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ABSTRACT

The paper deals with unconstrained global minimization of rational functions. A necessary

condition is given for the function to have a �nite in�mum. In case the condition is satis�ed,

the problem is shown to be equivalent to a speci�c constrained polynomial optimization problem.

In this paper, we solve a relaxation of the latter formulation using semi-de�nite programming.

In general, the relaxation will produce a lower bound of the in�mum. However, under no

degeneracies, it is possible to check whether the relaxation was in fact exact.
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1 Introduction

Finding the in�mum on Rn of an arbitrary function is, to the best of our knowledge, an open prob-
lem. Numerical algorithms used to solve such problems do not give any guarantees that a global
optimum is obtained. Other global approaches are based on �nding all critical values in order to
determine the smallest one, but of course they work only in case the function has a minimum (i.e,
the in�mum is attained).

So far, the class of polynomial functions is the only class for which algorithms guaranteed to �nd
the in�mum have been developed. Here, I'll mention only those approaches which do not assume
the existence of a minimum, hence which do not use the �rst order conditions. There are two such
di�erent approaches to the polynomial optimization problem.
One is based on the relation between positive polynomials and sums of squares of polynomi-
als. In fact, in this approach the e�ort is directed towards �nding a real number � such that
p(x) � � � 0; 8x 2 Rn, where p is the given polynomial. The algorithm �nds in general a lower
bound of the polynomial's in�mum. However, under no degeneracies, it can be checked if this is the
true in�mum or not. The method is presented in [3].
A completely di�erent method for computing the in�mum of a polynomial function is given in [2].
There, a particular perturbation of the polynomial allows one to �nd the in�mum in the original
problem by looking at the minimum of the perturbed polynomial. The perturbation is done such
that the perturbed polynomial has a minimum, and therefore the �rst order conditions of the per-
turbed polynomial can be used. The second method has a theoretical advantage over the �rst one
mentioned since it always returns the in�mum (and not a lower bound of it). However, from the
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computational point of view, it seems to be more demanding.

In this paper we are going to deal with the more general case of optimization of rational func-
tions over Rn. Excepting some approaches based on solving the associated �rst order conditions
(and which therefore assume that the minimum exists), the problem did not receive particular at-
tention so far.

Our approach extends the �rst method mentioned, designed for polynomial optimization. Hence,
our algorithm will return in general a lower bound of the actual in�mum, with the possibility of
checking in some cases, as discussed, whether that equals the actual in�mum or not. An interesting
criterion will be given for a rational function to have the in�mum at �1.

The paper is organized as follows: Section 2 presents a preliminary, general result which is also
the main theoretical result of this paper. From this, we deduce in Section 3 necessary conditions for
a rational function to be bounded from below. Moreover, we give a theorem which translates in an
equivalent way the rational optimization problem into a speci�c constrained polynomial optimiza-
tion problem. For the new constrained polynomial optimization problem we show the applicability
of the method developed by [4], [3] which reduces it to a semi-de�nite programming problem. This
is the subject of Section 4. An example is presented in Section 5 and conclusions are drawn in the
last section.

2 Preliminary result

Theorem 2.1 Let a(x)=b(x) be a rational multivariate function, with a(x), b(x) relatively prime
polynomials. If a(x)=b(x) � 0; 8x 2 Rn n fx 2 Rn j b(x) = 0g, then one of the two following
statements holds:

� a(x) � 0; b(x) � 0 8x 2 Rn;

� a(x) � 0; b(x) � 0 8x 2 Rn:

Proof

Note that the condition a(x)=b(x) � 0; 8x 2 Rnnfx 2 Rn j b(x) = 0g is equivalent, by multiplication
with b2(x), to a(x)b(x) � 0 8x 2 Rn:
The proof of the theorem is based on showing that the decomposition of the polynomial a(x)b(x)
into irreducible factors has the following form

a(x)b(x) =

K1Y
i=1

gi(x)
2mi

K2Y
j=K1+1

gj(x)
mj ;

where gi; i = 1; : : : ;K1 are all the factors that change sign on Rn and gj ; j = K1 + 1; : : : ;K2 the
factors that do not change sign on Rn. In other words, we prove that if there exists an irreducible
divisor of a(x)b(x) that changes sign on Rn, it actually has an even power in the decomposition of
a(x)b(x).
Using the decomposition above and the fact that a; b are relatively prime polynomials, it's clear
that neither a nor b changes sign on Rn. Since their product is non-negative, it also implies that in
fact they are both either non-negative or non-positive.
Let us consider g1 2 R[x], an irreducible divisor of g(x) = a(x)b(x) which changes sign. By Theorem
4.5.1 of [1], the ideal generated by g1 is a real ideal.
Let us denote

g(x)

g1(x)
= ~g1(x);
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which can be rewritten equivalently

g(x) = ~g1(x)g1(x) � 0 8x 2 Rn:

