through X N (W @ rB).

Since the primary grains are balls, the position of a germ is identified whenever a part of its
associated grain’s boundary is exposed. Hence, the conditional distribution of X N (W @& rB)
can be decomposed into an ‘exposed boundary’ part X? and a stochastic ‘interior’ part X* of
germs that cannot be uniquely identified. Of course, for given Y the conditional distribution of
the exposed points is degenerate at a configuration x()’/. To derive the conditional distribution
of the interior germs, set

C = Y\B(x%) (2.1)
D = {yeWarB: (yerB)NnW CY}.



Clearly, C and D depend on Y, but we suppress this dependence on Y in our notation.

Lemma 1. Let X be a stationary Poisson process on R? with intensity X\ > 0 and B(X)
be the associated Boolean model of balls with fized radius r > 0 as in Definition 1. Then,
conditionally on' Y = B(X)NW for some compact window W C RY, the interior germ process
X' is distributed as a Poisson process on D with intensity X conditional on the event that C
is covered by B(X?).

We write )|y for this conditional distribution of X i given Y.

Proof: Any configuration y such that B(y) "W = Y has to be of the form y = x U x*
with x* a subset of D such that B(x"’) D C. Moreover, its density (with respect to a unit rate
Poisson process on W @ rB) equals

6(1—)\) |WorB| )\n(xl) )\n(xb).

Hence, the conditional density of the interior points is proportional to
A" 1{x’ C D} 1{B(x") D C}.

Consequently, the interior germs constitute a Poisson process on D conditional on the event
{B(X*) D C}. O

The probability of the event {B(X?) D C} is not easy to compute. Hall (1988) gives a lower
bound for the probability of coverage of the unit square by a two dimensional Boolean model
with intensity A of discs of radius r (A > 1,0 <r < 1/2):

1 —3min(1, (1 + 7r2)\?) exp{—nr?\}).

Since a Poisson process of intensity x > A can be written as the independent superposition
of Poisson processes with intensity A and x — A, it follows that the probability of a Boolean
model with intensity A covering C is strictly increasing in A. Moreover, by Hall’s inequality
this probability actually increases to one. Hence, for A large enough it is feasible to obtain
samples from 7y by rejection sampling. For other values of A this approach will be too
slow. In the next section, we suggest an alternative using coupling from the past (Propp and
Wilson 1996).

3. COUPLING FROM THE PAST FOR THE CONDITIONAL BOOLEAN MODEL

Recall that the distribution of a homogeneous Poisson point process on a compact set arises
as the equilibrium of a spatial birth-and-death process (Feller 1968; Preston 1977). Starting
from any initial configuration, each point is deleted after an exponential lifetime of rate 1.
New, uniformly distributed points are added at a rate that is equal to the intensity of the
target Poisson process. Lantuéjoul (1997) shows that a similar method can be used to obtain
the law of a Poisson process conditioned on an event £ of positive probability. Informally, if
whenever a point is added or deleted according to the scheme described above we make sure
never to enforce a transition violating £, the stationary distribution of the resulting process
corresponds to the conditional version of the Poisson process.
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Kendall and Mpgller (2000) show how to apply coupling from the past (Propp and Wil-
son 1996) to Lantuéjoul’s chains to obtain exact samples from their stationary distribution.
However, their method is restricted to events £ such that if a configuration x satisfies £ then
x \ {z} also satisfies £ for all z € x. Coverage of a set is not such an event. Kendall and
Thonnes (1999) do have another CF'TP based algorithm to tackle the conditioning event that
a finite set of points be covered. Unfortunately, this method does not seem to extend to our
situation: coverage of a non-countable set. We present a CF'TP based method which is more
general than the algorithm of Kendall and Thonnes and in a sense mirrors the algorithm of
Kendall and Mgller. Tt will work for events £ such that if a configuration x satisfies £ then for
any z, x U {z} also satisfies £. Many of the ideas of Kendall and Mgller (2000) and Kendall
and Thonnes (1999) play a role in our construction also.

