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Abstract 

Dissolution of stoichiometric multi-component particles is an important process occurring during the heat treatment 
of as-cast aluminum alloys prior to hot extmsion. A mathematical model is proposed to describe such a process. In this 
model equations are given to determine the position of the particle interface in time, using a number of diffusion equations 
which are coupled by nonlinear boundary conditions at the interface. This problem is known as a vector valued Stefan 
problem. A necessary condition for existence of a solution of the moving boundary problem is proposed and investigated 
using the maximum principle for the parabolic paiiial differential equation. Furthermore, for an unbounded domain and 
planar co-ordinates an asymptotic approximation based on self-similarity is derived. The asymptotic approximation is used 
to gain insight into the influence of all components on the dissolution. Subsequently, a numerical treatment of the vector 
valued Stefan problem is described. The numerical solution is compared with solutions obtained by the analytical methods. 
Finally, an example is shown. © 2000 Elsevier Science B. V. All rights reserved. 
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1. Introduction 

Heat treatment of metals is often necessaiy to optimize their mechanical properties. During the heat 
treatment the metallurgical state of the alloy changes. This change can either involve the phases being 
present or the morphology of the various phases. Whereas the equilibrium phases can be predicted 
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quite accurately from the thermodynamic models, until recently there were no general models for 
microstructural changes nor general models for the kinetics of these changes. In the latter cases 
both the initial morphology and the transformation mechanisms have to be specified explicitly. One 
of these processes that is amenable to modeling is the dissolution of secondary (multi-component) 
phase particles in an alloy with a given initial composition. 

To describe this particle dissolution in solid media several physical models for binary alloys have 
been developed, incorporating the effects of long-distance diffusion [43,2,30] and nonequilibrium 
conditions at the interface [25, 1,32,40]. These articles did not cover the technologically important 
dissolution of stoichiometric multi-component particles in multi-component alloys. 

Phase transformations in steels have been studied in [14,38]. Reiso et al. [28] investigated the 
dissolution of Mg2Si-particles in aluminum alloys mainly experimentally. They compared their re
sults to a simple dissolution model valid for dissolution in infinite media. Hubert [ 16] studied the 
dissolution and growth of second-phase particles, consisting of AlN in an iron-based ternary alloy. 
His analysis was carried out to predict the size of second-phase particles during hot-rolling of steel. 
His model was based on similar physical assumptions as in this paper. However, his approach was 
purely nwnerical. The numerical method of [16] differs significantly from the method used in this 
paper and is applicable to compounds of maximally two alloying elements. Vermolen et al. [34] 
proposed a nwnerical method, based on a Newton-Raphson iteration for the computation of the 
dissolution in ternary alloys. They partly analyzed the properties of this Stefan problem in terms 
of existence, uniqueness and monotonicity of the solution and well-posedness of the model [35,34]. 
Some physical implications of the model are described in [36] and applications in aluminum and 
steel industry are given in, respectively, [12] and [16]. 

The present work concerns a Stefan problem in which the growth or dissolution of the pa1iicle is 
dete1mined by diffusion of several chemical elements in the primary phase. In Section 2 a mathemat
ical model is given for paiiicle dissolution. The resulting model is a vector-valued Stefan Problem. 
A number of properties of a scalar Stefan problem is given in Section 3. One of these properties 
leads to a necessary condition for existence. This condition is used to select a unique solution for 
a vector-valued Stefan problem. In Section 4 a self-similar solution is presented. A limit solution is 
investigated in Section 5. This limit solution turns out to be very usefull for many cases in metal
lurgy. After outlining a numerical method in Section 6, a number of experiments are considered in 
Section 7. Finally, we give some conclusions. 

2. A model of dissolution in multi-component alloys 

Various pa1iicle geometries (planar, cylindrical or spherical) are observed in practice. In this 
paragraph a cylindrical geometry is considered. The alloy is divided into cells, such that there 
is no transport between different cells. In some alloys, segregation has also occurred at the cell 
boundary. Therefore, we consider an angular geometry where the particle is denoted by index L 
and the segregation layer by index R (see Fig. 1 ). In our model it is possible that the particle and 
segregation layer have a different chemical compound. 

Consider n+ 1 chemical species denoted by Sp;, i E {l,. .. ,n+ 1}. For the present we assume that 
all cells have the same geometry and size. The dissolving particles have the same geometry as the cell 
and have equal size in each cell. It is assumed that the overall concentrations of S p;, i E { 1, ... , n} 
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Fig. 1. The geometry (cylindrical) used in the model. 

are small with respect to the concentration of component Spn+t· The concentrations are written as 
C; (mol/m3 ), i E {l, ... ,n}. At a given temperature the initial concentrations in the SPn+1-rich phase 
are equal to c?, i E { 1,. .. , n}. The composition of the components in the particle and segregation 
layer are denoted by cf.~, i E { 1, ... , n}, k E { L, R}. We assume these concentrations to be fixed. 
The interface concentrations cf.~ are variant. 

