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ABSTRACT
Phytoplankton requires light for photosynthesis, but most phytoplankton species are heav-
ier than water and sink. How can these sinking species persist? Here we show, by means of
an advection-di�usion-reaction equation of light-limited phytoplankton, that the answer
lies in the turbulent motion of water that re-disperses phytoplankton over the vertical
water column. More speci�cally, we show that there is a turbulence window sustaining
sinking phytoplankton species. If turbulent di�usion is too high, phytoplankton is mixed
to great depths and the depth-averaged light conditions are too low to allow net positive
population growth. Conversely, if turbulent di�usion is too low, sinking phytoplankton
populations end up at the ocean 
oor and succumb in the dark. At intermediate levels
of turbulent di�usion, however, the model predicts that phytoplankton populations can
outgrow both mixing rates and sinking rates. In this way, the reproducing population as a
whole can maintain a position in the well-lit zone near the top of the water column, even
if all individuals within the population have a tendency to sink. This theory unites earlier
classic results by Sverdrup and Riley as well as our own recent �ndings, and provides a
novel conceptual framework for the understanding of phytoplankton dynamics under in-

uence of mixing processes.
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1 Introduction

Phytoplankton requires light for photosynthesis. Hence, in order to proliferate, phyto-
plankton populations should stay in the upper regions of the water column, the so-called
euphotic zone. However, many if not most phytoplankton species have a higher speci�c
weight than water. They sink [14, 27, 22]. Yet sinking phytoplankton species form a
successful part of the phytoplankton community in lakes and oceans for millions of years.
How do populations of sinking phototrophic organisms manage to persist? Which envi-
ronmental factors allow survival of sinking phytoplankton?

Previous studies provided partial answers to these questions. In a classic paper, Riley et
al. [23, page 90] derived a relation between sinking velocity and water-column turbulence
that would just allow the persistence of a sinking phytoplankton population. Though
Riley et al. focused on the interplay between sinking velocity and turbulent di�usion,
their math neglected the light dependency of phytoplankton growth. Later, Shigesada and
Okubo [25] reproduced the result of Riley et al. in a model in which they incorporated
light-dependent growth rates but neglected light absorption by the water column. In
another classic, Sverdrup [28] derived the existence of a "critical depth" of the mixed
layer, beyond which phytoplankton growth would be impossible. Sverdrup considered
light-dependent growth rates as well as light absorption by the water column, but assumed
a uniform phytoplankton depth pro�le thereby neglecting implications of both turbulent
di�usion and sinking. Sverdrup's critical-depth theory gained much impetus in modern
oceanography and aquatic ecology (see e.g [21, 16, 19, 18, 10]). Recently, Huisman et
al. [11, 12] derived the existence of a `critical turbulence' that just allows phytoplankton
bloom development. Huisman et al. focused on the interplay between turbulent di�usion
and light-dependent growth rates, but neglected sinking of phytoplankton. How do these
di�erent concepts �t together? Is there any consistency or overlap between these theories?
It feels as if we have di�erent pieces of a complicated puzzle at hand, while the coherent
picture is still lacking.

The issue is not without relevance. Sinking phytoplankton species play a key role
in several biogeochemical cycles, as they withdraw nutrients from the upper part of the
water column and deposit these nutrients at the bottom sediment. In particular, sinking
phytoplankton species have a major impact on the global carbon cycle by their export of
photosynthetic carbon from the surface into the deep ocean interior (see [7, 1, 4]). A better
understanding of the population dynamics of sinking phytoplankton may thus contribute
to a better understanding of the biogeochemical cycling of elements in aquatic ecosystems.

In this paper, we develop a population-dynamic theory of sinking phytoplankton. The
theory is based on a reaction-advection-di�usion equation, that considers the balance be-
tween light-dependent growth rates, mortality rates, sinking rates, and turbulent di�usion
rates. This reaction-advection-di�usion equation lies at the heart of a wide variety of
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detailed simulation models in oceanography and ecosystems research [15, 26, 24, 5, 18, 3].
Our results will show that the earlier theoretical concepts developed by Riley et al. [23],
Sverdrup [28], and Huisman et al. [11] can be embraced into a single unifying theory.

2 The model

We consider a water column with a cross section of one unit area. Let z denote the depth
coordinate within the water column, where z runs from 0 at the top to a maximum depth,
zm, at the bottom. Let I(z; t) denote the light intensity at depth z and time t, and let
!(z; t) denote the phytoplankton population density (cells per unit volume) at depth z
and time t.

Light gradient: Photons are absorbed by water, clay particles, phytoplankton, and many
other light-absorbing substances. We assume that the light gradient I follows Lambert-
Beer's law, which states that light absorption at a depth z is proportional to the local
concentration of light absorbers at this depth:

@I

@z
(z; t) = �(k !(z; t) +Kbg)I(z; t); (1)

where Kbg summarizes the total background attenuation due to all non-phytoplankton
components, and k is the speci�c light attenuation coe�cient of the phytoplankton. In-
tegrating this equation over depth gives the following light intensity at depth z and time
t:

I(z; t) = Iin e
�Kbgz e�k

R z
0
!(�;t)d� ; (2)

where Iin is the incident light intensity, and � is an integration variable. Note that this
formulation includes light absorption by phytoplankton. Thus, the light gradient changes
with a change in the phytoplankton population density distribution.

