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Abstract

The notion of Abstract Data Type (ADT) has served as a foundation model for structured
and object oriented programming for some thirty years. The current trend in software engi-
neering toward component based systems requires a foundation model as well. The most basic
inherent property of an ADT, i.e., that it provides a set of operations, subverts some highly
desirable properties in emerging formal models for components that are based on the object
oriented paradigm.

We introduce the notion of Abstract Behavior Type (ABT) as a higher-level alternative to
ADT and propose it as a proper foundation model for both components and their composition.
An ABT defines an abstract behavior as a relation among a set of timed-data-streams, without
specifying any detail about the operations that may be used to implement such behavior or
the data types it may manipulate for its realization. The ABT model supports a much looser
coupling than is possible with the ADT’s operational interface, and is inherently amenable to
exogenous coordination. We propose that both of these are highly desirable, if not essential,
properties for models of components and their composition.

To demonstrate the utility of the ABT model, we describe Reo: an exogenous coordination
language for compositional construction of component connectors based on a calculus of chan-
nels. We show the expressive power of Reo, and the applicability of ABT, through a number
of examples.

2000 ACM Computing Classification: C.2.4, D.1.3, D.1.m, D.3.2, D.3.3, F.1.2, F.3
Keywords and Phrases: Coordination, Components, Composition, Abstract Behavior Types,
Reo, Coalgebraic semantics, Streams

1 Introduction

An Abstract Data Type (ADT) defines an algebra of operations with mathematically well-defined
semantics, without specifying any detail about the implementation of those operations or the
data structures they operate on to realize them. As such, ADT is a powerful abstraction and
encapsulation mechanism that groups data together with their related operations into logically
coherent and loosely-dependent entities, such as objects, yielding better structured programs. ADT
has served as a foundation model for structured and object oriented programming for some thirty
years.

The immense success of object oriented techniques has distracted proper attention away from
critical evaluation of some of its underpinning concepts from the perspective of their utility for
components. We propose that the most basic inherent property of an ADT, i.e., that it provides a
set of operations in its interface, subverts some highly desirable properties in emerging models for
component based systems. This is already evident in the current attempts at extending the object
oriented models into the realm of components (see, e.g., Sections 3 and 5).

We introduce the notion of Abstract Behavior Type (ABT) as a higher-level alternative to ADT
and propose it as a proper foundation model for both components and their composition. An ABT
defines an abstract behavior as a relation among a set of timed-data-streams, without specifying
any detail about the operations that may be used to implement such behavior or the data types it
may manipulate for its realization. In contrast with the algebraic underpinnings of the ADT model,
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the (generally) infinite streams that are the elements of behavior in the ABT model naturally lend
themselves to the coalgebraic techniques and the coinduction reasoning principle that have recently
been developed as a general theory to describe the behavior of dynamic systems. The ABT model
supports a much looser coupling than is possible with ADT and is inherently amenable to exogenous
coordination. We propose that both of these are highly desirable, if not essential, properties for
components and their composition.

In our view, a component based system consists of component instances and their connectors
(i.e., the “glue code”), both of which are uniformly modeled as ABTs. Indeed, the only distinction
between a component and a connector is just that a component is an atomic ABT whose internal
structure is unknown, whereas a connector is known to be an ABT that is itself composed out
of other ABTs. As a concrete instance of the application of the ABT model, we describe Reo:
an exogenous coordination model wherein complex coordinators, called “connectors” are compo-
sitionally built out of simpler ones [3, 4]. Reo can be used as a glue language for compositional
construction of connectors that orchestrate component instances in a component based system.
We demonstrate the surprisingly expressive power of ABT composition in Reo through a number
of examples.

The rest of this paper is organized as follows. In Section 2 we motivate our view of components
and their composition as a conceptual model at a higher level of abstraction than objects and
their composition. Section 3 contains a brief overview of some related work. We review the formal
notion of abstract data types in Section 4, and elaborate on its links with and implications on object
oriented programming in Section 5. We argue that some of these implications impede the ability
of component models based on the object oriented paradigm to support flexible composition and
exogenous coordination, both of which, we propose, are highly desirable properties in component
based systems. Section 6 is an informal description of our component model, and in Section 7 we
describe its accompanying model of behavior. Section 8 is an introduction to Abstract Behavior
Types and their composition. In Section 9 we show how channels, connectors, and their composition
in Reo are easily expressed as ABTs and their composition. Finally, we close with our concluding
remarks in Section 10.

2 A Component Manifesto

The bulk of the work on component based systems is primarily focused on what components are
and how they are to be constructed. Relatively little attention has been paid to alternative models
and languages for composing components into (sub)systems, which is typically considered to be
the purpose of the so-called glue code, assumed to be written in some scripting language. Clearly,
components and their composition are not independent of one another: explicitly emphasizing one
defines or at least constrains the other as well, if only implicitly.

A conspicuous driving force behind the upsurge of interest and activity in component based
software is the recognition that the object oriented paradigm is not the silver-bullet that some
of its over-zealous advocates purported it to be. Nevertheless, presently, the dominant view of
what components are or should be reflects a prominent object oriented legacy: components are
fortified collections of classes and/or objects, with very similar interfaces. It follows that the
interactions among and the composition of components must use mechanisms very similar to those
for interactions among and composition of classes and objects. Thus, the method invocation
semantics of message passing in object oriented programming becomes the crux of the component
composition mechanisms in scripting languages.

This approach to components “solves” some of the problems that are rooted in the inadequacies
of the object oriented paradigm simply by shifting them elsewhere. For instance, the relatively tight
coupling that must be established between a caller and a callee pair of objects indeed disappears
as a concern at the intra-component level when the two objects reside in different component
instances, but becomes an issue to be addressed in the glue code and its underlying middleware
used to compose those components. As long as components and their interfaces are essentially the
same as objects and their interfaces, the (scripting) programs that constitute the glue code end up
to be inherently no different than other object oriented software. In complex systems, the body
of such specialized glue code can itself grow in size, complexity, intricacy, fragility, and rigidity,
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rendering the system hard to evolve and maintain, in spite of the fact that this inflexible code
wraps and connects otherwise reusable, upgradeable, and replaceable components.

An alternative view of components emerges if we momentarily ignore how they are made or even
what they are made of, emphasizing instead what we want to do with them. Beyond fashionable
jargon, hype, and merely technical idiosyncrasies, if there is to be any conceptual substance behind
the term “component” deserving its minting, it must be that components are less interdependent
and are easier and more flexible to compose than objects and classes. The definition of a class or
an object specifies the methods it offers to other entities, and the method calls within the code of
its methods determine the services and entities it requires to work. This results in a rather tight
semantic interdependence among objects/classes and grants each individual a significant degree of
control over precisely how it is composed with other classes or objects.

In contrast to objects and classes, it is highly desirable for components to be semantically
independent of one another and internally impose no restrictions on the other components they
compose with. This yields a level of composition flexibility that is not possible with objects and
classes1 and which is a prerequisite for another highly desirable property in component based
systems: we would like for the whole (system) to be more than the mere sum of its (component)
parts. This implies that not only it should be generally possible to produce different systems
by composing the same set of components in different ways, but also that the difference between
two systems composed out of the same set of components (i.e., the difference between the “more”
than the “sum of the parts” in each system) must arise out of the actual rules that comprise
their two different compositions, i.e., their glue code. The significance of the latter point is that
it requires the glue code to contribute to the semantics of the whole system well beyond the
mere so-called “wiring-standard-level” support provided by the current popular middleware and
component based technologies. On the other hand, we intuitively expect glue code to be void of
any application-domain specific functionality: its job is merely to connect components, facilitating
their communication and coordinating their interactions, not to perform any application-domain
specific computation.

This leads to a subtlety regarding the interaction between glue code and components which
fundamentally impacts both. If the contribution of the glue code to the behavior of a composed
system is no more than connecting its components, facilitating their communication and coordi-
nating their interactions, then the difference between the behavior of two systems composed out of
the same set of components can arise not out of any application-domain specific computation (and
certainly not out of the components), but only out of how the glue code connects and coordinates
these components to interact with one another. Since glue code is external to the components it
connects, this implies that (1) the components must be amenable to external coordination control
and (2) the glue code must contain constructs to provide such external coordination. The first
implication constrains the mechanisms through which components can interact with their environ-
ment. The second implication means that the glue code language must incorporate an exogenous
coordination model [2].

Finally, if glue code is to have its own non-trivial semantics in a composed system, it is highly
desirable both for the glue code itself to be piece-wise explicitly identifiable, and for the seman-
tics of each of its pieces to be independent of the semantics of the specific components that it
composes. This promotes the recognition of the glue code as an identifiable, valuable software
commodity, emphasizes the importance of its reusability, and advocates glue code construction
through composition of reusable glue code pieces.

The notion of compositional construction of glue code out of smaller, reusable pieces of glue code
all but eliminates the conceptual distinctions between components and glue code. This behooves
us to find conceptual models and formal methods for component based systems wherein the same
rules for compositional construction indiscriminately apply to both components as well as their
glue code connectors. In such a model, the (perhaps somewhat subjective) distinction between
components and their (pieces of glue code) connectors still makes practical sense: although they
are indistinguishable when used as primitives to compose more complex constructs, components and
connectors are still different in that components are black-box primitives whose internal structures

1Observe that generally speaking, it is the code for the methods of an object that determines the other objects it
“composes with” to function properly. Thus, objects/classes “decide for themselves” how they compose with each
other and their composition generally cannot be determined or influenced from outside.
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are invisible, whereas the internal structure of a connector shows that it, in turn, is constructed
out of other (connector and/or component) primitives according to the same rules of composition.

3 Background and Related Work

In popular models of components (e.g., Enterprise Java Beans [36, 18], CORBA [55, 16], and
DCOM [21]) component instances are fortified (collections of) objects. Consequently, they typi-
cally use variants of message passing with the semantics of method invocation for inter-component
communication. The tight coupling inherent in the method call semantics is more appropriate
for intra-component communication. In contrast, inter-component communication invariably re-
quires a minimum level of “control from the outside” of the participating components. In order to
break the tight coupling induced by the method call semantics and reduce the interdependence of
components on each other, the underlying middleware that supports these component models pro-
vides mechanisms or entities (such as the ORB in CORBA) to intercept inter-component messages.
Messages may be intercepted to, for instance, provide services (e.g., binding and name servers),
enforce imposed constraints (e.g., suppress certain messages in certain states), ensure protocols,
and/or enact assigned roles. One way or the other, the middleware’s intervention loosens the
otherwise tight coupling that would be imposed by targeted active messages (i.e., messages with
method-invocation semantics) and furthermore, enforces a certain restricted form of coordination
from outside the components.