We consider a one-dimensional problem. The geometry is given by Q(t) = {r E IR I Mi ~Si(t) < 
r < SR(t)~MR}, t E [O, T] where T is an arbitrary positive number. In some applications there is a 
time ti and tR such that respectively SL(t) = Mi,t?:tL and SR(t) =MR,t?:tR, so the particle or the 
segregation is dissolved then. For the determination of C; we use the multi-component version of 
Fick's second law (see [36,26, p. 160]). For simplicity we assume that all species diffuse indepen
dently, and that the diffusion coefficients Ul;, i E { 1, ... , n} (m2 /s) are constant. The resulting equa
tions are 

OC; = Ul;!_ (r0 0C;) ot raor Jr, rEQ(t),tE(O,T],iE{I, ... ,n}, (I) 

where a is a geometric parameter, which equals 0, 1, or 2 for, respectively, a planar, a cylindrical, 
or a spherical geometry. Note that Mi should be nonnegative for a i= 0. Initial conditions are 

c;(r,O)=c~(r), rE.0(0), iE {l, ... ,n}, (2) 

where c~J are given nonnegative functions. When a moving boundary becomes fixed (i.e. Sk =Mk. k E 
{L,R} ), we assume that there is no flux through the boundary, so 

OC; -a (Mk.t) = 0, for t';::tk, i E {l, ... ,n}, k E {L,R}. (3) ,. 
In the following we assume that the particle contains nL chemical species with indices in <Pi c { 1, ... , 
n + 1} and the segregation contains nR chemical species with indices in <PR C { 1, ... , n + 1}. The 
complement of <Pk is defined as <P'f. = { 1,. .. , n + 1} \ <Pk. On the moving boundaries the following 
conditions are used: 

OC; or (Sk(t),t) = 0, t E [O,T], i E <P%, k E {L,R} (4) 
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and we use the following definition for ease of notation: 

c:~(t):=ci(Sk(t),t), t E [0,tk], i E <Pb k E {L,R}. (5) 

So 2 + nL + nR unknown quantities remain: Sk(t ), and cf1(t ), i E <J>ko k E { L, R}. To obtain a unique 
solution 2 + nL + nR boundary conditions are necessary. The chemical compositions of the particle 
and segregation are given by: 

II (Spi)m;.k' k E {L,R}. 
iE<Pk 

As an example of our notation consider the dissolution of an Mg2Si particle in an Al-rich phase. 
Then S Pt =Mg, S p 2 =Si and S p3 =AL The values of m1,L and m2,L are 2, 1 respectively, and n = 2. 
We assume that the particle and segregation are stoichiometric, which means that the concentrations 
cf.~ are constant. Using the Gibbs free energy of the stoichiometric compound we get [36,18] 

II (c~.~Ct)r• =Kb t E co, tk), k E {L,R}. (6) 
iE<Pt 

Note that these boundary conditions are unusual in Stefan problems. The balance of atoms and the 
constant composition of the particle and segregation lead to the following equations for the moving 
boundary positions: 

part sol dSk _ OC; { } 
(ci,k - C;,k(t)) dt (t)- [])ia,:-(Sk(t),t), t E (O,tk], i E <Pb k E L,R . (7) 

Condition (7) implies 

[]); OC;(S ) ) [j)j OCj s ( ) ) 
_part - sol(t) a k(t ,t = part - sol(t') a ( k t ,t ' 
c:;,k ci,k r cj,k ci.k . r 

i,j E <Pko k E {L,R}. (8) 

The moving boundary problem given by Eqs. (1)-(7) is known as a vector-valued Stefan problem. 
We define the space Q as Q:={(r,t)I r E Q(t),t E (0,T)} and we look for solutions of the Stefan 
problem with the following properties: Sk E C1(0,h] and ci E C2•1(Q) n C(Q). When cr(Sk(O)) -=/= 

cf01 (0), i E {l, ... ,n}, then ci cannot be required to be continuous in (Sk(O),O). In these points, we 
require 

min{c~(Sk(O)),c~01(0)} = liminf c;(r,t)~ limsup c;(r,t) 
(r,t)EQ (r t)EQ 

(r,1)-(Sk(0),0) (r,l)..:,(Sk(0),0) 

= max{ c~(Sk(O)), c~01 (0)}, (9) 

compare Friedman [13]. 
There are some differences between the dissolution in a binary alloy and in a multi-component 

alloy. In the first place, n diffusion equations have to be solved, which are coupled through conditions 
(5)-(7) on the moving boundaries. Secondly, the problems are nonlinear due to the balance of atoms 
on SL, SR, both in the binary and the multi-component case. However, in the mathematical model 
for a multi-component alloy an extra nonlinearity occurs in Eq. (6). For a recent book where Stefan 
problems are considered we refer to [37, see for instance p. 132 (2.5), (2.9)]. Survey papers and 
books on the Stefan problem are [ 10, 15 ,20,8,21,5]. 
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3. Properties of the scalar d-dimensional Stefan problem 

Before we tackle the vector valued Stefan problem, we briefly analyze the scalar Stefan problem. 
First the maximum principle is formulated. Using this maximum principle the ill-posedness of a 
Stefan problem is discussed. It is shown here that under some conditions no solution exists for the 
Stefan problem which we consider here. The properties and solution of the Stefan problem are first 
discussed for the case of one diffusing element, therefore the subscript for the index of the alloying 
element is omitted. 

For completeness, we pose the general multi-dimensional scalar Stefan problem. Diffusion of a 
chemical element takes place in the primary phase domain, Q(t) c !Rd. This domain encloses and/or 
is enclosed by the particle, of which the domain is denoted by P( t ). The initial concentration in 
Q(O) is given by c(r., 0) = c0,r. E Q(O). For the concentration, we have in Q(t): 

cc 
-;-- = [])V(Vc), [. E Q(t), t E (0,T]. (10) 
ut 

For the concentration inside the particle, P(t), we have 

c(r.,t)=cPart, [.EP(t), tE(O,T]. 