Exact simulation, as opposed to approximate sampling by running a Markov chain for
a long time (cf. Gilks, Richardson and Spiegelhalter 1996), was introduced by Propp and
Wilson (1996). Let us denote by X,c_1/(x) a Markov chain X for s in time interval
[—T,0], initiated at X_7 = x. Now to briefly explain the basic idea, imagine that coupled
processes X ¢ 7] (x) are run in parallel, one for every possible initial state x. Now suppose
that for some T > 0 the influence of the initial state wears off before time 0. That is, there is a
time s € [—T,0] such that X;(-) = x for some configuration Xx. Suppose also that the coupling
ensures that all paths remain identical from this time s up to time 0. Then the common path
on [s,0] can be seen as the last part of a process started at time —T in an initial state selected
according to the stationary distribution. Hence, Xj is an exact sample from the stationary
distribution. It is very convenient if the state space admits a partial ordering with minimal
and maximal elements and if the sampling process respects this ordering. In that case only
two coupled processes need be considered: a lower process starting in the minimal state and
an upper process starting at the maximal state.

In our context, upon observation of Y = B(X) N W, the state space of interior points
consists of all finite subsets of D. The natural partial ordering is the inclusion ordering, but
then there is no maximal state because D itself is infinite. To overcome this problem, we shall
construct a birth-and-death process on a state space consisting of all subsets of a finite (but
random) ‘maximal’ set. Note that this set must meet the coverage condition. This process
also converges to myy but is amenable to coupling from the past. We will use a stochastic,
varying ‘minimal’ process.

As noted in section 2, for large intensity parameters rejection sampling can be used to
obtain a realization of my. Using this observation, the first step of our algorithm is to
generate a sample, say D = {z1,22,... ,2,} from 7,y for some x > A. The pattern D
will serve as maximal state. All configurations obtained when running the birth-and-death
processes will be subsets of D. The second step is to thin D by independently retaining each
point with probability A/k.

The key result is the following.

Proposition 1. Let Y be a realization of a Boolean model of balls of radius r observed in a
compact window W, and define C as in (2.1). Let D have distribution m,y (cf. Lemma 1),
and suppose E(0) is an independent thinning of D with retention probability \/k. Then the
conditional distribution of E(0) given that B(E(0)) covers the set C is my)y-.

Proof: Let Xy, X5,... be independent Poisson point processes on D with intensity k£ > A,



and, independently for each ¢ = 1,2,..., let ¥; be an independent thinning of X; with re-
tention probability A/k. Then, Y; is a Poisson process with intensity A. Define Z to be the
first Y; that covers C. Then clearly, Z is distributed according to myy. Suppose that only
those X; that cover C are considered, which form a sequence of independent point processes
distributed according to m,y. If we had thinned these and waited for the first thinning to
cover C, we would have found exactly the same Z. This proves the claim. O

Whereas the (random) maximal state D remains fixed throughout the algorithm, the min-
imal state varies in time. Conditionally on D = {z1,...,2,} we define the minimal process
E(t) (t > 0) as follows. The state space of E(-) consists of all subsets of D. FE(0) is an
independent thinning of D with retention probability A\/x as in Lemma 1. The dynamics of
the process are such that points are removed from E(-) after an exponentially distributed
‘holding’ time of rate 1. Whenever a point is removed, it is added again after an exponentially
distributed holding time of rate A\/(x — A). All holding times are independent of each other
and all other random variables involved. Points z; € E(0) are treated as if they were added
at time 0, those z; ¢ E(0) as removed at time 0.

Lemma 2. Conditionally on D, the spatial birth-and-death process E(t), t > 0, is an irre-
ducible, homogeneous, positive recurrent Markov process. Moreover, E(t) is in equilibrium
and time-reversible.

In particular E(t) is distributed as E(0) for all ¢ <O0.

Proof: As the E(-) process is defined conditionally on D = {z1,29,... ,2,}, it has only
a finite number of points at any time. Clearly, the transition rates do not change in time,
hence E(-) is homogeneous. Since the state space is finite, explosion is prevented, implying
the Markov process is well-defined by the given rates. Moreover, any state x C D can be
reached from any other state x’ (say) by successively deleting the points in x’ followed by
addition of the points in x, and any state is revisited almost surely. Therefore, the birth-
and-death process possesses a unique invariant probability distribution (see e.g. Chapter 7 in
(Parzen 1962)).

