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ABSTRACT

Non-ionized media subject to strong �elds can become locally ionized by penetration of

�nger-shaped streamers. We study negative streamers between planar electrodes in a sim-

ple deterministic continuum approximation. We observe that for suÆciently large �elds,

the streamer tip can split. This happens close to Firsov's limit of \ideal conductivity".

Qualitatively the tip splitting is due to a Laplacian instability quite like in viscous �n-

gering. For future quantitative analytical progress, our stability analysis of planar fronts

identi�es the screening length as a regularization mechanism.
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Streamers commonly appear in dielectric breakdown when a suÆciently high voltage is suddenly

applied to a medium with low or vanishing conductivity. They consist of extending �ngers of ionized

matter and are ubiquitous in nature and technology [1, 2]. The degree of ionization inside a streamer is

low, hence thermal or convection e�ects are negligible. However, streamers are nonlinear phenomena

due to the space charges inside the ionized body that modify the externally applied electric �eld.

While in many applications, streamers by a strongly non-uniform background electric �eld are forced

to propagate towards the cathode through complex mixtures of gases [2, 3, 4], we here investigate the

basic phenomenon of the primary anode-directed streamer in a simple non-attaching and non-ionized
�New address: Universidad Rey Juan Carlos, Escuela Superior de Ciencias Exp. y Tecnolog��a, c. Tulipan s/n, 28933

Mostoles, Madrid, Spain
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Figure 1: Evolution of spontaneous branching of anode directed streamers in a strong homogeneous

background �eld at times t = 300, 365, 420 and 450. Model, initial and boundary conditions are

discussed in the text. The planar cathode is located at z = 0 and the planar anode at z = 2000

(shown is 0 � z � 1400). The radial coordinate extends from the origin up to r = 2000 (shown is

0 � r � 600). The thin lines denote levels of equal electron density � with increments of 0.1 or 0.2 as

indicated by the labels. The thick lines denote the higher electron density levels 1., 2., 3., 4., 5. and

6. These high densities appear only at the last time step t = 450 in the core of the new branches.

gas and in a uniform background �eld as in the pioneering experiments of Raether [5]. In previous

theoretical work, it is implicitly assumed that streamers in a uniform background �eld propagate in

a stationary manner [6, 7, 8]. This view seems to be supported by previous simulations [9, 10].

In this paper we present the �rst numerical evidence that anode directed (or negative) streamers do

branch even in a uniform background �eld and without initial background ionization in the minimal

fully deterministic \
uid model" [1, 6, 7, 8, 9, 10], if the �eld is suÆciently strong. We argue that this

happens when the streamer approaches Firsov's limit of \ideal conductivity" [6]. The streamer then

can be understood as an interfacial pattern with a Laplacian instability [11], qualitatively similar to

other Laplacian growth problems [12]. For future quantitative analytical progress, we identify the

electric screening length as a relevant regularization mechanism.

We investigate the minimal streamer model, i.e., a \
uid approximation" with local �eld-dependent

impact ionization reaction in a non-attaching gas like argon or nitrogen [1, 6, 7, 8, 9, 10, 11]. In

detail, the dynamics is as follows:

(i) an impact ionization reaction in local �eld approximation: free electrons and positive ions are

generated by impact of accelerated electrons on neutral molecules @�ne +rR � je = @�ni +rR � ji =

j�eEnej �0 �(jEj=E0); ne;i and je;i are particle densities or currents of electrons or ions, respectively,

and E is the electric �eld; in all numerical work, we use the Townsend approximation �(jEj=E0) =

exp(�E0=jEj) for the e�ective cross-section.

(ii) drift and di�usion of the charged particles in the local electric �eld je = ��eEne � DerRne,
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where in anode-directed streamers the mobility of the ions actually can be neglected because it is

more than two orders of magnitude smaller than the mobility of the electrons, so ji = 0,

(iii) the modi�cation of the externally applied electric �eld through the space charges of the particles

according to the Poisson equation rR � E = e(ni � ne)=�0. It is this coupling between space charges

and electric �eld which makes the problem nonlinear.