The boundary condition at the moving boundary (S(t) = Q(t) ni\t)) is 

c(r.,t) = cs01 , r. E S(t), t E (0, T], 

and the normal component of the velocity of the moving boundary, Vv(t), is given by 

(11) 

oc 
(cPart - C801 )vv(t) = []) cv' [. E S(t), t E (0, T]. (12) 

At the fixed boundary, I':=o.Q\S(t), we have an homogeneous Neumann condition, with v defined 
as the outward normal 

cc= 0 I' (0 T] , r.E , tE , . av 
In this section cPart, c801 and c0 are assumed to be constant. We will now summarize some basic 
properties of this scalar Stefan problem. 

3.1. The maximum principle for the diffusion equation 

The Stefan problem is formed by the diffusion equation and a displacement equation for the 
moving boundary. The solution of the diffusion equation with the above requirements is unique and 
satisfies a maximum principle: 

Maxirnum principle 
Suppose c satisfies the inequality 

? oc 
V-c - - ~0 r. E Q(t), t E (0, T], (13) ar ' 

then a local maximum has to occur at the boundaries, or at t = 0 (the initial condition). Suppose 
that a local maximum occurs at the point P on S or I'. If 8/ov denotes the derivative in an outward 
direction from Q(t), then 8c/8v > 0 at P. 
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This statement is refened to as the maximum principle and has been proved by Protter and 
Weinberger for a general parabolic operator (see [27, pp. 168, 170]). For an unbounded domain see 
[39, Lemma 2.4., p. 18]. This p1inciple can also be applied for local minima (and rc/Dv < 0) when 
the inequality in ( 13) is reversed. The principle thus requires the global extremes of a solution to 
the diffusion equation to occur either at the boundaries S(t), I' or at t = 0. 

From the Stefan condition ( 12), one can deduce immediately that the nonnal component of the 
interface velocity, ziv has to satisfy 

l\,(t )( cpart - csol) ~c (!.:,!) > 0, Vr E S(t), t E ( 0, T], crart -/= csol -/= co' 
C\' 

note that cc/cv i= 0 due to the maximum principle and C801 i= c0. 

3.2. A necessary condition for e.Yistence l~f a solution for the Stefan problem 

(14) 

We will analyze the existence of a solution for a class of Stefan problems. Inequality ( 14) will 
be used in the proof of the existence proposition. First we introduce the following definition. 

Definition 3.1. A solution of the Stefan problem is called conserving if the solution satisfies 

/ (c(r,t)- c0 )dV = (cpart - c0 ) / dV, Vt E (0, T]. 
JQ(l)UP(I) Jl'(O) 

( 15) 

Note that c(r, t) =cP"'1, !.. E P(t ), t E ( 0, T]. This definition states that the total amount of the chemical 
element remains constant in time. Using the Gauss divergence theorem, it can be proven that if 
the solution is conserving (i.e. (15) holds), the following statement holds: if ac/Dv(r..,t) = 0, for all 
!.. E I', t E (0, T] then 

cc(r t) 
(cPart - c801 )vv(t) = [)) ,..,-' for all!.: E S(t), t E (0, T]. 

ov 
(16) 

Now, we formulate a proposition about the nonexistence of a conserving solution. 

Proposition 3.1. The Stefan problem has 110 conserving solution (/ 

( cpait - c 0 )( crart - csol) ~ 0 and c 501 -/= c0 with cpart, c 501 , c0 E IR+ U { 0}. 

Proof. Suppose that a solution exists for the Stefan problem with ( crart - c0 )( cpart - c501 ) < O. We 
then have CO < Cpart < Csol, Or ('sol < Cpart < CO. 

First we consider the case that c.<l < cpart < cs01 . From the maximum principle we then have 
ac/av > 0. From Eq. (14) and (c801 - c0 )oc/ov > 0, follows that Vv < 0 and thus the particle grows. 
For t = 0, we have the relation 

/ ( c(r, 0) - c0 ) dr = (cPart - c0 ) / d V. 
JQ(O)UP(O) JP(O) 
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Fur l 0. thi.:- differenn• is 

di t c( 1:. i c11 )dl' 
.,,,, n 

i ( I -1- d ·) ( t'( [. ! d I' ,, 

di' ((([.!l · t'" Id I'. 

From the maximum 
1mplic-s 

it fol!nw.,,.: that d [.I I~ 0 l. It is then dear that above equation 

c'' l d 1 ·. 
11 

Since c is a solution of the Stefan 1t satisth:s ( l 61. Howe\er 1l7) implies that ( l 5 is 
not valid. Thus ( 16 I and ( 15) are not and hence according to Definition 3. L the 
solution is not consen The Stefan problem with t"' «"'"1 < is therefore ill-posed. A similar 
proof can be given to show that fix th..:: case < < no conserving solution exists either. 

Suppose that a solution exists for the Stefan problem with h"'"11 ·- c''){t'rart ) = 0. then we 
either han: t·>'·111 ''" or For the hrst case a similar pro1)f as the preceding one can be used 
to show that no consening solmi~m exists. h)r the second case one can prove that ]1\(tlj blO\vs up 
because i't·ISU l.t) 1'r :i 0 dul' w the maximum principle when ::f (note the requirements on 
continuity of cl. 

