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ABSTRACT

We consider a simplified model of vertical non-static groundwater flow, resulting in a
Burgers’ diffusive equation extended with a third order term with mixed derivatives in space
and time. This model is motivated by previous work on the existence of travelling wave
solutions on a more general model. We investigate stability of travelling wave solutions of
the simplified model, for which we first obtain well-posedness results.
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1 Introduction

In this paper we consider the pseudo-parabolic Burgers’ equation

ut = uxx + 2uux + ε2uxxt on R× [0, T ] (1.1)

with initial data
u(0, x) = u0(x) in R. (1.2)

Here ε is a positive parameter. Setting ε = 0 equation (1.1) reduces to the classical
Burgers’ equation, see e.g. [11], which, depending on u0 has solutions exhibiting
several possible large time behaviours: convergence to a selfsimilar source type
solution, a rarefaction wave or a travelling wave, see [11] and [13].

After a change of notation, equation (1.1) is a special case of

St = {Sα + SβSx + ε2Sα(SγSt)x}x, (1.3)

in which α, β and γ are nonnegative constants. We studied (1.3) in [6] as a model
equation for Darcy flow in porous media with a dynamic capillary pressure relation,
the general form of the equation being

St = {K(S) +K(S) (−pc(S) + L(S)St)x}x . (1.4)
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In (1.4) the unknown is the water saturation S in a vertically placed one-dimensional
porous medium, K(S) the conductivity, pc(S) the capillary pressure function and
L(S) a damping coefficient. Taking powerfunctions for these nonlinear functions
of S leads to (1.3) under the assumption that S is small. We note that equation
(1.4) combines conservation of mass, the law of gravity and Darcy’s law with the
pressure-saturation relation

pc(S) = pa − pw + L(S)St, (1.5)

where pa and pw denote the air and water pressures. The dynamic term with the
time derivative accounts for the third order term in (1.3). This extension of the
Darcy flow model is based on the approach introduced by Hassanizadeh & Gray
[9] and previous experimental work done by Stauffer [16], among others, see [8] for
an overview. Earlier modifications can be found in [1] and [2]. In the context of
homogenization and hysteresis, see also [4], [17] and [10].

Returning to (1.3), we note that it is a nonlinear diffusion-convection equation
with an additional nonlinear third order term involving two space derivatives and
one time derivative. Equations with such a term are sometimes called pseudo-
parabolic, see e.g. [7]. In principle this term allows to rewrite the equation as a
nonlinear ordinary differential equation (ODE) in a suitable function space, which
involves the solution operator of an elliptic equation in the space variable. However,
in view of the degeneracies in (1.3) as S → 0, it is far from clear how this has to be
implemented if S is not bounded away from zero. Of course one may lift the initial
data by a small parameter δ and then take the limit δ → 0, but in the absence of a
comparison principle (except in very special cases) the limit solution has not been
shown to exist.

This is more than just a technical complication in view of the results of a study
of the possibility of having travelling wave solutions fitting in the familiar picture
of propagating fronts separating dry and wet regions. The local analysis in [12]
indicates that this depends heavily on the parameters in (1.3), as is confirmed by
the formal arguments in the same paper. We note that the equation studied in
[12] corresponds to a horizontal medium, i.e. without gravity. Including gravity
(pointing in the negative x-direction) has no effect on the issue of dry-wet fronts
but it does in general allow for global travelling wave solutions connecting two
saturation levels, say S(−∞) = δ > 0 and S(+∞) > δ at respectively x = −∞ and
x = +∞. Indeed, in [6] we showed that equation (1.3) has such travelling waves
moving with speed c given by the Rankine-Hugoniot condition

c =
S(+∞)α − S(−∞)α

S(+∞)− S(−∞)
. (1.6)

These travelling waves converge to a limit as δ → 0 only if the equation (with or
without convection) allows local travelling waves with dry-wet fronts. Of the two
possible types of such fronts, see [12], the limit established in [6] then selects the
flattest one, consistent with the formal asymptotics in [12].

In this paper we aim for a better understanding of the effect of the third order
term on the dynamics of diffusion and convection. Intuitively one expects that
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this effect is more notable if the large time behaviour of solutions of the diffusion-
convection equation is characterised by profiles which do not become flat (in terms
of their dependence on x). This is why we restrict our study of the large time
behaviour to the travelling wave case, meaning that S(+∞) > S(−∞) ≥ 0. In fact
we shall only consider the large time behaviour of solutions of (1.1), the simplest
pseudo-parabolic equation allowing convection-driven travelling waves, with initial
data satisfying

u0(−∞) = 0, u0(+∞) = 1. (1.7)

We will show that such solutions converge to a travelling wave solution

u(x, t) = φ(x+ t), (1.8)

provided the travelling wave profile φ is monotone. This depends on ε > 0: travelling
wave solutions connecting zero to one and travelling with speed one exist for all
ε > 0, but only when 0 < ε < 1

2
the profiles are monotone, see Section 3.

