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A Bicategorical Approach to Morita Equivalence for von Neumann Algebras
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ABSTRACT

We relate Morita equivalence for von Neumann algebras to the “Connes fusion” tensor product between corre-

spondences. In the purely algebraic setting, it is well known that rings are Morita equivalent if and only if they

are equivalent objects in a bicategory whose 1-cells are bimodules. We present a similar result for von Neu-

mann algebras. We show that von Neumann algebras form a bicategory, having Connes’s correspondences as

1-morphisms, and (bounded) intertwiners as 2-morphisms. Further, we prove that two von Neumann algebras

are Morita equivalent if and only if they are equivalent objects in the bicategory. The proofs make extensive

use of the Tomita-Takesaki modular theory.
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I. INTRODUCTION

A recent trend in the interaction between operator algebras and quantum physics is the appearance
of the notion of Morita equivalence [17] in both string theory [20] and quantization theory [18, 13].
Furthermore, the tensor product between so-called correspondences of von Neumann algebras con-
structed by Connes [7] and Sauvageot [19] has played a useful role in conformal field theory [24] as
well as in the theory of constrained quantization [15]. This tensor product is defined through the
modular theory of operator algebras due to Tomita and Takesaki [21, 11, 7], whose importance in
quantum field theory has been particularly empasized by Borchers [3].

The purpose of the present paper is to relate the Connes–Sauvageot tensor product to Morita
equivalence for von Neumann algebras. This will be done in a certain categorical setting, which
itself was inspired by quantum field theory [14]. Namely, we work in the framework of bicategories
[2, 16]. Introduced by Bénabou in 1967 [2], bicategories form a generalization of monoidal categories
(a monoidal category is a bicategory with one onject). Monoidal categories now form a standard
tool in the analysis of superselection sectors [8]. Our main result is that von Neumann algebras form
a bicategory in which the morphisms are correspondences composed by the above-mentioned tensor
product, and that two von Neumann algebras are Morita equivalent iff they are equivalent objects in
this bicategory. This insight should have important applications to all areas mentioned.

The notion of Morita equivalence was originally introduced for rings. Two rings R,S are called
Morita equivalent when their respective categories of right modules, MR and MS , are equivalent.
Rieffel introduced the notion of Morita equivalence for von Neumann algebras [17]. He called two von
Neumann algebras M,N Morita equivalent when their categories of normal unital ∗-representations,
Rep(M) and Rep(N), are equivalent, where the equivalence is implemented by a normal ∗-functor. In
this paper we will use an equivalent definition: Two von Neumann algebras M,N are Morita equivalent
when a correspondence M → H ← N exists for which the representation of M on H is faithful and
M′ � Nop holds. The goal of this paper is to show a similarity between Morita equivalence for rings
and for von Neumann algebras.
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As a tool, we will use bicategories [2, 16]. Bicategories allow a composition of arrows that is as-
sociative only up to a family of isomorphisms. Strictly associative bicategories are 2-categories. For
instance, the class of categories as objects, functors as 1-morphisms and natural transformations as
2-morphisms form a 2-category. Another example is the 2-category of topological spaces as objects,
continuous maps as 1-morphisms, and homotopy classes of continuous maps as 2-morphisms. Each
(relaxed) monoidal category M forms a bicategory, which in general is not a 2-category. This bicate-
gory consists of one object (M); the objects of the category M form 1-morphisms of the bicategory. A
composition functor M ×M →M that is associative up to isomorphism exists, since M is monoidal.
The arrows M1 of the category M form the 2-morphisms of the bicategory. The natural isomorphisms
that are associated to the monoidal category ascertain that the coherence axioms for a bicategory are
satisfied.

Further instructive examples of bicategories are the bicategory [Rings] and the bicategory [W∗].
The bicategory [Rings] consists of rings as objects, bimodules as 1-morphisms, and bimodule maps as
2-morphisms. Similarly, but adding the appropriate analytical structure, the bicategory [W∗] consists
of von Neumann algebras as objects, correspondences as 1-morphisms, and bounded intertwiners as
2-morphisms.