Coordination languages [19, 45] offer an alternative for inter-component communication, as
exemplified by JavaSpaces in the Jini architecture [31, 44, 35]. They impose a stricter sense of
temporal and spacial decoupling that supports a looser inter-component semantic dependency,
compared with the method invocation semantics of message passing in object oriented paradigms.

Most common component models define components as reusable binary units of software with
interfaces that have no more than a syntactic content. This view of components enforces infor-
mation hiding in only a rather primitive way: the good practice discipline of using questionably
suggestive symbolic names in component interfaces non-withstanding, such an interface does not
reveal any of the externally relevant semantics of the contents of its component. Such component
models cannot support (semi-)formal specification/verification of their external behavior.

A broader definition of components is offered by the Eiffel language [37, 38, 20]: components
are client-oriented software with the desirable property that a component, x , can be used by other
programs that do not need to be known to x . This property is supported in Eiffel through formal
specification techniques which include pre- and post-conditions and invariants. In general, this
notion of components requires enhanced specification and verification techniques, as also observed
by Hennicker and Wirsing [57, 24].

Our notion of components [9, 6, 17] uses channels as the basic inter-component communication
mechanism. A channel is a point-to-point medium of communication with its own unique identity
and two distinct ends. A channel supports transfer of passive data only; no transfer of control (e.g.,
procedure calls, exchange of pointers to internal objects/entities) can take place through a channel.
Using channels as the only means of inter-component communication allows a clean, flexible, and
expressive model for construction of the glue code for component composition which also supports
exogenous coordination.

Synchronous channels are the basic primitives in π-calculus [39, 40]. Some of the variants of
π-calculus and its asynchronous versions [54] have been used in models proposed for component
interaction and composition. Notably, Piccola [43] is an experimental component composition
language based on a higher-order version of the asynchronous π-calculus, extended with explicit
name-spaces called forms. Forms in Piccola provide a unified mechanism to address such aspects
of component composition as styles, scripts, and glue code. The agents and channels provided by
Piccola’s underlying calculus support the coordination aspect of component composition.

In contrast to such calculi, our notion of channel is very general and we specifically allow a
variety of different channel types (even user-defined ones) to be used simultaneously and com-
posed together. This differentiates our model from the way channels are used in virtually all other
channel-based models, which typically allow only one or at most a small number of simple pre-
defined channel types. Specifically, our liberal notion of channels, the potency that our model
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Stack Queue

S: stack , data, boolean S: queue, data, boolean

O: top(s) → d O: first(q) → d

pop(s) → s deq(q) → q

push(s, d) → s enq(q , d) → q

empty(s) → b empty(q) → b

A: empty(λ) = true A: empty(λ) = true

empty(push(s, d)) = false empty(enq(q , d)) = false

top(push(s, d) = d first(enq(λ, d)) = d

pop(push(s, d) = s first(enq(enq(q , d1), d2)) = first(enq(q , d1))
pop(λ) = ε1 deq(enq(λ, d)) = λ

pop(ε1) = ε1 deq(enq(enq(q , d1), d2)) = enq(deq(enq(q , d1), d2)
top(λ) = ε2 deq(λ) = ε1

deq(ε1) = ε1

first(λ) = ε2

Figure 1: Abstract Data Types for stack and queue

derives from mixing and composing channels of different types, and their consequent harmonious
combination of synchrony and asynchrony are unique. For instance, these features of our model
are in sharp contrast with the use of channels in the Ptolemy project [15, 34, 33] which ascribes a
single interpretation for its connecting channels in each context.

Asynchronous channels form the basis of the dataflow architecture for networks of components
as proposed and formally investigated by Broy and his group [13, 25]. In this architectural model,
large systems can be realized, allowing programmers to easily understand the input/output be-
havior of a system as the composition of the behavior of its individual components. Our model of
component composition is fundamentally different than (even dynamic) dataflow models because
it (1) supports a much wider and more general notion of channels and different channel types;
and (2) introduces the notion of channel composition as the construct through which channels are
connected to other channels, forming higher level and more sophisticated connectors for component
composition.

4 Abstract Data Types

Formally, an ADT is a triplet 〈S,O,A〉, where S is a set of sorts denoting the required types, O
is a set of operators over S, and A is a set of axioms written as algebraic equations defining the
results of various combinations of operations in O on data items of various types in S.

For example, Figure 1 shows the formal ADT definitions for the two common data types stack
and queue, in separate columns. The set S contains stack , data, and boolean types for stack, and
queue, data, and boolean types for queue. We use s , q , d , and b to represent items of types stack ,
queue, data, and boolean, respectively. Furthermore, in the stack column in this figure λ is an item
of type stack representing the empty stack, and likewise in the queue column λ is an item of type
queue representing the empty queue. Similarly, in each column ε1 and ε2 are special error values
of their respective types.

The set O in each column defines the signature of four operations. For the case of the stack,
top(s) is expected to produce the data item at the top of the stack s ; pop(s) is expected to produce
the stack obtained by removing the data item at the top of the stack s ; push(s , d) is expected
to produce a stack obtained by pushing the data item d on top of the stack s ; and empty(s) is
expected to produce a boolean indicating whether or not the stack s is empty. For the case of
queue, first(q) is expected to produce the first data item at the head of the queue q ; deq(q) is
expected to produce the queue obtained by removing the first data item at the head of the queue q
(dequeue); enq(q , d) is expected to produce a queue obtained by adding the data item d to the tail
end of the queue q (enqueue); and empty(q) is expected to produce a boolean indicating whether
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or not the queue q is empty. Of course, the set O contains only the signatures of these operations
and as such it is void of any formal hint of what they (are expected to) do.

It is the set of axioms, A, that formally defines the semantics of the operations in O in terms of
their mutual effects on each other. In the case of the stack, the two axioms for the empty operation
state that (1) empty(λ) = true, and (2) empty applied to a stack obtained from a push operation
on any stack yields false. The top axioms state that (1) top applied to the empty stack yields an
error (ε2), and (2) top applied to a stack obtained from pushing the data item d onto some other
stack, yields d . The pop axioms state that (1) popping a stack obtained from pushing a data item
onto some other stack, s , yields s ; (2) popping an empty stack yields an error (ε1); and (3) popping
this error value yields the same error value. Any stack is canonically represented as a sequence of
push operations that add data items on the result of their preceding push, starting with the empty
stack, e.g., push(push(push(push(λ, d1), d2), d3), d4). An expression that cannot be transformed
into such a cannonical form, e.g., push(push(pop(pop(push(λ, d1))), d2), d3), is not a legal stack.
Our stack axioms leave empty(ε1) and top(ε1) undefined; alternatively, we can explicitly define
them as errors too.

Many of the queue axioms are analogous to their respective stack axioms. The axioms for
first and deq are a bit more interesting. Any queue is canonically represented as a sequence of enq
operations that add data items on the result of their preceding enq , starting with the empty queue;
e.g., enq(enq(enq(enq(λ, d1), d2), d3), d4). The first axioms state that to find the first element in a
queue, we must “peel” it away until we reach the empty queue, at which point we obtain the first
data item at the head of the queue. Thus:

first(enq(enq(enq(enq(λ, d1), d2), d3), d4))
= first(enq(enq(enq(λ, d1), d2), d3))

= first(enq(enq(λ, d1), d2))
= first(enq(λ, d1))

= d1

Analogously, deq peels away the canonical representation of a queue, but it also reconstructs it as
it moves inside. For instance:

deq(enq(enq(enq(enq(λ, d1), d2), d3), d4))
= enq(deq(enq(enq(enq(λ, d1), d2), d3)), d4)
= enq(enq(deq(enq(enq(λ, d1), d2)), d3), d4)
= enq(enq(enq(deq(enq(λ, d1)), d2), d3), d4)

= enq(enq(enq(λ, d2), d3), d4)

These examples show that an ADT defines a data type in terms of the operations on that
data type and how they mutually affect each other. It abstracts away from the implementation of
those operations and the data structures they manipulate. The semantics of an ADT is given as
algebraic equations. The strong conceptual link between abstract data types and object oriented
programming stems from the common manner in which they associate data and the operations that
manipulate them together. The ADT for a type, T , defines all operations applicable to entities of
type T . It encapsulates the representation of T and the implementation of its operations. This
prevents manipulation of the entities of type T in any way other than through its own defined
operations.

5 ADT and Object Oriented Programming

Their common aspiration to (1) encapsulate data structures behind operations that manipulate
them, and (2) hide the details of those operations as well, has made ADT a suitable foundation
model for object oriented programming. An ADT can be seen as a formal description of the
interface of an object/class. This encapsulation significantly loosens the coupling between the
implementation of an ADT (or object/class) and other code that can use it only through its
prescribed operations. The operational interface of an ADT (or object/class) also readily supports
extensibility in the form of polymorphism. Extensibility in object oriented programming typically
goes beyond mere polymorphism, through some form of inheritance that gives rise to object/class
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hierarchies. Although a formal semantics of its operations is an integral part of the definition of
an ADT, object/class interfaces in object oriented languages are purely syntactic and contain no
semantics. Moreover, the explicit definition of the set of all sorts (both provided and required)
by an ADT has no correspondence in the object/class interface definitions in main-stream object
oriented languages: they do not mention what their respective objects/classes require, but specify
only the operations that they provide.

The differences between the ADT model and object oriented programming give rise to a number
of problems that have already been discussed in the literature. Some counter-measures for problems
such as the conflict between inheritance and encapsulation [56], the purely syntactic nature of
interfaces, and their asymmetric specification of offered/required services, have been integrated
in the design of certain more advanced object oriented languages and component models. What
has not been explored so explicitly and extensively in the literature is how message passing in the
object oriented paradigm affects software composition and what alternative mechanisms can be
used in its place for components.

The method invocation semantics of object oriented message passing implies a rather tight
semantic coupling between the caller and callee pairs of objects. By this semantics, if an object c
sends a message m(p) to another object e, then c is invoking the method m of e with the actual
parameters p. For this to happen:

• c must know (how to find) e;

• c must know the syntax and the semantics of the method m of e;

• e must (pretend to) perform the activated method m on parameters p, and return its result
to c upon its completion (the “pretense” refers to when e delegates the actual execution of
m to a third object); and

• c typically suspends between its sending of m and the receiving of its (perhaps null) result.