Our stability result is of a global character and therefore we first require well-
posedness results for the initial value problem. To this end we reformulate equation
(1.1) in Section 2 as

ut = Fε(u) = Aεu+Bεu
2, (1.9)

where Aε, Bε are linear operators defined by

Aεu = (I − ε2 d
2

dx2
)−1uxx ; Bεu = (I − ε2 d

2

dx2
)−1ux, (1.10)

and study local well-posedness of the ODE (1.9) in several Banach spaces, namely
in L1 ∩ L2, L1 ∩ H1, L∞, L2 and H1. Here Lp(R) = Lp with norm u → |u|p and

H1 = H1(R) is the Sobolev space with norm u → ||u|| =
√
|u|22 + |u′|22. We note

that although formally equation (1.1) preserves the integral (conservation of mass),
the map u→ Bεu

2 is not well defined on L1, hence the choice of L1 ∩L2 with norm
u→ |u|1,2 = |u|1 + |u|2, and L1 ∩H1 with norm u→ ||u||1,2 = |u|1 + ||u||.

Since travelling wave solutions do not belong to Lp if 1 ≤ p <∞, we also consider
(1.1) in affine spaces of the form H +X, where H is any smooth function such that
H(−∞) = 0, H(+∞) = 1. It is no restriction to assume that H ′ is nonnegative
and compactly supported. In Section 4 we obtain local well-posedness in H+X for
X = L2, L1 ∩ L2, H1, L1 ∩H1.

In Section 5 we establish mass conservation: if u1 and u2 are solutions of (1.1)
with u1 − u2 in L1 ∩ L2 then

d

dt

∫
R
(u1(x, t)− u2(x, t))dx = 0 for all t.

This allows us to follow [13] by introducing

v(x, t) =

∫ x

−∞
(u(s, t)− φ(s+ t))ds. (1.11)

The function v is well defined if u is in H + L1. For solutions u with values in
H +X, X = L1 ∩ L2, shifting either φ or u0 we may restrict attention to solutions
v of

vt = vxx + v2
x + 2vxφ+ ε2vxxt, (1.12)
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with v(+∞) = 0. Equation (1.12) is analysed in Section 6. Again we establish
local well-posedness in several natural spaces, in particular in H1 and H2 = {v ∈
L2; v′, v′′ ∈ L2}. Using the identities

1

2

d

dt

∫
R
(v2 + ε2v2

x)dx = −
∫
R
(1− v)v2

xdx−
∫
R
φ′v2dx, (1.13)

and
1

2

d

dt

∫
R
(v2
x + ε2v2

xx)dx = −
∫
R

v2
xxdx+

∫
R
φ′v2

xdx, (1.14)

we obtain a global well-posedness result for solutions of (1.12) in H2. Finally,
to formulate and prove stability results we need φ′ ≥ 0 and v(x, 0) sufficiently
small in H1 guaranteeing v < 1. Using (1.13) this gives convergence of the integral∫∞

0
||v(·, t)||2dt and thereby of

∫∞
0

∫∞
−∞ |u(x, t)−φ(x+t)|2dxdt. If in addition v(x, 0)

is in H2 we adapt methods from in [14] showing that v(·, t) → 0 in H2 whence
||u(·, t)− φ(·+ t)|| → 0 as t→∞.

A natural question is of course whether the monotonicity of φ is essential. In the
context of Korteweg-de Vries type of equations there are examples where a switch
from monotone to oscillatory behaviour of the travelling wave leads to instability,
but this depends on the exponent in the nonlinearity, see [15].

We conclude this introduction with the observation that we have avoided a trans-
formation of the problem to travelling wave variables. Such a change is common in
the study of stability properties of travelling wave solutions of Burgers’ and other
“normal” equations. Here it would lead to an equation with yet another third or-
der term involving three space derivatives, which cannot be seen as an ODE in a
function space.

2 Local well-posedness in Banach spaces

In this section we show that the initial value problem for the ODE (1.9), which as
we recall reads

ut = Fε(u) = Aεu+Bεu
2,

is locally well-posed in the Banach spaces L1 ∩ L2, L1 ∩H1, L∞, L2 and H1. The
operators Aε and Bε may be rewritten as

Aεu = (I − ε2 d
2

dx2
)−1uxx =

1

ε2

(
(I − ε2 d

2

dx2
)−1 − I

)
u =

1

ε2
(gε ∗ u− u) , (2.1)

and

Bεu = (I − ε2 d
2

dx2
)−1ux = gε ∗ ux, (2.2)

where

gε(x) =
1

2ε
e−
|x|
ε (2.3)

is the Green’s function for the problem

−ε2w′′ + w = f. (2.4)
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That is to say,

w(x) = (Gεf)(x) = (gε ∗ f)(x) =

∫
R
gε(x− y)f(y)dy (2.5)

is the solution of (2.4). Since for any u ∈ Lp with 1 ≤ p ≤ ∞, the derivative (gε∗u)x
is well defined and (gε ∗ u)x = g′ε ∗ u we have

