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ABSTRACT

We establish the validity of the empirical Edgeworth expansion (EE) for a studentized trimmed mean, under the
sole condition that the underlying distribution function of the observations satisfies a local smoothness condition

near the two quantiles where the trimming occurs. A simple explicit formula for the n~1/2

term (correcting
for skewness and bias; n being the sample size) of the EE will be given. In particular our result supplements
previous work by Hall and Padmanabhan (1992) and Putter and van Zwet (1998). The proof is based on a

U-statistic type approximation and also uses a version of Bahadur’s (1966) representation for sample quantiles.
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1. INTRODUCTION AND MAIN RESULTS
In this paper we establish the validity of the empirical Edgeworth expansion (EE) for a studentized
trimmed mean, under the sole condition that underlying distribution function (df) of the observations
satisfies a local smoothness condition near the two quantiles where the trimming occurs. In particular
our result supplements previous work by Hall and Padmanabhan (1992) and Putter and van Zwet
(1998). The existence of an Edgeworth expansion (EE) for a studentized trimmed mean was also
obtained by Hall and Padmanabhan (1992), but these authors wrote that the ”first term in an Edge-
worth expansion is very complex and so it will not be written down explicitly”. In contrast, in the
present paper we show that our method of proof gives a simple explicit formula for the N—1/2- term
(correcting for skewness and bias; N being the sample size) of the Edgeworth expansion. The proof
of our result is based on a U—statistic type approximation (cf. also Bickel, Gétze, van Zwet (1986)
and Helmers (1991)) and also uses a version of Bahadur’s (1966) representation for sample quantiles.
We will also show (cf. Lemma A.2, Appendix) that our result cannot be obtained as a consequence of
a general result (Theorem 1.2 of [10]) for a studentized symmetric statistics of Putter and van Zwet
(1998).

Let X;,...,Xn be independent and identically distributed (i.i.d.) real-valued random variables
(r.v.) with common df F, and let X;.;y < --- < X,y denote the corresponding order statistics.
Consider the trimmed mean given by

1 (BN]

BN b2, 5 ()

i=[aN]+1

Ty =



where 0 < a < 8 < 1 are any fixed numbers and [] represents the greatest integer function. Let
F~Y(u) = inf{z : F(z) > u}, 0 < u < 1, denote the left-continuous inverse function of df F and put
L F=1(u) = 1/f(F~(u)) to be its derivative, when the density f = F’ exists and f(F~!(u)) > 0.
Let

& =F (),
0 < v < 1, be the v-th quantile of F'. Define a function
ga ) u S a7
Qu)=1{ FYu), a<u<p,
55 s B < u.
Let W;, ¢ =1,...,N, denote X; Winsorized outside of ({4, &s], that is
'foz ) Xi < gaa
Wi - Xz ga < Xz < 5,6’7 (12)
€8, & <X

Then W; £ Q(U;),i=1,...,N, where U; are independent r.v.’s with the uniform on (0, 1) distribution.
Define

i = /OlQ(u) du, o2 = /Ol(Q(u) ) du, e = /OI(Q(U) Caw)du. (13)

Put

2 1 2 a2 L 2
Sow = —a f(&x)[uw &]”+(1-0) f(g,g)[”W &al” (1.4)

Suppose that £, # &g (that is &, is not an atom with mass (8 — «) for the distribution F'), then W;
are not degenerated (o > 0). Define two real numbers A; and A, as

AL = ’Y3,W/Uig’/v, Ag = 52,W/Uév- (1-5)

We need no moment assumptions about the distribution F' and to normalize Ty we use

1 B
o =— Fl(u)du 1.6
wop) = 5= [ P (16)
as a location parameter and (3 — o) low (the root of the asymptotic variance) as a scale parameter.
Note that Ty often serves as a statistical estimator for the parameter u(c, 3).

Now we show why moments are not needed. Take some fixed A > 0 and define auxiliary i.i.d.
Winzorized r.v.’s X! = max(§, — A, min(X;, &g + A)). Let X!y, ¢=1,...,N, denote the correspon-

BN]

dent order statistics. Introduce auxiliary trimmed mean T} = m ZE:[OL N]+1

arbitrary x € R and note that
{Tn <z} C{Ty < 2} U{Xjanjr1n < E&a — AYU{Xjpapn > & + AL,

{TII\T < a:} C {TN < Q)} U {X[QN]_;,_LN < Ea — A} U {X[BN]:N > 55 +A}

If the conditions of our Theorem 1.1 are satisfied then, by Bernstein’s inequality we get P(X[qnj+1:n8 <
§a — A) + P(Xgn:n > &g+ A) = O(exp(—cN)), as N — oo, where ¢ > 0 is some independent on N
constant. Therefore

/ .
X..n. Fix an

sup |P(Ty <) = P(Ty < )| = O(e™*") (1.7)

and when proving our results we can replace with impunity Ty by T, which has finite moments of
the arbitrary order.



In absence of any moment assumptions, our formula for the first N~1/2 term of EE contains a bias
term. Define a quantity

1 1 1
By = v {—(aN ) (,u,(oz,ﬂ) . ga) - 50l = @)
1 1
HBN = 3] ( (e B) - &) + 350~ B) 7t }- (1.9

Note that when N and BN are integer valued, the bias term has peculiary simple form: By =
ﬁ {*a(lia) + 8328 } Moreover, in case o = 1 — § and f(a) = f(£s) (when the distribution F is

f€a) f(€s)
symmetric, for example), the bias term vanishes.

We show (cf. Lemma A.1, Appendix) that if the conditions of our Theorem 1.1 are satisfied, then
for an arbitrary A > 0

by = (8 = @)(ETy — p(e, ) = B + O(N /%) (1.9)
as N — oo.(cf. (1.7)) Note also that the bias term (1.8) does not depend on A.

Define 12
o (e )

to be a df of a normalized trimmed mean. The Edgeworth expansion for the distribution function
Fr, (z) is given by

(1.10)

<()\1 +3X)(z? — 1) + 6N5—N> , (1.11)

G () = B(z) — (‘5’5\(/“”%

where @ is the standard normal distribution function, ¢ = ®’. We use here the notation of Putter and
van Zwet (1998). The quantity (A, +3X2)N~1/2 serves as an approximation to the third cumulant of

NY2(Ty —p(@,B)) 1/2

Fa)"Toy » Mmoreover A1 N~"% is the approximation to the third cumulant of the Ls-projection

of the normalized trimmed mean, which close to N~ /2071 SV W; - sum of N i.i.d. Winsorized r.v.
(cf. Sect.3, below), and 3\, N /2 is the correcting term (note that in the case of trimmed mean
32 = 302, woyr = a?h/ (@) — (1 — B)2h/(B), where h(u) = ((pw — F’l(u))/aw)s).