Hence there exists the polynomials r(x); si(x); i = 1; : : : ;m ([1], Theorem 6.1.1) such that

r2(x) ~g1(x)g1(x) =

mX
i=1

s2i (x) 8x 2 Rn: (1)

Take r minimal with respect to the division, having the property that r2(x) ~g1(x)g1(x) can be written
as a sum of squares of polynomials.
The left hand side obviously belongs to the real ideal (g1). By the de�nition of a real ideal ([1],
De�nition 4.1.3), the above relation implies that si 2 (g1); 8i = 1; : : : ; n. Hence there exist
polynomials ti(x) such that si(x) = ti(x)g1(x):
By replacing si's in (1) and dividing both sides of the equality by g1 we get

r2(x) ~g1(x) = g1(x)

mX
i=1

t2i (x) 8x 2 Rn: (2)

Therefore g1 must divide r
2(x) ~g1(x) and since g1 is irreducible, g1 divides ~g1 or g1 divides r:

Suppose �rst that g1 divides r: Then there exists a polynomial r1(x) satisfying r(x) = g1(x)r1(x).
By replacing r into (2) and dividing both sides of the equality by g1(x) we obtain

r21(x) ~g1(x)g1(x) =
mX
i=n

t2i (x); 8x 2 Rn:

However, by comparing with (1) we obtain a contradiction with the minimality of r.
Hence it must be that g1 divides ~g1 which implies g21 divides g:
By applying exactly the same procedure to the polynomial g=g21, one can show that any irreducible
factor of g(x) = a(x)b(x) which changes sign must have an even power in the decomposition of g(x).
This concludes the proof. 2

3 Application to rational optimization problems

Consider the following problem

inf
x2Rn

p(x)

q(x)
; with p(x); q(x) 2 R[x] relatively prime: (3)

Regarding the terminology, we are using infimum (inf) instead of the more commonminimum (min)
or, later on, supremum (sup) instead of maximum (max) simply to stress that the optimal value
may not be attained in Rn but only approached asymptotically. Note that there are no other dif-
ferences between the formulations involving inf (respectively sup) and min (respectively max).

In the following we use Theorem 2.1 of the previous section in order to obtain some criteria for
our problem.

Proposition 3.1 Let p(x)=q(x) be a rational function with p(x); q(x) relatively prime. If p(x)=q(x)
is bounded from below, then q has constant sign on Rn:

Proof

Let � 2 R such that p(x)=q(x) � � 8x 2 Rn. Then (p(x)� �q(x))=q(x) satis�es the hypothesis of
Theorem 2.1 hence p(x) � �q(x) and q(x) have constant sign on Rn: 2

An immediate consequence is formulated below:
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Corollary 3.2 Let p(x)=q(x) be a rational function with p(x); q(x) relatively prime polynomials.
If q(x) changes sign on Rn then infx2Rn p(x)=q(x) = �1.

Note that the reciprocal is not true.

However, we can reformulate now the problem (3). Suppose that q(x) � 0 8x 2 Rn. Then
using the proof of Proposition 3.1 and Theorem 2.1, problem (3) is equivalent to

sup �
s.t. p(x)� �q(x) � 0; 8x 2 Rn:

(4)

Obviously the largest � satisfying the condition is the in�mum of p(x)=q(x).

Note that the feasibility domain of (4) may be the empty set. That is, there is no � 2 R sat-
isfying the polynomial inequality for every x 2 Rn. In this case the supremum will be �1.

The condition q(x) � 0 8x 2 Rn can be checked in the following way. Evaluate q at an arbi-
trary point and suppose that it is indeed positive. Then q is non-negative on Rn if and only if
infx2Rn q(x) � 0: Hence we only need to compute the in�mum of a polynomial on Rn and this can
be done using for example the algorithm described in [2].

To conclude, in this section we have rewritten the rational optimization problem as a constrained
polynomial optimization problem. Several options are possible now. One of them is discussed in
the next section.

4 A semi-de�nite programming relaxation

In this section we study the extension to rational functions of a method based on [4] and [3], used
previously for polynomial functions. As in [3], we want to rewrite the rational optimization prob-
lem into a semi-de�nite optimization problem (SDP) which is known to have good computational
complexity. Actually, in general we obtain an SDP relaxation of the original problem, which gives
a lower bound for the solution of the original problem.