Bεu(x) = (g′ε ∗ u) (x) =
1

ε2

∫
R
gε(x− y)

∫ y

x

u(s)dsdy for all x ∈ R. (2.6)

Theorem 2.1 Let X denote any of the Banach spaces L1 ∩ L2, L1 ∩H1, L∞, L2

and H1. Then for all u0 ∈ X there exists T > 0 such that there exists a unique
solution u ∈ C1([0, T ];X) of (1.9).

Theorem 2.1 will follow from Picard’s Theorem: if X is a Banach space and F :
X → X is Lipschitz continuous in a neighbourhood of u0 ∈ X, then there exists
T > 0 and a unique solution u ∈ C1([0, T ]; X) of ut = F (u) with u(0) = u0. We
shall show that Fε is locally Lipschitz continuous on each of the Banach spaces
listed above. This is done within the next five lemmas and is based on the following
properties of gε:

|gε|1 =

∫
R
gε(y)dy = 1, |gε|22 =

∫
R
(gε(y))2dy =

1

4ε
, (2.7)

|g′ε|1 =

∫
R
|g′ε(y)|dy =

1

ε
, |g′ε|22 =

∫
R
(g′ε(y))2dy =

1

4ε3
, (2.8)∫

R
gε(y)|y|dy = ε,

∫
R
g′ε(y)dy = 0. (2.9)

Lemma 2.2 The map Fε is locally Lipschitz continuous in L∞.

Proof. Since Aε = 1
ε2

(Gε − I) it follows from (2.7) that Aε is a bounded linear
operator in L∞ with ‖Aε‖B(L∞) ≤ 2

ε2
. Thus it is (uniformly) Lipschitz continuous

on L∞. By (2.6) and (2.9) we have

|(Bεu)(x)| ≤ 1

ε2

∫ ∞
−∞

gε(x− y) |x− y| |u|∞ dy =
1

ε
|u|∞,

which implies that the operator Bε is a bounded linear operator in L∞. The map
u→ u2 clearly maps L∞ into L∞, and is locally Lipschitz continuous: if u1, u2 ∈ L∞
are such that ‖ui‖∞ ≤ R, for some R > 0, then

|u2
1 − u2

2|∞ = |(u1 + u2)(u1 − u2)|∞ ≤ 2R|u1 − u2|∞.

2

Lemma 2.3 The map Fε is locally Lipschitz continuous in L2.

5



Proof. Since Aε is the Hille-Yosida approximation of the operator A = − d2

dx2 , which
is maximal monotone in the Hilbert space L2, Aε is bounded linear operator in L2

with |Aε|B(L2) ≤ 1
ε2

, see [5]. In view of Bεu = g′ε ∗u, the inequality |f ∗g|p ≤ |f |p |g|1
and (2.8), the linear operator Bε is bounded in L1 and bounded as an operator from
L1 to L2, with

‖Bε‖B(L1,L2) ≤
(∫

R
|g′ε(y)|2dy

)1
2

=
1

2ε
3
2

. (2.10)

For u1, u2 ∈ L2 with |ui|2 ≤ R we have

|Bε(u
2
1 − u2

2)|2 ≤ ‖Bε‖B(L1,L2)|(u1 + u2)(u1 − u2)|1 ≤
R

ε
3
2

|u1 − u2|2.

2

Lemma 2.4 The map Fε is locally Lipschitz continuous in H1.

Proof. Since A = − d2

dx2 is maximal monotone on the Hilbert space H1, its Hille-
Yosida approximation Aε is a bounded linear operator in H1 with ‖Aε‖B(H1) ≤ 1

ε2
.

For u1, u2 in H1 with ||ui|| ≤ R we now have

|Bε(u
2
1 − u2

2)|2 ≤
R

2ε
3
2

||u1 − u2||,

and

|
(
Bε(u

2
1 − u2

2)
)
x
|2 ≤ ‖Bε‖B(L1,L2) | ( (u1 + u2)(u1 − u2) )x |1 ≤

‖Bε‖B(L1,L2)( |(u1 + u2)x|2|u1 − u2|2 + |u1 + u2|2|(u1 − u2)x|2 ) ≤
R

ε
3
2

||u1 − u2||.

Thus u→ Bεu
2 is locally Lipschitz continuous. 2

Lemma 2.5 The map Fε is locally Lipschitz continuous in L1 ∩ L2.