Let us call this (conditional) equilibrium distribution pp. To determine it, consider the
detailed balance equations

2 up(x) = (U i),

where z; ¢ x C D. Now, since E(0) is obtained from D by independent thinning with reten-
tion probability A/k, up(x) = P(E(0) = x | D) satisfies these equations. Hence E(t), ¢ > 0
is time-reversible and in equilibrium. O

When designing a coupling from the past algorithm, it is helpful to consider a forward
version first. Therefore, we will start by defining a spatial birth-and-death process Z(t),
t > 0, in the spirit of Lantuéjoul (1997). The state space of Z(-) consists of the subsets of
D. Given an initial state Z(0), the only transitions are births and deaths. Whenever a point
is added, say z € D, it might be removed again after an exponential ‘holding time’ of rate 1.
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However, z is actually removed only if it does not cause part of C to become uncovered, that
is if

B(zr)NC CBZE )\ {z})nC. (3.1)

If z cannot be deleted, it is granted an additional exponential lifetime of rate 1 after which
its removal is re-evaluated. Following the terminology of Kendall and Thonnes (1999) such
points will be called perpetuated. Whenever a point is removed it is added again after an
exponential holding time with rate A/(x— ). All holding times are independent of each other
and all other random variables. Points in Z(0) are treated as if they were added at time 0,
the points of D that were not in Z(0) as removed at time 0.

Proposition 2. Let Y be a realization of a Boolean model of balls of radius r observed in a
compact window W and define C as in (2.1). Let D have distribution m.y (cf. Lemma 1).
Conditionally on D, the spatial birth-and-death process Z(t), t > 0, is homogeneous and has
a single positive recurrent class consisting of those subsets z of D for which B(z) covers C.
Furthermore, Z(t) tends in distribution to myy ast — oo.

Proof: We work conditionally on D = {z;, 22, ..., z,}. First note that almost surely B(Z(t))
will cover C for some ¢ > 0. The transition mechanism then ensures that B(Z(s)) D C for all
s > t. Moreover, the class C of configurations z C D whose associated Boolean model covers
C is irreducible, since any state z can be reached from any other state z’ (say) by successively
adding all points of D \ Z/, then deleting those of D\ z. Thus Z(-) is well-defined, with a
unique invariant distribution concentrated on C (Parzen 1962). Since the state space is finite,
not all stationary probabilities can be zero, hence they are all positive, and the class C is
positive recurrent.

Next, restrict the process Z(-) to C. Clearly, the birth rate of Z(-) is identical to that of
E(-) and the death rate for both perpetuated and non-perpetuated points is 1, as it is for
E(-), provided the coverage condition is not violated. Thus, the detailed balance conditions
for E(-) and Z(-) coincide on C. Consequently, the limit distribution of Z(¢) is that of E(-)
restricted to C. By lemmas 1 and 2 the result follows. O

We shall now describe how to apply coupling from the past to obtain a sample from 7y,
the conditional distribution of interior points given a realization Y of our Boolean model in
the sampling window W. Fix a time —T < 0. Let D(t) = D for all =T <t < 0. By Lemma 2,
E(-) is time-reversible and hence it can easily be extended backwards from E(0) until time
—T to serve as a stochastically varying minimal process. Next, introduce an upper process
U_p(+) initialized in the maximum U_;(—T) = D and a lower process L_r(-) starting in the
current minimum FE(—7'). The dynamics of these upper and lower processes are similar to
those of Z(-), except for the fact that in ordering to ensure that the inclusion

E)CL.r(t)CU-r(t)CD (3.2)

is preserved for all t € [T, 0] we have to apply the ‘cross-over’ trick (Kendall 1997; Haggstrom
and Nelander 1998). The appropriate condition for deletion of z; from the lower process at
time ¢ is

B(z,7)NC C BU_r(t)\ {=})nC (3.3)



while removal of z; from U_7(¢7) is enforced only if
B(zi,r)NC CB(L_7r(t")\{z})NC. (3.4)

To make sure that (3.2) is always respected, the times of the births, deaths and deaths
after perpetuation must be coordinated. The births and deaths of L(-) and U(-) are governed
by those of E(-). To regulate the deaths after perpetuation, we associate with every point
zi € D a unit rate Poisson process Z; on {t: z; ¢ E(t)}.