The natural units of the model are given by the ionization length R0 = ��1
0 , the characteristic impact

ionization �eld E0, and the electron mobility �e determining the velocity v0 = �eE0 and the time

scale �0 = R0=v0. Hence we introduce the dimensionless coordinates [11] r = R=R0 and t = �=�0, the

dimensionless �eld E = E=E0, the dimensionless electron and ion particle densities � = ne=n0 and

� = ni=n0 with n0 = "0E0=(eR0), and the dimensionless di�usion constant D = De=(R0v0). After

this rescaling, the model has the form:

@t � � r � (� E+D r�) = � f(jEj) ; (1)

@t � = � f(jEj) ; (2)

�� � = r �E ; E = �r� ; (3)

f(jEj) = jEj �(jEj)
�
= jEj e�1=jEj in sim.

�
: (4)

In the simulations presented here, a planar cathode is located at z = 0 and a planar anode at

z = 2000. The stationary potential di�erence between the electrodes �� = 1000 corresponds to a

uniform background �eld E = �0:5 ez in the z direction. For nitrogen under normal conditions with

e�ective parameters as in [9, 10], this corresponds to an electrode distance of � 5 mm and a potential

di�erence of � 50 kV. The unit of time �0 is � 3 ps, and the unit of �eld E0 is � 200 kV/cm. We used

D = 0:1 which is appropriate for nitrogen, and we assumed cylindrical symmetry of the streamer.

The radial coordinate extends from the origin up to r = 2000 to avoid lateral boundary e�ects on

the �eld con�guration. As initial condition, we used an electrically neutral Gaussian ionization seed

on the cathode

�(r; z; t = 0) = �(r; z; t = 0) = 10�6 e�(z2+r2)=1002 : (5)

The parameters of our numerical experiment are essentially the same as in the earlier simulations of

Vitello et al. [10], except that our background electric �eld is twice as high; the earlier work had 25

kV applied over a gap of 5 mm. This corresponded to a dimensionless background �eld of 0.25, and

branching was not observed.

In Fig. 1 we show the electron density levels at four time steps of the evolution in the higher back-

ground �eld of 0.5. We observe that at time t = 420, the streamer develops instabilities at the tip.

At time t = 450, these instabilities have grown out into separate �ngers. Because of the imposed

cylindrical geometry, the further evolution after branching ceases to be physical. On the other hand,

the main e�ect of the unphysical symmetry constraint is to suppress all linear instability modes that

are not cylindrically symmetric. Hence in a fully 3D system, the instability will develop even earlier

than here.

Further simulations show: (a) branching does not occur in a system of the same size in the lower

background �eld of 0.25, in agreement with [10]. (b) Branching is not due to the proximity of the

anode, since in a system with twice the electrode distance (with the anode at z = 4000) and with twice

the potential di�erence (�� = 2000) | so with the same background �eld |, the streamer branches
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Figure 2: A zoom into the head of the streamer from Fig. 1 at the �rst two time steps. The aspect

ratio is equal and the axis scaling identical at both times. The thin lines are the levels of equal

electron density as in Fig. 1. The thick lines are electrical equipotential lines in steps of �� = 12.

in about the same way after about the same time and travel distance. (c) However, branching does

somewhat depend on the numerical discretization. In fact, numerical noise due to the discreteness of

the spatio-temporal grid is the only noise present in our mean �eld model (1) { (5). It substitutes

the physical noise caused by the discreteness of the individual charge carriers. A wider numerical

mesh leads to a higher e�ective noise level; and in agreement with this reasoning, in the simulation

the branching then develops somewhat earlier. (d) Occasionally, we observe a di�erent tip splitting

mode. In Fig. 1 at time t = 450, the �nger on the axis develops the strongest with � exceeding 6,

while in the �ngers o� the axis, � stays below 3. In the other branching mode, the �rst �nger o� the

axis outruns the �nger on the axis.

Before we discuss the physical nature of the instability, we explain our numerical approach: we used

uniform space-time grids with a spatial mesh of 1000 � 1000. The spatial discretization is based on

local mass balances. The di�usive 
uxes are approximated in standard fashion with second order

accuracy. For the convective 
uxes a third order upwind-biased formula was chosen to reduce the

numerical oscillations that are common with second order central 
uxes. Time stepping is based

on an explicit linear 2-step method, where at each time step the Poisson equation is solved by the

FISHPACK routine. References for these procedures can be found in [13].