Let us study now how to rewrite the problem (4) as an SDP. For this we study the polynomial
p(x) � �q(x).

Let us denote F (x) = p(x) � �q(x). If the total degree of F is odd, then its in�mum will be
�1 (take all variables equal). Hence, in this case the polynomial cannot be positive everywhere.
Then (3) is �1: It is therefore su�cient to restrict ourselves to the case of even degree polynomials.
We follow closely [3] and produce a relaxation of the problem (4). Let F have a total degree 2d. We
want to �nd a matrix Q such that

F (x) = zTQz; ; z = [1; x1; x2; : : : ; xn; x1x2; : : : ; x
d
n]:

z contains all monomials in the variables x1; : : : ; xn of degree less than or equal to d. Obviously, if
such Q exists, then it is a symmetric matrix.

The way to construct such a matrix Q is described in the proof below, where we also argue that
Q can always be constructed. If Q � 0, then F (x) � 0; 8x 2 Rn: Conversely, it is not always
true. There exist examples of polynomials which are positive on Rn and for which no matrix Q,
constructed as described above, is positive semi-de�nite. This results are very closely related to
Hilbert 17'th problem (see [1]). This is the reason for which our reformulation is in general just a
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relaxation and not equivalent to the initial rational optimization problem.

Note also that Q is not necessarily unique. In [3] it is shown that Q belongs to an a�ne sub-
space, parameterized by �'s. We extend this result to the case of F (x) = p(x) � �q(x) (hence
depending on �) and show that the generic matrix Q is a�ne in � and �'s.

Theorem 4.1 Let the symmetric matrix Q satisfy p(x) � �q(x) = zTQz. Then Q belongs to an
a�ne subspace.

Proof

This is a constructive proof. We compute the matrix Q by making the computation on the right-
hand side of p(x)� �q(x) = zTQz, where z depends entirely on x's, and equalize the coe�cients of
the corresponding monomials.
To show the existence of Q it su�ces to remark that any monomial (of F ) of degree less than or
equal to 2d can be written as a product of two elements of z. By writing this in a matriceal form and
adding up we obtain a matrix Q. Since a monomial's decomposition into a product of monomials is
in general non-unique, Q is not uniquely determined.
To show that Q is a�ne in �'s and �, note that the system is linear in both the unknowns, Qi;j and
�. To be more precise, the linear system can be written as Av = b� �c, where A 2 RN1�N2 ; b; c 2
RN1�1 and v 2 RN2�1 is the vector variable containing the entries of Q, Qi;j ; i � j . By solving
the system of linear equations in v (using for example Gaussian elimination) we obtain a description
of the a�ne space to which Q belongs.
Note that Q is computed by solving a linear system of N1 =

�
n+2d
2d

�
equations (this is the number

of monomials of degree less than or equal to 2d in n variables) with N2(N2+1)=2 unknowns, where
N2 =

�
n+d
d

�
(the number of monomials of degree less than or equal to d in n variables). 2

Let us denote the matrix constructed above Q(�; �), with � 2 Rk; � 2 R, where k + 1 is the
dimension of the a�ne space to which Q belongs. As shown, Q is a�ne in � and �'s.
Let us look at the SDP problem:

sup �
s.t. Q(�; �) � 0:

(5)

Indeed, since Q(�; �) is symmetric, the matrix coe�cients of � and �'s will be symmetric matrices.
Moreover, Q(�; �) is a�ne in � and �'s, hence the problem is a standard SDP problem (dual for-
mulation).

The relation between the problems (5) and (4) is studied in the following.

Theorem 4.2 Let us denote by �RAT the solution of the problem (4), and consequently of the
rational optimization problem (3), and by �SDP the solution of (5). Then we have

�RAT � �SDP :

If p(x)� �RAT q(x) can be written as a sum of squares, then

�RAT = �SDP :

Proof

Let �SDP be such that (�SDP ; �SDP ) satisfy (5). Since

p(x)� �SDP q(x) = zTQ(�SDP ; �SDP )z and Q(�SDP ; �SDP ) � 0

we have

p(x)� �SDP q(x) � 0; 8x 2 Rn:
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Hence �SDP satis�es the constraints of (4) and therefore

�RAT � �SDP :

If p(x) � �RAT q(x) can be written as a sum of squares, then there exists a �RAT such that

p(x)� �RAT q(x) = zTQ(�RAT ; �RAT )z; Q(�RAT ; �RAT ) � 0:

Hence

�RAT � �SDP :