Although from a categorical point of view the fact that Morita equivalence for rings is equivalent
to equivalence in the bicategory is straightforward [2, 5, 16](and some would say tautological, see
c.f. [22, 23]), the corresponding situation for von Neumann algebras is highly nontrivial for analytical
reasons. For example, the fact that the coherence axiom in the definition of a bicategory is satisfied
in our case has to be proved with the aid of Tomita-Takesaki modular theory. The same is true for
our second main result, which we have already mentioned: two von Neumann algebras are Morita
equivalent iff they are equivalent objects in [W∗].

This article is an abbreviated version of [5]. All routine calculations may be found there, including
a simple account of the bicategorical approach to Morita theory for rings.

Section II discusses the case of von Neumann algebras. First, we will prepare for the construction
of the bicategory [W∗] of von Neumann algebras. We will use the concept of “Connes fusion” [7, 19]
for the composition functor in this bicategory. This terminology is due to Wasserman [24]. Second,
we will show that von Neumann algebras indeed form a bicategory. Finally, we will prove that two
von Neumann algebras are Morita equivalent iff they are equivalent objects in the bicategory [W∗].

II. THE BICATEGORY OF VON NEUMANN ALGEBRAS

As a preparation for the main result of this paper, consider the following definition, due to Connes [7].

Definition II.1. Let M, N be von Neumann algebras, H a Hilbert space. Suppose πl is a normal unital
representation of M on H and πr is a normal unital representation of Nop on H (or equivalently, an
anti-representation of N) such that the actions of πl(M) and πr(N) commute. The triple

[
πl, πr,H

]
is called a correspondence, denoted by M → H ← N. We write xη instead of πl(x)η and ηy instead
of πr(y)η, for x ∈M, η ∈ H, y ∈ N.

Viewing a von Neumann algebra as a ring, a correspondence may be seen as a bimodule. Examples
of correspondences are not difficult to find. Suppose we have a normal, unital representation of a von
Neumann algebra M on a Hilbert space H. Then we immediately have a correspondence

M→ H← (M′)op. (II.1)

We will use the following notation. Let φ be a faithful normal semifinite weight on a von Neumann
algebra M. Let Mφ = {x ∈M | φ(x∗x) <∞} and let Hφ be the Hilbert space, formed by completion
of Mφ in the inner product originating from φ. The canonical inclusion will be denoted by Λφ :
Mφ → Hφ. The associated modular conjugation and modular operator will be denoted by Jφ and
∆φ, respectively. The specific choice of φ merely affects these data, known as a standard form of M,
up to unitary equivalence [10].
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Definition II.2. An identity correspondence of a von Neumann algebra M is given by a Hilbert space
Hφ as above, with left representation πl and right representation πr defined on the dense subspace
Λφ(Mφ) ⊂ Hφ by (II.2) and (II.3).

πl : M −→ B(Hφ);
πl(x)Λφ(η) = Λφ(xη), (II.2)

and

πr : M −→ B(Hφ);
πr(x)Λφ(η) = Jφπl(x∗)JφΛφ(η). (II.3)

We will subsequently omit Λφ when no confusion arises.
Note that an identity correspondence is a special case of (II.1), since we have JφMJφ

∼= M′ by
Tomita-Takesaki theory. Since the standard form of a von Neumann algebra is unique up to unitary
equivalence [10], so is an identity correspondence. Hence we will often write

M→ L2(M)←M,

for an identity correspondence, suppressing the weight φ. The notation L2(M) is chosen in analogy
to measure theory; recall that the latter is considered to be the commutative version of von Neumann
algebras. For M = L∞(X, µ) one has L2(M) � L2(X, µ).

As a preparation for the construction of the bicategory [W∗], we will now review the concept of
Connes fusion, or the relative tensor product, see [7, 6, 19].