Not only this “rendezvous semantics” is far from trivial, it is still susceptible to significantly
different and mutually incompatible variations (e.g., with synchronous vs. asynchronous message
passing, active vs. passive objects, etc.). Underneath the precise semantics of this rendezvous and
its various incarnations in different object oriented models, is a strong conceptual link with ADT.

By its virtue of providing a set of operations, all that one can do with an ADT is to perform one
of its operations. Similarly, the fact that an object provides a set of methods in its interface means
that one can do nothing with an object but to invoke those methods. This operational interface
(of objects or ADTs) induces an asymmetric, unidirectional semantic dependency of users (of
operations) on providers (of those operations). On the one hand, the operations provided by an
ADT (or object) can be used by any other entity (that has access to it). On the other hand,
an ADT internally decides what operation of what other ADT to perform. This puts users and
providers in asymmetric roles. Users internally make the decisions on what operations are to be
performed, and generally rely on some specific semantics that they expect of these operations, while
it is left to be the responsibility of the providers to carry out the decisions made by the users to
satisfy their expectations.

Far from a universal pitfall, it can even be argued that the presumed level of intimacy re-
quired among a set of objects composed together through message passing, is an advantage in
building individual components. However, at the inter-component level, such intimacy subverts
independence of components, contributes to breaking of their encapsulation, and leads to a level of
inter-dependence among components that is no looser than that among objects within a component.

6 A Bland Notion of Components

Instead of relying on targeted active messages for inter-component communication, our compo-
nent model allows a component instance to exchange only untargeted, passive messages with its
environment. Passive messages contain only data and carry no control information (e.g., imply no
method invocation). Not implying the exchange of any control information makes passive messages
more abstract and more flexible than active messages. For instance, because no form of “call” is
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implied, the receiver of a message need not interpret the message as an operation that it must
perform. The receiver of a message is not even obligated to reply. Consequently, the sender does
not necessarily suspend waiting for a result either.

Untargeted messages break the asymmetry between senders and receivers that is inherent in
models that use targeted messages. With targeted messages, the knowledge of who the receiver of
a message is, or at least how it can be identified, must be contained in its sender. The receiver
of a message, on the other hand, is not required to know anything about its sender beforehand:
it is prepared to receive messages “from its environment” not from any specific sender. This
asymmetry makes the sender of a message semantically dependent on (properties and the scheme
used to identify) its receiver. This inherent semantic dependency stifles exogenous coordination by
severely restricting the ability of a third party to, e.g., set up the interaction of such a sender with a
receiver of its own choosing instead of the one prescribed by the sender. With untargeted messages,
both senders and receivers symmetrically exchange messages only with their environment, not with
any pre-specified entity.

In contrast to the more sophisticated mechanisms necessary for exchanging targeted passive
messages, or even more sophisticated ones to support (remote) method invocation for active mes-
sages, the mechanism necessary for exchanging untargeted passive messages essentially supports
only the mundane I/O primitives: an untargeted message itself is merely some passive data that
an entity exchanges with its environment; “sending” such a message is just a write operation; and
“receiving” it is just a “read” operation. The I/O operations read and write are performed by a
component instance on “contact points” that are recognized by its environment for the purpose
of information exchange. We refer to these contact points as the ports of a component instance.
Without loss of generality, we assume ports are unidirectional, i.e., the information flows through a
port in one direction only: either from the environment into its component instance (through read)
or from its component instance to the environment (through write). Each I/O operation inherently
synchronizes the entity that performs it with its environment: a write operation suspends until the
environment accepts the data it has to offer through its respective port; likewise, a read operation
suspends until the environment offers the suitable data it expects through its respective port.

This view of component communication leads to a generic component model. In this model, a
component instance is a black box that contains one or more active entities. An active entity is one
that has its own independent thread of control. Examples of active entities are processes, threads,
active objects, agents, etc. No assumption is made in this model about how the active entities inside
a component instance communicate with each other. However, simple I/O operations through its
ports are the only means of communication for the active entities inside a component instance with
any entity not in the same component instance. By this definition, a Unix process, for instance,
qualifies as a component instance: it contains one or more threads of control which may even run
in parallel on different physical processors, and its file descriptors qualify as ports. A component
instance may itself consist of a collection of other component instances, perhaps running in a
distributed environment. Thus, by identifying their relevant ports through which they exchange
data with their environment, entire systems can be viewed and used as component instances,
abstracting away their internal details of operation, structure, geography, and implementation.

Such a simple model of components may at first appear rather banal. Nevertheless, it leads
to a simple yet useful notion of behavior and behavioral interface. One of the strengths of this
model is that it innately espouses anonymous communication: entities that communicate with each
other need not know each other. It makes the model inherently amenable to exogenous coordina-
tion and supports highly flexible composition possibilities, yielding a very powerful paradigm for
component/behavior composition.

7 Elements of a Behavioral Interface

There are different ways in which one can represent behavior. Given our model of components, the
most direct and obvious way to represent the observable behavior of a component instance is to
model it as a relation on its observable input and output. Because this input/output takes place
through the ports of the component instance, sequences of data items that pass through a port
emerge as the key building blocks for describing behavior.
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Relating sequences of data items that pass through different ports of a component instance
requires a sense of relative temporal order to inter-relate otherwise independent events. We need
to state, for instance, that a certain data item passes through this port before or after some other
data item passes through that port. The assumption of a global clock is stifling in distributed
systems and is an overkill for our purpose. Indeed, what we need is a very diluted notion of time
that is much less restrictive than the notion of global time. We need to accommodate for:

• ordering of events: stating that the occurrence of a certain event precedes or succeeds that
of another;

• atomicity of a set of events: stating that a given set of events occur only atomically.

• temporal progression: stating that only a finite set of events can occur within any bounded
temporal interval.

Observe that we do not speak of simultaneity in our list of requirements here. Simultaneity is
a rather ambiguous notion in distributed systems. Instead, we speak of atomicity. The atomicity
of a set of events means that either none of them occurs, or else they all occur before any other
event (not in that set) occurs, i.e., the occurrence of an atomic set of events cannot be interleaved
with the occurrence of any other event. Stating that a set of events must occur atomically allows
but does not require (any subset of) those events to occur simultaneously. It also allows for those
events to occur in any nondeterministic order, so long as either they all occur or none occurs at
all. Atomicity can be seen as a relaxing generalization of simultaneity. It is as if an atomic set of
events all happen “simultaneously,” except that we elongate the moment of their occurrence into a
temporal interval. The provision that no other event may interleave with the occurrence of those
in the set ensures that our “elongation of the time moment into an interval” is not detectable by
other entities in the system.

Requiring that only a finite set of events can occur within any bounded temporal interval
precludes anomalies such as Zeno’s paradox.

We use positive numbers to represent moments in time, with the proviso that it is not the
actual numeric values of the time moments, but only their relative ordering that is significant.
The numerical less-than relation represents the ordering of events. The numeric equal-to relation
represents atomicity, not simultaneity. Temporal progression can be enforced by requiring that in
every temporal sequence a, for any number N ≥ 0 there exists an i ≥ 0 such that the i th element
in a exceeds N .

8 Abstract Behavior Types

An ABT defines an abstract behavior as a relation among the observable input/output that occur
through a set of “contact points” (e.g., ports of a component instance) without specifying any detail
about: (1) the operations that may be used to implement such behavior; or (2) the data types
those operations may manipulate for the realization of that behavior.2 This definition parallels
that of an ADT, which abstracts away from the instructions and the data structures that may be
used to implement the operational interface it defines for a data type. In contrast, an ABT defines
what a behavior is in terms of a relation (i.e., constraint) on the observable input/output of an
entity, without saying anything about how it can be realized.

More formally, an ABT is a (maximal) relation among a set of timed-data-streams. The notion
of timed-data-streams as well as most of the technical content in this section come from the work
of J. Rutten on coalgebras [49, 30], stream calculus [48], and a coalgebraic semantics for Reo [8].
Coalgebraic methods have been used for dynamical systems, automata and formal languages, modal
logic, transition systems, hybrid systems, infinite data types, the control of discrete event systems,
formal power series, etc. (see for instance [53], [41], [42], [50], [51], [52], [22], [27]). Coalgebras have
also been used as models for various programming paradigms, notably for objects and classes (see,
e.g., [47], [28], and [26]). One of the first applications of coalgebras to components appears in [11].

2The term “Abstract Behavior Type” is a variation of the term “Abstract Behavioral Type” proposed by F. de
Boer for a related concept.
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Defining observable behavior in terms of input/output implants a dataflow essence within ABTs
akin to such dataflow-like networks and calculi as [10], [32], and especially [14]. The coalgebraic
model of ABT presented here differs from all of the above-mentioned work in a number of respects.
Most importantly, the ABT model is compositional. Its explicit modeling of ordering/timing
of events in terms of separate time streams provides a simple foundation for defining complex
synchronization and coordination protocols using a surprisingly expressive small set of primitives.
The use of coinduction as the main definition and proof principle to reason about both data and
time streams allows simple compositional construction of ABTs representing many different generic
coordination schemes involving combinations of various synchronous and asynchronous primitives
that are not present (and not even expressible) in any of the aforementioned models.

A stream (over A) is an infinite sequence of elements of some set A. Streams over sets of
(uninterpreted) data items are called data streams and are typically denoted as α, β, γ, etc.
Zero-based indices are used to denote the individual elements of a stream, e.g., α(0), α(1), α(2), ...
denote the first, second, third, etc., elements of the stream α. We use the infix “dot” as the stream
constructor: x .α denotes a stream whose first element is x and whose second, third, etc. elements
are, respectively, the first and its successive elements of the stream α.

Following the conventions of stream calculus [48], the well-known operations of head and tail
on streams are called initial value and derivative: the initial value of a stream α (i.e., its head) is
α(0), and its (first) derivative (i.e., its tail) is denoted as α′. The k th derivative of α is denoted as
α(k) and is the stream that results from taking the first derivative of α and repeating this operation
on the resulting stream for a total of k times. Relational operators on streams apply pairwise to
their respective elements, e.g., α ≥ β means α(0) ≥ β(0), α(1) ≥ β(1), α(2) ≥ β(2), ....