This proposition has been for a ont:-dimensional unbounded Stefan problem in [35]. 
If \\ e have ! c' 1 > 0. we either have ( cP":t < c11 ) < ) or > 

(l-l'~" 1 > L Then ii can be prO\ ed in a similar way that a conserving solution is possible and we 
then call the Stdlm prnbkm wdl-posed. Furthermore. it appears that we '~ill have dissolution, i.e. 
r, > 0. if ( c" cr"u1 I < 0 and 1.·ontrarily frir the other well-posed problems. we will have 
gro\vth. When the· interface C1)ncentr:.:11ions v"' 1 are constant the solution of the vec!Lir valued Stefan 
problem is called consen ing when (,, , c" )k~~n - . , ) > 0 fl)r all i and k. 

\\' e expect that for a S!d~m pr(1bkm llfliy consen ing soluti(111s occur. Howe\ er. in the follow
ing sections we approximate the solution of a \ector-\alut'd Stefan problem. Due to the nonlint'ar 
b~mndary conditions the sohmon is not uni4ue. Therefore. we use the necessary condi
til)n gi\ en in this sectiun to sekc! a consen ing solutwn. In our applications in metallurgy (where 
,. ~?:> for all I and kl the consen ing solution appears to bi.' unique. 

4. A self-similar solution for a planar \ector-valued Stefan problem 

Consider a planar pa11ick dissolving in an infinite domain: Q(t J: = { r E ill 1Su l < r < ex:}. The 
function , ·, satisties 

{ I ... , .11}. 
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At the interface, we define: c;(S(t),t)=:c~01 (t), i E {l, ... ,n}. Furthennore, we assume fort= 0: 
ci(r,O)=c?, and limr_.00 c;(r,t)=c?, i E {1, ... ,n}, where c? are given constants and S(O)=S0. 

It can be proved that the solution is (42,35] 

c? - c~01 ( r - So ) 0 
ci(r,t) = eifc(k/2/iif;) erfc 2~ + C;, 

r E Q(t), t E (0,T], i E {l,. .. ,n}, (18) 

where k is defined in: S(t) = S0 + kJt. Due to condition (8), the value of k is independent of the 
chemical elements. Combination of ( 18) with ( 7) yields the following set of equations to be solved 
for k and c~01 for all chemical elements: 

k c? - c~01 {ii; exp(-k2/4[));) 
2 = cfart - cfol y--;- erfc(k/2v'[D;), Vi E {l, ... ,n}, (19) 

n 

IT (c~o1r = K. (20) 
i=I 

For the scalar Stefan problem this has been analyzed in (35]. We solve system (19) and (20) of 
n + l nonlinear equations for n +I variables (k, c~01 , i E {l, ... ,n}) with a numerical method. It 
turns out that the value of k in the above equation can be approximated by 

0 sol~ k = 2 C; - C; _..!. 
cpart - c~ol 7t 

l l 

(21) 

provided that 1Cc?-c~01 )/(cfart-c~01 )l«l, for an i E {l, ... ,n}. The value k leads to the same solution 
as one would obtain from a (inverse) Laplace transfonn of the diffusion equation [43,1]. Before we 

- art 117::. state the accuracy of k, we define: A;:=(c?-c~01 )/(cf - c~01 )v 1/n, x;:=k/2v'[D;, /(x):=(exp(-x2)/ 

erfc(x) ). It turns out that approximation ( 21) represents a lower limit for the value of k. This is 
fonnulated in the following proposition. 

Proposition 4.1. Let x;/Ai = f(x;) for a given, fixed A;< 1/..,/ii, then, 

- k 
which implies k < k < r;;. . 

1 - y7tA; 

Proof. Using a series expansion of f(x)/x at x _.. oo (35], one obtains limx_.00 /(x)/x =...[ii,. 
Furthermore, it is easy to see that limx--oof(x) = 0. Since f(x), f'(x), f"(x) > 0, x E IR (/is 
convex and monotonously increasing), one obtains: 0 < f'(x) <...[ii,, x E IR. With /(0)= I and from 
the Mean Value Theorem x;/Ai = f(x;) =I +x;f'(i;), X; E (O,x;), one obtains: I < x;/A; < I+ y/1tx; 
for A; ;;?;0. For A; < 0 the inequality 1 + Jnx; < x;/A; < 1 holds. Both inequalities lead to 

A; 
A; < Xj < A r;;.. 

1- ;·y7t 
0 

Note that the proposition agrees with the requirement of well-posedness as discussed in Section 3. 
Moreover the proposition implies that x;Ai > 0 when xi # 0. When we insert the concentrations 
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into the definitions. one obtains fmm the proposition 

(22) 

From inequality (21 ). the velocity of the moving boundary can be bounded by 

CIJ ('sol /r- dS (t ) 
I I \ - <' -- < ( 23) 

('par: ··· c'''1 I 1tf . d/ . 
I I 

This (approximate) solution (21 ) will be used in the remainder of the present paper as a solution of 
the vector-valued Stefan problem since it gives a good insight into the asymptotic behavior of the 
solution. It is also noted that this lmver bound would be obtained if the interface would be stationary. 
i.e. not moving [43]. Since the lower hound is only valid for the case that A, is sufficiently small. 
one must be careful in its use. Otherwise, the lower bound then may yield solutions that are not 
conserving (see Section 3 and [ 34 ]). 

ln real applications the distance between cells may be small. For these cases we have to deal with 
the fact that the domain is bounded. It can be proved [33] that for c,.,1 > c0 ;?! 0 the solution (c) in 
the bounded domain is larger than the solution in an infinite domain. This implies that the rate of 
dissolution is larger in an unbounded domain than in a bounded domain. 