Proof. The inequality |gε ∗ u|p ≤ |gε|1 |u|p for all 1 ≤ p ≤ ∞ and (2.7) imply that
Aε is a bounded linear operator in L1 with ‖Aε‖B(L1) ≤ 2

ε2
. Consequently Aε is also

bounded in L1 ∩ L2 with ‖Aε‖B(L1∩L2) ≤ 3
ε2

. Now Bε is a bounded linear operator
in L1(R) with

‖Bε‖B(L1) ≤
∫
R
|g′ε(y)|dy =

1

ε
, (2.11)

so by (2.11) and (2.10) u→ Bεu
2 maps L1 ∩L2 to itself. Let u1, u2 ∈ L1 ∩L2 with

|ui|1,2 ≤ R. Then

|Bε(u
2
1 − u2

2)|1,2 ≤ ‖Bε‖B(L1,L2)|(u1 + u2)(u1 − u2)|1 +

‖Bε‖B(L1)|(u1 + u2)(u1 − u2)|1 ≤

2R

(
1

ε
+

1

2ε
3
2

)
|u1 − u2|2 ≤ 2R

(
1

ε
+

1

2ε
3
2

)
|u1 − u2|1,2.

2

Lemma 2.6 The map Fε is locally Lipschitz continuous in L1 ∩H1.
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Proof. Again Aε is a bounded linear operator on L1 ∩H1 with ‖Bε‖B(L1∩H1) ≤ 3
ε2
.

As in Lemma 2.5 one has that Bε is locally Lipschitz continuous in L1 ∩H1 with
Lipschitz constant R

ε
3
2

on the ball with radius R in L1 ∩H1. 2

3 Travelling waves

The analysis of travelling wave solutions of (1.1) is similar to the analysis of trav-
elling wave solutions of (1.3) in [6]. Substituting

u(x, t) = φ(x+ ct) (3.1)

in (1.1), we have for φ(x), after an integration in x, that

c(φ(x)− φ(−∞)) = φ′(x) + c(φ(x)2 − φ(−∞)2) + ε2cφ′′(x), (3.2)

so that

c =
φ(∞)2 − φ(−∞)2

φ(∞)− φ(−∞)
. (3.3)

Restricting attention to φ(−∞) = 0 and φ(∞) = 1 we have c = 1 and (3.2) can be
written as a Lienard type system of two equations:{

ε2φ′ = ψ − φ
ψ′ = φ(1− φ)

The travelling wave solutions connecting φ(−∞) = 0 to φ(∞) = 1 are unique up
to translation and correspond to a unique orbit connecting the saddle (0, 0) to the
sink (1, 1). Note that (0, 0) has eigenvalues

λ1 = − 1

2ε2

(
1 +
√

1 + 4ε2
)
< 0, λ2 = − 1

2ε2

(
1−
√

1 + 4ε2
)
> 0 (3.4)

and (1, 1) has eigenvalues

µ1 = − 1

2ε2
(1−

√
1− 4ε2), µ2 = − 1

2ε2
(1 +

√
1− 4ε2), µ2 < µ1 < 0. (3.5)

The unique orbit coming out of (0, 0) into the first quadrant connects to (1, 1). This
follows from arguments very similar to the arguments in [6] and relies in particular
on the negativity of the divergence of the vector field.

If ε2 < 1
4

the eigenvalues at (1, 1) are negative: (1,−ε2µ2) is an eigenvector of the
slow eigenvalue µ1 and (1,−ε2µ1) is an eigenvector of the fast eigenvalue µ2. The
set {φ > 0, 0 < ψ < −ε2µ2φ+ (1 + ε3µ2)}, contained in the region where φ′ > 0, is
then invariant and contains the connecting orbit. Therefore φ is monotone if ε2 ≤ 1

4
.

In this case the invariant region gives an explicit upper bound for φ′, namely

φ′ =
ψ − φ
ε2

≤ 1 + ε2µ2

ε2
=

1−
√

1− 4ε2

2ε2
. (3.6)

Theorem 3.1 Equation (1.1) has a travelling wave solution connecting u = 0 in
x = −∞ to u = 1 in x = ∞. This solution is unique up to translation and of
the form u(x, t) = φ(x + t). If ε2 < 1

4
the profile φ is monotone increasing and its

derivative is bounded by (3.6).
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4 Local well-posedness in affine Banach spaces

In this section we show that the initial value problem for the ODE (1.9) is locally
well-posed in the affine Banach spaces Y = Ψ+X, X = L1∩L2, L1∩H1, L2, H1. We
recall that Ψ is a smooth function with Ψ(−∞) = 0, Ψ(∞) = 1 and Ψ′ nonnegative
and compactly supported. We say that u is a solution of (1.9) in C1 ([0, T ]; Y ) if
ū = u−Ψ is a solution in C1 ([0, T ]; X) of the equation

ūt = Fε(ū) + 2Bε(Ψū) + Fε(Ψ). (4.1)

Theorem 4.1 Let Y = Ψ+X, where X is any of the spaces L1∩L2, L1∩H1, L2, H1.
Then for all u0 ∈ Y there exists T > 0 and a unique solution of problem (1.1)
u ∈ C1 ([0, T ]; Y ).