Time streams are constrained streams over (positive) real numbers, representing moments in
time, and are typically denoted as a, b, c, etc. To qualify as a time stream, a stream of real numbers
a must be (1) strictly increasing, i.e., the constraint a < a ′ must hold; and (2) progressive, i.e., for
every N ≥ 0 there must exist an index n ≥ 0 such that a(n) > N .

We use positive real numbers instead of natural numbers to represent time because, as observed
in the world of temporal logic [23], real numbers induce the more abstract sense of dense time
instead of the notion of discrete time imposed by natural numbers. Specifically, we sometimes
need finitely many steps within any bounded time interval for certain ABT equivalence proofs
(see, e.g., [8]). This is clearly not possible with a discrete model of time. Recall that the actual
values of “time moments” are irrelevant in our ABT model; only their relative order is significant
and must be preserved. Using dense time allows us to locally break strict numerical equality (i.e.,
simultaneity) arbitrarily while preserving the atomicity of events.

A Timed Data Stream is a twin pair of streams 〈α, a〉 consisting of a data stream α and a time
stream a, with the interpretation that for all i ≥ 0, the input/output of data item α(i) occurs
at “time moment” a(i). Two timed data streams 〈α, a〉 and 〈β, b〉 are equal if their respective
elements are equal, i.e. 〈α, a〉 = 〈β, b〉 ≡ α = β ∧ a = b.

An Abstract Behavior Type (ABT) is a (maximal) relation over timed data streams. Every
timed data stream involved in an ABT is tagged either as its input or its output. The input/output
tags of the timed data streams involved in an ABT are meaningless in the relation that defines the
ABT. However, these tags are crucial in ABT composition described in Section 8.2.

Generally, we use the prefix notation R(I1, I2, ..., Im ;O1,O2, ...,On) and the separator “;” to
designate the ABT defined by the (m + n)-ary relation R over the m ≥ 0 sets of input timed data
streams Ii , 0 ≤ i ≤ m and the n ≥ 0 sets of output timed data streams Oj , 0 ≤ j ≤ n. As usual,
m +n is called the arity of R and we refer to m and n individually as the input arity and the output
arity of R. In the special case where m = n = 1 it is sometimes convenient to use the infix notation
I R O instead of the standard R(I ;O). To distinguish the set of timed data streams that appears
in a position in the relation that defines an ABT (i.e., a column in the relation) from a specific
timed data stream in that set (i.e., which may appear in a row of the relation in that position) we
refer to Ii and Oj as, respectively, the i th input and the j th output portals of the ABT.

Formally, a component, as defined in Section 6, with m ≥ 0 input and n ≥ 0 output ports is an
ABT with m input and n output portals. The set of all possible streams of data items that can
pass through each port of the component, together with their respective timing, comprise the set
of timed data streams of the ADT’s portal that corresponds to that port.
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8.1 ABT Examples

In this section we show the utility of the ABT model through a number of examples.

8.1.1 Basic Channels

Following is a list of some useful simple binary abstract behavior types. Each has a single input
and a single output portal.

1. The behavior of a synchronous channel is captured by the Sync ABT, defined as

〈α, a〉 Sync 〈β, b〉 ≡ 〈α, a〉 = 〈β, b〉.

Because 〈α, a〉 = 〈β, b〉 ≡ α = β ∧ a = b, the Sync ABT represents the behavior of any
entity that (1) produces an output data stream identical to its input data stream (α = β),
and (2) produces every element in its output at the same time as its respective input element
is consumed (a = b). Recall that “at the same time” means only that the two events of
consumption and production of each data item by a Sync channel occur atomically.

2. The behavior of an asynchronous unbounded FIFO channel is captured by the FIFO ABT,
defined as

〈α, a〉 FIFO 〈β, b〉 ≡ α = β ∧ a < b.

The FIFO ABT represents the behavior of any entity that (1) produces an output data stream
identical to its input data stream (α = β), and (2) produces every element in its output some
time after its respective input element is observed (a < b).

3. The behavior of an asynchronous channel with the bounded capacity of 1 is captured by the
FIFO1 ABT, defined as

〈α, a〉 FIFO1 〈β, b〉 ≡ α = β ∧ a < b < a ′.

The FIFO1 ABT represents the behavior of any entity that (1) produces an output data
stream identical to its input data stream (α = β), and (2) produces every element in its
output some time after its respective input element is observed (a < b) but before its next
input element is observed (b < a ′ which means b(i) < a(i + 1) for all i ≥ 0).

4. The behavior of an asynchronous channel with the bounded capacity of 1 filled to contain
the data item D as its initial value is captured by the FIFO1(D) ABT, defined as

〈α, a〉 FIFO1(D) 〈β, b〉 ≡ β(0) = D ∧ α = β′ ∧ b < a < b′.

The FIFO1(D) ABT represents the behavior of any entity that (1) produces an output data
stream consisting of the initial data item D followed by the input data stream of the ABT
(β(0) = D ∧ α = β′), and (2) for i ≥ 0 performs its i th input operation some time between
its i th and i + 1st output operations (b < a < b ′).

5. The behavior of an asynchronous channel with the bounded capacity of k > 0 is captured by
the FIFOk ABT, defined as

〈α, a〉 FIFOk 〈β, b〉 ≡ α = β ∧ a < b < a(k).

Recall the a(k) is the k th -derivative (i.e., the k th -tail) of the stream a. The FIFOk ABT
represents the behavior of any entity that (1) produces an output data stream identical to its
input data stream (α = β), and (2) produces every element in its output some time after its
respective input element is observed (a < b) but before its k th -next input element is observed
(b < a(k) which means b(i) < a(i + k) for all i ≥ 0). Observe that FIFO1 is indeed a special
case of FIFOk with k = 1.
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It is illuminating to compare the FIFO ABT defined above with the definition of the queue ADT
in Figure 1. They are both mathematically well-defined constructs that describe the same thing:
an unbounded FIFO queue. The ADT defines a queue in terms of a set of operations and a set of
axioms that constrain the observable mutual effect of those operations on each other. It abstracts
away the actual instructions for the implementation of those operations and the data structures
that they manipulate. The ABT defines a queue in terms of what data items it exchanges with
its environment, when it consumes and produces them, and a set of axioms that constrain their
interrelationships. It abstracts away the operations for the realization (or enforcement) of those
relationships and the data types that they may utilize to do so.

8.1.2 Merge and Replicate

We now define two other ABTs that, as we see in Section 9, form a foundation for an interesting
and expressive calculus: merger and replicator. The merger ABT is defined as:

Mrg(〈α, a〉, 〈β, b〉;〈γ, c〉) ≡



α(0) = γ(0) ∧ a(0) = c(0) ∧ Mrg(〈α′, a ′〉, 〈β, b〉;〈γ′, c′〉) if a(0) < b(0)
∃t :a(0) < t < min(a(1), b(1)) ∧ ∃r , s ∈ {a(0), t} ∧ r 6= s ∧ if a(0) = b(0)

Mrg(〈α, r .a ′〉, 〈β, s .b′〉;〈γ, c〉)
β(0) = γ(0) ∧ b(0) = c(0) ∧ Mrg(〈α, a〉, 〈β ′, b′〉;〈γ′, c′〉) if a(0) > b(0)

Intuitively, the Mrg ABT produces an output that is a merge of its two input streams. If
α(0) arrives before β(0), i.e. a(0) < b(0), then the ABT produces γ(0) = α(0) as its output at
c(0) = a(0) and proceeds with the tails of the streams in its first input timed data stream. If α(0)
arrives after β(0), i.e. a(0) > b(0), then the ABT produces γ(0) = β(0) as its output at c(0) = b(0)
and proceeds with the tails of the streams in its second input timed data stream. If the α(0) and
β(0) arrive “at the same time” (i.e., a(0) = b(0)), then in this formulation Mrg picks an arbitrary
number t in the open time interval (a(0),min(a(1), b(1))) and uses it to nondeterministically break
the tie. The assumption of dense time guarantees the existence of an appropriate t . Recall that the
construct r .a ′ is a stream whose derivative (tail) is a ′ and whose initial value (head) is r . Thus,
for a(0) = b(0) Mrg nondeterministically changes the head of one of the two time streams, a or
b, thereby “delaying” the arrival of its corresponding data item to break the tie. The finite delay
introduced by Mrg in this case is justified because although it breaks simultaneity, its value is con-
strained to preserve atomicity. Observe that Mrg(〈α, a〉, 〈β, b〉;〈γ, c〉) = Mrg(〈β, b〉, 〈α, a〉;〈γ, c〉).

The replicator ABT is defined as:

Rpl(〈α, a〉;〈β, b〉, 〈γ, c〉) ≡ β = α ∧ γ = α ∧ b = a ∧ c = a

It is easy to see that this ABT captures the behavior of any entity that synchronously replicates
its input stream into its two identical output streams. Observe that Rpl(〈α, a〉;〈β, b〉, 〈γ, c〉) =
Rpl(〈α, a〉;〈γ, c〉, 〈β, b〉).

8.1.3 Sum

As an example of an ABT that performs some computation, consider a simple dataflow adder. The
behavior of such a component is captured by the Sum ABT defined as

Sum(〈α, a〉, 〈β, b〉;〈γ, c〉) ≡
γ(0) = α(0) + β(0)∧
∃t :max (a(0), b(0)) < t < min(a(1), b(1)) ∧ c(0) = t∧
Sum(〈α′, a ′〉, 〈β′, b′〉;〈γ′, c′〉).

Sum defines the behavior of a component that repeatedly reads a pair of input values from
its two input ports, adds them up, and writes the result out on its output port. As such, its
output data stream is the pairwise sum of its two input data streams. This component behaves
asynchronously in the sense that it can produce each of its output data items with some arbitrary
delay after it has read both of its corresponding input data items (c(0) = t ∧ t > max (a(0), b(0))).
However, it is obligated to produce each of its output data items before it reads in its next input
data item (t < min(a(1), b(1))).
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8.1.4 Philosophers and Chopsticks

The classical dining philosophers problem can be described in terms of n > 1 pairs of instances
of two components: philosopher instances of Phil and chopstick instances of Chop. We define the
externally observable behavior of each of these components as an ABT. We show in Section 9 how
instances of these components can be composed into different component based systems both to
exhibit and to solve the famous deadlock problem.