Summarizing, we propose the following algorithm.

Algorithm 1. Generate a random sample D from m.y for some k > X and delete each point
independently with probability 1 — (A\/k) to obtain E(0). Set T = 1 and write [T/2] for the
integer part of T/2.

o cxtend E(-) backwards on [—T,—[T/2]) with birth rate A\/(k — X) and death rate 1;

e extend independent unit rate Poisson processes =; backwards on {—T <t < [T/2]: z; ¢

Et)};
o set L_p(—T)=E(-T) and U_¢(-T) = D;
e at a birth transition E(tT) = E(t) U{z;}, add z; to L_p(t) and U_p(t);
e at a death transition E(tY) = E(t) \ {2} or a jump of E;:

— delete (if present) z; from L_r(t) provided that does not cause the Boolean model
associated with U_p(t) to uncover part of C, i.e. z; may be deleted only if (3.3)
holds;

— delete (if present) z; from U_r(t) provided that does not cause the Boolean model
associated with L_p(t) to uncover part of C, i.e. z; may be deleted only if (3.4)
holds;

o if L_p(0) = U_p(0) exit; otherwise double T' and repeat.

Algorithm 1 is designed in such a way that several inclusion relations hold (Kendall and
Mgller 2000).

Lemma 3. The processes E(t), L_p(t), U_p(t) (t <0) and D satisfy the following relations.
1. (‘sandwiching’) E(t) C L_p(t) CU_p(t) C D for all =T <t < 0;
2. (‘funneling’) L_p(t) C L_g(t) CU_g(t) C U_p(t), for all =S < —T <t < 0;
3. (‘coalescing’) if, for some s, L_7(s) = U_r(s) then L_p(t) = U_r(t), for all t > s.

Proof: By definition, E(—T) = L_7(—T) C U_7(—=T) = D, hence the sandwiching prop-
erty holds for ¢t = —T. Also D contains all other sets. Since births in F(-) are mimicked
in L_7(-) and U_r(-), the inclusion relationship is preserved under birth transitions. Next,
consider a death at some time ¢ € [-T,0], say E(t") = E(t) \ {2;} or a jump at time ¢ of Z;.
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Suppose that E(t) C L_7(t) C U_r(t). Since E; is restricted to the set {t <0: z ¢ E(t)},
E(t") is a subset of L_7(t7) and U_p(¢"). Furthermore, if z; dies in the upper process,

B(z,7) NC C B(L_r(t)\ {z})NC CBU_1(t)\ {z})NC

and consequently z; also dies in the lower process.

Turning to the funneling property, we have to show that L_7(t) C L_g(t) and that
U_s(t) CU_r(t). Now, by definition E(—S) = L_g(—S). Since the dynamics of Algorithm 1
preserve inclusion, it follows that L_p(—T) = E(—-T) C L_g(—T) and, more generally,
L_7(t) C L_g(t) for any t > —T. Regarding the upper process, U_p(—=T) =D D U_g(-T).
Applying once more the fact that the algorithm preserves the inclusion ordering yields
U_r(t) D U_g(t) for any t > —T.

Finally, suppose that the upper and lower processes meet at some time s < 0. Then, as
they are coupled by the same realizations of the E(-) and the =;, they proceed as one. O

We are now ready to state the main result of this section.

Theorem 1. Let Y be a realization of a Boolean model of balls of radius r with intensity A,
observed in a compact window W C RY, and define C as in (2.1). Then Algorithm 1 almost
surely terminates in finite time. Its output is distributed according to myy, the conditional
distribution of interior points given Y (cf. Lemma 1).

Proof: Note that P(E(0) = D|D) = (A\/x)™"), where n(D) is the number of points in D.
Hence

so that the event {E(0) = D} has strictly positive probability. By Lemma 2, E(-T) = D
will occur for some T almost surely. Hence, by Lemma 3, the algorithm terminates almost
surely in finite time.