Proof. If we show that the operator

ū→ Fε(ū) + 2Bε(Ψū) + Fε(Ψ)

is locally Lipschitz from X to X, the theorem follows again from Picard’s theorem.
From Section 2 we know that ū → Fε(ū) is locally Lipschitz in X for each of the
choices of X. We only need to prove that Fε(Ψ) ∈ X and that the linear map
ū→ 2Bε(Ψū) is a bounded operator in X.

Clearly Fε(Ψ) = AεΨ + BεΨ
2 = GεΨ

′′ + Gε(Ψ
2)′, Fε(Ψ) is in X for any of the

choices of X, because Ψ′′ and (Ψ2)′ are compactly supported (smooth) functions.
As for ū→ 2Bε(Ψū), we saw in (2.11) that Bε is a bounded linear operator in L1.
It is also bounded in L2 and H1 with

‖Bε‖B(L2) ≤
∫
R
|g′ε(y)|dy =

1

ε
, (4.2)

‖Bε‖B(H1) =

∫
R
|g′ε(y)|dy =

1

ε
, (4.3)

respectively. Thus Bε is bounded in L1 ∩ L2 and in L1 ∩ H1. Finally |Ψ|∞ = 1,
|Ψ′|∞ <∞,

|Ψū|2 ≤ |ū|2,

‖Ψū‖ ≤ |Ψū|2 + |Ψūx|2 + |Ψ′ū|2 ≤
|ū|2 + |ūx|2 + |Ψ′|∞ |ū|2 ≤ ‖ū‖H1 (1 + |Ψ′|∞)

Combining (4.2) and (4.3) with the above estimates we get that ū→ 2Bε(Ψū) is a
bounded linear operator on each X. This completes the proof. 2

5 Conservation of mass

In this section we prove that equation (1.1) preserves the integral if we consider
solutions in Ψ +L1 ∩L2. Note that unlike in the case of the Burgers’ equation, this
is not the same as being contracting in L1. Again this is due to the absence of a
comparison principle.
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Proposition 5.1 Let u1, u2 be two solutions of equation (1.9) in C1 ([0, T ]; Ψ + L1 ∩ L2).
Then∫

R
(u1(x, t)− u2(x, t))dx =

∫
R
(u1(x, 0)− u2(x, 0))dx for all t ∈ [0, T ]. (5.1)

Proof. Consider the composite map

F : t ∈ [0, T ]→ u(·, t) ∈ L1 ∩ L2 →
∫
R
u(x, t)dx ∈ R

where u = u1 − u2. Since by definition u ∈ C1([0, T ];L1 ∩ L2), we have F ∈
C1([0, T ],R). The chain rule implies that

F ′(t) =

∫
R
Aε(u1(x, t)− u2(x, t))dx+

∫
R
Bε(u

2
1(x, t)− u2

2(x, t))dx. (5.2)

We claim that both terms in (5.2) are zero for all t ∈ [0, T ].
To see that the first term is zero, we recall that Aε = 1

ε2
(Gε − I) and note

that
∫
RGεu =

∫
R u for all u ∈ L1. This is immediate from the definition of Gε as

convolution with the Green’s function for (2.4): if f ∈ L1 then both w and w′ are
in L1 and

∫
Rw =

∫
R f .

Before proving
∫
RBε(u

2
1(x, t) − u2

2(x, t))dx = 0 we observe that
∫
RBε(u

2
1(x, t) −

u2
2(x, t))dx is well-defined. If ui = ūi + Ψ, i = 1, 2 then

u2
1 − u2

2 = ū2
1 − ū2

2 + 2Ψ(ū1 − ū2).

Since ū2
1− ū2

2 ∈ L1 and 2Ψ(ū1− ū2) ∈ L1 ∩L2 we have u2
1− u2

2 ∈ L1. In Lemma 2.5
(2.11) we saw that Bε ∈ B(L1) and therefore

∫
RBε(u

2
1(x, t) − u2

2(x, t))dx is well
defined.

Now let w ∈ L1 and consider the integral∫
R
Bεw(x)dx =

∫
R

(∫
R
g′ε(x− y)w(y)dy

)
dx.