Local population dynamics: The changes in phytoplankton population density can be
described by the partial di�erential equation

@!

@t
(z; t) = g(I(z; t))!(z; t) �

@J

@z
(z; t): (3)

Here g(I(z; t)) is the speci�c growth rate of phytoplankton as a function of the light
intensity I(z; t), and J(z; t) is the vertical 
ux of phytoplankton at depth z and time t.
The minus sign indicates that an increase of the 
ux with depth implies a decrease of the
local population density.

The speci�c growth rate in (3) depends on the balance between production and losses:

g(I) = p(I)� `; (4)

where p(I) is the speci�c production rate as an increasing function of light intensity, with
p(0) = 0, and ` is the speci�c loss rate. In all our simulations, we used the following
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p(I)-function [20, 10]:

p(I) =
pmaxI

H + I
; (5)

where pmax is the maximal speci�c production rate and H is a half-saturation constant.
We emphasize, however, that the results presented in this paper rely on the qualitative
behavior of the p(I)-relation (i.e., p(0) = 0 and d

dI
p(I) > 0), rather than on its speci�c

form.
The 
ux of phytoplankton in (3) depends on the sinking rate of phytoplankton and on

transport of phytoplankton by turbulent di�usion:

J(z; t) = v !(z; t) �D
@!

@z
(z; t); (6)

where v is the vertical velocity of the phytoplankton, and D is the turbulent di�usion
coe�cient. In this paper, both v and D will be assumed constant. The positive sign of the
�rst term on the right-hand side of (6) implies that v is positive for sinking phytoplankton.
The minus sign in the second term on the right-hand side indicates that turbulent di�usion
is in the direction opposite to the concentration gradient.

Substituting (2), (4) and (6) into (3) yields our key equation

@!

@t
= p(Iin e

�Kbgz e�k
R z
0
!(�;t)d�)! � ` ! � v

@!

@z
+D

@2!

@z2
: (7)

This is an integro-partial di�erential equation. The �rst term on the right-hand side in-
dicates that the speci�c production rate at a certain depth depends on the light intensity
at this depth, which in turn depends (via Lambert-Beer's law) on all population densities
above this depth.

Boundary conditions: We assume that the boundaries of the system are closed:

J(0; t) = v !(0; t) �D
@!

@z
(0; t) = 0; (8a)

and

J(zm; t) = v !(zm; t)�D
@!

@z
(zm; t) = 0: (8b)

That is, there is no in
ux or e�ux of phytoplankton, neither at the top nor at the bottom
of the water column.

Total population dynamics: It is useful to keep track not only of the local population
densities but also of the total phytoplankton population in the entire water column. This
can be expressed as the total population size per unit surface area, W , de�ned by

W (t) =

Z zm

0
!(z; t)dz: (9)
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Hence, using (3) and the boundary conditions, the population size per unit surface area
changes with time according to

dW

dt
=

Z zm

0
g(I(z; t))!(z; t)dz; (10)

where the 
ux terms canceled because the boundaries are closed.

Numerical simulations: The model predictions are analyzed using a combination of
analytical and numerical techniques. Numerical simulation of integro-partial di�erential
equations is quite challenging. Sections 6 and 7 give a detailed description of the simulation
techniques that we have employed.

3 Inert particles and the barometric formula

Before analyzing the model predictions for sinking phytoplankton, let us �rst investigate
the fate of sinking inert particles. Inert particles are particles that neither grow nor decay.
That is, p(I) = 0 and ` = 0. Because the boundaries are closed, particles cannot enter or
leave the water column. Hence, transport by sinking and turbulent mixing does not a�ect
the total number of inert particles within the water column but does a�ect their vertical
distribution. Using (7), the population dynamics for inert particles reads

@!

@t
(z; t) = �v

@!

@z
(z; t) +D

@2!

@z2
(z; t): (11)

The slope of the stationary population density distribution of the inert particles is obtained
by solving (11) for steady state (i.e., solving for @!=@t = 0), and subsequent integration
over depth. We notice from the boundary conditions in (8a) and (8b) that the constant
of integration equals zero. Thus, the slope of the stationary depth pro�le is given by

d!�

dz
(z) =

v

D
!�(z); (12)

where the superscript * indicates that we consider a stationary distribution. Integrating
over depth once more, it follows that the stationary population density distribution of
inert particles is given by

!�(z) = !�(0) exp(
v

D
z): (13)

Recalling that v > 0 for sinking particles, we have arrived at a surprisingly simple result:
the stationary population density distribution of sinking inert particles is an exponentially
increasing function of depth. The steepness of the depth pro�le depends on the ratio
of sinking velocity versus turbulent di�usion. If turbulent di�usion is high and sinking
velocity is low, the inert particles will be almost uniformly distributed over the water
column. Conversely, if turbulent di�usion is low and sinking velocity is high, the inert
particles will concentrate at the bottom of the water column.