To show that the output has the required distribution, consider a process Z_r(-) initialized
at any A such that E(—T) C A C D which evolves similar to the upper and lower processes,
except that a death at time ¢ is implemented only if it respects the coverage condition (3.1).
Thus Z_7(-) has the same stochastic properties as the process Z(-) considered in the be-
ginning of this section, and in particular has stationary distribution myy (cf. Lemma 2).
Moreover, as Algorithm 1 preserves the inclusion ordering, L_r(t) C Z_p(t) C U_r(t) for all
—T <t <0. The claim now follows from (Kendall and Mgller 2000, thm. 3.1). O

We conclude this section with a practical observation. Generally, Algorithm 1 will take a
relatively long time to terminate when sampling from )y for small values of A. We then
expect that a x for which we can reasonably perform rejection sampling to obtain D will
be much bigger than A. In our experience, it is efficient to choose a x; which is not too
much smaller than x and sample from 7,,. This sample can be used as a dominating pattern
to sample from ., where we choose k3 not too much smaller than ;. In this manner we
gradually descend until we reach A.
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4. MAXIMUM LIKELIHOOD ESTIMATION

4.1 Monte Carlo Approach

A single realization y of a Boolean model Y of balls with radius > 0 (Definition 1) has been
observed in a compact window W C R?, and the aim is to estimate the intensity A of the
underlying germ process X. Let Poy be the probability measure corresponding to the relevant
part of the germ process, i.e. the Poisson process of intensity A on the set W =W @®rB. Let
fr = dPoy/dPo;. We have

Fa(x) = eV W] yn(x) (4.1)

By (van Lieshout 1997, thm. 1) the density of our Boolean model with intensity A with
respect to a Boolean model with intensity x (k # 0) is

A X0
(*)
on i (X))
= el (E) /(E) Ay (x). (4.2)

One can prove that there exists a maximum likelihood estimator of A, but proof of its unique-
ness has eluded us. Assuming there is a unique MLE, computing it does not not seem possible
because the integral in the above expression includes an intractable normalizing constant. The
idea behind Monte Carlo maximum likelihood (Thompson and Guo 1991; Geyer 1994, 1999)
is to approximate (4.2) by

pe(y; A) = eV W R,

B(X)ﬂW:y]

b

. by n(xy) 1< /) n(X;)
Sy — N (A 1 A
Pu(y; A) = e <K> - ) (H> : (4.3)

=1

where X1,..., X, is an independent sample from 7, for some choice of £ > 0. We can now
use (4.3) to approximate the score function, the maximum likelihood estimator, the Fisher
information and anything else we might be interested in.

Let us denote the true MLE by 5\, its Monte Carlo approximation by j\n and the Monte
Carlo approximation to the score function by s,. Provided the likelihood (4.2) is concave—
as it appears to be for the example in section 5, cf. Figure 2—the Monte Carlo maximum
likelihood estimator is consistent. Moreover, \/ﬁsn(j\) converges in distribution to a normal
distribution with mean zero and a certain variance, say, 02. By (Geyer 1994, thm. 7) it
follows that

N ~ o
Jn (An — A) CAY (0, W) .

Now (4.3) is a good approximation to (4.2) only if A is not too far from x. Algorithm 1 allows
us to sample from 7, for any x we like. In practice, we are mostly interested in pr(y; A) in

the vicinity of A. Therefore, we will use a pilot estimate of A as our choice for &.
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Figure 1: Coverage Function of a Realization of a Poisson Process with Intensity 75.0 Marked
by Discs of Radius 0.1 and Clipped in the Unit Square.

4.2 Stochastic EM Algorithm

It is useful to think of our estimation problem as a missing data problem. The complete
data is the germ process X on W and the observed data is Y = Y (X) = B(X) N W. Again,
suppose that we observe a single realization Y = y. The EM algorithm (Dempster et al.
1977) is an iterative technique to approximately solve likelihood equations for missing data
problems. In our case the iteration boils down to

Ak +1) = By H%) ‘ BX)NW = y]

(Dempster et al. 1977, page 7) show that at each step the likelihood under the parameter A(k)
of the observed image y increases. Hence, the EM algorithm converges to a (local) maximum
of the likelihood function.