We assume that a chopstick component has two input ports, t (for take) and f (for free), through
which it reads in the timed data streams 〈αt , at〉 and 〈αf , af 〉, respectively. The data items in αt

and αf are tokens whose actual values are not of interest to us. In practice, it is a good idea for
these tokens to contain the identifier of the entity (e.g., philosopher) who uses the chopstick, but
as long as such informative requirements do not affect behavior, they are irrelevant for our ABT
definition.

When a chopstick is free (its initial state) it is ready to accept a take request and thus reads
from its t port the next take request token out of 〈αt , at〉. Once taken, a chopstick is ready to
accept a free request and thus reads from its f port the free request token out of 〈αf , af 〉. For
the user of the chopstick, the success of its I/O operation on port t or f means the chopstick has
accepted its (take or free) request. This simple behavior is captured by the Chop ABT defined as

Chop(〈αt , at〉, 〈αf , af 〉;) ≡ at < af < a ′

t .

Because we are not interested in the actual value of the take/free tokens, the Chop ABT has
nothing to say about the data streams αt and αf ; it is only the timing that is relevant here. The
timing equation simply states that initially, there must be a take, followed by a free, and this
sequence repeats.

We assume that a philosopher component has four output ports, lt (for left-take), lf (for left-
free), rt (for right-take), and rf (for right-free), through which it writes the timed data streams
〈αlt , alt〉, 〈αlf , alf 〉, 〈αrt , art〉, and 〈αrf , arf 〉, respectively. The two ports lt and lf are “on the
left” and two ports rt and rf are “on the right” of the philosopher component, so to speak. The
philosopher’s requests to take and free the chopsticks on its left and right are issued through their
respective ports.

The externally observable behavior of a philosopher component is as follows. After some period
of “thinking” it decides to eat, at which point it attempts to obtain its two chopsticks by issuing
take requests on its lt and rt ports. We assume it always issues a request for its left chopstick
before requesting the one on its right. The philosopher component interprets the success of its
write operation as the acceptance of its request (e.g., for exclusive access to the chopstick). Once,
and if, both of its take requests are granted, it proceeds to “eat” for some time, at the end of
which it then issues requests to free its left and right chopsticks by writing tokens to its lf and rf
ports. The philosopher component then repeats the cycle by entering its thinking period again.
This behavior is captured by the Phil ABT defined as

Phil(;〈αlt , alt〉, 〈αlf , alf 〉, 〈αrt , art〉, 〈αrf , arf 〉) ≡ alt < art < alf < arf < a ′

lt .

Again, because we are not interested in the actual values of the take/free tokens that this component
produces, the Phil ABT says nothing about the data streams. All we are interested in is the timing
constraints: an arbitrary “thinking” delay; followed by a request to take the left chopstick; once
granted, followed by a request to take the right chopstick; once granted, followed by an arbitrary
“eating” delay; followed by the requests to free the left and the right chopsticks; and the cycle
repeats.

8.2 ABT Composition

Abstract behavior types can be composed to yield other abstract behavior types through a compo-
sition similar to the relational join operation in relational databases. Two ABTs can be composed
over a common timed data stream if one is the producer and the other the consumer of that timed
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data stream. The same two ABTs can be composed over zero or more common timed data streams,
each ABT playing the role of the producer or the consumer of one of the timed data streams, inde-
pendent of its role regarding the others. Observe that the producer and the consumer of a timed
data stream, 〈α, a〉, necessarily synchronize their I/O operations on their respective portals for the
mutual exchange of the data items in its data stream α, according to the schedule in its twin time
stream a. This is accomplished simply by “fusing” their respective portals together such that the
timed data stream observed on one is identical to the one observed on the other.

Consider two ABTs B1 with arity p = pi + po and B2 with arity q = qi + qo , where pi and po

are, respectively, the input arity and the output arity of B1, and qi and qo , those for B2. B1 and
B2 can be composed with 0 ≤ k ≤ min(pi , qo)+ min(po , qi) pairs of mutually fused portals, where
the data items produced through an output portal, O , of one ABT are fed for consumption by the
other ABT through its input portal that is fused with O .

We define the k-dyad composition of the two ABTs B1(I 11, I 12, ...I 1pi
;O11,O12, ...O1po

) and
B2(I 21, I 22, ...I 2qi

;O21,O22, ...O2qo
) as a special form of the join of the two relations B1 and B2

where k distinct portals (i.e., relational columns) of B1 are paired each with a distinct portal of
B2 into k dyads such that (1) the two portals in each dyad have opposite input/output tags, and
(2) the two timed data streams of the portals in each dyad are equal. The k -dyad composition
of B1 and B2 yields a new ABT, B(I1, I2, ...Im ;O1,O2, ...On), with arity m + n = p + q − 2 × k ,
defined as a relation over those portals of B1 and B2 that are not involved in a dyad (i.e., the
fused portals disappear from the resulting relation). The list I1, I2, ...Im is obtained from the
list I 11, I 12, ...I 1pi

, I 21, I 22, ...I 2qi
by eliminating every one of its elements involved in a dyad.

Similarly, the list O1,O2, ...On is obtained from the list O11,O12, ...O1po
,O21,O22, ...O2qo

by
eliminating every one of its elements involved in a dyad.

We use the dyad indices 1 ≤ l ≤ k as superscripts to mark the corresponding portals of B1

and B2 in their k -dyad composition. For example, B = B1(〈α, a〉, 〈β, b〉1;〈γ, c〉)◦B2(〈δ, d〉;〈µ,m〉1)
denotes the 1-dyad composition of the two abstract behavior types B1 and B2 where the output
(portal) of B2 is identical to the second input (portal) of B1. The resulting ABT is defined through
the relation B ≡ {〈〈α, a〉, 〈δ, d〉;〈γ, c〉〉 | 〈〈α, a〉, 〈β, b〉;〈γ, c〉〉 ∈ B1 ∧ 〈〈δ, d〉;〈µ,m〉〉 ∈ B2 ∧ 〈β, b〉 =
〈µ,m〉}. Another example is the ABT B = B1(〈α, a〉, 〈β, b〉1;〈γ, c〉2) ◦ B2(〈δ, d〉

2;〈µ,m〉1, 〈ν, n〉),
which denotes the 2-dyad composition of the two abstract behavior types B1 and B2 where the first
output of B2 is identical to the second input of B1 and the output of B1 is identical to the input
of B2. The resulting ABT is defined as the relation B ≡ {〈〈α, a〉;〈ν, n〉〉 | 〈〈α, a〉, 〈β, b〉;〈γ, c〉〉 ∈
B1 ∧ 〈〈δ, d〉;〈µ,m〉, 〈ν, n〉〉 ∈ B2 ∧ 〈β, b〉 = 〈µ,m〉 ∧ 〈γ, c〉 = 〈δ, d〉}.

The common case of the 1-dyad composition of B1 and B2 where the single output of B1

is identical to the single input of B2 is abbreviated as B1(...;〈α, a〉) ◦ B2(〈β, b〉;...) instead of
B1(...;〈α, a〉1) ◦ B2(〈β, b〉1;...). This abbreviation is particularly convenient together with the in-
fix notation for binary abstract behavior types. For instance, B = 〈α, a〉B1〈β, b〉 ◦ 〈γ, c〉B2〈δ, d〉
denotes the 1-dyad composition of the two abstract behavior types B1 and B2 where the output
of B1 is identical to the input of B2. Of course, the resulting ABT is defined as the relation
〈α, a〉B〈δ, d〉 ≡ {〈〈α, a〉;〈δ, d〉〉 | 〈〈α, a〉;〈β, b〉〉 ∈ B1 ∧ 〈〈γ, c〉;〈δ, d〉〉 ∈ B2 ∧ 〈β, b〉 = 〈γ, c〉}.

For example, consider the binary ABTs defining the basic channels presented in Section 8.1. It
is not difficult to see that the (1-dyad) composition of these ABTs produces results that correspond
to our intuition. For instance, the composition of two Sync ABTs produces a Sync ABT. Indeed,
composition of a Sync ABT with any other ABT (on its left or right) yields the same ABT. More
interestingly, the composition of two FIFO ABTs produces a FIFO ABT. Composing two FIFO1

ABTs produces a FIFO2 ABT. The formal proof of this latter equivalence relies on our notion of
dense time (as opposed to discrete time) and is given in [8], together with the formal treatment of
many other interesting examples.

9 Reo

The ABT model provides a simple formal foundation for definition and composition of components.
The k -dyad composition of ABTs supports a very flexible mechanism for software composition in
component based systems. This furnishes the desired level of composition flexibility we expect in a
component model. However, composing components directly with one another in this way reduces
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the glue code to essentially nothing more than repeated applications of the k -dyad composition op-
erator. More importantly, it all but extinguishes the possibility of wielding exogenous coordination
through the glue code. The ABT model is too low-level to directly provide any form of non-trivial
coordination (beyond the simple synchronization implied by its timed data streams); for that, we
need an effective exogenous coordination model.

Reo is a channel-based exogenous coordination model wherein complex coordinators, called
connectors are compositionally built out of simpler ones [7, 4, 8]. The simplest connectors in Reo
are a set of channels with well-defined behavior supplied by users. Reo can be used as a language
for coordination of concurrent processes, or as a “glue language” for compositional construction of
connectors that orchestrate component instances in a component based system. The emphasis in
Reo is on connectors and their composition only, not on the entities that connect to, communicate,
and cooperate through these connectors. Each connector in Reo imposes a specific coordination
pattern on the entities (e.g., component instances) that perform I/O operations through that
connector, without the knowledge of those entities.

Channel composition in Reo is a very powerful mechanism for construction of connectors. The
expressive power of connector composition in Reo has been demonstrated through many examples
in [3, 4, 8]. For instance, exogenous coordination patterns that can be expressed as (meta-level)
regular expressions over I/O operations performed by component instances can be composed in
Reo out of a small set of only five primitive channel types.

A mobile channel allows (physical or logical) relocation of one of its ends without the knowledge
or the involvement of the entity at its other end. Logical mobility changes the topology of the in-
terconnections of communicating entities, while physical mobility can have other implications, e.g.,
on an entity’s (efficiency of) access to various resources. An efficient distributed implementation of
channels supporting this notion of mobility is described in [5]. Both component instances and chan-
nels are mobile in Reo. Logical mobility of channel ends in Reo allows dynamic reconfiguration of
connectors, even while they are being used by component instances. In this respect, Reo resembles
dynamically reconfigurable generalized Kahn networks, as in IWIM [1] and Manifold [12], and its
dataflow nature is also related to Broy’s timed dataflow model, although Reo is more general and
more expressive that these and similar models. Much as Reo supports physical mobility through its
move operation to allow more efficient flow of data, it ascribes no semantic significance to it. The
move operation does not semantically affect connector topologies, flow of data, or connectivity of
components to connectors. In this sense, Reo is orthogonal to the concerns involving the physical
mobility of code, e.g., in models such as that of [46].