A similar derivation applies to the density distribution of gas molecules in the atmo-
sphere. Therefore, Equation (13) is widely known in physics as the Barometric Formula
(see e.g. [17]).
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4 Phytoplankton depth pro�les

A key di�erence between inert particles and phytoplankton is that the latter reproduce in
the light and su�er net losses in the dark. Hence, the question arises: What will be the
stationary depth pro�les for sinking phytoplankton?

One solution for the stationary depth pro�le is, of course, that there is no phytoplank-
ton at any depth at all. More precisely, !�(z) = 0 for all z is, indeed, a trivial stationary
solution of (7). Below we consider the non-trivial case in which a phytoplankton popula-
tion does develop.

According to the boundary condition in (8a), if !�(0) > 0, the stationary population
density is an increasing function of depth in top of the water column:

d!�

dz
(0) =

v

D
!�(0): (14a)

Similarly, if !�(zm) > 0, population density is an increasing function of depth at the
bottom of the water column as well:

d!�

dz
(zm) =

v

D
!�(zm); (14b)

because of the boundary condition in (8b). Thus, at the top and bottom of the water
column, the stationary depth pro�le of phytoplankton resembles the stationary depth
pro�le of inert particles (compare (14a) and (14b) with (12)).

The slope of the stationary depth pro�le at intermediate depths can be derived by
solving (7) for the stationary distribution, and subsequent integration over depth. The
constant of integration is determined by (14a), and the result is

d!�

dz
(z) = �

1

D

Z z

0
g(I(�))!�(�)d� +

v

D
!�(z): (15)

The �rst term on the right-hand side of (15) equals zero at z = 0 and at z = zm, as
is obvious at z = 0 and follows from (14b) at z = zm. Using the monotonicity of the
g(I(�))-function, it follows that the integral

R z
0 g(I(�))!

�(�)d� is positive for 0 < z < zm.
The second term on the right-hand side of (15) is positive. Thus, whether the slope
of the stationary depth pro�le is positive or negative at intermediate depths depends
on the magnitudes of the two opposing terms in (15). That is, the slope of the depth
pro�le depends on the magnitude of the ratio between depth-integrated growth rate and
turbulent di�usion versus the magnitude of the ratio between sinking 
ux and turbulent
di�usion. Accordingly, the population will be uniformly distributed over depth if turbulent
di�usion overrides the di�erence between depth-integrated growth rates and sinking 
uxes.
Population density will increase with depth if sinking 
uxes override depth-integrated
growth rates. Conversely, population density will decrease with depth if depth-integrated
growth rates override sinking 
uxes.

Figures 1-3 show a variety of stationary depth pro�les illustrating these derivations.
In Figures 1A-1D, the turbulent di�usion coe�cient is gradually increased. This shows
that the stationary depth pro�le can have a local population density maximum below
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Table 1: Parameter values used in the simulations

Symbol Meaning Value Units

Variables
I light intensity �mol photons �m�2 � s�1

J vertical 
ux of phytoplankton cells �m�2 � h�1

! population density cells �m�3

W population size cells �m�2

Parameters
D turbulent di�usion 1 cm2 � s�1

Iin incident light intensity 350 �mol photons �m�2 � s�1

Kbg background turbidity 0.2 m�1

k speci�c light attenuation
of phytoplankton 15 � 10�12 m2 � cell�1

` speci�c loss rate 0.01 h�1

p(I) speci�c production rate (*) h�1

v vertical velocity 0.04 m � h�1

zm water column depth 20 m

(*) In all our simulations, the speci�c production rate was described by Equation (5) with
pmax = 0:04 h�1 and H = 30 �mol photons �m�2 � s�1.

the surface as well as accumulation of phytoplankton near the bottom of the water col-
umn. This occurs if depth-integrated growth rates exceed sinking and turbulent mixing
(Fig. 1A, B). The depth pro�les become less pronounced with increasing turbulent di�u-
sion (Fig. 1C,D). In Figures 2A-2D, the sinking velocity is gradually increased. This shows
that the stationary phytoplankton population maintains a position near the surface when
sinking velocity is low (Fig. 2A, B), and shifts downwards with increasing sinking velocity
(Fig. 2C,D). In Figures 3A-3D, the depth of the water column is gradually increased. This
illustrates clearly that, in deep waters, sinking phytoplankton populations can maintain
a position in the upper part of the water column independent of the water column depth
(Fig. 3C,D).

5 Conditions for bloom development

5.1 General �ndings

The stationary depth pro�les in Figures 1-3 are all positive (i.e., W � > 0). In this case, we
say that there is `bloom development'. Alternatively, the stationary population density
distribution might be zero at all depths (i.e., the trivial solutionW � = 0). In this case, we
say that there is `no bloom'. What are the conditions favorable for bloom development of
sinking phytoplankton?