Unfortunately, it does not seem possible to explicitly compute (4.4). However, samples
from the conditional distribution ), of interior points can be obtained by the method of
section 3. If at the k-th iteration step m samples from ), are available, their average
cardinality can be used instead of [ n( x)dmy(i)ly (). This algorithm is known as the Monte
Carlo EM (Tanner and Wei 1990) or, if m = 1, the stochastic EM algorithm (StEM) (Celeux
and Diebolt 1986). Some large sample results are available (e.g. Nielsen 1997) but as we have
only one image to work with, those asymptotics do not apply to our situation.

From now on, we specialize to the case m = 1. If at each iteration step we use a new sample
which is independent of the previous samples, then the iterates of the StEM algorithm form
a Markov chain on the parameter space. In principle, this chain must be run until it reaches
equilibrium. Here, we propose a modification based on coupling from the past to obtain
samples that are guaranteed to be from the equilibrium distribution in a finite number of
steps.

As we pointed out earlier, it is useful if the state space of the Markov chain is partially
ordered with a minimal and maximal element. Since our parameter space is the positive

b) + [ n(x)dmy)y (x)
W] .

(4.4)
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reals without such elements, we must restrict it. An appropriate minimal element is A =
(IC1/(zr?) +n(xh))/ |W| because any realization from the conditional Boolean model needs at
least |C|/(nr?) interior points to cover C. Unfortunately, we must choose a maximal element
in an ad hoc way. We choose X so big that we are confident that the true parameter value is
less. For technical reasons we choose it such that X|W| is an integer. From now on we consider
[A, A] to be our parameter space. Finally, we note that an update of the EM algorithm with
the restricted state space is given by the minimum of (4.4) and X. This also holds for its
stochastic version.

The stochastic EM algorithm is a Markov chain on the finite state space S = {\ A +
1/|W|,..., X}. Now, if Ty (n(X) = n) > 0 for some A, the same holds for any A > 0. Hence,
the StEM-algorithm has a single positive recurrent, aperiodic class.

Our coupling from the past scheme is as follows. Fix an integer T' > 0. Using the sampling
scheme described at the end of section 3, with the x; separated by 1/|W|, we can obtain
nested samples X)(¢) from my, for all A in the state space S. Now set U p(-T) = A,
L p(-T)=Xandfort=-T+1,-T+2,...,0set U_7(t) = M(U_r(t—1),t) and L_7(t) =
M(L_p(t —1),t), where M(-) is the modified maximizer

nxd) + n(N(®)

M(\t) = v

Since for fixed ¢ the X (¢) are nested, M (-) is an increasing function of A\. Hence, the algorithm
is monotone and it suffices to check if U_7(0) = L_¢(0). If this is indeed so then stop. If
not, repeat the above procedure starting at time —27', re-using the previous realizations from
time —7" to 0. To see that the algorithm terminates almost surely, note that with positive
probability X (—7"+ 1) = X5(—T + 1), in which case U_r(-) and L_7(-) meet after just one
step.

5. AN EXAMPLE

We now illustrate the Monte Carlo maximum likelihood and stochastic EM approaches. Fig-
ure 1 depicts the coverage function of a realization of a Poisson process with intensity A = 75.0
marked by discs of radius r = .10 and clipped within the unit square W = [0,1]?. The com-
plete data maximum likelihood estimator A = 70.14.

From the picture, we can easily extract the 56 boundary points. For computational conve-
nience we shall use W = [—r, 1 + r]? instead of W @ rB.