5. A limit solution for a planar vector valued Stefan problem 

In this section we consider the consequences of the inequalities given in ( 23 ). For this purpose. 
we take the special situation that 

• cf'"1 » c~" 1 > c:1 = 0. Vi E {I. .... n }. 
Since in metallurgy one often encounters c;cll1 » c;01 > c~1 ::::::: 0, the solution that satisfies the 
above-mentioned constraints is refe1Ted to as a limit. From the inequalities we see that: 

< 0 . 

• 
From this and Eq. (21 ), one easily can write down the following recum:nt relationship: 

Vi E: { l. ... ,11 ·-· l}. 

Assuming an equality in Eq. ( 24) yields an approximate <~~'' 1 : 

:-;sol - I [DI cfart c;sol 
c, - \i D; ci"r1 l i . 

(24) 

(25) 

Substitution of Eq. (25) into the assumption that fI:'~ 1 tcr1 l"'' =Kand defining p:=:S;'= 1(m;), one 
obtains 

( r=-)1' 11 ( . part )"'' \/ [j) I IT t', . ( ";SOI )I' = K 
p;irt /in (J . 

C1 i=l yu.V, 
(26) 



< I 

The solution lo 

,, i 

. I\~ lI I 
\ \ \ 

(27) 

12 ) and 

t l ( ·''"1 

d,- ·~ v-;;-
as · I\ ; ' . 1 ( ', and - : ( The 

rt'lerred w cis. . the effecti>e solid solub11i1y. effective 
dfoctivi;; dilfosion cot'lfo.:1o::nt We thus ha\e approximated the solution 

a solution to a scalar Stefan problem. In other \\Ords the 
can be described the dissolution of a m a 

c1,1ncentrntion and are 
given by a g~·omt'trica! mean of all particle 1.:om:entrations and diffusion coettkients imoi\ed. One 
can ink'.grate i 28 l in time to yield 

I 

dl \ 

This case holds !iJr the assump.tinns thal the partide concentrations are much larger than the con
centrations at th<: moving . ~1on::O\er. the initial concentrations in the primary phase has to 
be equal to zero. Nevertheless. Eq. ( 28) giws a good insight into the influence of the addition of 
an alloying element to the dissolution kinetics. The approximation may be used to test the results 
from the more general numerical solution. For the case in which the particle concentrations of all 
alloying elements are equal. i.e. cfdl1 ~-= cr«n and m, =-- I, Vi ;:.: { L .... 11}. one can simplify the effective 
quantities to flir this very spt·cial case: 

:=(·n 
!=l 

h can now be seen that the effective diffusion coefficient is equal to the geometric mean of all the 
diffusion coefficients t)f the dements. 

To clarify this quasi-binary approach we compare this approach to the more general approach 
as described in Section 4. We take the following hypothetic quantities: c:' === 0. c;a11 33 mol m1• 

= i x ! and m, = I. for i E { I. 2. 3} and == 0.1. Frnm the approach as described in this 
section. one obtains for the etfocti\e values: == 2..t4ll5 l0 '. 33. == I, ·which yields: 

t) 0.15 x !O ~ Using the more general approach from Section 4 and ( 19) and ( 20 ). 
one obtains as a solution: Su) == O. l 6 x io-·\/i. The difference between the two solutions is 
small. The approximate solution gives a good order magnitude for the dissolution kinetics. 



FJ. Vermolen. C. Vuik/Journal of Computational and Applied Mathenu1tics 126 (2000! 2}3-254 243 

6. The numerical method for vector-valued Stefan problems 

Various numerical methods are known to solve Stefan problems: front-tracking. front-fixing, and 
fixed-domain methods [I O]. In a front-fixing method a transformation of co-ordinates is used (a spe
cial case is the isotherm migration method (IMM)). Fixed-domain methods are the enthalpy method 
(EM) and the variational inequality method (VI ). Various methods are compared in [I 1]. The latter 
methods (IMM, EM, VI) are only applicable when the concentration is constant at the interface. 
Since in our problem the concentration varies at the interface we restrict ourselves to a front-tracking 
method. Front-tracking methods are described in [24,3.19,44,4,45, I 7]. Recently a number of promis
ing methods are proposed for multi-dimensional Stefan problems: phase field methods [6,7.41] and 
level set methods [22.29,9]. 

Our main interest is to give an accurate discretization of the boundary conditions for a one
dimensional Stefan problem. Therefore, we use the classical moving grid method of Murray and 
Landis [24] to discretize the diffusion equations. First an outline of the numerical method is given. 
In the present paper we generalize the method from [34] to a method which can be used for 
vector-valued Stefan problems. 

The equations are solved with a finite difference method in the r- and t-direction. A characteristic 
feature of a front-tracking method is that the interface positions are nodal points in every time step. 
So, the position of the grid points depends on time. An outline of the algorithm is: 

1. Compute the concentration profiles solving the nonlinear problem given by ( 1)-(6 ), ( 8 ), 
2. Predict the positions of SL and SR at the new time step: SL (t + b.t) and SR( t + b.t ), 
3. Redistribute the grid such that SL(t + b.t) and SR(t + b.t) are nodal points. Use linear interpolation 

to approximate the concentrations at the previous time step on the new grid points, 
4. Return to step 1. 