It turns out that the ABT model is quite adequate for defining the channel and connector
composition operation which is the crux of exogenous coordination in Reo. In the rest of this
section we show how connector construction in Reo can be seen as an application of the ABT
model.

9.1 Channels and Connectors

Channels are the only primitive medium of communication between two components in Reo. The
notion of channel in Reo is far more general than its common interpretation. A channel in Reo has
its own unique identity and always has exactly two directed ends, each with its own unique identity.
Based on their direction, there are two types of channel ends: source and sink ends. Data enters
through a source channel end into its respective channel, and it leaves through a sink channel end
from its respective channel. (Channels themselves have no direction in Reo, only their ends do.)

Beyond a small set of mild obvious requirements, such as enabling I/O operations to read/write
data items from/to their ends, Reo places no restrictions on the behavior of channels. This allows
an open-ended set of different channel types to be used simultaneously together in Reo, each with
its own policy for synchronization, buffering, ordering, computation, data retention/loss, etc. Some
typical examples of conventional channels are, e.g., the ones defined in Section 8.1. These channels
happen to each have a source end and a sink end. More unconventional channels are also possible
in Reo, especially because a channel can also have only two source ends or only two sink ends. A
few examples of some such exotic channels appear in Section 9.3; even more examples are presented
in [3, 7, 4].

Strictly speaking, Reo itself neither provides nor assumes the availability of any specific set
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of channel types; it simply assumes that an appropriate assortment of channel types, each with
its properly well-defined semantics, is provided by users for it to operate on. Nevertheless, it
is reasonable to expect that in practice certain most primitive channel types, e.g., synchronous
channels, will always be made available in all cases.

Reo defines a connector as a set of channel ends and their connecting channels organized in a
graph of nodes and edges such that:

• Zero or more channel ends coincide on every node.

• Every channel end coincides on exactly one node.

• There is an edge between two (not necessarily distinct) nodes if and only if there is a channel
one end of which coincides on each of those nodes.

We use x 7→ N to denote that the channel end x coincides on the node N , and x̂ to denote the
unique node on which the channel end x coincides. For a node N , we define the set of all channel
ends coincident on N as [N ] = {x | x 7→ N }, and disjointly partition it into the sets Src(N ) and
Snk(N ), denoting the sets of source and sink channel ends that coincide on N , respectively.

Observe that nodes are neither components nor locations. Although some nodes are attached
to component instances to allow their exchange of information, nodes and components are different
notions and not every node can be associated with or attached to a component instance. A node
is a fundamental concept in Reo representing an important topological property: all channel ends
x ∈ [N ] coincide on the same node N . This property entails specific implications in Reo regarding
the flow of data among the channel ends x ∈ [N ], irrespective of concern for the location of those
channel ends or N , or the possible attachment of N to a component instance.

A node N is called a source node if Src(N ) 6= ∅∧Snk(N ) = ∅. Analogously, N is called a sink

node if Src(N ) = ∅∧Snk(N ) 6= ∅. A node N is called a mixed node if Src(N ) 6= ∅∧Snk(N ) 6= ∅.
By the above definition, every channel represents a (simple) connector with two nodes. From

the point of view of Reo a port of a component instance is just a node that (initially) contains
a single channel end. An input port is (initially a singleton) source node, and an output port is
(initially a singleton) sink node. From the point of view of a component instance, each of its ports
is merely a simple connector corresponding to a synchronous channel (the node of) one end of
which is made publicly accessible for I/O by its environment, while (the node of) its other end is
hidden for exclusive use by the component instance itself. An output port of a component instance
has the sink node of its synchronous channel public while its source node is available only for I/O
operations performed by that component instance. Likewise, an input port has the source node
of its synchronous channel public while its sink node is hidden for exclusive use by its component
instance.

Reo provides I/O operations on source and sink nodes only; components cannot read from or
write to mixed nodes. A component instance can write to a source node and can read from a sink
node using node I/O operations of Reo.

The graph representing a connector is not directed. However, for each channel end xc of a
channel c, we use the directionality of xc to assign a local direction in the neighborhood of x̂c to the
edge that represents c. The local direction of the edge representing a channel c in the neighborhood
of the node of its source xc is presented as an arrow emanating from x̂c . Likewise, the local direction
of the edge representing a channel c in the neighborhood of the node of its sink xc is presented as
an arrow pointing to x̂c . See Figures 2 and 3 for examples.

Complex connectors are constructed in Reo out of simpler ones using its join operation. The
join operation in Reo is defined only on nodes. Joining two nodes N1 and N2 destroys both nodes
and produces a new node N with the property that [N ] = [N1]∪ [N2]. This single operation allows
construction of arbitrarily complex connector graphs involving any combination of channels picked
from an open-ended set of channel types. The semantics of a connector is defined as a composition
of the semantics of its (1) constituent channels, and (2) nodes. Because Reo does not provide any
channels, it does not define their semantics either. What Reo defines is the composition of channels
into connectors and the semantics of this composition through the semantics of its (three types of)
nodes.

Intuitively, a source node replicates every data item written to it as soon as all of its coincident
source channel ends can consume that data item. Reading from a sink node nondeterministically
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selects one of the data items available through its coincident sink channel ends. A mixed node is a
self-contained “pumping station” that combines the behavior of a sink node and a source node in
an atomic iteration of an infinite loop: in each atomic iteration it nondeterministically selects an
appropriate data item available through its coincident sink channel ends and replicates that data
item into all of its coincident source channel ends. A data item is appropriate for selection in an
iteration only if it can be consumed by all source channel ends that coincide on that node.

9.2 ABT Models of Nodes and Connectors

Consider a sink node N with [N ] = {x , y}, as in Figure 2.a. The read operations performed on this
node induce an output timed data stream, 〈αN , aN 〉, for this sink node. We use 〈αx , ax 〉 and 〈αy , ay〉
to designate the timed data streams corresponding to the channel ends x and y , respectively. The
semantics of this sink node is defined by the ABT Mrg(〈αx , ax 〉, 〈αy , ay〉;〈αN , aN 〉).

a c d eb

x

y

x
y

z

x

y

x
y

z

Figure 2: Representation of nodes in Reo

The semantics of a sink node N where [N ] = {x , y , z}, as in Figure 2.b, is defined as the 1-dyad
composition

Mrg3(〈αx , ax 〉, 〈αy , ay〉, 〈αz , az 〉;〈αN , aN 〉)) ≡
Mrg(〈αx , ax 〉, 〈αy , ay〉;〈β1, b1〉

1) ◦ Mrg(〈γ1, c1〉
1, 〈αz , az 〉;〈αN , aN 〉)

where 〈αN , aN 〉 is the output timed data stream of the node, as before, and 〈β1, b1〉 and 〈γ1, c1〉
are internal timed data streams.

Because Mrg is associative with respect to its input portals, merging the intermediate result of
the merge of x and y with z is the same as merging x with the intermediate result of the merge of
y and z ; i.e., Mrg3 is associative with respect to its input portals. As such, the simple graphical
notation of Reo (e.g., in Figures 2.a and b) is quite appropriate because it does not suggest any
precedence for the Mrg operations. Clearly this scheme can be used to define the semantics of sink
nodes with more coincident channel ends in general as the ABT Mrgk with k > 0 input and one
output portals. For completeness, we define Mrg1(〈αx , ax 〉;〈αN , aN 〉)) ≡ 〈αx , ax 〉 = 〈αN , aN 〉 and
consider Mrg2 to be a pseudonym for Mrg .

The write operations performed on a source node N with [N ] = {x , y}, as in Figure 2.c, induce
an input timed data stream, 〈αN , aN 〉, for N . The semantics of N in this case is defined by the
ABT Rpl(〈αN , aN 〉;〈αx , ax 〉, 〈αy , ay〉. The semantics of a source node N with [N ] = {x , y , z}, as
in Figure 2.d, is defined as the 1-dyad composition

Rpl3(〈αN , aN 〉;〈αx , ax 〉, 〈αy , ay〉, 〈αz , az 〉) ≡
Rpl(〈αN , aN 〉;〈αx , ax 〉, 〈β1, b1〉

1) ◦ Rpl(〈γ1, c1〉
1;〈αy , ay〉, 〈αz , az 〉)

where 〈αN , aN 〉 is the input timed data stream of the node, as before, and 〈β1, b1〉 and 〈γ1, c1〉
are internal timed data streams. Because Rpl is associative with respect to its output portals,
the precedence of the Rpl operations is irrelevant and Rpl3 is also associative with respect to its
output portals. Similarly, the general ABT Rplk with one input and k > 0 output portals defines
the semantics of a source node with k coincident channel ends. Again, for completeness, we define
Rpl1(〈αN , aN 〉;〈αx , ax 〉)) ≡ 〈αx , ax 〉 = 〈αN , aN 〉 and consider Rpl2 to be a pseudonym for Rpl .

A mixed node, as in Figure 2.e, is a composition of two “half-nodes,” a source and a sink.
Because no component is allowed to perform an I/O operation on a mixed node, no input/output
timed data stream can be defined for a mixed node. A mixed node is a closed entity that does not
interact with any component; instead it internally pumps data items from its sink channel ends
to its source channel ends. The semantics of a mixed node N with m > 0 sink and n > 0 source
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channel ends is thus defined as the 1-dyad composition of the two ABTs describing the behavior
of each of its half nodes: Mrgm(I1, I2, ...Im;〈β1, b1〉) and Rpln(〈γ1, c1〉;O1,O2, ...On). The portals Ii
and Oj designate the timed data streams observed at the m sink and the n source channel ends
coincident on N , respectively. The resulting ABT is thus

Pmxn(I1, I2, ...Im;O1,O2, ...On) ≡
Mrgm(I1, I2, ...Im;〈β1, b1〉) ◦ Rpln(〈γ1, c1〉;O1,O2, ...On).

For instance, the behavior of the mixed node in Figure 2.e is captured by the ABT defined as the
relation P3x2(I1, I2, I3;O1,O2) over the timed data streams of its respective 3 sink and 2 source
channel ends.