Figure 4A shows regions of bloom development and regions of no blooms, plotted for
a wide range of di�erent water column depths and turbulent di�usivities. Note the log
scales of the axes: the graphs span the entire spectrum from shallow, quiescent lakes to
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Figure 1: Stationary depth pro�les of sinking phytoplankton, for four di�erent turbulence levels.
Parameter values as in Table 1, except for the turbulent di�usion coe�cients: (A)D = 0:1 cm2

�s�1,
(B) D = 0:5 cm2

� s�1, (C) D = 1 cm2
� s�1, (D) D = 10 cm2

� s�1.

Figure 2: Stationary depth pro�les of sinking phytoplankton, for four di�erent sinking velocities.
Parameter values as in Table 1, except for the sinking velocities: (A) v = 0:01 m � h�1, (B)
v = 0:04 m � h

�1, (C) v = 0:10 m � h
�1. (D) v = 0:15 m � h

�1.
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Figure 3: Stationary depth pro�les of sinking phytoplankton, for four di�erent water-column
depths. Parameter values as in Table 1, except for the water-column depths: (A) zm = 10 m, (B)
zm = 20 m, (C) zm = 50 m, (D) zm = 100 m.

Figure 4: Combinations of water-column depth and turbulent di�usion coe�cient that allow a
phytoplankton bloom, and combinations that prevent a phytoplankton bloom. (A) A phytoplank-
ton species with a moderate sinking velocity of v = 0:04 m �h�1, (B) A phytoplankton species with
a high sinking velocity of v = 0:40 m �h�1. The graphs are each based on a grid of 31 x 61 =1,891
simulations. Parameter values as in Table 1.

9



Figure 5: Total population size per unit surface area, W , as a function of water-column depth
and turbulent di�usion coe�cient. The graph is based on a grid of 31 x 60 = 1,891 simulations.
Parameter values as in Table 1.

Figure 6: Minimal turbulence as a function of background turbidity, predicted by the full model
(dots) and predicted by Equation (19) (solid line). Phytoplankton blooms cannot be sustained if
background turbidity exceeds the dashed line. Parameter values as in Table 1.
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deep, turbulent oceans. The left part of Fig. 4A considers shallow waters. In shallow
waters there is su�cient light for bloom development, irrespective of the phytoplankton
distribution over depth. Hence, blooms can develop. The upper right corner of Fig. 4A
considers deep waters with a high turbulent mixing rate. Here, phytoplankton is mixed
uniformly over great depths, and the average light conditions over the entire water column
are insu�cient for a net positive growth rate. Hence, blooms do not develop. The lower
right corner of Fig. 4A considers deep waters with a low turbulent mixing rate. Here,
sinking rates exceed growth rates and mixing rates, and phytoplankton sinks downwards
to great depths. Consequently, blooms do not develop either. Most surprisingly, however,
blooms of sinking species can develop in deep systems with intermediate mixing rates
(middle right of Fig. 4A). In this parameter region, growth rates exceed mixing rates so
that uniform mixing over the entire depth of the water column is prevented. Moreover,
turbulent mixing rates exceed sinking rates so that large downward 
uxes of phytoplankton
are avoided. As a consequence, sinking species can maintain a population in the euphotic
zone at intermediate mixing rates.

Interestingly, the `no bloom' areas in Fig. 4A are bound by nearly horizontal and ver-
tical lines. This implies that the e�ects of water column depth and turbulent di�usion
on phytoplankton bloom development can be considered independently of one another.
Hence, we can recognize a `critical depth', a `compensation depth', a `maximal turbu-
lence', and a `minimal turbulence' (Fig. 4A). We call the region between the maximal and
minimal turbulence, the `turbulence window' for sinking phytoplankton.

Figure 5 plots the total population size per unit surface area, W , as a function of water
column depth, zm, and turbulent di�usion coe�cient, D. The two `no bloom' regions at
low and high turbulence are clearly visible (compare Fig. 5 with Fig. 4A). If the water
column is shallow (zm < 10 meters), population size per unit surface area is a decreasing
function of water column depth, whereas it is independent of turbulence. Conversely, if
the water column is deep (zm > 50 meters), population size per unit surface area is a uni-
modal function of turbulence, whereas it is independent of water column depth. The two
patterns are essentially perpendicular to each other. This provides another illustration of
the phase transition documented in this paper: Water column depth determines the pop-
ulation size of phytoplankton blooms in shallow systems, whereas turbulence determines
the population size of phytoplankton blooms in deep systems.

5.2 Explicit expressions

It would be convenient, for both practical applications and a better general understanding,
to have a fast method available to calculate the four critical parameters of Fig. 4A. We
developed two procedures. Firstly, we derived a fast and accurate numerical algorithm,
described in Section 7. Secondly, we derived analytical expressions for the four critical
parameters, which are discussed below.

5.2.1 Critical depth

The critical depth in Figure 4 is equivalent to Sverdrup's [28] concept of a critical depth.
Intuitively, the idea is that, in turbulent waters, phytoplankton is uniformly mixed (as in
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Fig. 1D) and therefore have high production rates in the upper part of the water column
but su�er losses throughout the water column. Hence, depth-integrated production rates
may be less than depth-integrated loss rates if the water column becomes too deep. That
is, bloom development in turbulent waters is impossible if water column depth exceeds a
critical depth.