6.1. Discreti=t1tio11 1~( the interior region 

In [34] the method is explained using an equidistant grid. For efficiency reasons we use a 
nonequidistant grid to solve vector-valued Stefan problems. The motivation for this is: from the
ory and numerical experiments it appears that the absolute values of the concentration gradients of 
the diffusing alloying elements are maximal at the moving boundaries. As the displacement of a 
free boundary is proportional to the concentration gradient the space discretization in the neighbor
hood of this boundary should be very accurate. Therefore a fine discretization grid is chosen near 
the free boundaries and a coarse grid farther away. A geometrically distributed grid is chosen. As 
an example consider one free boundary (SR(t) =MR, t E [0. T]). The grid is distributed such that 
b.r;+1 = {J.6..rj~~l' with {J ~ 1 and b.rr1 := rl+~I - rr1. The resulting discretized equation for one 
alloying element is given by (for ease of notation we omit here the index i) 
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where cf approximates the concentration c(r/, jb..t). For more details we refer to [31, 
pp. 255-261]. 

6.2. Discrete boundary condition at a moving boundary 

For the case of two moving boundaries, i.e. M1 < S1(t) and SR(t) <MR, t E [O, T], the solutions 
of the diffusion equations are formally determined by the concentrations of all alloying elements 
at the boundaries S1 and SR- So a change of a concentration at S1 influences the solution of the 
diffusion equations and hence the gradients of concentration at SR (and vice versa). However, it has 
been shown in [34] that for b..t sufficiently small the concentrations at (j + 1 )b...t in the vicinity of 
S1 are not influenced by the concentrations at (j + 1 )b...t in the vicinity of SR. An explanation is 
given using the theory of penetration. In most applications b..t is already chosen less than this bound 
for accuracy reasons. So in this section we assume that the boundary conditions on both moving 
boundaries are independent. 

The boundary conditions are discretized with virtual grid points. The virtual concentrations are 
eliminated by (30). For ease of notation we only consider S1 and assume that <l>1 = {l, ... ,n} and 
SR( t) = MR. All concentrations which satisfy ( 30) and the boundary conditions on MR are functions 
of c/~ 1 , i E {l, ... ,n}, which is the concentration of alloying element Sp; at S1 . To determine these 
remaining unknowns one has to solve the following nonlinear equations: 

f ( J+l J+I )·-[]) ( ,part J+l )( J+l }+I) []) ( ,Part }+I)( }+I }+I ) _ 0 
i ci,O ,ci+l,O .- j ci+l - Ci+l,O. C;,1 - ci,-1 - i+l C; - C;,o C;+l,l - Ci+l,-1 - (31) 

for i E { 1, ... , n - 1} and 
n 

f ( }+I ,j+l )·-II< J+l )"'; K - 0 n C1,0 , •.• ,cn,0 .. - ci,O . - L - • (32) 
i=l 

To approximate a root for the vector function (f1>-··,fn? we use the Newton-Raphson method: 

(
c(,"';

1(p+l)) (c(,"';1(p)) (-/1(P)) 
: = : + (J(p))-1. : ' 

c!"';'(p+l) c!"';1(p) -fn(P) . , 

(33) 

where J is the Jacobian and the pth iterate of the concentration is denoted by c/t 1 ( p ). The matrix J 
is sparse. Only the matrix elements of the last row and the elements J;,; and J;,;+ 1, i E { 1, ... , n - 1} 
are nonzero. In practice, it is impossible to compute the first n - 1 rows of J. Therefore we use a 
discrete approximation J. The elements of J are obtained from 

' _ }+1 j+l j+I J+l 
J;,; - [f;(c;,o + e,ci+1,0 )- f;(ci,o - e,c;+1,0 )]/2e, i E {l, ... ,n - 1}, 

' _ j+I j+I j+I j+I 
J;,;+1 - [fi(c;,o ,ci+1.o + e) - f;(c;,o ,ci+1,0 - e)]/2e, i E {1, ... ,n - 1 }. 

Note that e has to be sufficiently small, but larger than the accuracy of the numerical scheme to 
evaluate the concentrations. The computation of J requires that in every Newton-Raphson iteration 
the discretized equations have to be solved 2(n - 1) times (also when SR(t) < MR). 

To start the Newton-Raphson procedure an initial guess has to be found. To prevent convergence 
to an undesired root, the initial guess is chosen as close as possible to the root. For time-steps j > 1, 
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the boundary concentrations from the former time step are chosen as initial guesses. However, at 
time step j = l, the analytical approximations are used. We tenninate the iteration when 

n 

2.::ic/; 1<p+ 1)-c/;1<11)1 <t:. 
i=l 

6.3. Adaptation l~l the nwvin(I houndaries 

We have not used all boundary conditions given in ( 7) to determine the concentrations. The 
remaining conditions are used to adapt the positions of the moving boundaries. In [34] the Euler 
Forward and Trapezium time integration methods are described to detem1ine the moving boundary 
positions. The Trapezium method is preferred because the costs per iteration are the same for both 
methods, but the results obtained with the Trapezium method are more accurate [34]. For the solution 
of a vector-valued Stefan problem we have implemented the Trapezium integration method iteratively, 
simultaneously with the Newton-Raphson iteration to obtain c/; 1• The iteration is terminated when 