Here is our first result: an Edgeworth expansion for a normalized trimmed mean.

THEOREM 1.1. Suppose that f = F' exists in neighborhoods of the points £, and &g, satisfies a
Lipschitz condition there and f(£,) > 0, v = a, 3. Then

sup |Pry (2) — G (2)] = o(N7/?), (1.12)

as N — oo.

Theorem 1.1 can be viewed as a version of the Edgeworth expansion for trimmed mean obtained
by Bjerve (1974) in his unpublished Berkeley Ph.D. thesis (cf. also Helmers (1979)). Our method
of proof is different from Bjerve’s, as he used a conditioning argument to reduce a trimmed mean to
a sum of i.i.d. r.v.’s, conditionally given the values of X|,n)41,nv and X|gn,n, While in contrast we
essentially show that Ty can be approximated by a U—statistic Up; the remainder Ty — Uy can be
shown to be of negligible order for our purposes by an application of a version of Bahadur (1966)
representation for sample quantiles.



Next we state our result on the validity of one-term Edgeworth expansion for the Studentized
trimmed mean. Define plug-in estimators for uy and o, by

m—1
. k 1 N—-m+1

iw = 5 Xen + 5 D Xiw + = X, (1.13)

i=k+1

and
k N-m+1 .

f (bt )

1k+1

with £ = [aN] 4+ 1 and m = [BN]. Let

N'Y2(Ty — p(e, 8))

F =P d < 1.15
N,S(I) < (B_a)_ISN _Z) ( )

denote a df of a studentized trimmed mean. Define

¢(z) 2 BN
H O(z)+ —=| 2z +1)A1 +3 DAy —6N— 1.16
v(@) = B(w) + 22 ( (202 + D1+ 37 + Do — 0N (1.16)
Our main result is:
THEOREM 1.2.  Suppose that the conditions of Theorem 1.1 are satisfied. Then

sup |Fiy,s(z) — Hy(z)| = o(N~"/?), (1.17)

TER

as N — oo .

As already indicated in our introduction the exisence of an Edgeworth expansion for Fy s was
proved by Hall and Padmanabhan (1992). In (1.16) and (1.17) we give the precise and simple explicit
form of an EE for Fy . In fact formally the form of our EE Hy (cf.(1.16)) coincides with the one
given on p.1545 of Putter and van Zwet (1998). However, our Theorem 1.2 can not be inferred from
the result of Putter and van Zwet (1998): the second condition in (1.18) is not satisfied for our Ty,
that is, for a studentized trimmed mean (cf. Lemma A.2, Appendix).

REMARK 1.1. It is clear from the proofs of Theorems 1.1 and 1.2 that the order of the remainder
term which we really obtain in relations (1.12) and (1.17) is O((log N)%/*/N?3/%), as N — oo.

To obtain empirical Edgeworth expansions (cf. Helmers (1991), Putter and van Zwet (1998)) we
replace A;, A2, By and ow in (1.11) and (1.16) by statistical estimates. The estimation of A; is
straightforward. Let us define

A = Sy 4s.w

m—1
_ k 1 N-m+1
=Sy | =(Xpny — fw)® + = Xin — fiw)® + ———— (X v — fiw)®
N (N( kN — Aw)” + Nizzk;rl( N~ fiw)” + N (Xm:n — fiw)
(iw and Sy were defined in (1.13) and (1.14)) to be an estimate for A\;. As to Ay and Sy, we
first have to estimate the values of density f(£.) and f({g). We shall use kernel estimators with
a simple step-like kernel. Put g(z) = Ifj;/<1/2). Take the width of kernel A = N-Y* and put



ga(z) = 29 (%) = xI{jz/<a,2}, where ffooo ga(z)dz = 1. Then our estimates for values of density
at the quantiles where trimming occurs will be the following:

| X N
F&) =« D ga(Xi = Xpn) = N Tonisx, - x,nl<1) (1.18)

i=1 i=1

where v = @ and r = k or v = 8 and v = m respectively. Our estimates of f({) and f({g) are rather
simple ones and sufficient for our purposes. (cf. also Reiss (1989), p.262 for related results) Thus, we
obtain the following estimates for Ay and Sy

Ay = S3° {—042(f(§a))71[ﬂw — Xen)? + (1= B)(£(88)) aw — Xm:N]2} :

by = ¢ {08 — [aN) (T Xw) ~ Sl - (7€)

1 2 -
HEN — BN (T~ X ) + 300 D€}
When the conditions of Theorem 1.1 are satisfied, the estimates 5\1, X2 and B N are consistent estimators

of the corresponding quantities A;, Ay and By (cf. Sect.5). Replacing these latter quantities by their
estimates in formulas (1.11) and (1.16), we obtain the empirical Edgeworth expansions:

Gn(z) = D(z) - % <(X1 +3%) (@2 - 1) + 6N§_Z> ,
Hy () = ®(x) + % < (222 + 1A + 3(z® + 1)As — 6N§_§:’[) _

The result, establishing the validity of the empirical Edgeworth expansions, is given by the following
assertion.

THEOREM 1.3. Suppose that the conditions of Theorem 1.1 hold. Then

sup |Fi(a) = Gl =0, (2. (1.19)
sup [ Fivs(o) ~ Hv(o)] =0y (). (1.20)

as N — o00.

REMARK 1.2. It is clear from Remark 1.1 and the Lemma’s 5.1 and 5.2 that we can strengthen
(1.19) and (1.20) to sup,cp |Fn(z) — Gn(z)| = O ((log N)5/AN—3/%) with probability 1 — O (N~¢),
for every ¢ > 0, as N — oo, and similarly, sup, p |Fn,s(z) — Hy(z)| = O ((log N)5/4N—3/4), except
on a set with probability O(N~°¢), for every ¢ > 0.

2. AUXILIARY RESULTS
Let Uy, ...,Uy are independent r.v.’s uniformly distributed on (0,1) and Uy n,...,Un,n denote the
corresponding order statistics. Define a binomial r.v.

Na = ﬁ{Ul : Uz S a}.



The following lemma is a version of Bahadur’s (1966) representation (cf. also Theorem 6.3.1, Reiss
(1989)) for the sample quantile. In this section k is an integer, k = aN + O(1), N — .