From the result above, equality holds in fact. 2

Remark 4.3 Hilbert showed that there are particular cases in which a positive polynomial can al-
ways be written as a sum of squares of polynomials. For homogeneous polynomials, these are:

n � 2; m = 2 and n = 3; m = 4

where n denotes the number of variables and m the degree of the homogeneous polynomial (see [1],
Propositions 6.4.3, 6.4.4). This translates for non-homogeneous polynomials into the following cases

n = 1; m = 2 and n = 2; m = 4:

Hence, if the polynomial F (x) = p(x) � �q(x) is in one of these cases, we also know that the algo-
rithm will �nd the in�mum, according to Theorem 4.2. If not, then there is always a polynomial
G(x) such that F (x)G2(x) can be written as a sum of squares of polynomials. It is not clear however
how to chose the polynomial G(x).

From the practical point of view we are more interested in deciding whether for a particular rational
function the in�mum was found or just a lower bound of it. The following checking procedure,
which makes use of the dual formulation of the SDP problem (5), is indicated in [3]. In fact, one
tries to determine a point at which the optimum is attained. If such a point x� exists then let us
denote by z� the vector z evaluated at x�. It is not di�cult to show that the matrix X� = z�T z�

is a solution of the dual problem of the SDP. Conversely, from the solution X� of the dual problem
one could determine the vector z� and further, the point x� where the optimum is attained. It is
argued in [3] that, under no degeneracies, the solution X� of the dual problem is a matrix of rank
1. In this case, we can determine z�, for example by performing Gaussian elimination on X�. Then
x� is found from z� using the de�nition of z.

We do not intend here to discuss further such shortcomings of the method. Both its advantages and
disadvantages are well explained by their authors (see [4], [3]).

5 Example

Let us consider

inf
x2R3

(x1 + x2)
4 + x1

3x3
x14 + x34

:

This translates, using (4), into

sup �
s.t. (x1 + x2)

4 + x1
3x3 � �(x1

4 + x3
4) � 0; 8x 2 R3:
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Since the polynomial is homogeneous of even degree, according to [3] it is su�cient to consider in the
vector z, all monomials in the variables x having as degree half the degree of the original polynomial.
In our case, this will be 2, hence we de�ne z =

�
x1

2 x2
2 x3

2 x1x3 x1x2 x2x3
�
.

We compute the symmetric matrix Q(�; �) using the identity of polynomials

zTQ(�; �)z = x1
4 + x2

4 + x1
2x2

2 � �
�
x1

2 + x3
2
�2
:

We obtain

Q(�; �) =

2
666666666664

��+ 1 �3 �4 1=2 2 ��5

�3 1 �2 ��6 2 0

�4 �2 �� 0 ��1 0

1=2 ��6 0 �2�4 �5 �1

2 2 ��1 �5 �2�3 + 6 �6

��5 0 0 �1 �6 �2�2

3
777777777775

With this, problem (5) becomes a standard SDP. Suitable algorithms can be employed for solving
it. By running SeDuMi (see [5]) for the above SDP problem, we obtain the solution of (5), -0.5699.
Since our problem is one of the special cases mentioned in Remark 4.3, we know that this is the
actual in�mum.

Let us however, perform the checking procedure as described. We run Gaussian elimination on
the solution of the dual problem of (5) and notice that the matrix has indeed rank 1 and

z� = (0:7514; 0:7529; 0:4338;�0:5709;�0:7521; 0:5715):

From z� we recover the solution point x� = (�0:8668; 0:8677; 0:6587). The rational function eval-
uated at x� is equal to the value we have previously found, -0.5699, as expected. We therefore
conclude that the in�mum of the function is actually attained and one such point is x�.

6 Conclusions

In this paper we extend an algorithm for global polynomial minimization to the larger class of ra-
tional functions. The extension is based on a possibly new result in real algebraic geometry, which
allows us to rewrite a rational optimization problem in Rn as a constrained polynomial optimization
problem of a particular type.
Such equivalent formulation of the problem can in principle be solved using a di�erent algorithm
than the one discussed here. We have chosen to apply the algorithm of [4], [3] for its possible rele-
vance in applications. The translation of our problem into this setting was immediate.

Acknowledgment I am very grateful to Prof. J. Bochnak for proof-reading Section 2 of the
paper.

References

[1] J. Bochnak, M. Coste, M-F. Roy, G�eom�etry alg�ebrique r�eelle, Springer-Verlag, 1987

[2] B. Hanzon, D. Jibetean, Global minimization of a multivariate polynomial using matrix meth-
ods, CWI Report PNA-R0109 July 2001.

7