~ lc]+l( +I) - CJ+l( )I+ 1sr1( p +I) - srl(p)I <e. 
~ 1.0 P 1.0 P S 1 _ M 
iE<l>L l. L 

7. Numerical experiments 

This section contains some numerical experiments. Experiments to test the accuracy of the numer
ical calculations have been omitted. Here we remark only that the accuracy of the time integration 
was order b..t and the accuracy of the mesh size was order b...r2 • For stability reasons we took 
b..t < 1000(b..r2/max(lll1 )). We refer to [34] for more details. First we compare the solutions ob
tained with the numerical method, as described in Section 6 with the solutions from the analytical 
relations of Sections 4 and 5. We also show the behavior of the concentration profile of the alloying 
elements. Finally, we show an example of an application of the model in aluminum industry. 

7.1. A comparison between the numerical and analytical solutions 

The first example treats a system in which the analytical results do not differ very much. We have 
set: cfart = 100, c~1 =0, lll1 =ix I 0- 13 , i E {I, 2, 3}, K = L S1.( 0)=0.1 x 10-6 m. For the finite distance, 
we set SR( 0) = MR = 0.1 x 1 o-~ m. Where we imposed an homogeneous Neumann condition. The 
position of the moving boundary, S(t ), has been sketched as a function of time in Fig. 2. In this 
figure we also present three analytical curves: the analytical solution obtained from Eqs. ( 19) and 
(20) and both the upper and lower bounds for the dissolution kinetics as given in Eq. (22) (Fig. 3). 
It can be seen that the analytical curves hardly differ. This is because cfart » cf01 • It can also be seen 
that the results from the numerical approach matches perfectly with the results from the analytical 
approaches at the early stages. However, at the later stages. from t > 150, the approaches start to 
differ significantly. This is due to the fact that the primary phase, in which we have diffusion, starts 
to saturate: the concentration profiles start to flatten. To illustrate this behavior, the concentration 
profiles of all the alloying elements have been sketched at t = 50 and 200, respectively, in Figs. 4 
and 5. At t = 50 the concentration of the chemical elements at MR has hardly changed. Up to then, 
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Fig. 2. The numerical and analytical results for cf"n = 100. 

Fig. 3. (cf"rt=20) Curve l: lower bound, Curve 2: analytical solution, Curve 3: upper bound, Curve 4: numerical solution. 

the numerical and analytical solutions match pe1fectly (see Fig. 2 ). It can be seen that at t = 200 the 
concentration of the alloying elements at MR starts to increase. The profiles flatten and the dissolution 
kinetics are delayed compared to the analytical approaches for the unbounded domain. This has been 
remarked before. 

In the second example we maintained the settings of the first example except for the particle 
concentrations: cfart = 20, i E { 1, 2, 3} and MR = 0.2 x 10-5. The results have been sketched in Fig. 
3. The analytical curves differ more than in the preceding example. The analytical solution falls 
just within the limits and so does the numerical solution initially. It can however, be seen that the 
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Fig. 5. Co1H.:cmration profiks of the chemical elements at I= 200. 

247 

numerical approach and exact analytical approach for the unbounded domain differ a little at already 
early stages. This is attributed to the numerical inaccuracy. At the later stages it can be seen that 
the numerical and analytical solution start to deviate Sib,111ificantly. This is again attributed to the 
saturation of the primary phase. From the experiments it may be seen that the analytical curves 
provide a good order of magnitude for the dissolution kinetics as long as the concentration at the 
fixed boundary does not change significantly. 
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Fig. 6. The interface position as a function of time for a dissolving plane (cJ'ar1 = 100). 

7.2. The quasi-binary and multi-component approach compared 

For the same two configurations as in the preceding subsection, we look at the quasi-binary and 
multi-component approach. With the quasi-binaiy approach, we mean the finite difference calcula
tions, in which we incorporate the effects of the finite cell dimensions, done with the so-called 
effective diffusion coefficient, effective interface and particle concentration. 

Fig. 6 presents the calculations done for the first case of the preceding subsection, i.e. the par
ticle concentration is 100 for all chemical elements. It can be seen that the difference between the 
quasi-binary and multi-component approach is negligible. The same calculations have been done for 
the case that the particle concentration is 20 for all chemical elements. The results are shown in 
Fig. 7. As can be expected from the theory, the difference between the calculations is larger now. 
Nevertheless, the calculations, still do provide a good order of magnitude. This quasi-binary approach 
may be used to test the numerical calculations for the multi-component algorithm for cases in which 
the cell radius is not large. Moreover, the quasi-binary approach can be used well as an engineering 
solution for the case that no multi-component algorithm is available or to save CPU-time. 

For completeness it is noted that all the theory about the quasi-binary approach is only valid for 
the case that the geometry is planar, although we expect that it is also a suitable approach for other 
geometries. 