LEMMA 2.1. Suppose that f = F' exists in neighborhood of &, satisfies a Lipschitz condition and
f(€y) > 0. Let G be some function, having a derivative g = G' in neighborhood of &, and suppose
that g satisfies a Lipschitz condition in this neighborhood. Then

G(Xk:N) = G(Ea) - Na ]_VaNg(fa)f(z ) + Ry, (2'1)
where
P(IRy| > A(log N/N)¥/) = O(N~°), (2.2)

as N — oo, for every ¢ > 0 and some A > 0, not depending on N.

We omit the proof because the lemma is essentially known and its proof requires similar arguments
will also be used in the proof of Lemma 2.2. To state next lemma we shall adopt the following notation.
Let Y7, (.)i = sign[m — k] -5V (), for all integer k and m.

i=kAm

LEMMA 2.2. Suppose that the conditions of lemma 2.1 are satisfied. Then

1 N‘* _ (Na —aN)? 1
,:k G(a)) = sz 9() et Ry, (2.3)
where
P(|Ry| > A(log N/N)*/*) = O(N~°), (2.4)

as N — oo for every ¢ > 0 with some A > 0, not depending on N.

This lemma extends and sharpens the relations (3.2) and (3.3) given (for the case G(z) = z) in
Hall and Padmanabhan (1992). Note also that the factor (1 — «)~! in formula (3.2) and (1 —8)~! in
formula (3.3) (see Hall and Padmanabhan (1992)) should be omitted.

COROLLARY 2.1. Suppose that f = F' exists in neighborhood of &, satisfies a Lipschitz condition
and f(€y) > 0. Then

1 Je  (Na—aN)? 1
N ;(Xi:N —&a) =— SNz e + Rn 1, (2.5)
L3S X7 2) = (N aN)” R 2.6
N;( in-E)=- saf(fa)+ N2, (2:6)
where Ry ;, i = 1,2, satisfy (2.4).
PRrROOF. We begin by writing
1 Ne g1 D )
NZ(G(Xi:N)—G(éa)) = 5 2 NGo F)(Uin) = (GoF)(a)]
i—k i=k
1 &
9(&a) (Uin — a) + Ry 3, (2.7)



where

kVN,
o RN L, Clk— N,
|Rna| < N Y (Uin-a)< -

i=kANqy

[(Ukin — @)V (Un, v — @)’ (2.8)

with C equal to the product of Lipschitz’s constants of functions g and h. Let us fix an arbitrary
¢ > 0 and note that

P((a~Un,n)* > A1logN/N) < P (UNQ—i-l,N —Un, N> (A 10gN/N)1/2> =

P (ULN > (A, log N/N)1/2> = O(N™°). (2.9)

Here and elsewhere A; denote the positive constants which do not depend on N. Besides, by Bern-
stein’s inequality
P(IN, — k| > (A2Nlog N)¥?) = O(N~°), (2.10)

with Ay = 2¢1a(1 — ), and by lemma 3.1.1, Reiss (1989)
(U — )? > A3 log N/N) = O(N"),
as N — oo. Therefore (2.8) implies that
P(|Ry 3| > As(log N/N)*/?) = O(N~°) (2.11)

with Ay = C A; max(A;, As). Now consider the dominant term on the r.h.s. of (2.7). By (2.10) we can
bound our quantities on the event F = {w : |N, — k| < (A2Nlog N)'/?}. Fix N and N, for which
the event E holds true. Without loss of generality let £ < N,. Note that conditional on N, the order
statistic U;.n, k < i < N, is distributed as i-th order statistic of the sample of size N, from the
uniform on (0, @) distribution and E(U;.x|N,) = %45, for i = k,..., N,. Write

No+1°
LS W)= &[St - 2+ S e -
N & TN | & Na+ U T &N+ B
1 Y i « Ve
N;wm Nt T LT DN g(z No—1) =
1 O ai a(N, —aN)?
— Y (Upn — - = O(N7Y). 2.12
Ni:( N Na+1) 2NN, (V=) (2.12)
For the second term on the r.h.s. of (2.12) we have
N, — aN)? N, — aN)? N, — aN)?
_a(Na—aN)? _ (Na—aN) o _ WNazaN)® (2.13)
2NN, 2N aN + (Ng — aN) 2N?
where in view of (2.10)
P(|Ry 4| > As(log N/N)*/2) = O(N~°) (2.14)

as N — oo with A5 = A3. For the first term on the r.h.s. of (2.12) we can write

N,
N BN < N = —— | 2.1
N;@‘N Na+1>‘— s T Nﬁl‘ (2.15)

Note that we suppose that the event F holds true and (without loss of generality) that £ < N,
(otherwise a similar argument with respect to (1 — «, 1) instead (0, «)) will do). Fix an arbitraryc; >



¢+1/2 and note that conditional on N, the the variance of the order statistic U;.y, k < i < N,, equals

to mg‘iagi_)m = O ((log N)/2N—3/2). By lemma 3.1.1, Reiss(1989), uniformly for k < i < N,
o

as N — oco.Relations (2.15) and (2.16) together imply

1
P (N
(A;Nlog N)Y20(N~2) = O(N~°), (2.17)
as N — co. Now (2.3) and (2.4) follow by (2.7), (2.10)—(2.14) and (2.17). The lemma is proved. O

at

Uiy — ———
N No+1

‘ > Aﬁ(logN/N)3/4Na> = O(N ™), (2.16)

Nqo

at
;(Uizz\r TN 1)

> (Ag)'/2Ag (logN/N)5/4‘ Na> <

3. PrROOF OF THEOREM 1.1.
To begin with let us note that we can replace Ty (cf. (1.1)) by

NTY2N" X, (3.1)
i=k

where k = [aN]+1,m = [BN],0 < a < 8 < 1. Note that this will affect only the bias term (see Lemma
A.1, Appendix), and we shall take that into account whenever needed. Define I, (X;) = Itx,<¢,},
where £, = F~1(v), 0 <v <1, and I, is the indicator of event A. Then for the Winsorized r.v. W;
(cf. (1.2)) we can write

Wi = Xilp(Xi)(1 = La(Xi)) + €ala(Xi) + §5(1 — I5(X5)). (3.2)

Recall that pw, 03, v3,w denote first three cumulants of r.v. EW; (cf.(1.3)). Define a U—statistic
of degree 2 by