The critical depth, zcr, can be written as [10]

zcr =
ln(Iin)� ln(I�out)

Kbg

; (16)

where I�out is the critical light intensity, which is de�ned by the implicit equation [13]

Z Iin

I�out

g(I)

k I
dI = 0: (17)

The critical light intensity corresponds to the light intensity, measured at the bottom of a
water column, for which a total phytoplankton population uniformly distributed throughout
the water column would remain stationary [13, 10].

5.2.2 Compensation depth

The compensation depth, zC , in Figure 4 is the depth at which the compensation light
intensity would be reached in the absence of phytoplankton. That is,

zC =
ln(Iin)� ln(IC)

Kbg

; (18)

where the compensation light intensity, IC , corresponds to the light intensity at which
speci�c production rate equals speci�c loss rate. That is, the compensation light intensity
is de�ned by g(IC) = 0. Intuitively, the idea is that, in systems with a low turbulence, the
total phytoplankton population sinks to the bottom of the water column (as in Fig. 2D)
and growth conditions thus depend only on the light conditions at the bottom. Equation
(18) states that a phytoplankton population located at the bottom of the water column
cannot develop a bloom if light conditions at the bottom are insu�cient for production
rates to exceed loss rates. Thus, bloom development in quiet waters is impossible if water
column depth exceeds the compensation depth.

We note that the critical depth is always deeper than the compensation depth (i.e.,
the critical light intensity is always lower than the compensation light intensity [13].

5.2.3 Maximal turbulence

The idea that underlies the maximal turbulence is that if turbulent di�usion is less than
this maximal threshold value, phytoplankton populations may outgrow the turbulent mix-
ing rate and may thus maintain a bloom in the upper part of the water column. Generally
speaking, there is no simple analytical equation for the maximal turbulence. In the spe-
cial case that the speci�c production rate is of the form p(I) = a I� , with 0 < � � 1,
we have been able to derive an implicit equation for the maximal turbulence based on
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so-called Bessel functions. Using asymptotic expansion techniques, these functions have
been approximated to obtain a more tangible form [6]. We remark that the linear case
p(I) = a I, where � = 1, is included in the above analysis. For nonlinear p(I)-functions
with saturating properties, such as Equation (5), we recommend calculating the maximal
turbulence by the numerical algorithm outlined in Section 6.

5.2.4 Minimal turbulence

The idea of a minimal turbulence is that if turbulence becomes too low, there is no force
that prevents sinking of the entire phytoplankton population. Hence, if turbulence is too
low and the water column is deep, the entire phytoplankton population will be lost from
the euphotic zone and vanishes in the dark. As for the maximal turbulence, a simple
exact equation for the minimal turbulence does not exist. However, we can approximate
the minimal turbulence by the ratio of the square of sinking velocity over four times the
net speci�c growth rate near the water surface:

Dmin �
v2

4 g(Iin)
: (19)

To derive this approximation, we �rst simplify the model considerably. Suppose that the
water column can be separated into two layers. Throughout the top layer, there is ample
light available for phytoplankton growth, and the speci�c growth rate equals g(Iin) > 0 in
the entire top layer. In contrast, in the bottom layer there is no light available at all, and
the growth rate equals g(0) < 0 in the entire bottom layer. Furthermore, we assume that
transport of phytoplankton within the bottom layer is governed by sinking only whereas
turbulence is negligible. Therefore, once phytoplankton sinks from the bright top layer
into the dark bottom layer, it cannot return. Continuity of the phytoplankton 
ux at the
interface between the top layer and the bottom layer requires

lim
z#zT

v !(z; t)�D
@!

@z
(z; t) = lim

z"zT
v !(z; t); (20)

where zT is the depth at which the interface is located. Incorporating these simplifying
assumptions, we arrive at the following stationary equation for phytoplankton in the top
layer:

g(Iin)!
�
� v

d!�

dz
+D

d2!�

dz2
= 0; (21)

with the boundary conditions, from (8a) and (20),

v !�(z; t)�D
d!�

dz
(z; t) = 0; at z = 0; (22a)

d!�

dz
(z; t) = 0; at z = zT : (22b)
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Equation (21) is a linear and homogeneous second-order di�erential equation with constant
coe�cients. Thus, its characteristic equation has two roots

r1 =
v

2D
+

p
v2 � 4 g(Iin)D

2D
; (23a)

r2 =
v

2D
�

p
v2 � 4 g(Iin)D

2D
: (23b)

Suppose that v2 > 4 g(Iin)D. Then the distinct roots r1 and r2 are positive and real.
Hence, the stationary population density pro�le reads

!�(z) = c1 e
r1z + c2 e

r2z; (24)

where c1 and c2 are constants of integration. Combining (24) with the boundary condition
(22a) implies

v (c1 + c2)�D (r1c1 + r2c2) = 0: (25)

Combining (24) with the boundary condition (22b) implies

r1c1 e
r1zT + r2c2 e

r2zT = 0: (26)

Equations (25) and (26) are incompatible, unless c1 = c2 = 0. But if c1 = c2 = 0, then
the stationary population density pro�le is zero throughout the water column. In other
words, under the supposition v2 > 4 g(Iin)D, a bloom cannot develop. Thus, a necessary
condition for bloom development is v2 < 4 g(Iin)D. This yields (19).