Let M→ H← N and N→ K ← P be two correspondences. Let φ be an arbitrary faithful normal
semifinite weight on N. To obtain the relative tensor product M→ H�N K ← P, one defines a form
( , )0 on the algebraic tensor product D(H, φ)⊗CK, quotients by the null space, and completes. Here
D(H, φ) is the dense subspace of φ-bounded vectors of H, defined by

D(H, φ) = {η ∈ H | ∃c : ∀y ∈ Nφ, ||πr(y)η||H ≤ cφ(y∗y)}.
Equivalently, one can define D(H, φ) as the set of η ∈ H for which the operator Rφ

η : Hφ → H, is
bounded, where Rφ

η is defined on the dense subspace Nφ ⊂ N by

Rφ
η (JφΛφ(y∗)) = πr(y)η, ∀y ∈ Nφ.

Recall that Hφ is a standard Hilbert space of N.
For later use, we will state some properties of Rη . The proof is easy calculation. For all η1, η2 ∈

D(H, φ), x ∈ N, we have

R∗
η1

Rη2
∈ N. (II.4)

∆−1/2x∗∆1/2R∗
η1

Rη2
= R∗

η1xRη2
on L2(N) (II.5)

R∗
η1

Rη2
∆1/2x∆−1/2 = R∗

η1
Rη2x on L2(N). (II.6)

Further, we need a subspace N0 ⊂ N that will be used later (Remark II.4). N0 is defined as follows.
Let τt(x) = ∆it

φ x∆−it
φ , x ∈ N, be the modular automorphism group of N, let

xn =
√

n/π

∫
dt e−nt2τt(x) n = 1, 2, ...

and finally put
N0 = Span{xn | x ∈ Nφ, n = 1, 2, ...}.
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Lemma II.3. In the above notation, xn → x σ-weakly. Moreover, N0 is a σ-dense and norm-dense
subspace of Nφ. Further, for ξ ∈ N0,

∆1/2ξ∆−1/2 ∈ Nφ.

Proof. Cf. [5] for details. The proof follows from the analyticity of the elements of N0, see [4], and
positivity and modular invariance of the weight φ. See also [21].

To detail, the sesquilinear form ( , )0 on D(H, φ)⊗C K is defined by
(
η1 ⊗ ζ1, η2 ⊗ ζ2

)
0

:= < ζ1, R
∗
η1

Rη2
ζ2 >K,

where < , >K is the inner product on the Hilbert space K. Note that since R∗
η1

Rη2
is an element

of N by (II.4), the second argument of the inner product is indeed an element of K. It is easy to
see that ( , )0 is a pre-inner product. Hence, if we quotient by the null space N and complete, we
obtain a Hilbert space, denoted by H �N K. This Hilbert space H �N K is an M → H �N K ← P
correspondence, so that we may regard the above construction as the fusion of correspondences rather
than merely as Hilbert spaces. Namely, we let the representations of M on H and of P on K descend
to the quotient. Routine verification will show that the null space is closed under the actions of M
and P.

Remark II.4. The relative tensor product �N has a property analogous to the ’balancedness’ of the
tensor product of bimodules over rings, but with a crucial and interesting modification. Balancedness
for a ring R and bimodules MR, RN means we have (mr ⊗R n) = (m ⊗R rn), for m ∈ MR, n ∈R

N, r ∈ R. However, for η ∈ H, n ∈ N0, and ζ ∈ K we have

ηn �N ζ = η �N (∆1/2n∆−1/2)ζ, (II.7)

and

η �N nζ1 = η(∆−1/2n∆1/2) �N ζ. (II.8)

For let η2 ∈ D(H, φ), x ∈ N0, ζ2 ∈ K; then(
η1x⊗ ζ1, η2 ⊗ ζ2

)
0

= < ζ1, R
∗
η1xRη2

ζ2 >K

= < ζ1, (∆−1/2x∗∆1/2)R∗
η1

Rη2
ζ2 >K

= < (∆1/2x∆−1/2)ζ1, R
∗
η1

Rη2
ζ2 >K

=
(
η1 ⊗ (∆1/2x∆−1/2)ζ1, η2 ⊗ ζ2

)
0
, (II.9)

where the second equality holds because of (II.5). This implies that
(η1x⊗ ζ1)− (η1 ⊗ (∆1/2x∆−1/2)ζ1) belongs to the null space N . Since N0 is a dense subspace of Nφ,
(II.7) holds for the completion H �N K. Moreover, for x ∈ N0, we have ∆1/2x∆−1/2 ∈ N so that all
expressions in (II.9) are defined. The proof of (II.8) follows by a similar argument.