To understand now why and at which stage the streamer becomes susceptible to noise and develops a

tip splitting instability, in Fig. 2, we zoom into the streamer head. Shown are the �rst two time steps

from Fig. 1 with the electron density levels again as thin lines, and additionally with the equipotential

lines as thick lines. One observes that during the temporal evolution prior to branching, both the

curvature and the thickness of the ionization front decrease. So the width of the front becomes much

smaller than its radius of curvature, and an interface approximation becomes increasingly justi�ed.

The electric �eld inside the streamer head also decreases, so that the ionization front more and more

coincides with an equipotential surface. In summary, the ionization front evolves towards a weakly
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curved and almost equipotential moving ionization boundary. At the same time, the electric �eld

immediately ahead of the streamer increases.

We argue now that a transient stage of an approximately equipotential and weakly curved ionization

boundary leads to tip splitting. Conversely, we argue that tip splitting in the lower background �eld

of 0.25 is not observed within the presently and previously [10] investigated gap lengths because the

transient stage of Fig. 2 is not reached before the streamer reaches the anode.

In fact, the streamer in Fig. 2 approaches the limit of \ideal conductivity": the conducting body

has � � const:, while in the non-ionized region r2� = 0 due to the absence of space charges. The

boundary between the two regions moves approximately with the drift velocity vf / r� or with the

di�usion corrected velocity vf / r�
�
1 + 2

p
D �(jr�j)=jr�j

�
[11]. Our simulations are the �rst

numerical evidence that the \ideal conductivity" limit can be approached within our model.

This limit of ideally conducting streamers in an electric �eld that becomes uniform far ahead of the

front was studied by Firsov [6]. He realized that uniformly propagating paraboloids of arbitrary

radius of curvature are solutions of this problem. He did not realize that his paraboloids are mathe-

matically equivalent to the Ivantsov paraboloids [12] of dendritic growth found earlier. The uniformly

propagating Ivantsov paraboloids in the early 80'ies were identi�ed as dynamically unstable. This is

generally the case for such so-called Laplacian growth problems without a regularization mechanism.

Since ideally conducting streamers also pose such a Laplacian growth problem [11], the dynamical

instability of the structure shown in Fig. 2 can be expected, and it actually occurs as can be seen in

Fig. 1. This explains qualitatively why tip splitting occurs.

For a quantitative analysis, a system speci�c regularization mechanism has to be found [11, 12]. Its

identi�cation is intricate because negative streamer fronts are so-called pulled fronts whose dynamics

is dominated by the leading edge rather than the nonlinear interior of the front [14]. Therefore

standard methods like the pertubative derivation of a moving boundary approximation for the model

(1){(4) does not work [15]. (Pulling also implies that standard numerical methods with adaptive

grids are ineÆcient.) However, the ionization front has two intrinsic length scales, a di�usion length

and an electric screening length. We therefore explore the approximation of D = 0. It is smooth for

the velocity of negative fronts [11] and eliminates the leading edge, and hence suppresses the pulled

nature of the front. Rather the front becomes a shock front for the electron density, while the intrinsic

length scale of the electric screening layer behind the shock remains.

As a �rst step to understand the short wave length regularization of perturbations due to this screening

length, we have investigated the transversal instability modes of a planar ionization front in the limit

D = 0 in a �eld that approaches the uniform limit E = �E1 ez far ahead of the front. The planar

unperturbed front propagates with velocity v = E1, which equals the drift velocity of the electrons

precisely at the shock front. The implicit analytical front solution can be found in [11]. In a comoving

frame � = z � vt, we denote it by
�
�0(�); �0(�);�0(�)

�
. The Fourier components

�
~�k; ~�k; ~�k

�
of a

transversal linear perturbation are de�ned through

� = �0(�) +

Z
dk ~�k(�) e

ikx+st + : : : etc. (6)

For the derivation of the boundary conditions on the shock front, it is more convenient to write a

single Fourier component as � = �0
�
� � eikx+st

�
+ �k(�) e

ikx+st + : : :. With this ansatz and the
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auxiliary �eld  k = @��k, the Fourier components solve the inhomogeneous equation
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The boundary conditions at the shock � = 0 can be obtained from the analytical solution in the

non-ionized area, and from the boundedness of the charge densities:0
BBBB@

�k

�k

 k

�k

1
CCCCA

�"0
�!