7.3. A spherical example with five alloying elements 

An example of an application of the model to five alloying elements is given in Fig. 8. Figure 
8 displays the interface position as a function of time for a spherical geometry. We chose c;ari = 
20, SL(O) = 1 x 10-6, SR(O) =MR= 5 x 10-6 and []);=ix 10- 13 , i E {1, ... ,5}. It can be seen 
that the shape of the curve differs from the planar geometry. This difference is due to the curvature 
of the moving boundary: during dissolution the moving boundary area decreases, whereas this area 
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Fig. 7. The interface position as a function of time for a dissolving plane (cj'art = 20 ). 
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Fig. 8. The interface position as a function of time for a dissolving sphere with five alloying elements. 

remains constant for the planar case. It may also be noted that the interface position does not assume 
a square-root-like behavior as in the case of a planar particle. This characteristic can be observed 
for cylindrical and spherical geometries. Another characteristic that can be observed for curvilinear 
geometries is the dependency of the interface concentrations on time (see Fig. 9 ). The increase 
of the interface concentrations is physically interpreted as an accumulation of the slower alloying 
elements on the interface. These slower alloying elements diffuse at a slower rate from the interface 
deeper into the primary phase. 
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Fig. 9. The interface concentrations as a function of time. 

7.4. An industrial example with a three-component system 

As an industrial example of the mathematical model, we look at a three-component system. We 
consider the simultaneous dissolution of a Si-particle and a Mg2Si-pat1icle in an Al-alloy. The silicon 
particle is in the center of the spheiical cell in which we consider the dissolution. The Si-particle 
is enclosed by the aluminum-rich phase (primary phase), which is enclosed by a Mg2Si-phase. 
We also have incorporated a temperature-time profile, which is common in aluminum industry. 
The alloy is heated from 300 up to 823 K with a heat-up rate of 0.05 K/s. The initial concen
tration in the primary phase is: cgi = 0, c~g = 0.04, whereas the pa11icle concentrations are given 

by: c~rl = 100, c~~-~1 = 35 and c~;R = 65. For the diffusion coefficients of silicon and magnesium, 
we, respectively, have II:Dsi = 2.02 x 10-4 and [])Mg = 0.49 x 10-4 _ Then for the solubility product 
of silicon and magnesium in aluminurn, we have K = 4.03 x 10-5 • exp(74488/8.3 - r), in which 
T is the temperature. For the solubility of silicon in aluminum, we have used the discrete data 
from [23]. 

We assume that no magnesium diffuses into the silicon particle, i.e. we impose an homogeneous 
Neumann condition for magnesium at boundary Sr. Due to the homogeneous Neumann condition 
at Sr, magnesium accumulates at this boundary. For the case that the concentration of magnesium 
at the boundary of the silicon particle (SL) is low enough, one can use the solubility of silicon 
in pure aluminum, given by binary-phase diagrams. If, however, magnesium accumulates up to a 
certain threshold value, the concentration of silicon at the boundary Sr has to satisfy the hyperbolic 
relationship of the solubility of silicon and magnesium in aluminum. In a more mathematical notation, 
we thus write for the silicon concentration at the boundary Sr: 

(34) 
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Fig. 10. The concentrations at the moving boundary as a function of time. 
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Fig. 11. The moving boundary positions as a function of time. 

In which H represents the heavy-side function and the threshold concentration C follows from the 

continuity of the above relation (34 ), i.e.: C = V KMg28JKsi· Note that KMg2si and Ksi are functions 

of temperature and hence so is C. The results of the experiments with the simultaneous dissolution 
of an Si and Mg2 Si-particle are shown in Figs. 10 and 11. 

It can be seen from Fig. I 0 that both the silicon and magnesium concentration at the boundary 
SR increase with time. This is due to the temperature increase. When the temperature is constant 
(833 K, t = 2.05 x 104 ), the concentrations at the boundary SR stay approximately constant. It can 
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also be seen that the silicon concentration at SL starts to increase very rapidly after approximately 
1.6 x 104 s. Once the temperature is fixed, the Si-concentration at SL is fixed as welL until the 
magnesium concentration has passed the so-called threshold concentration C (at t = 2. 7 x 104 ). 

The Si-concentration then sta1ts to decrease according to Eq. (34). We only have shown the most 
interesting part of the calculation (t E (0, 3.1 x l 04]). The evolution of the moving boundary positions 
is shown in Fig. 11. Note that due to the jump in the functional dependency in Eq. (34), the Sr(t) 
may have a discontinuous time derivative. 

8. Conclusions 

A mathematical model is presented to describe the dissolution of stoichiometric multi-component 
particles in multi-component alloys. 

A definition is introduced about conserving solutions to Stefan problems. It is proved in !Rd for a 
scalar Stefan problem that no conserving solution exists if 

( cpart _ co)( crart _ csol) ~ O, csol i- co and co, csol, cPart E [R+ U { 0}. 

For a planar particle dissolving in an unbounded domain, a self-similar solution is given for the 
the dissolution of a multi-component particle. From the exact similarity solution two bounds have 
been derived for the dissolution of a planar particle in an unbounded domain. These bounds are 
easy to calculate and provide good insight into the dissolution kinetics and can therefore be used 
for engineering purposes as well. 

For the case of initial concentrations equal to zero, a simple expression is derived for the disso
lution in terms of an effective diffusion coefficient. It turns out that the effective diffusion coefficient 
is equal to a geometric mean of all diffusion coefficients involved. The weight factors come from 
the particle concentrations. 

Finally, a nume1ical method is presented to deal with more general cases: cylindrical/spherical 
co-ordinates and two boundaries. It has been shown that the results of the numerical method abiree 
well with the results obtained from the analytical approaches for the planar case as long as the 
solution at the fixed boundary did not change significantly from the initial condition. 
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