Equation (19) is equivalent to the classic equation derived by Riley et al. [23, page 90]
(see also [25]), though these authors used a di�erent model formulation. We emphasize that
(19) is only an approximation. For instance, the above derivation neglects the background
turbidity of the water column. Numerical simulation of the full model, however, indicates
that (19) is an accurate approximation of the minimal turbulence in waters with a low
background turbidity. The minimal turbulence is somewhat higher than predicted by (19)
in waters with a high background turbidity (see Figure 6). Thus, to calculate the minimal
turbulence, we may recommend (19) for waters with a low background turbidity and we
may recommend the fast algorithm outlined in Section 7 for waters with a high background
turbidity.

5.3 E�ects of sinking velocity

We note, from Equations (16-18), that the critical depth and compensation depth are both
independent of the sinking velocity of phytoplankton. In contrast, according to (19), the
minimal turbulence increases with the square of phytoplankton sinking velocity. Moreover,
numerical simulations indicate that the maximal turbulence decreases with sinking veloc-
ity. Therefore, if the sinking velocity of phytoplankton is too high, the minimal turbulence
and maximal turbulence merge and disappear. Thus, while phytoplankton species with a
moderate sinking speed can persist in deep waters (Fig. 4A), phytoplankton species with
a high sinking speed cannot persist in deep waters (Fig. 4B).
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6 Numerical simulation of the integro-PDE

To obtain a fully discrete solution in space and time we will follow the so-called Method
of Lines approach. That is, �rst the spatial di�erential operators (as well as the integral
term) will be replaced by discrete approximations and subsequently the resulting system
of ordinary di�erential equations (ODEs) { which is still continuous in time { will be
integrated numerically.

6.1 Spatial discretization

First, we de�ne a spatial grid on the interval 0 � z � zm. In case a priori knowledge
about the solution is available, the grid can be chosen with relatively many points in
regions where a high spatial activity is expected. In fact, the software that we developed
indeed o�ers this facility. However, to avoid unnecessary complications in the description,
the numerical procedure will be explained on the basis of an equidistant grid.

Hence, let us de�ne:

s0 = 0; si = (i� 1

2
)�z; i = 1; :::; N; sN+1 = zm; (27)

s0 s1 s2 s3 sN�2 sN�1 sN sN+1

1
2�z �z �z �z �z 1

2�z

where �z := zm=N . Furthermore, by wi(t); i = 1; :::; N; we denote an approximation
to !(si; t). To discretize in the point si the derivative of the 
ux, i.e., the term @J(z; t)=@z
in Equation (3), we assume an (imaginary) box around the point si, at the boundaries of
which we approximate the 
uxes, using the numerical values wi at the grid points:

si�2 si�1 si si+1 si+2

wi�2 wi�1 wi wi+1 wi+2

Ji�1 Ji

�z� -

In this way we obtain conservation of the quantity J since the numerical approximation
that we use for a particular Ji � J(si +

1
2�z; t) serves as out
ow for one particular box

and at the same time as in
ow for the adjacent box. Now, @J(z; t)=@z in the point z = si
is approximated by (Ji � Ji�1)=�z. Next, we need an approximation for Ji. Here we use
the approach that is nowadays standard in the �eld of Computational Fluid Dynamics for
the numerical solution of advection-di�usion equations. That is, the di�usion term is dis-
cretized symmetrically, whereas for the advection term a so-called upwind (or, upstream)
discretization is used (see e.g., [9]). To be more precise, in case of sinking, where the 
ow
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is from left to right in the above �gure, we use (cf. Equation (6))

Ji = v !(si + 1

2
�z; t)�D

@!

@z
(si + 1

2
�z; t)

� v 1

6
[�wi�1 + 5wi + 2wi+1]�D

wi+1 � wi

�z
: (28)

This expression explains the term `upwind': we see that more information from the left
(i.e., the upstream region in case of sinking) has been used. Analogously, in case of
buoyancy, we again use an upwind discretization, now using more information from the
right, resulting in the approximation

Ji � v 1

6
[2wi + 5wi+1 � wi+2]�D

wi+1 � wi

�z
: (29)

We remark that a symmetric discretization of the advection term easily leads to so-called
`wiggles' in the numerical solution. By this we mean that, in the neighbourhood of a drastic
change in the solution, undershoot and overshoot values will be developed. Especially in
case of undershoot (i.e., too low values) this may lead to negative solution components.
A negative population density is of course not realistic. The use of upwind techniques
drastically reduces this unwanted property.

The 
uxes J0 and JN vanish according to the boundary conditions and for J1 we use
a symmetric formula since we lack su�cient upstream information (in case of sinking).