N
Ly+Uy = ZLN,i + Z Z Un, (i) (3.3)
i=1 1<i <j<N
where 1
Lni= 7N(Wz —pw) =
[0 (1~ 1a(X0)) + €aTa (X0 + €0(1 = To(X0) — ] (34)
1 1
UN,(i,j) = N\/N - f(&a) (Ia(Xl) - a)(IOC(XJ) - Oé)
1
—Ip(X;) — B)Ip(X;) — . 3.5
+ e U = B)I05) - ) (35)
Note that
ELy; =0 (3.6)
foralli=1,...,N and
EUN i) =0, B(LniUn,) =0 (3.7)

foralli,j=1,...,N (i # j). Using (3.4)—(3.7), we easily check that

Olntuy = B(Ly +Un)* = E(LY) + O(N™') = o3y + O(N7Y), (3-8)



and also that
E(Ly +Uy)® = E(L%) 4+ 3E(L%Uy) + O(N~3/2) =

e 3o L [ B ) () - )]+

1 ) "
T&@ [E((”l —uw)(Ip(X1) — /3))} } +O(N 3/ ) =
i’}/,?, w+ 3L [loﬂ (o — pw]* + L(l ~B)%es MW]Z] N
N VN L&) f(&s) b

+O(N3/2), (3.9)
Relations (3.8) and (3.9) imply that

E(LN+UN>3_)\1+3)\2

+ O(N73/?), 3.10
o inatn) N oW (3.10)

where); and Ay as in (1.5).
The next lemma ensures that the approximation of Ty by a U—statistic of the form (3.3) has a
remainder of classical Bahadur’s order of magnitude N—3/%(log N)%/4.
LEMMA 3.1.  Suppose that the conditions of Theorem 1.1 hold. Then
P (|TN — ET)y — (Ly + Uy)| > A(logN)5/4N’3/4> = O(N™) (3.11)

as N — oo, for every ¢ > 0 with some A > 0 independent on N.

Proor orF LEMMA 3.1. Let W;.n, ¢« = 1,...,N, denote the order statistics, corresponding to
Wi, ..., Wn. PutN, = #{X; : X; <&}, 0 <v < 1. Then

§as 1< Ng,
Win =4 Xin, No <1< Ng,
fg , T > Ng.
Now note that
N Ng
Z V= ZX’LN N, ga_ Z XZN_(N_Nﬁ)é.ﬁ =
i=1 \/N i=k i=Ng+1
NoV(k—1) mVNg
sign[Ny — (k — 1)] Z Xi.n — sign(Ng —m) Z Xi.n
i=kA(Ng+1) i=(mANg)+1
NaV(k—1)
1 .
- Nagoc - (N - Nﬂ)gﬂ} = \/—N Slgn[Na - (k - 1)] Z (Xi:N - £o¢)
i=kA(Ny+1)

mVNg

—sign(Ng—m) Y (Xin—&) — (k= 1) —(N=-m)és p =
i=(mANg)+1

(Na—aN)? 1 +(Ng—ﬁN)2 1 k-1

INVN  f(la) 2NVN  f(€) VN

ga*
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where by Lemma 2.2
P (\RN| > A(log N)5/4N—3/4) = O(N~°) (3.12)

as N — oo, for every ¢ > 0 with some A > 0 independent on N. Define

oo Ma—aNP 1 (N GNP 1
NTUUONYN ) INVN  f(&s)

1 N *
QNW{_ [Z(Ia(Xi)—a)] m-l—

i=1

N

’ 1
> (Ts(Xi) - 5)] Tﬁﬁ)}

i=1

It is evident that @y is a symmetric polynomial of degree two with

E@N):ﬁ{ ~a(1~a) g ”“‘mﬁm}'

Note that

B> Wi= VN = VN (8- a)u(e.§) + ok + (1= £)6s) (3.13)

-

N

Then we can write

Ty = Ly +Qu = BQy + VN ( (8= a)u(a, 8) + ata + (1= B)é5)

k—1 N-—-m 1 1 1
,\/Nfa* \/Ngﬂ+2\/ﬁ{a(la)f(ﬁa)+5(lﬁ)]f(‘gﬁ)}+RN
:LN+QN_EQN+\/N(B—OJ)/.L(Q,B)+\/LN{ —[k—1-aN]&,
1 1 1 1
~5 Ty (L~ @)+ m = BNgs + 5Bl - ﬁ)} + Ry. (3.14)

Let us compare the expression within curly brackets on the r.h.s. of (3.14) with the formula for By (a
bias term for Ty ,given by (3.1)) (cf.(A.3), Appendix). As a result we obtain the next formulas:

Ty — VN(B8 -~ a)u(e, B) = Ly + Qv — EQn + VNB; + Ry, (3.15)

Tnx — ETy = Ly + Qn — EQn + Ry, (3.16)

and since ETY — (8 — a)u(a, ) = VNBy + O(3/?) (cf. (A.3),Appendix), Ry satisfies (3.15). For
the quantity Qx — FQn we can write

QN —EQNn =Un + 2%, (3.17)

where Uy as in (3.3) and
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Note that 7 is the average of N ii.d. bounded and centered (E7y = 0) r.v.’s, and by Hoeffding’s
inequality

P (\fN| > A(log N/N)l/z) = O(N™°) (3.18)
for every ¢ > 0 and some A > 0, not depending on N. Therefore %FN/\/N on the r.h.s. of (3.17) is
negligible for our purposes. Relations (3.12) and (3.16)—(3.18) together imply (3.11). The lemma is
proved. O

PROOF OF THEOREM 1.1. Using the Lemma 3.1 and Lemma A.1 (cf.Appendix), for df of Ty
(cf.(1.1)) defined by (1.10) we can write

Fry () = P{N”Z(ﬁ — )Ty~ BTY) _ N'By +0(N1>}

ow ow

Ly +Ux _ [BN]— [aN] N/28y . Ry
P{ ow = (B-a)N < ow  TOW )>0W}_
NY/28y Ry

p{% <a(l+ON ) - = - oW )}, (3.19)

where Ly + Uy (cf.(3.3)) is U-statistic of degree two with the canonical functions

gN(iE) = E(LN + UN‘Xl = a:) =

%[wfﬁ( 2)(1 = In(2)) + €ala(z) +&5(1 = Ig(2)) — pw],
Yn(z,y) = B(Ly +Un|[Xa = 2, X2 = y) = gn(2) —gn(y) =
e |~ (@) = )(Ta0) = ) s + (To(e) = B)(Tslw) = B) 5
where
E(gn(X1)) =0, E(Yn(X1, X3)) =0,
E(Yn (X1, X2)[X5) =0 a.s.
The local smoothness assumption of our theorem directly yields that the distribution of r.v. gn(X1) =