Every edge of a connector corresponds to a channel whose semantics is defined as an ABT.
Since a connector consists of (three types of) nodes and edges, all of whose semantics are now
defined as ABTs, the semantics of every connector in Reo can be derived as a composition of the
ABTs of its constituent nodes and edges.

9.3 A Cogent Set of Primitive Channels

To demonstrate the utility of Reo we must supply it with a set of primitive channels. The fact
that Reo accepts and the ABT model allows definition of an open-ended set of arbitrarily complex
channels is interesting. What is more interesting, however, is that connector composition in Reo is
itself powerful enough to yield surprisingly expressive complex connectors out of a very small set
of trivially simple channels.

A useful set of primitive channels for Reo consists of 7 channel types: Sync, FIFO, FIFO1,
FIFO1(D), Filter(P), LossySync, and SyncDrain. This is not a minimal set, in the sense that
some of the channel types in this set can themselves be composed in Reo out of others; however,
minimality is not our concern here and these channel types turn out to be both simple and fre-
quently useful enough to deserve their own explicit mention. The first four channel types were
defined as ABTs in Section 8.1. We define the ABTs for the rest below.

The common characteristics of the last three channels, above, are that they are all (1) syn-
chronous, and (2) lossy. Neither channel has a buffer to store data and if necessary, delays the I/O
operation on either one of its ends until it is matched with an I/O operation on its other end. A
channel is lossy if it does not deliver through its sink end every data item it consumes through its
source end. The difference between these three channels is in their loss policy.

1. A Filter(P) channel is a synchronous channel with a source and a sink end that takes a
pattern P parameter upon its creation. It behaves like a Sync channel, except that only those
data items that match the pattern P can actually pass through it; others are always accepted
by its source, but are immediately lost. The behavior of such a channel is captured by the
Filter(P) ABT defined as

〈α, a〉 Filter(P) 〈β, b〉 ≡{
β(0) = α(0) ∧ b(0) = a(0) ∧ 〈α′, a ′〉 Filter(P) 〈β′, b′〉 if α(0) 3 P
〈α′, a ′〉 Filter(P) 〈β, b〉 otherwise

The infix operator α(0) 3 P denotes whether or not the data item α(0) matches with the
pattern P . If so, α(0) passes through, otherwise it is lost, and the ABT proceeds with the
rest of its timed data streams.

2. A LossySync channel is also like a Sync channel except that it is always ready to consume
every data item written to its source end. If a matching read operation is pending at its sink,
the data item written to its source is actually transferred; otherwise, the written data item
is lost. The behavior of this channel is captured by the LossySync ABT defined as

〈α, a〉 LossySync 〈β, b〉 ≡



〈α, a〉 LossySync 〈β, a(0).b ′〉 if a(0) > b(0)
β(0) = α(0) ∧ 〈α′, a ′〉 LossySync 〈β′, b′〉 if a(0) = b(0)
〈α′, a ′〉 LossySync 〈β, b〉 otherwise
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3. A SyncDrain is a channel with two source ends. Because it has no sink end, it has no way
to ever produce any data items. Consequently, every data item written to its source ends is
simply lost. SyncDrain is synchronous because a write operation on one of its ends remains
pending until a write is performed on its other end as well; only then both write operations
succeed together. The behavior of this channel is captured by the SyncDrain ABT defined
as

〈α, a〉 SyncDrain 〈β, b〉 ≡ a = b

9.4 Coordinating Glue Code

To demonstrate the expressive power of connector composition, in this section we describe a number
of examples in Reo. More examples are presented elsewhere [3, 7, 8, 4].
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Figure 3: Examples of connectors in Reo

9.4.1 Write-Cue Regulator

Consider the connector in Figure 3.a, composed out of the three channels ab, cd, and ef. Channels
ab and cd are of type Sync and ef is of type SyncDrain. This connector shows one of the most
basic forms of exogenous coordination: the number of data items that flow from â to d̂ is the same
as the number of write operations that succeeds on f̂. (Recall that â designates the unique node
on which the channel end a coincides.) The analogy between the behavior of this connector and a
transistor in the world of electronic circuits is conspicuous.

A component instance with a port connected to f̂ can count and regulate the flow of data
between the two nodes â and d̂ by the timing and the number of write operations it performs
on f̂. The entity that regulates and/or counts the number of data items through f̂ need not
know anything about the entities that write to â and/or take from d̂, nor that its write actions
actually regulate this flow. The two entities that communicate through â and d̂ need not know
anything about the fact that they are communicating with each other, nor that the volume of their
communication is regulated and/or measured by a third entity at f̂.

9.4.2 Barrier Synchronizers

We can build on our write-cue regulator to construct a barrier synchronization connector, as in
Figure 3.b. The four channels ab, cd, gh, and ij are all of type Sync. The SyncDrain channel
ef ensures that a data item passes from â to d̂ only simultaneously with the passing of a data
item from ĝ to ĵ (and vice versa). This simple barrier synchronization connector can be trivially
extended to any number of pairs, as shown in Figure 3.c.

9.4.3 Ordering

The connector in Figure 3.d consists of three channels: ab, ac, and bc. The channels ab and ac are
SyncDrain and Sync, respectively. The channel bc is of type FIFO1. The behavior of this connector
can be seen as imposing an order on the flow of the data items written to â and b̂, through to ĉ:
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the data items obtained by successive read operations on ĉ consist of the first data item written
to â, followed by the first data item written to b̂, followed by the second data item written to â,
followed by the second data item written to b̂, etc. See [3, 4] for more detail and [8] for a formal
treatment of this connector.

The coordination pattern imposed by our connector can be summarized as c = (ab)∗, meaning
the sequence of values that appear through ĉ consist of zero or more repetitions of the pairs of
values written to â and b̂, in that order.

9.4.4 Sequencer

Consider the connector in Figure 3.e. The enclosing box represents the fact that the details of this
connector are abstracted away and it provides only the four nodes â, b̂, ĉ, and d̂ for other entities
(connectors and/or component instances) to (in this case) read from. Inside this connector, we
have four Sync, a FIFO1(o), and three FIFO1 channels connected together. The FIFO1(o) channel is
the leftmost one and is initialized to have a data item in its buffer, as indicated by the presence of
the symbol “o” in the box representing its buffer. The actual value of this data item is irrelevant.
The read operations on the nodes â, b̂, ĉ, and d̂ can succeed only in the strict left to right order.
This connector implements a generic sequencing protocol: we can parameterize this connector to
have as many nodes as we want, simply by inserting more (or fewer) Sync and FIFO1 channel pairs,
as required.

Figure 3.f shows a simple example of the utility of our sequencer. The connector in this figure
consists of a two-node sequencer, plus a pair of Sync channels and a SyncDrain channel connecting
each of the nodes of the sequencer to the nodes â and ĉ, and b̂ and ĉ, respectively. The connector
in Figure 3.f is another connector for the coordination pattern c = (ab)∗, although there is a subtle
difference between the behavior of this connector and the one in Figure 3.d. See [3, 4] for more
detail.

It takes little effort to see that the connector in Figure 3.g corresponds to the meta-regular
expression c = (aab)∗. Figures 3.f and g show how easily we can construct connectors that
exogenously impose coordination patterns corresponding to the Kleen-closure of any “meta-word”
made up of atoms that stand for I/O operations, using a sequencer of the appropriate size.

9.5 Fibonacci Series

A simple example of how a composition of a set of components yields a system that delivers more
than the sum of its parts is the computation of the classical Fibonacci series. To assemble a
component based application to deliver this series we actually need only one (instance of one)
component plus a number of channels. The component we need is a realization of the Sum ABT
that we already saw in Section 8.1.

1

0

Sum

Figure 4: Computing the Fibonacci series

Figure 4 shows a component (the outermost thick enclosing box) with only one output port
(the only exposed node on the right border of the box). This is our component based application
for computing the Fibonacci series. Peeking inside this component, we see how it is made out of
an instance of Sum, a FIFO1(1), a FIFO1(0), a FIFO1, and five Sync channels.
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As long as the FIFO1(0) channel is full, nothing can happen: there is no way for the value in
FIFO1(1) to move out. At some point in time, the value in FIFO1(0) moves into the FIFO1 channel.
Thereafter, the FIFO1(0) channel becomes empty and the two values in the FIFO1(1) and the FIFO1

channels become available for Sum to consume. The intake of the value in FIFO1(1) by Sum inserts
a copy of the same value into the FIFO1(0) channel. When Sum is ready to write its computed
value out, it suspends waiting for some entity in the environment to accept this value. Transfer
of this value to the entity in the environment also inserts a copy of the same value into the now
empty FIFO1(1) channel. At this point we are back to the initial state, but with different values in
the buffers of the FIFO1(1) and the FIFO1(0) channels.

The ABT models of the component Sum, channels, and Reo nodes that we presented earlier
suffice for a formal analysis of the behavior of their composition in this example. Observe that all
entities involved in this composed application are completely generic and, of course, neither knows
anything about the Fibonacci series, nor the fact that it is “cooperating” with other entities to
compute it. It is the specific glue code of this application, made by composing 8 simple generic
channels in a specific topology in Reo, that coordinates the communication of the components (in
this case, only one) with one another (in this case, with itself) and the environment to compute
this series.

9.6 Dining Philosophers

We can vividly demonstrate the significance of exogenous coordination in component based system
composition through the classical dining philosophers problem. In this section we use instances of
two components, each of which is a realizations of one of the two ABTs Phil and Chop defined in
Section 8.1.4, to (1) compose a dining philosophers application that exhibits the famous deadlock
problem; and (2) compose another dining philosophers application that prevents the deadlock.
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Figure 5: Dining philosophers in Reo

Figure 5.a shows 4 philosophers and 4 chopsticks around a virtual round table. Each philosopher
has 4 output ports, corresponding to the lt , lf , rt , and rf portals of the Phil ABT in Section 8.1.4.
In this figure, philosophers face the table, thus their sense of left and right is obvious. Each
chopstick has two input ports, corresponding to the t and f input portals of the Chop ABT in
Section 8.1.4. In Figure 5.a, chopstick ports on the outer-edge of the table are their t ports and
the ones closer to the center of the table are their f ports. The t (take) port of each chopstick
is connected to the take ports of its adjacent philosophers, and its f port to their respective free
ports. All channels are of type Sync.