Summarizing, for sinking phytoplankton, we arrive at the following set of ODEs

dwi(t)

dt
= giwi �

Ji � Ji�1
�z

; i = 1; :::; N; (30)

where

J0 = 0;

J1 = v
w2 + w1

2
�D

w2 � w1

�z
;

Ji = v 1

6
[�wi�1 + 5wi + 2wi+1]�D

wi+1 � wi

�z
; i = 2; :::; N � 1; (31)

JN = 0:

The term gi in (31) is de�ned as gi := p(Ii) � l, where Ii denotes the light intensity at
z = si. Replacing the integral term by the repeated trapezoidal rule, the light intensity is
approximated by

Ii = Iin e
�Kbgsi e�k[

1

2
w0+w1+w2+:::+wi�1+

1

2
wi]�z; (32)

with the solution at the surface, w0, extrapolated from inside: w0 := (3w1 � w2)=2.

6.2 Time integration

After spatial discretization we arrive at a large system of ODEs, written in the form

dw(t)

dt
= F(w(t)); t � 0; (33)
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where the vector w(t) contains the components wi(t). Our �rst observation is that this
system is a sti� ODE. This means that the Jacobian matrix @F=@w has widely spread
eigenvalues (for a discussion on sti�ness we refer to [8]). Sti�ness has a direct consequence
on the choice of the time integration technique. An explicit method, which is simple and
cheap per step, would be forced by the sti� system to take small time steps in order
to avoid instabilities. This time step restriction is in our application so severe that it
is unfeasible to use an explicit integration method. Therefore, we selected an implicit
method. Although such methods, in general, have good stability properties, we are now
faced with the task to solve, in each time step, a system of implicit relations to obtain the
solution at the next point in time. For the family of implicit methods that we have used,
this results in solving the equation

R(Wn+1) :=Wn+1 � b0 �t F(Wn+1)�
mX
i=1

biWn+1�i = 0: (34)

Here, Wn+1 is an approximation to w(t) at t = tn+1 := (n + 1)�t; �t being the time
step, and the coe�cients bi are de�ned by the method in use. Wn;Wn�1; :::;Wn+1�m

are approximate solutions at previous points in time and serve to give the method the
required accuracy.

As usual, (34) is iteratively solved by means of Newton's process. That is, a series of
linear systems of the form

[I � b0 �t @F=@w]
h
W

j
n+1 �W

j�1
n+1

i
= �R(Wj�1

n+1); j = 0; 1; :::; (35)

have to be solved, where I denoted the identity matrix. The iterates Wj
n+1 hopefully

converge to the solution Wn+1.
The Jacobian matrix @F=@w is composed of a 4-diagonal band (originating from the

discretization of the advection-di�usion terms) plus a lower triangular part (due to the
integral term). This makes the solution of the linear systems in (35) in the Newton pro-
cess very time-consuming. To improve the numerical e�ciency, we neglected the lower
triangular part in the Jacobian matrix. As a result, the total number of Newton iter-
ations (summed over all steps) increased by 30-50%, but this is amply compensated by
the strongly reduced costs to solve the linear systems (which now have a simple band
structure).

Brown et al. [2] implemented the above numerical time integration technique in their
code VODE, which we have used to produce the results described in the present paper.
This code belongs to the family of most widely used sti� ODE solvers and is freely avail-
able from http://www.netlib.org/ode/ (both in Fortran and C). VODE is very robust in
the sense that it includes all kind of strategies, necessary for automatic integration and
incorporates experience of many users over a long period.

7 A fast algorithm

To estimate the critical depths and critical turbulences, one could run the integro-partial
di�erential equation (integro-PDE) until steady state for a couple of thousand times in a
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�ne grid of zm-values and D-values, using the numerical simulation techniques outlined
in the preceding section. However, this is a very time-consuming procedure and requires
quite some programming skills. Therefore, as an alternative, this section develops a simple
algorithm to calculate the critical depths and critical turbulences. The algorithm is fast,
accurate, and very easy to apply. The trick is that, on the boundary line between the
`bloom' and `no bloom' region (see Figure 4), the integro-PDE can be reduced to a second-
order ordinary di�erential equation (ODE).

7.1 Development of the method

We consider the transition from the `bloom' to the `no-bloom' area. At this transition, the
population density of phytoplankton is negligibly small. More precisely, at this transition
and also in the `no-bloom' area itself, we have

R z
0 k !

�(�)d� � Kbgz. Hence, the light in-
tensity I can be approximated by Iin exp(�Kbgz). This implies that the equation de�ning
the stationary population density distribution reduces to a second-order ODE without an
integro-term:

g(Iine
�Kbgz)!�(z)� v

d!�

dz
(z) +D

d2!�

dz2
(z) = 0; (36)

which can be easily solved numerically. Equation (36) can be written as a system of two
coupled �rst-order ODEs:

d!�

dz
= �!�;

d�!�

dz
= �

1

D
g(Iine

�Kbgz)!� +
v

D
�!�: (37)

The boundary conditions follow from (8a) and (8b):

v !�(0)�D �!�(0) = 0 and v !�(zm)�D �!�(zm) = 0: (38)

Equations (37&38) are linear and homogeneous in !� and �!�. Hence, if there exists a
solution !�(z), then there also exists a solution c !�(z) for any arbitrary c. The free initial
condition !�(0) is therefore arbitrary, and we may just as well work with !�(0) = 1.
Therefore, using the �rst boundary condition in (38), the initial values for the two ODEs
in (37) can be de�ned as

!�(0) = 1 and �!�(0) =
v

D
: (39)

Thus, we obtain the numerical recipe described below.