Now, we will show that the collection of von Neumann algebras forms a bicategory. This result was
already stated in [14] without proof.

Proposition II.5. For any two von Neumann algebra’s M,N, let (M, N) be the category of corre-
spondences as objects, and bounded linear bimodule maps as arrows. Then there exists a bicategory
[W∗] with von Neumann algebras as objects and correspondences as 1-morphisms. The composition
functor (M, N)× (N, P)→ (M, P) is given by the relative tensor product �N, and the unit arrow in
(M, M) is given by IM = M→ L2(M)←M.
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Proof. Unlike the case of rings, a nontrivial issue arises in the verification, related to Remark II.4.
We will only stress the points at which the verification is not straightforward. Note that the unit
arrow IM is unique up to unitary equivalence, as was mentioned after Definition II.2. The natural
isomorphism to obtain associativity is defined element wise and hence the existence of associativity
coherence is routine calculation. The difficulty lies in the construction of the left and right identities
and identity coherence.

For each pair of von Neumann algebras (M, N), the so-called left-identity L(M,N) is a natural
isomorphism between the functors L2(M) �M (−) and the identity functor Id(M,N) from (M, N) to
(M, N). More concretely, recall that Λφ : Mφ → L2(M) denotes the inclusion map. It satisfies

xΛφ(y) = Λφ(xy)

∆1/2
φ Λφ (y) = Λφ (∆1/2

φ y∆−1/2
φ ), (II.10)

for x ∈M, y ∈M0. See [11].
Let x ∈M0, ζ ∈ K ∈ (M, N). Then we define L(M,N) on the dense subspace M0 �M K by

L(M,N) : Λφ(x) �M ζ �→ xζ. (II.11)

We will show that the map (II.11) is continuous, so that we may extend it to L2(M)�MK. Consider

||Λφ(x) �M ζ||2 =< ζ, R∗
Λφ(x)RΛφ(x)ζ >K .

Observe that in this case,by definition of the right representation of M on L2(M), the operator
RΛφ(x) : L2(M)→ L2(M) is given by

RΛφ(x)JφΛφ(y∗) = πr(y)Λφ(x) = Jφy∗JφΛφ(x),

on the dense subspace M0.
The following claims lead to continuity of the map (II.11). The proofs are easy calculations.

• For x, z ∈M0, we have RΛφ(x)Λφ(z) = Λφ(xz).

• For x ∈M0, the operator R∗
Λφ(x)RΛφ(x) equals Λφ(x∗x) as operators on L2(M).

Combining the statements above we obtain

||Λφ(x) �M ζ||2 =< ζ, R∗
Λφ(x)RΛφ(x)ζ >K= ||xζ||2K. (II.12)

Hence Λφ(x) �M ζ �→ xζ is a continuous map. It remains to show that L(M,N) is unitary and hence
a natural isomorphism. We know that it is isometric by (II.12). Hence it is sufficient to show that
the image of M0 � K is dense in K. Generally, 1l ∈ M is not an element of Mφ. But, since M0 is
norm-dense in M, we may find a net Eα in M0, converging in norm to 1l. Let ζ ∈ K. Then

||Eαζ − 1lζ||K ≤ ||Eα − 1l||M · ||ζ||K −→ 0,

where we used the fact that a representation is norm decreasing. Hence, M0K is dense in K.
In contrast to the case of rings, the right identity R(M,N) is defined differently from the left identity.

The right identity should be a natural isomorphism between the functor (−) �N L2(N) and the
identity Id(M,N). Let H ∈ (M, N), η ∈ D(H, φ), y ∈ N0. Then we define R(M,N) on the dense
subspace D(H, φ) �N N0 by

R(M,N) : η �N Λφ(y) �→ η(∆−1/2
φ y∆1/2

φ ). (II.13)
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Note that ∆−1/2
φ y∆1/2

φ ∈ N, for y ∈ N0, so that η(∆−1/2
φ y∆1/2

φ ) is defined by definition of the right
representation of N on H. We will show next that the map (II.13) is continuous, so that we may
extend it to H�N L2(N). Consider

||η �N Λφ(y)||2 = (Λφ(y), R∗
ηRη Λφ(y))L2(N).