\/iﬁ(Wl — pw) has a nontrivial absolutely continuous component and Cramer’s condition

(@) lim sup | E exp{itvV/ Ngn (X1)}| < o0

[t]—o0

is satisfied. Since the functions v/ Ngx(x) and N3/2¢x(z,y) are both bounded, we trivially have that
4
B4 =F (\/NgN(Xl)) < 00,

3
Y3 = E ‘N3/21/}N(X1,X2)‘ < 00.

Therefore, we can apply Thm.1.2 of Bentkus, G6tze and van Zwet (1997) (note that the quantity
A2 appearing in Thm.1.2 of Bentkus et. all (1997) is zero in our case). Define Fy(z) = ®(z) —
¢(x) 211322 (22 _ 1), where A\; and )y as in (1.5) (cf.also (3.10)). Then by Thm.1.2 (Bentkus et.all

6V N
(1997))
Ly +Un
P{UW S””} ~ (@)

sup =O(N ).

TER




12

For Ry we have the bound (3.12), that is |[Ry| = O((log N)*/*N~3/4) with probability 1 — o(N~¢)
for every ¢ > 0. Therefore, as Fj(z) and zF)(x) are the bounded functions, we obtain on the r.h.s.

of (3.19)
_ VNBn
ow
Gn(z) + O((log N)*/*N—3/4),
This proves (1.12) and Theorem 1.1. O

Fn(z) + O((log N)3/4AN—3/%) =

4. PROOF OF THEOREM 1.2.
Let S% be (cf.(1.14)) the plug-in estimator for 0%, (cf.(1.3)). The following lemma is a modification
of Lemma 4.3 of Putter and van Zwet (1998), appropriate for our purposes.

LEMMA 4.1. Suppose that the assumptions of Theorem 1.1 hold. Then
P (|512V — o2, — V| > A(log N/N)3/4) = O(N™°) (4.1)
as N — oo for every ¢ > 0 and some A > 0, not depending on N, where

Vv =Vn1+ VN2, (4.2)

.1 N,-aN 1 Ns— BN
Vi = QQmT[HW =& +2(1 - ﬁ)@T[MW — &g,

N
1
VN72 = N ; [(Wz — ,[Lw)z — 0'124/] .
Moreover,
E(Vn)=0; E(V§)=O0(N™) (4.3)

as N — oo.
This lemma essentially asserts that the difference between o3, and its estimator S% can be expressed
as a sum of i.i.d. r.v.’s plus a remainder term which is of negligible order for our purposes.

PROOF. Define the auxiliary quantity

N

2 1 2 1 al :
SW:NZWZ.— NZ;Wi -

i=1

Ng Ng
N, ., 1 , N-Ns, N, 1 N - Ng
22y > X2 Rt Y X
NN LR Nty N b
1=Nq+1 i=Nqg+1
First we prove that

S% = S% + Vni+ Rna, (4.4)

Here and elsewhere Ry 1, R%?l, r =1,2,... denote the remainder terms of Bahadur’s order, satisfying
(2.2). We have

k 1 & N-m
S — Sy = NXli:N TN Z Xin+ N XN~
i=k+1
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2
§2 1 Ng X2 N_Nﬂ§2 + 1 iW ~2 (4 6)
N i:N N B N £ i Hw | - .

i=No+1

Rewrite the term within the first square brackets on the r.h.s. of (4.6) as

ko 2 1 & 2 2 N-m _, 2 1 al 2 2
N(Xk:N - &)+ N Z (Xinv — &) + N (Xon —€3) — N Z (Xinv —€3)
i=k+1 i=m+1

(cf. the proof of Lemma 3.1, above). By Lemmas 2.1 and 2.2 this equals to

_ 1 Na—OéN_(Na aN)? 1
2oy N R R
e 1 NpoBN  (Na=BNY, 1
2(1 ﬁ)gﬁ f(g,@) N N2 gﬂ f(gﬂ) +RN,17

and by Bernstein’s inequality for binomial r.v.’s N, and Ng the latter expression reduces to

1 N,—aN 1 Ng—-pBN (3)

—20(€a f(fa) N - 2(1 - /8)&3 f(gﬂ) N + N,1°

(4.7)

Now consider the term within the second square brackets at the r.h.s. of (4.6). Argueing as before,
we can rewrite this expression as

2 & 1 N,—aN Ns—BN
(N;W"_“f(m U e

1 N,—aN 1 Ny—BN )
B e e S TR ) W e /- A e SR - =
o R Rl o R R
2 (& 1 N,—aN 1 Nz-BN ©)
N <§ W") (e OBy ) 9
The relations (4.6)—(4.8) together imply that
S]2V - SIQ;V =Vn1+ Ry + RE\?D (49)
where N
1 Ny—aN 1 Ng-— ,BN] 1
Ry =2 Na — O (18 NP N (W — )
v =2 oy Vv & | w2 Wi

Note that W;, ¢ = 1,...,N, are bounded i.i.d. r.v.’s. Therefore by Hoeffding’s inequality
+ ‘sz\il(Wl - pw)‘ = O ((log N/N)/?) as N — oo with probability 1 — o(N~°) for every ¢ > 0.
Combining the latter bound with Bernstein’s inequality for the binomial r.v.’s N, and Ng, we obtain
that |Ry| = O(log N/N) with probability 1 — o(N~¢) for every ¢ > 0. Therefore (4.9) implies (4.4).
Next we prove that
S‘Q,V = U‘Q,V + VN2 + RN, (4.10)

where |Ry 2| = O(log N/N) with probability 1 — o(N~°) for every ¢ > 0. We have

N
S%/_U‘Z/V_VN,QZS%/ Z W ,tLW :—(W—,wa)2:RN72.
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The application of Hoeffding’s inequality to the bounded i.i.d. r.v.’s W; proves (4.10). Relations (4.4)
and (4.10) together imply (4.1). The lemma is proved. O

Now we turn to the proof of our result concerning the Studentized version of trimmed mean.