7.2 Numerical recipe

Starting from the initial conditions given in (39), the system of ODEs (37) can be inte-
grated forward in z until the solution hits upon either v!�(z)�D�!�(z) = 0 or !�(z) = 0.

If we �nd v!�(z)�D�!�(z) = 0 at some depth z, then the second boundary condition
in (38) is satis�ed. Hence, this depth z is either the critical depth or the compensation
depth.
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Alternatively, if we �nd !�(z) = 0 at some depth z, then the second boundary condition
in (38) cannot be satis�ed with positive !�(z). Hence, the critical depth and compensation
depth do not exist. That is, we are somewhere in the parameter region between the
minimal turbulence and maximal turbulence.

Repeating this procedure for various values of D, and ploting the critical depth or
compensation depth whenever they exist, yields the graphs in Figure 4.

As a check, we compared the predictions of this numerical algorithm against the sta-
tionary results obtained by simulation of the full integro-PDE. Both methods always
yielded the same critical depths and the same critical turbulences, but the numerical
algorithm described in this section is orders of magnitude faster than simulation of the
integro-PDE.

We emphasize that the approach outlined in this section is useful if one is solely
interested in the values of the critical depths and critical turbulences. If one is also
interested in the time evolution of the population density distributions, or in the particular
shape of a stationary depth pro�le, then one should resort to the full simulation approach
described in Section 6.

8 Discussion

It is not di�cult to understand how sinking phytoplankton can maintain populations in
optically shallow waters. In shallow waters, phytoplankton populations might sink to the
bottom sediment, and light conditions near the bottom sediment may still be su�cient
to sustain these populations. The question here is how sinking phytoplankton species
can persist in deep waters, like the oceans, as well. The key �nding in this paper is the
existence of a `turbulence window' that allows the persistence of sinking phytoplankton
populations in deep waters (see Figure 4A and Figure 5). If turbulence levels are less
than a minimal turbulence, sinking rates dominate over growth rates and mixing rates. In
this case, the phytoplankton population sinks downwards, and is lost from the euphotic
zone. If turbulence levels exceed a maximal turbulence, vertical mixing rates dominate
over growth and sinking. In this case, the phytoplankton population is uniformly mixed,
and receives insu�cient light in the deeper parts of the water column to persist. At
intermediate turbulence levels, however, growth rates in the euphotic zone may exceed
both sinking losses and mixing rates. Under these circumstances, a population of sinking
phytoplankton may develop in the upper part of the water column. Thus, at intermediate
turbulence levels, sinking phytoplankton species are capable to maintain a population
within the euphotic zone.

We wish to emphasize that our analysis assumes light-limited growth of phytoplank-
ton. This implies that the parameter space that permits bloom development in our model
analysis indicates the maximum parameter space for blooms of sinking phytoplankton. In
reality, conditions for bloom development will frequently be con�ned to a smaller subset
within this parameter region, because of nutrient limitation, virus attack, or zooplank-
ton grazing. However, conditions for bloom development can never exceed this maximum
parameter space, because the available light energy is insu�cient to sustain sinking phy-
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toplankton beyond these limits.
Our results indicate that arguments of previous authors (e.g., [14]) that there must

be a strong selection pressure against sinking phytoplankton species need not hold. At
least, these arguments need not hold for deep waters whose characteristics fall within the
turbulence window, since deep waters located within the turbulence window can sustain
sinking phytoplankton. The turbulence window will disappear, however, if the sinking
velocity of phytoplankton is pushed beyond a certain threshold value (Fig. 4B). Thus, in
line with intuitive reasoning, sinking phytoplankton cannot persist in deep waters if their
sinking speed is too high; only phytoplankton with low to moderate sinking velocities can
be sustained.

It is interesting to compare our �ndings with the earlier theoretical concepts developed
by Riley et al. [23], Sverdrup [28], and Huisman et al. [11]. The present paper shows
that these concepts are neither overlapping nor mutually exclusive. Instead, these earlier
concepts form di�erent elements in one coherent theory. The critical depth in our �gures
is equivalent to Sverdrup's critical depth [28, 21]. The minimal turbulence in our �gures
corresponds to the classic relation, in Equation (19), derived by Riley et al. [23, page 90]
(see also Shigesada and Okubo [25]). The maximal turbulence in our �gures is equivalent
to the critical turbulence found by Huisman et al. [11, 12]. Thus we have shown that
the di�erent concepts developed by these earlier authors can be integrated into a single
unifying theory.
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