In this case, the operator Rη : L2(N)→ H is defined by

RηJφΛφ(y∗) = πr(y)η = ηy,

on the dense subspace N0.
We make use of the following fact, proven by Connes ( [6, Lemma 4]). For ζ ∈ D(H, φ), we have

φ(R∗
ζRζ ) = ||ζ||2H.

Hence, using (II.5) and (II.6), we obtain

||η �N Λφ(y)||2 = (Λφ(y), R∗
ηRη Λφ(y))L2(N)

= φ(y∗R∗
ηRηy)

= φ(R∗
η(∆

−1/2
φ y∆

1/2
φ )

R
η(∆

−1/2
φ y∆

1/2
φ )

)

= ||η(∆−1/2
φ y∆1/2

φ )||2H. (II.14)

Hence η �N Λφ(y) �→ η(∆1/2
φ y∆−1/2

φ ) is a continuous map. It is left to show that R(M,N) is unitary
and hence a natural isomorphism. As above, (II.14) shows that it is isometric, hence it is sufficient to
show that the image of D(H, φ) � N0 is dense in H. As before, we have a net Eα in N0 converging
to 1l. Consider the net ∆1/2

φ Eα∆−1/2
φ . This net is contained in Nφ, as follows from Lemma II.3. By

the inclusion N0 ⊂ Nφ ⊂ L2(N) and the continuity just proven, we have

∆1/2
φ Eα∆−1/2

φ �N η �−→ ηEα,

for η ∈ D(H, φ). The right hand side converges to η in norm. The observation that D(H, φ) ⊂ H is a
dense subspace finishes the proof.

Finally, we need to prove identity coherence. Let M, N, P be von Neumann algebras and MHN and
NKP associated correspondences. It will be shown that the following diagram commutes:

(H�N L2(N)) �N K,
β(H,L2(N),K) ��

R(H,L2(N))�NId ���������������
H�N (L2(N) �N K)

Id�NL(L2(N),K)���������������

H�N K.

Since the upper arrow β(H, L2(N),K) is the associativity isomorphism, identity coherence boils down
to

(η(∆−1/2
φ n∆1/2

φ ) �N ζ) ∼= (η �N nζ),

for η ∈ H, n ∈ L2(N), ζ ∈ K. This follows immediately from Remark II.4.

Note that the bicategory of von Neumann algebras, constructed as above, depends on the choice
of a faithful normal semifinite weight for each von Neumann algebra, because the definition of the
composition functor (i.e. the relative tensor product) depends on this choice. However, different
weights lead to unitarily equivalent relative tensor products [19]. Hence the bicategory depends on
the chosen weights only up to isomorphism.
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III. MORITA THEORY FOR VON NEUMANN ALGEBRAS

The notion of Morita equivalence for von Neumann algebras was originally introduced by Rieffel.
Two von Neumann algebras M, N are said to be Morita equivalent if their representation categories
Rep(M) and Rep(N) are equivalent, where the equivalence is implemented by a normal ∗-functor.
Here Rep(M) denotes the category of normal unital ∗-representations on Hilbert spaces as objects,
and bounded linear intertwiners as arrows. For our purposes, we will use the following (equivalent)
definition.

Definition III.1. Two von Neumann algebras M, N are called Morita equivalent, if a correspondence
M→ H← N exists, where the representation of M on H is faithful and for which

M′ � Nop.

Note that faithfulness of M directly implies faithfulness for N. Using somewhat different notation,
Rieffel, [17, Thm 8.5] proves equivalence between the definition above and his original definition. In
this paper, we will not follow Rieffel’s approach, which involves so-called normal N-rigged M-modules,
and interior tensor products of these modules. Rieffel proves an Eilenberg-Watts like theorem ( [17,
Thm. 5.5]), which states that all functors of Rep(N) to Rep(M) are equivalent to taking the tensor
product with such a normal N-rigged M-module. However, these modules are not Hilbert spaces,
which is what we would like considering our definition of the tensor product and the bicategory of von
Neumann algebras.