PrOOF OF THEOREM 1.2. Our proof of this theorem closely resembles the proof of Theorem 1.2
of Putter and van Zwet (1998). For the df Fn g(z) (cf.(1.15)) of a studentized trimmed mean we have

_ N8y +O(N7) L B
SN SN

Ly +Un
SN

(4.11)

Fns(z)=P { <(1+0O(NTY) [x

(cf.(3.19)). Here and elsewhere Ry,; denotes a remainder, which satisfies (3.12) and which can be
different from line to line. Lemma 4.1 and Hoeffding’s inequality for r.v. Vy together imply that
L — L} = O((log N/N)'/?) with probability 1 — O(N~¢) as N — oo for every ¢ > 0 (cf.also
Lemma 5.2, below). Therefore, the r.h.s. of (4.11) equals to

S~ ow

L VN
P{LUN < (1+0(N7Y) [x— b +RN,1}. (4.12)
SN ow
Our aim now is to prove that
sup | Fy,s(2) — H () = O ((log N)*/4/N/%) (4.13)

TER

as N — oo (this implies (1.17)). Define ﬁN(m) = Hy(z) + U;VI\/NﬂN(;ﬁ(w) (i.e. ﬁN(w) is Hy(z)
without bias term). Since Hj(z) and xH} (x) are bounded, relations (4.11) and (4.12) imply that it
is sufficient to show that

0D |Flsy sy 5 () = H(2)| = O ((1og )P/ /N4 (4.14)

where F(r,. 1vyy/sy () = P((Ln +Un)/Sn < z). The application of the Lemma 4.1 yields that

Ly +Un (03, + Vi + Ry)'/?
F(LN+UN)/SN (CU) =P ( P <z i )
w ow

where Ry is a remainder of Bahadur’s order (i.e. satisfying (2.2)). Since zHY(z) is bounded, it is
sufficient to prove (4.14) with F(1,,,v,)/sy (2) replaced by

. ) 12 I 1/2
P< N+UN§x(Uw+VN) >:P<LUN_${<1+VTN> —1;<z].

ow ow ow ow

Following to Putter and van Zwet (1998), we also use inequality 1 + 5 — % <1422 <1+ 2

1/2
(12 < §) to find that 24 — 34 < (1+ %) " =1 < 2 (with probability 1 — O(N~°), ¢ > 0).
w w w w

Since by Hoeffding’s inequality V2 = O(log N/N) with probability 1 — O(N~¢) for every ¢ > 0, we

can replace F(p, 1uy)/sy () in (4.14) by P (% - ;cz‘;—é’ < ;c) Now it remains to show that
w

sup
TER

L U V; -
P< N+ N _ J;] §m>—HN(:v)
ow 207,

0 ((log N)5/4/N3/4> , (4.15)

as N — oo. First we prove (4.15), taking supremum for z : |z| < log N (cf. Putter and van Zwet

(1998)). Note that Un, = % — 352‘;1;’ is centered U-statistic of degree two with bounded (uni-

w
formly for all z: |z| < log N) kernel. Moreover, Uy, has nontrivial absolutely continuous component
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and Cramer’s condition is satisfied. Theorem 1.1 of Bentkus, Gotze and van Zwet (1997) now yields

that
Ly+U % x
sup P< NTUN 2 év §x>—GN(:v) =0 (N1, (4.16)
|z|<log N ow 2O'VV
. 2 2
where Gy(z) = @ (%) - gg’i; [(U—“”m) —1] ¢<a—mm), 02 = Var(Un,) = E(—LIE‘:VUN - %) and
3

ks = E (% — %) . Using formulas (3.3)-(3.5) and relations (4.2)—(4.3), we find that o2 =
140 (I%V> and ks, = % +0 <1°JgVN>. Therefore

~ T AL +3X2, log N

G =®| — ) - ——— -1 0 4.17

v =8 (2] = IR0 1yga) 4 0 (% (41)

(for |z| < log N), that is o, influences the form of EE only through the term & (%) (cf. Putter and van

2
Zwet (1998)). For 02 we can write 02 = E (% - ;Lé" = 1-zoy  E[(Ly+Un)VN]+O (# .

As Uy and Vi are uncorrelated, using formulas (3.3)—(3.4) and (4.2), we can write E[(Ly +Un)Vy] =
E(LNVN) = —=(v3,w + 282w ). Thus, we obtain that 02 =1 — zut2h) 4 <1°g2 N) (cf. notations

VN VN N
(1.3)=(1.5)). This implies that
2
® (;) = ®(z) + ¢(x)%9”2()‘17\/%2k2) +0 (k’gNN) . (4.18)

Relations (4.17) and (4.18) together yield that Gn(z) = Hy(x)+ O (#) for |z| < log N. To treat
the case |z| > log N, we use the same arguments as on p.1561 of Putter and van Zwet (1998). Thus,
SUP,c R ‘P (M — 2y < :1:) - ﬁN(ac)‘ =0 (#) This proves (4.15) and the theorem. O

w

ow

5. PROOF OF THEOREM 1.3.

In this section we state and prove lemmas on the (rate of) consistency of the estimators for Ay, A2
and By. The validity of Theorem 1.3 follows directly from Theorem 1.1, 1.2 and these lemmas. In
the first lemma we obtain the rate of convergence for our kernel estimates of the density evaluated at
given quantiles, defined by (1.18).

LEMMA 5.1. Suppose that f = F' exists in a neighborhood of £, satisfies a Lipschitz condition and
f(€y) > 0. Then

P (1£(6) = f(€a)| > AQlog N)V/2/NY/4) = O(N ) (5.1)
as N — oo, for every ¢ > 0 and some A > 0, not depending on N.
PROOF. Define two quantities
v = #{Xi 1 |Xi = Xeow| S NTVA2L ) van =#{Xi | — &l <N VA2) (52)
-1/
Note that Ev, n = Nfi“ji,v,ll/:/; (z) dz, therefore we can write

f(ga) - f(ga) = N_3/4Vk,N - f(ga) =

N3y n + N ¥4 n — van) — f(€a) = Qin + Qo + Qs n, (5.3)
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where
Qi.n = N**(von — EVan), Qon = N34 (v n — van),

EatNT /42

Qu =NV [ (f(&) — £(ca) de.

a—N-1/4/2
For Q1 n we can write Qi n = N1/4 (Va,N — EVq,n), where 7o v = %ZZ]\LI Iron1/4)x,—¢,) <1y 18 @
mean of i.i.d. bounded r.v.’s. Therefore, by Hoeflding’s inequality

P (|Q1,N| > Al(logN)l/z/N1/4> —O(N") (5.4)

for every ¢ > 0, as N — oo. Here and elsewhere A;, i = 1,2,... denote positive constants, not de-
pending on N. Since P(|Xy.x —&a| > Aa(log N/N)Y/?) = O(N~°), for Q2 n we have with probability
1-0O(N"°)

|Q2,n| < N7¥ %y § + vy ), (5.5)
where vy = ﬁ{Xi DX —€a + N4 2 < Ag(logN/N)l/Q}7 VrN = jj{Xl DX = €q — NTV4)2
< As(log N/N)Y/2}. Since (v, + vy, n) is a Binomial r.v. with parameter py = O ((log N/N)%/2)
and E(vyny +vrn) = O (Nl/Q(log N)I/Q), Tvntven = O (N1/4(10g N)1/4)7 by Bernstein inequality,
with probability 1 — O(N~°¢), we have the following bound