Consider what happens in the node at the three-way junction connected to the t port of Chop1.
If Chop1 is free and is ready to accept a token through its t port, as it initially is, whichever one
of the two philosophers Phil1 and Phil4 happens to write its take request token first will succeed
to take Chop1. Of course, it is possible for Phil1 and Phil4 to attempt to take Chop1 at the same
time. In this case, the semantics of this mixed node (by the definition of the ABT Mrg) guarantees
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that only one of them succeeds, nondeterministically; the write operation of the other remains
pending until Chop1 is free again. Because the definition of the ABT Phil states that a philosopher
frees a chopstick only after it has taken it, there is never any contention at the three-way junction
connected to the f port of a chopstick.

The composition of channels in this Reo application enables philosophers to repeatedly go
through their “eat” and “think” cycles at their leisure, resolving their contentions for taking the
same chopsticks nondeterministically. The possibility of starvation is ruled out because the nonde-
terminism in Mrg is assumed to be fair. This simple glue code composed of nothing but common
generic Sync channels directly renders a faithful implementation of the dining philosophers prob-
lem; all the way down to its possibility of deadlock. Because all philosophers are instances of the
same component, they all attempt to fetch their chopsticks in the same order. The Phil ABT
defines this to be left-first. If all chopsticks are free and all philosophers attempt to take their left
chopsticks at the same time, of course, they will all succeed. However, this leaves no free chopstick
for any philosopher to take before it can eat. No philosopher will relinquish its chopstick before it
finishes its eating cycle. Therefore, this application deadlocks, as expected.

9.6.1 Avoiding the Deadlock

Interestingly, with Reo, solving the deadlock problem requires no extra code, central authority,
or modification to any of the components. In order to prevent the possibility of a deadlock, all
we need to do is to change the way in which we compose our application out of the very same
components. Figure 5.b shows a slightly different composition topology of the same set of Sync
channels comprising the glue code that connects the exact same instances of Phil and Chop as
before. We have flipped one philosopher’s left and right connections to its adjacent chopsticks (in
this particular case, those of Phil2) without its knowledge. None of the components in the system
are aware of this change, nor is any of them modified in any way to accommodate it. Our flipping
of these connections is purely external to all components.

It is not difficult to see why this new topology prevents deadlock. If all philosophers attempt to
take their left chopsticks now at the same time, one of them, namely Phil2, will actually reach for
the one on its right-hand-side. Of course, Phil2 is unaware of the fact that as it reaches out through
its left port to take its first chopstick, it is actually the one on its right-hand-side it competes to
take. In this case it competes with Phil3, which is also attempting to take its first chopstick. It
makes no difference which one of the two wins this competition, one will be denied access to its first
chopstick. This ensures that at least one chopstick will remain free (no philosopher attempts to
take Chop2 as its first chopstick) to enable at least one philosopher to obtain its second chopstick
as well and complete its eating cycle.

Comparing the composition topologies in Figures 5.a and b, we see that in Reo (1) different glue
code connecting the same components produces different system behavior; and (2) coordination
protocols are imposed by glue code on components that cooperate with one another through the
glue code, without being aware of each other or their cooperation. The two fundamental notions
that underpin this pair of highly desirable provisions are:

• The underlying notion of component (Section 6) in the ABT model prevents a component
from distinguishing individual entities within its environment directly. Components can
exchange only passive data with their environment through communication primitives that
(1) do not allow them to discern specific targets as communication partners, and (2) do not
entail any further obligation on behalf of the environment. The ABT model of components,
thus, grants the environment great flexibility in making late, even dynamic, decisions about
how components are composed. This makes ABT components highly susceptible to exogenous
coordination, although the ABT model itself offers no non-trivial coordination primitives.

• Reo is a coordination model that takes full advantage of the composition flexibility offered
by the ABT model and offers a calculus of connector composition based on a user-defined set
of primitive channels, all defined as ABTs. The crux of this calculus is the join operator in
Reo for composing channel ends into composite nodes, and the specific semantics it defines
for these nodes as ABTs (Section 9.2). Connector composition in Reo offers a simple yet
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surprisingly expressive exogenous coordination model that effectively exploits the flexibility
of components in the ABT model.

The two systems in Figures 5.a and b are made of the same number of constituent parts of the
same types: the same number of component instances of the same kinds, and the same number
of primitive connectors (Sync channels). The only difference between the two is in the topology of
their inter-connections. This topological difference is the only cause of the difference between the
“more than sum of the parts” in these two systems.

9.6.2 Making of a Chopstick

A moment of reflection reveals that, especially since there is no computation involved in the
behavior of a chopstick, it should be easy to realize the behavior defined by the ABT Chop through
channel composition. The behavior defined as Chop is indeed all coordination: it must alternate
enabling the write operations on one (t) then on the other (f ) of its two input ports. Indeed,
we can easily use a two-port sequencer (Figure 3.e) plus two SyncDrain channels to realize this
behavior. But a much simpler construction is possible as well.

ft

Figure 6: Inside of a chopstick

The connector hidden inside the enclosing box in Figure 6 is a simplified two-port sequencer
which exactly implements the behavior of the ABT Chop. This connector consists of two channels:
a FIFO1 and a SyncDrain. Initially, the FIFO1 is empty, therefore enabling the first write to its port
t to succeed immediately. While this channel is empty, a write to its f port suspends because there
is no data item to be “simultaneously” consumed by the opposite (source) end of the SyncDrain.
Once a write to t succeeds, the FIFO1 channel becomes full and the next write operation on port
t will suspend until this channel becomes empty again. When the FIFO1 channel is full, a write to
f succeeds, causing the SyncDrain channel to consume the contents of the FIFO1 channel as well.
This returns the connector to its original state allowing it to cyclically repeat the same behavior.

9.6.3 Adaptation of a Philosopher

As a simple example of the usefulness of Filter(P) channels, suppose the interface of the philoso-
pher component we acquire for our application does not exactly match that of our Phil ABT. The
component we obtain, Philos has only one output port and it writes all its tokens to the same port.
Figure 7 shows how Philos can be adapted to fit the interface of Phil , using four filter channels.

rt

rf

lt

lf

rf
rtlt

Philos

lf

Figure 7: Adapting Philos to appear as Phil

The wiggly segment in the representation of a filter channel suggests a “resistor” that inhibits
the transmission of values that do not match its filter pattern. The text above the wiggly line is
the filter pattern. Because Philos writes all of its tokens to the same port, it must distinguish them
by their values. We assume it writes the four values lt, lf, rt, and rf to identify these tokens.
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Every value written to the output port of Philos is automatically replicated into the source ends of
the four channel filters that coincide on this node. This copying happens whenever all four source
channel ends are ready to consume the replicated value. Whatever the value is, three of the four
channels will always be ready to accept it unconditionally, because it will not match their filters
and they will immediately lose the value. The fourth channel, the one whose pattern matches the
written value, is the one whose acceptance triggers the actual replication/transfer. This happens
only when the node at the sink end of this filter channel can synchronously dispose of the value,
which is possible only when there is a read on that node.

10 Conclusion

The operational interface that is inherent in the Abstract Data Type model and object oriented
programming introduces two very different concepts for (1) entities, and (2) the mechanism of their
composition. To their outside world, entities are what their interfaces advertise them to be: a set of
operations. The mechanism that composes entities is based on performing the operations of other
entities. This makes composition endogenous (i.e., an entity internally decides what operations of
which other entities to perform) and relies on rather strong assumptions about the environment
(i.e., the actual availability of appropriate other entities to support those operations with their
expected semantics). Unlike the ADT model, main-stream object oriented models do not offer any
formal semantics in their object/class interfaces. The purely syntactic nature of their interfaces
becomes the weakest link in the reliability of the assumptions that underlie the validity of each
composition: unless the entity that invokes the operation knows the entity whose operation it
invokes rather intimately, the semantics that one assumes may be different than what the other
guarantees; even subtle differences here can sabotage a composition. Furthermore, the composition
of two objects does not produce another object.

Components are expected to be independent commodities, viable in their binary forms in
the (not necessarily commercial) marketplace, developed, offered, exploited, deployed, integrated,
maintained, and evolved by separate autonomous organizations in mutually unknown and unknow-
able contexts, over very long spans of time. The level of intimacy that is implicitly required of
objects that compose by invoking each other’s methods, is simply too unrealistic in the world of
such components. Component models that rely on (variations of) object oriented programming
(e.g., components as fortified collections of objects) and its composition mechanism of method
invocation must, on the one hand, ameliorate its inherent endogenous rigidity (e.g., by intercept-
ing, interpreting, retargeting, or suppressing messages), and on the other hand yield quite brittle
compositions. Composition of two components, in such models, does not by itself yield another
component.

Abstract Behavior Types presented in this paper offer a simpler and far more flexible model of
components — and of their composition. An ABT is a mathematical construct that defines and/or
constrains the behavior of an entity without any mention of operations or data types that may
be used to realize that behavior. This puts the ABT model at a higher-level of abstraction than
ADTs and makes it more suitable for components. The endogenous nature of their composition
means that it is not possible for a third party, e.g., an entity in the environment, to compose two
objects (or two ADTs) “against their own will” so to speak. In contrast, the composition of any
two ABTs is always well-defined and yields another ABT.

The building blocks in the mathematical construction of the ABT model are the (generally)
infinite streams that represent the externally observable sequences of I/O events that occur at an
entity’s interaction points (e.g., ports) through which it exchanges data with its environment. Such
infinite structures, and thus the ABT model, naturally lend themselves to coalgebraic techniques
and the coinduction reasoning principle. The ABT model supports a much looser coupling than
is possible with ADT and is inherently amenable to exogenous coordination. We advocate both of
these as highly desirable, if not essential, properties for component based systems.

The ABT model provides a simple formal foundation for definition and composition of com-
ponents. However, direct composition of component ABTs does not generally provide much of
an opportunity to systematically wield exogenous coordination. Reo is a channel-based exogenous
coordination model that can be used as a glue language for dynamic compositional construction

24



of component connectors in (non-)distributed and/or mobile systems. Connector construction in
Reo can be seen as an application of the ABT model. A channel in Reo is just a special kind of an
atomic connector (i.e., component): whereas components and connectors offer one or more ports
to exchange information with their environment, a channel is an ABT that offers exactly two ports
(i.e., its channel-ends) for interaction with its environment. Because all Reo connectors are ABTs,
the semantics of channel composition in Reo can be defined in terms of ABT composition.
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