Applying Fubini’s theorem to g′ε(x−y)w(y) ∈ L1(R×R) we obtain, in view of (2.9),∫
R
Bεw(x)dx =

∫
R
w(y)

(∫
R
g′ε(x− y)dx

)
dy = 0,

which in particular holds for w = u2
1(·, t)− u2

2(·, t) ∈ L1. Thus also the second term
in (5.2) is zero. 2

6 Integrated equation

Now that we have conservation of the integral we may adapt ideas from [13]. Rather
than solving (1.1) for the unknown u(x, t) we consider an equation for the unknown
v(x, t), which is formally defined as

v(x, t) =

∫ x

−∞
(u(s, t)− φ(s+ t))ds. (6.1)
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Thus if u is a solution of (1.1) in C1 ([0, T ]; Ψ + L1 ∩ L2), then by Proposition 5.1∫
R
(u(s, t)− φ(s+ t))ds =

∫
R
(u(s, 0)− φ(s))ds for all t ∈ [0, T ], (6.2)

which, without loss of generality, we take equal to zero, just by shifting φ. This will
allows us to work with function spaces for v having v(±∞, t) = 0 in some weak or
strong sense. The equation for v(x, t) is obtained by formally integrating (1.1). It
reads

vt = vxx + v2
x + 2vxφ+ ε2vxxt, (6.3)

and may be rewritten as an ODE in similar fashion as equation (1.1). This yields

vt +
1

ε2
v = Gε

(
1

ε2
v + v2

x + 2vxφ

)
. (6.4)

Proposition 6.1 Let u be a solution in C1 ([0, T ]; Ψ + L1 ∩ L2). The v defined by
(6.1) is a solution of (6.4) defined on [0, T ].

Proof. We rewrite equation (1.9) as

ut +
1

ε2
u = Gε(

1

ε2
u+ u2)x. (6.5)

Subtracting from (6.5) the same equation for φ(x+ t) we arrive at

zt +
1

ε2
z =

1

ε2
Gεz +Gε(z

2 + 2zφ)x. (6.6)

for z(x, t) = u(x, t)− φ(x+ t). We define the operator J : L1 → L∞ by

(Jf)(x) =

∫ x

−∞
f, (6.7)

and apply J to (6.6). Then

(Jz)t +
1

ε2
Jz =

1

ε2
JGεz + JGε(z

2 + 2zφ)x,

and v = Jz will satisfy (6.4) if JGεf = GεJf and JGεfx = Gεf for all f ∈ L1.
We note that J commutes with Gε. Indeed, if f ∈ L1, then w = Gεf has w, w′

and w′′ in L1 and satisfies the equation

−ε2w′′ + w = f.

Thus Jw = JGεf satisfies

−ε2(Jw)′′ + Jw = Jf,

whence GεJf = JGεf . Finally JGεfx = Gεf for all f ∈ L1(R) because

JGεfx = J(g′ε ∗ f) = (Jg′ε) ∗ f = Gεf,

where, if we write the integrals explicitly, we have used Fubini’s theorem applied to
(s, y)→ g′ε(s− y)f(y) on (−∞, x)×R. 2
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Remark 6.2 Note that if u ∈ L1 ∩H1 we only need Gε commuting with J in the
argument above. Applying J to (6.6) gives

(J(u− φ))t +
1

ε2
J(u− φ) = JGε(u− φ) + JGε(u

2 − φ2)x.

Since (u2 − φ2)x ∈ L1 this implies

vt +
1

ε2
v = Gεv +Gε(u

2 − φ2),

and the result follows because u2 − φ2 = (u− φ)(u+ φ) = v2
x + 2φvx.

7 Local well-posedness of the integrated equation

By Proposition 6.1 a solution u of (1.9) in C1 ([0, T ]; Ψ + L1 ∩ L2) defines a solution
v of (6.4) in the Banach space X = {v ∈ L∞ : vx ∈ L1 ∩ L2} with norm ||v||X =
|v|∞ + |vx|1,2. In this section we give a direct proof of local well-posedness of (6.4)
in a number of Banach spaces.

Proposition 7.1 The initial value problem for equation (6.4) is well-posed in each
of the following Banach spaces.

(i) X = {v ∈ L∞, vx ∈ L1 ∩ L2} with norm |v|∞ + |vx|1,2.

(ii) X = {v ∈ L∞, vx ∈ L2} with norm |v|∞ + |vx|2.

(iii) X = H1 with norm |v|2 + |vx|2.

(iv) X = {v ∈ L2, vx ∈ L1 ∩ L2} with norm |v|2 + |vx|1,2.

For each of these spaces it is also well-posed in X1 = {v ∈ X, vxx ∈ L2} with norm
‖v‖X1 = ‖v‖X + |vxx|2.

Proof. We rewrite the equation (6.4) as

vt = Aεv +Gε(v
2
x + 2φvx).