Q2| < AsN~V4(log N)V/2. (5.6)
Finally for Q3 v the Lipschitz condition directly yields that

EatN~4/2

1
Qs < 0N1/4/ o~ Ealda = JON/4 (5.7)

€a—N-1/4/2

where C' is the Lipschitz’s constant. Relations (5.3)—(5.7) imply (5.1). The lemma is proved.O

Let p,w = EW] = fol Q" (u) du denotes the r-th moment of W; for any positive integer r and let
frw = %X};:N + % Z;ikﬂ Xy + N%X;:N be the plug-in estimator for p, w .

LEMMA 5.2. Suppose that f = F' exists in neighborhoods of the points £, and &g, satisfies a Lipschitz
condition and f(§,) >0, v =a,B. Then

P (Jiinw = prw| > A(log N/N)V2) = O(N ) (5.8)
as N — oo for every ¢ > 0 with some A > 0, not depending on N.

PROOF. Put W, = & vazl W, where W; defined by (1.2), and note that as well as in (3.4) we can
write

Ng
T No T 1 r N - NB T
WT:W‘E&*‘N'Z Xin+—x ¢
i=Nq+1
We have B B
ﬂr,W - Urw = (ﬂr,W - Wr) + (Wr - /Jfr,W)- (5-9)

Note that EW, = pr,w, therefore by Hoeflding inequality for the average of i.i.d. bounded r.v.’s
EW, we have |W, — p,w| = O ((log N/N)*/2) with probability 1 — O(N~°) for every ¢ > 0. For
(fir,w — W) on the r.h.s. of (5.9) we have

_ L Na

N r T 1 r T
Mr W — WT = N(Xk:N - ga) + N Z (Xi:N - ga)—i_
i=k+1
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Ng
N — 1
Xy - &) - % > (Xin — &)

1=m-+1

(cf.(4.6)). By Lemmas 2.1 and 2.2 the last expression equals to

gmiNa—aN 1 (No— aN)? ;1
Tl TN fE) T v e fle
1 Ng—BN 1 (Ng — BN)?
~(1-Breg™ = @) R f(g ) + Ry, (5.10)

where Ry is remaider term of the Bahadur’s order (cf. (2.2)). Thus, by Bernstein inequality we find
that

\irw — Wy = O ((logN/N)1/2> (5.11)

with probability 1 — O(N~¢) for every ¢ > 0. Relations (5.9)—(5.11) together imply (5.8). The lemma
is proved. O

APPENDIX

In this appendix we first establish an asymptotic approximation for bias of T (cf. (1.9)) in estimating
of p(a, B). Secondly we prove that our Theorem 1.2 can not be inferred from Theorem 1.2 of Putter
and van Zwet (1998) for studentized symmetric statistics..

LEMMA A.1. Suppose the conditions of Theorem 1.1 are satisfied. Then
by =By +O(N%/2), (A.1)
whith by and By as in (1.8) and (1.9).

PRrROOF. To begin with we note that by (cf. (1.9) can be written as B; + By where By = (8 —

Q)ET} — ( ZEW[\;N]H ) and By = ( ZEM[\;N]H X£:N> —(B—a)u(a, B). First we consider
Bs;. By a simple condltlonlng argument we have that By equals (with k£ = [aN]+ 1, m = [BN])

Up:N 1
1p F Y Upn) + F (Upen) + (m — k — 1) 22X () du = (B = a)u(e, B) (A.2)
N k:N m:N m Urn — Uny a)ula,p). .
Define
2 P!
I(vi,v2) = vfa I(a, B) = p(a, B).
1— V2

The first and second partial derivatives are given by

_ _ga + /.L(CY, B) g
(c) Boa T Ou

o1

v _ é.ﬂ B /"’(avﬁ)
8’[)1 o

(@,6) B-a
1 ,U,(Oé,ﬂ) ga:|

o1
ov?
021
o2

2
@m_ﬁ—a[%@J B—a
1 H(aaﬂ)_gﬁ]

2
) B—a{lﬂ&)+ =

PI | €t —2u(a,B)
Ov10vg (@,8) (B — a)? )

?
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A Taylor expansion argument now yields that (A.2) reduces to

%E (F_I(Uk;]v) + F_l(Um:N)> + m_Tk_l { N(a76)+
_ga +M(a7ﬂ) k £5 _M(aaﬂ) m
3-a <N+1 _O‘> A <N+1 _ﬂ)_
1 |: 1 _N(O‘v )_ga:| NLﬂ(l_NLﬂ)
B—a[2f() B—a N+2
1 1 ,u'(aa )76,3 Niﬂ(lil\fiﬂ)
5—0[2f(56)+ B—a } N +2
€o+ &5 —21(0, B)] wir (L — #57) .
ot = B)] MR oy 3/2)}—(ﬂ—a)u(a,ﬁ),
which easily leads to
 { €alaN — [aN) — 58N - 8N -
1 . 1 - _s/2
2f(£a)o¢(1 )+ 2f(§5)/6(1 ,8)} + O(N7/7). (A.3)
For B; we have
_ (BN —[BN]) — (aN — [aN]) L~ )
N 2R ) B <N 2“) i

(BN — [6N]) = (aN — [aN])
[BN] = [aN]

+ (BN~ [BN) - (N ~ [aN))) u(a, B) + O(N )
This together with (A.2)—(A.3) implies (A.1). The lemma is proved. O

((8-aula, ) + By +O(N=4/2)

Consider a trimmed mean T as in (3.1). Let Tvq, is defined as in (1.8) of Putter and van Zwet
(1998). We prove the following assertion.

LEMMA A.2. Suppose that the conditions of Theorem 1.1 hold. Then

N N -2 9 R a2(1—a)2 ﬁQ(l—ﬁ)Q _3
kzz?,(k2)ETN“k_N (e + Tt ) +o) (4.4)

as N — oo.

Relation (A.4) directly yields that in the second condition of (1.18) in Theorem 1.2 of Putter and
van Zwet (1998) is not satisfied for a Studentized trimmed mean, as Putter and van Zwet (1998)
require that the Lh.s. of (A.4) is of order N~7/2, instead of N2 as in our relation (A.4).