0
BBBB@

f 0(v)=(1 + s=f(v))

0

1

(vk � s)=(sk)

1
CCCCA : (8)

The other boundary conditions are obtained by imposing that at � ! �1 the electric �eld decays

and the densities become constant.

These equations together with the boundary conditions de�ne an eigenvalue problem for s = s(k; v)

with v = E1. It can be solved numerically by shooting from � = 0 towards �1. In agreement with

analytical limits | details will be given elsewhere |, we �nd

s(k)

(
jE1j k for k � �(jE1j)=2

jE1j �(jE1j)=2 for k � �(jE1j)=2
: (9)

This means that the electric screening length 1=�(jE1j) does regularize the instability of short wave

length perturbations from linear growth in k to the saturation value s(k) = jE1j �(E1)=2. A

small positive growth rate remains, but the analytical derivation of (9) hints to the unconventional

possibility that suÆciently curved fronts actually are stable to short wave length perturbations. This

question is presently under investigation. If true, it would identify a most unstable wave length

determining the width of the �ngers that emerge after tip splitting.

In conclusion, we have presented numerical evidence that anode-directed streamers in a suÆciently

strong, but uniform �eld can branch spontaneously even in a fully deterministic 
uid model. We

have argued that this happens when the streamer approaches the limit of ideal conductivity. We

have established a qualitative mathematical analogy with tip splitting of viscous �ngers through

the concept of Laplacian growth, and we have analytically demonstrated that the electric screening

length leads to an unconventional regularization. This opens the way to future quantitative analytical

progress.

References

[1] Y.P. Raizer, Gas Discharge Physics (Springer, Berlin 1991).

6



[2] E.M. van Veldhuizen (ed.): Electrical discharges for environmental purposes: fundamentals and

applications (NOVA Science Publishers, New York 1999).

[3] A.A. Kulikovskii, J. Phys. D: Appl. Phys. 33, 1514 (2000); and Phys. Rev. E 57, 7066 (1998).

[4] L. Niemeyer, L. Pietronero, H.J. Wiesman, Phys. Rev. Lett. 52, 1033 (1984); A.D.O. Bawagan,

Chem Phys. Lett. 281 325 (1997).

[5] H. Raether: Z. Phys. 112, 464 (1939) (in German).

[6] E.D. Lozansky and O.B. Firsov, J. Phys. D: Appl. Phys. 6, 976 (1973).

[7] M.I. D'yakonov, V.Y. Kachorovskii: Sov. Phys. JETP 67, 1049 (1988); and Sov. Phys. JETP

68, 1070 (1989).

[8] E.M. Bazelyan, Yu.P. Raizer, Spark Discharges (CRS Press, New York, 1998); Yu.P. Raizer,

A.N. Simakov, Plasma Phys. Rep. 24, 700 (1998).

[9] S.K. Dhali and P.F. Williams, Phys. Rev. A 31, 1219 (1985) and J. Appl. Phys. 62, 4696 (1987).

[10] P.A. Vitello, B.M. Penetrante, and J.N. Bardsley, Phys. Rev. E 49, 5574 (1994).

[11] U. Ebert, W. van Saarloos and C. Caroli, Phys. Rev. Lett. 77, 4178 (1996); and Phys. Rev. E

55, 1530 (1997).

[12] For a review and a collection of original articles, see P. Pelc�e: Dynamics of Curved Fronts

(Academic Press, San Diego 1988).

[13] P. Wesseling, Principles of Computational Fluid Dynamics, Springer Series in Comp. Math. 29

(Berlin 2001).

[14] U. Ebert and W. van Saarloos, Phys. Rev. Lett. 80, 1650 (1998); and Physica D 146, 1{99

(2000).

[15] U. Ebert, W. van Saarloos, Phys. Rep. 337, 139 (2000).

7