We first observe that the linear operator Aε is bounded in X and in X1. This follows
from (Aεv)x = Aεvx and (Aεv)xx = Aεvxx and the boundedness of Aε on L∞, L1

and L2, see Section 2.
Next we prove that the operator v → Gε(vxφ) is bounded in X and in X1. It

is bounded on L2 and L∞ because for all v ∈ Lp (1 < p ≤ ∞) we have, writing
φvx = (φv)x − φxv,

|Gε(φvx)|p ≤ |g′ε∗(φv)|p+|gε∗(φxv)|p ≤
1

ε
|φv|p+|φxv|p ≤ (

1

ε
|φ|∞+|φ′|∞)|v|p. (7.1)

Moreover,

|(Gε(φvx))x|p = |g′ε ∗ (φvx)|p ≤ |g′ε|1|φvx|p ≤
1

ε
|φ|∞|vx|p. (7.2)
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Thus the operator v → Gε(vxφ) is bounded in X for each of the choices of X.
Finally if vx ∈ L2 and vxx ∈ L2, then

|(Gε(φvx))xx|2 ≤ |g′ε ∗ (φvxx)|2 + |g′ε ∗ (φxvx)|2 ≤
1

ε
(|φ|∞|vxx|2 + |φ′|∞|vx|2), (7.3)

so v → Gε(vxφ) is also bounded in each X1.
It remains to show that the map v → Gεv

2
x is locally Lipschitz continuous in

X and in X1. It is well defined on X because with f = v2
x ∈ L1 the solution

w = Gεv
2
x of (2.4) has w,wx ∈ L2 and w,wxx ∈ L1. If in addition vxx ∈ L2, then

fx = (v2
x)x = 2vvvxx ∈ L1, so that wx has the same properties as just formulated

for w and in particular wxx ∈ L2. The local Lipschitz continuity in each X follows
from the estimates

|Gε((v1)2
x − (v2)2

x)|p ≤ |gε|p|(v1 + v2)x|2|(v1 − v2)x|2,

which we use for p = 2 and p =∞,

|(Gε((v1)2
x − (v2)2

x))x|1 = |g′ε ∗ ((v1)2
x − (v2)2

x)|1 = |Bε((v1)2
x − (v2)2

x)|1 ≤
|Bε|B(L1)|(v1 + v2)x|2|(v1 − v2)x|2.

and

|(Gε((v1)2
x − (v2)2

x))x|2 = |g′ε ∗ ((v1)2
x − (v2)2

x)|2 = |Bε((v1)2
x − (v2)2

x)|2 ≤
|Bε|B(L1,L2)|(v1 + v2)x|2|(v1 − v2)x|2.

The local Lipschitz continuity in each X1 , i.e. the estimate for the L2-norm of the
difference of the second order derivatives, is left to the reader. 2

As long as vx ∈ L2 the operator v → Gεv
2
x is Lipschitz continuous in X. Thus

if vx ∈ L2 for all t > 0 then the solution of (6.4) for v0 ∈ X exists globally. As for
v0 ∈ X1, v exists globally if vx ∈ L2 and vxx ∈ L2 for all t > 0.

8 Global existence and stability

In this section we establish two equalities for solutions of the integrated equation
(6.4) and deduce from them global existence for small initial data and stability
aspects of the zero solution of equation (6.4). The first comes from testing the
equation with v.

Lemma 8.1 Any solution v of equation (6.4) in C1([0, T ];H1) satisfies

1

2

d

dt

∫
R
(v2 + ε2v2

x) = −
∫
R

(
(1− v)v2

x + φxv
2
)
. (8.1)

Proof. We write equation (6.4) as

vt − Aεv = Gε

(
v2
x + 2vxφ

)
.
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Let w = vt−Aεv and f = v2
x + 2vxφ. Then by assumption f is in L1 +L2 and thus

w ∈ H1 is the solution of (2.4), i.e.

ε2

∫
R
wxϕx +

∫
R
wϕ =

∫
R
fϕ for all ϕ ∈ H1.

Taking ϕ = v and observing that∫
R
fv =

∫
R
vv2

x −
∫
R
φxv

2, ε2

∫
R
(Aεv)xvx +

∫
R
(Aεv)v =

∫
R
v2
x,

we arrive at ∫
R
(vvt + ε2vxvxt) = −

∫
R

(
(1− v)v2

x + φxv
2
)
.

This equality is valid for each t ∈ [0, T ]. 2

The second equality is derived testing with vx.

Lemma 8.2 For any choice of X1 in Proposition 7.1 any solution v of equation
(6.4) in C1([0, T ];X1) satisfies

1

2

d

dt

∫
R

(
v2
x + ε2v2

xx

)
= −

∫
R
v2
xx +

∫
R
φxv

2
x (8.2)

Proof. We follow the proof of Lemma 8.1 above. Differentiating with respect to
x we have with the same notation that fx = vxxvx + 2φvxx + 2φxv is in L1 + L2,
wx = Gεfx is in H1, so that

ε2

∫
R
wxxϕx +

∫
R
wxϕ =

∫
R
fxϕ for all ϕ ∈ H1.