Now we are ready for the main theorem.

Theorem III.2. Two von Neumann algebras are equivalent objects in the bicategory [W∗] iff they are
Morita equivalent.

Proof. First, let us reformulate the first property in the theorem. The property that two von Neumann
algebras M, N are equivalent objects in the bicategory means that there must be an arrow in (M, N),
i.e., a correspondence M→ H← N that is invertible up to isomorphism. In other words, there exists
an arrow N→ H−1 ←M in (N, M), such that

M→ H�N H−1 ←M ∼= M→ L2(M)←M in (M, M), (III.1)
N→ H−1 �M H ← N ∼= N→ L2(N)← N in (N, N). (III.2)

“⇐:” Let M, N be Morita equivalent. Then we have a correspondence
M → H ← N, where the representation of M on H is faithful, and M′ � Nop. From M → H ← N,
we can define a correspondence N→ H←M by

nη̄m := m∗ηn∗, for n ∈ N, m ∈M, η ∈ H,

where H is H as a set, with the addition operator of H and conjugate scalar multiplication and inner
product. Sauvageot [19, Prop. 3.1] proves that the induced representation of M on the relative tensor
product H�N H is in standard form, hence

M→ H�N H ←M ∼= M→ L2(M)←M. (III.3)

Applying the same reasoning to N→ H ←M, we obtain M→ H ← N and clearly, we have H = H.
Then

N→ H�M H ← N = N→ H�M H ← N

∼= N→ L2(N)← N. (III.4)

Together, (III.3) and (III.4) prove that MHN is invertible, its inverse being NHM.
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“⇒:” Suppose we have an invertible correspondence M → H ← N. We need to show that M �
(Nop)′, and that the representation of M is faithful. By definition of a correspondence, we have

M ⊆ (Nop)′, (III.5)

so, considering the representation of M on H�N H−1, one has

M � idH−1 ⊆ (Nop)′ � idH−1 . (III.6)

Now we will use a result from Sauvageot [19, Prop. 3.3], who shows that for a von Neumann algebra
P and representations K1 ← P and P→ K2, one has

(Pop)′ �P idK2 =
[
idK1 �P P′]′ (III.7)

in K1 �P K2. Applying (III.7) to (III.6) we obtain

M �N idH−1 ⊆ (Nop)′ �N idH−1 =
[
idH �N N′]′,

hence, using the commutant of (III.7),

idH �N N′ ⊆ [
M �N idH−1

]′ = idH �N Mop. (III.8)

Now (III.8) implies that N′ ⊆Mop by the definition of the representation of N′ on H�N H−1. This,
together with (III.5), proves M � (Nop)′. It remains to be shown that the representation of M on H is
faithful. However, this follows immediately from (III.1) and the fact that the standard representation
of M on L2(M) is faithful.

It is possible to restate Theorem III.2 in terms of representation categories. In the light of the
remarks after Definition III.1, the proof follows from Rieffel [17], but we prefer to prove the corollary
directly.

Corollary III.3. Two von Neumann algebras are equivalent objects in the bicategory [W∗] iff their
representation categories are equivalent, where the equivalence is implemented by a normal ∗-functor.

Proof. ”⇒:” The construction of the equivalence functor, given the invertible correspondence, is com-
pletely analogous to the case of rings, c.f. [12, 14]. The fact that this construction yields a ∗-functor
follows from a trivial computation. An application of [17, Prop. 7.3] shows that this functor is normal.

“⇐:” Suppose F : Rep(N) → Rep(M) is a normal ∗-functor, implementing the categorical equiva-
lence. Consider F (L2(M)), which has a left N-action by definition, and a right M-action through F .
Applying the Eilenberg-Watts like theorem stated by Sauvageot [19, Prop. 5.3], shows that F (L2(M))
is invertible. C.f. also Rieffel [17, Prop. 5.4, Thm 5.5].
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