PROOF. In Putter’s Ph.D thesis (1994) it was proved that if Ty is a linear combination of order
statistics, then

NoIN—2
Z (k_2>ETJ%TQk = E(ZN _E(ZN|UN_1,UN))2 =
k=3
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EZY - E(In2)% (4.5)

(cf. (3.5.17), Putter (1994)), where Tnq, , T,(1,2) are defined as in (1.8) of Putter and van Zwet (1998),
Zn is a r.v. defined as in (4.21) of van Zwet (1984), Uy, ...,Uy are uniformly on (0,1) distributed
r.v.’s. Let R; denotes the rank of U; among Ui,...,Un, K1 = RN_1ARN, K2 = Ry_1V Ry. Take
Xo.ny = —00, Xnt1:8 = +00 (cf. van Zwet (1984)). Let the functions G, H, M are deﬁned as in
(4.17) of van Zwet (1984), and define in addition the functions Gy and Hy by G1(z) = [*_ F?(y) dy,

Hy(z) = [7°(1 - F(y))*dy. Then formula (4.21) of van Zwet (1984) reduces to

NY2Zy = - i(%’ﬂ = ¢;)(G1(Xjn) — G1(Xj—1.v))+
i (cj41—¢))(M(Xj41.n) = M(Xjn)) — Z (¢j = cj—1) (H1(Xj.n) — Hi(Xj41:3)),

where in the trimmed mean case (¢; =1 for £ < j < m and ¢; = 0 for j < k, j > m) there are only
two nonzero summands, which depend on K; and K,. For instance, when Ky < k (which happens
with probability P(K; < k) = o + O(N~')), the value of N'/2Zy equals

~[Hy(Xv) = Hy (X 1:n)] + [H (X 1i8) — Hi(Xngan)] £

—[Hy o F~Y(Up.n) — Hy 0o F™ Y (Ugq1.8)] + [Hy 0o F7 ' (Ups1:n) — Hi 0 F7 (Upiga:n))s

where U;.y are order statistics of r.v.’s U;, i = 1,... , N. Application of a two term Taylor expansion of
the function HyoF ~! in neighborhoods of a and 3 respectively, together with the well-known facts that

E(82) = W,E(Sisj') m( 7&]) where S; = i:N*Ui_l:N, 1= ]., ,N, yleldsthat
4 2
E(Z%|Ky < k) = ((}2@)) = L ) +o(N—2), where P(K, < k) = a® + O(1/N).

Analyzing in 51mllar fashion the other possibilities for K3 and K», we find that

2 (L af_o_pr, o)
N3 f2(§a) f(ga)f(gﬂ) f2(§ﬂ)

as N — oo. Next we consider T (1,2). By formula (2.11) of Putter and van Zwet (1998) we have

EZ% =

> +o(N?), (A.6)

! N -2\ ,_ ke
Nl/QTN7(172) :—/0 (I[Ul,l)(t)_t)(I[Uz,l)(t)_t)<k_2>tk 2(l_t)N k:dF 1(t)+

[ o ® = 0@ -0 (%~ et - prmrar i,

Define AF; y(z) = Fi—1,n(z) — F; n(2), where F; y(2) = P(X;.ny < x). Then the last relation implies
that E(TN’(]_’Q))2 equals to

%/_o; /_Zoo {_ /_O; Ty, +00) () = F(2)) (112, 4.00) () — F(2)) AF}1,n2(x) dz+

| (yoo@) = F@) T 129 (0) = P APy (0) dx] dF(y) dF(2) =

%/_Z/;[Ikl(y, 2 4r(y) N/ / 12 dF (y) dF (z)—
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;/Z /Zoo [Ik—l(yaz)-[m(yaz)] dF(y) dF(Z)a (A?)

where I,.(y, z), r = k — 1,m, is defined as

/ AF, y—a(2) dCy (e /AFTN 2(z) dM (2 /AFTN 2(z) dHy ().

Consider the first term at the r.h.s. of (A.7) (the treatment of the second and third term is similar).
Integrating by parts, we reduce it to

2 (G + MOS0+ ()~ MEDAFG sy 5(2)
_/_y G1(z) d(AFg—1,n—2( / M(z)d(AF, 1 n o(z))+

/ Hy(2)d(AFo 1y a(x ))] dF(y) dF(2).

Note that the ‘basic’ support of the function AFj_; y_o(x) = Fy_2,nv—2(z) — Fx—1,n—2(x) is some
interval I,(A) = [€, — A(log N/N)Y/2 ¢, + A(log N/N)'/2] in the sense that for every ¢ > 2 we have
the following bound: sup,c g\ s, (4) AFk—1,8-2(y) = O (P (|Ux.n — a| > (log N/N)*?)) = O(N ),
where A > 0 is some constant, depending only on ¢, @ and f(£,). Moreover, smoothness conditions
imply that sup,c;_ (4 AFy,_ 1 n-2(y) = O(N7') as N — co. Thus, the last expression reduces to

%/_o;/—;[/ G1(z) d(AF,_1,n—2( /M d(AF, 1,n 2(z))+

/Oo H, (Z)d(AFkl’NQ(CU))] dF(y) dF(Z) + O(]\f_3)7 (AS)

as N — oo. Consider the integrand in (A.8) and note that if I,,(A) C (—o0,y), then integrand equals
4
o [E(Gy(Xk—2:N-2) — Gl(Xk:—l:N—2))]2 +o(N2?) = %% +0(N~2), and the corresponding part

of the integral in (A.8) (in the domain where Y = min(X7, X») > £,) equals to %N73+0(N73).
Argueing similarly for the cases I,(A) C (y, z) and I, (A4) C (z,+00) (the cases y € I,(A4) or z € I,(A)

are negligible) we obtain that the quantity (A.8), and hence the first term at the r.h.s. in (A.7),
equals to (a4(1_0‘) +2< (1 o 4 (1_0‘)40‘2) N3 +0o(N73) = o?(1-)® nr—3 | o(N~3). Similarly for

f2(a) f2(a) f2(€a) f2(a)
the second term at the r.h.s. of (A.7) we get f(2(§ )) N3 +0(N~3), and for the third one we obtain
2%N 3 + o(N—3). Together these results give us
(1-a) _a’(1-p)7 BB

P CHEiE T e

as N — oco. The relations (A.5), (A.6) and (A.9) imply (A.4) and the lemma is proved. O

E(Tn,2)?=N"? ( > +0o(N73) (A.9)
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