The Monte Carlo maximum likelihood approach needs a reference parameter x which is not
too far from the maximum likelihood estimator we are trying to approximate. We performed
ten steps of the stochastic EM algorithm initialized with A = 40.25 to obtain x = 68.06. To
compute the Monte Carlo likelihood (4.3), 100 independent samples from mgg 6|, Were gen-
erated using the modified coupling from the past algorithm described at the end of Section 3
with step size 5.0. To find the dominating pattern D, the first attempt was at intensity 100.0.
Fifty rejection sampling steps were performed before increasing the intensity by 10/(1 + 2r)2.
Usually, it was not necessary to increase the intensity more than once, if at all. The logarithm
of the Monte Carlo likelihood we obtained is plotted in Figure 2 for A € [50,100]. Optimizing
over A yields Moo = 68.70. The Monte Carlo variance is .23, cf. Section 4. For comparison,
the estimated inverse Fisher information at \ is 64.60.
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Figure 2: Estimated Log Likelihood with Respect to the Boolean Model with Intensity « =
68.06 as a Function of A for the Data in Figure 1.

Turning to the perfect stochastic EM algorithm, Figure 3 depicts the upper and lower
processes of one run. In this case, the two paths coalesce after taking T'= 2,4 and 8. As a
crude indication of the variability, the sample path over a further 100 forward steps is shown
as well. We repeated the process of Figure 3 25 times. However, lacking computer time, we
only performed 25 steps after time 0, instead of 100. The sample mean and variance of the
25 independent samples at time 0 were 69.14 and 19.01, respectively. Using 10 steps after
time 0 yielded a sample mean and variance of 68.09 and 2.82. Using 25 steps after time 0
yielded 68.11 and 1.40.

Comparing the two approaches, Monte Carlo maximum likelihood estimation is overwhelm-
ingly more faster than the perfect stochastic EM algorithm. The latter is particularly slow,
because each run requires one or more samples from 7y|,. The second major advantage of the
Monte Carlo approach is that it produces an estimate of the full likelihood. This immediately
translates to estimates of moments of functionals, probabilities of certain events, likelihood
ratio statistics, the Fisher information as well as the standard error with respect to the true
maximum likelihood estimator.

6. DiscussioN AND LOOSE ENDS

In the Boolean model of discs, no interaction is present between the underlying germs. This
assumption can be relaxed. For instance, by (Thonnes 1998, thm. 3.5), the conditional
distribution of the interior part of a standard area-interaction process (Baddeley and Van
Lieshout 1995) given its union set is that of a Poisson process. Hence, the theory of the
present paper applies. The same is true for any germ point process whose density with
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Figure 3: The Upper and Lower Processes in the Exact Stochastic EM Algorithm.

respect to a unit rate Poisson process is of the form
a(X,0) ") go(B(x) N W)

where 6 is a parameter vector.

Another generalization is to allow grains that have the property that the location of their
center is identified by any part of their boundary. Examples of such grains are ellipses or
discs with random radii. The assumption ensures that the distribution of the boundary points
is degenerate. If this distribution is not degenerate (for instance when the grains are unit
squares) it appears to be very complicated.

Finally, recall that the stochastic EM algorithm did not compare favorably to the Monte
Carlo approach (cf. end of section 5). In a recent paper Delyon, Lavielle and Moulines (1999)
overcame these problems by combining the EM algorithm with stochastic approximation
(Penttinen 1984; Younes 1988; Moyeed and Baddeley 1991). Suppose we have observed a
single realization Y = y. If the current approximation to Ey) [log fA(X) | y] is denoted by

Qk()\), Delyon et al. generate a sample x; from my)), and set
Qr1(N) = Qr(\) + Yot |log fa(xh Uxpr1) — Q(N)

where {yx}x>1 is a sequence of positive step sizes. The function Qg4 1()\) is optimized over
A > 0 to yield A(k + 1). In contrast to the stochastic EM algorithm, all previous samples
contribute to Q41 (A). This results in a more efficient use of the simulations at the expense
of loosing the Markov property. The method does allow estimation of some functionals of
interest such as the Fisher information I()) at A\. Moreover, by (Delyon et al. 1999, thm. 4),
under conditions on the speed of the discount factors -,

\/E(An—i)—mf<0,%;)2>
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where )\, is the mean intensity over the first n iterations and o2 is the asymptotic variance of
the mean score. Hence, the computational load of the stochastic approximation EM algorithm
is comparable to that of the Monte Carlo maximum likelihood approach. However, because
the latter method does not involve careful tuning of discount factors, we have preferred it
over the stochastic approximation EM algorithm.
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