Taking ϕ = vx and observing that∫
R
fxvx =

∫
R
φxv

2
x, ε2

∫
R
(Aεv)xxvxx +

∫
R
(Aεv)xvx =

∫
R
v2
xx,

we arrive at ∫
R
(vxvxt + ε2vxxvxxt) = −

∫
R

(
v2
xx + φxv

2
x

)
.

This equality is again valid for each t ∈ [0, T ]. 2

Since the L∞-norm is controled by theH1-norm, see (8.6) below, the first equality
tells us that a solution in H1 can be continued as long as |vx(·)|2 remains bounded.
The second equality shows that this is also the criterion for solutions in X1 to
be continued. In terms of u the condition for global existence is therefore that
|u(·, t)− φ(·+ t)|2 does not blow up in finite time. Next we show that this can be
assured by a smallness condition on the initial data. It will be convenient to use
the norm

||v||ε =

(∫
R
(v2 + ε2v2

x)

) 1
2

,
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which is equivalent to the standard H1-norm:

||v||ε ≤ ||v|| ≤
1

ε
||v||ε. (8.3)

Estimate (8.1) implies stability of the null solution in H1, provided the travelling
wave profile φ is monotone.

Proposition 8.3 Let ε2 ≤ 1
4
. There exists δ > 0 such for every initial value

v0 ∈ H1 with ||v0||ε < δ there exists a unique solution v : [0,∞) → H1 with
||v(·, t)||ε decreasing for all t ≥ 0. Moreover∫ ∞

0

|vx(·, t)|22dt <∞, (8.4)

whence also ∫ ∞
0

|v(·, t)|4∞dt <∞, (8.5)

This result is better than stability but slightly weaker than asymptotic stability:
we do not get that v(·, t)→ 0 in H1.

Proof. In view of φx ≥ 0 and the estimate

|v2|∞ ≤
∫
R
|2vvx| ≤ 2|v|2|vx|2 ≤

1

ε
|v|22 + ε|vx|22 =

1

ε
||v||2ε, (8.6)

the assertion follows immediately from (8.1) if we choose

δ2 = ε.

In particular the solution has 1− v bounded away from zero by a positive constant,
C, so that upon integrating (8.1) we find the first estimate:

C

∫ ∞
0

∫
R
v2
x <

1

2
||v0||2ε.

Combining both estimates with the boundedness of |v(·, t)|2 gives the second esti-
mate in the theorem. 2

Next we obtain an asymptotic stability result using the stronger norms with vxx ∈ L2

and a combination of (8.1) and (8.2).

Proposition 8.4 Let ε2 ≤ 1
4

and 0 < α < 1
maxφ′ . Then there exists δ > 0 such

for every initial value v0 ∈ H2 with ||v0||ε < δ (no assumption on the size of |v′′0 |2)
there exists a unique solution v : [0,∞)→ H2 with not only∫

R
(v2 + ε2v2

x),

but also ∫
R
(v2 + (ε2 + α)v2

x + ε2αv2
xx)

decreasing for all t ≥ 0. Moreover, t→ ||vx(·, t)||ε is square integrable and converges
to zero as t→∞. Finally, |v(·, t)|∞ → 0 and |vx(·, t)|∞ → 0.
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Proof. Combining (8.1) and (8.2) we have

1

2

d

dt

∫
R
(v2 +(ε2 +α)v2

x+ε2αv2
xx) = −

∫
R
φxv

2−
∫
R
(1−v−αφx)v2

x−α
∫
R
v2
xx. (8.7)

As in the proof of Proposition 8.3, the first assertion follows immediately from (8.7)
if we choose

δ2 = (1− αmaxφ′)ε.

In particular the solution has 1 − v − αφx bounded away from zero by a positive
constant. Note that Proposition 8.3 applies here too.

To establish the asymptotic behaviour we note that we now have two decreasing
functions. Taking the difference it follows that the function

t→
∫
R
(vx(x, t)

2 + ε2vxx(x, t)
2)dx

has a finite limit as t→∞. Integrating (8.7) over (0,∞) on t, it is also integrable
over (0,∞) and thus the limit is zero. This proves the statement about vx. The
remaining assertion follows again using (8.6). 2

We list the consequences that Proposition 8.3 and Proposition 8.4 have for solu-
tions of (1.1).

Theorem 8.5 Let ε2 ≤ 1
4

and let u0 ∈ Ψ + L1 ∩ L2 be such that v0 ∈ L2, where

v0(x) =
∫ x
−∞(u(s, t)−φ(s+t))ds. If v0 is sufficiently small the solution exists globally

and t→
∫∞
−∞ |u(x, t)− φ(x+ t)|2dx is both integrable and bounded on [0,∞). If in

addition v0 ∈ H2 is sufficiently small, the solution has u(·, t) − φ(· + t) → 0 as
t → ∞ in H1 and therefore also in L∞ as t → ∞. Without any restriction on ε
and the norm of v0 the solution is global if v0 ∈ H2.
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