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ABSTRACT

The parallelization of the least-squares spectral element formulation of the Stokes problem has recently been

discussed for incompressible flow problems on structured grids. In the present work, the extension to unstruc-

tured grids is discussed. It will be shown that, to obtain an efficient and scalable method, two different kinds of

distribution of data are required involving a rather complicated parallel conversion between the data. Once the

data conversion has been performed, a large symmetric positive definite algebraic system has to be solved itera-

tively. It is well known that the Conjugate Gradient method is a good choice to solve such systems. To improve

the convergence rate of the Conjugate Gradient process, both Jacobi and Additive Schwarz preconditioners are

applied. The Additive Schwarz preconditioner is based on domain decomposition and can be implemented such

that a preconditioning step corresponds to a parallel matrix-by-vector product. The new results reveal that

the Additive Schwarz preconditioner is very suitable for the p-refinement version of the least-squares spectral

element method. To obtain good portable programs which may run on distributed-memory multiprocessors,

networks of workstations as well as shared-memory machines we use MPI (Message Passing Interface). Numer-

ical simulations have been performed to validate the scalability of the different parts of the proposed method.

The experiments entailed simulating several large scale incompressible flows on a Cray T3E and on an SGI

Origin 3800 with the number of processors varying from one to more than one hundred. The results indicate

that the present method has very good parallel scaling properties making it a powerful method for numerical

simulations of incompressible flows.
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1. Introduction

For the accurate simulation of turbulent flows, one needs to be capable of resolving the main flow
with great precision. This in turn necessitates the use of high order methods such as spectral element
methods. These methods were, until recently, only applicable to generic problems with very simple
geometries. As a consequence, high order methods were not very suitable for real life incompressible
flow problems, because of their inability to simulate flows in complex domains and the enormous time
needed to perform the real life simulations since the resulting algebraic systems are generally not
symmetric and difficult to solve efficiently. This is due to the fact that the (algebraic) systems are of
saddle point type and must be solved with numerical methods having poor convergence properties.
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The conforming and nonconforming Galerkin spectral element methods for incompressible flows [8, 4,
2, 7, 5] allow complex geometries, but are still fairly time-consuming to solve real life problems due
to the saddle-point structure of the algebraic system.

The least-squares spectral element method is based on two important and successful numerical
methods: the spectral/hp element method and the least-squares finite element method. Least-squares
spectral element methods, denoted by LSQSEM, combine the generality of finite element methods with
the accuracy of the spectral methods and also the theoretical and computational advantages in the
algorithmic design and implementation of the least-squares methods. These methods allows the use
of equal order interpolation polynomials for all the variables. The choice of the spectral elements for
the discretization of the least-squares formulation results in superior accuracy due to high-order basis
functions. The accuracy of a least-squares spectral element discretization of the Stokes problem (cast
in the velocity-vorticity-pressure form) has been reported in [12, 13] for different boundary conditions.
In particular, spectral element formulations benefit from an exponential rate of convergence in smooth
regions. Since the extension of the least-squares spectral element method for the Stokes equations
to the Navier-Stokes equations is straightforward, only the parallelization of the Stokes problem is
treated in the present paper.

In [9] the parallelization of the least-squares spectral element solver has been discussed for structured
grids. In the present paper, the extension to unstructured discretizations is made. The parallelization
is done with MPI. The domain is discretized with a mesh of non-overlapping conforming quadrilateral
spectral elements. In the structured case, in a non-boundary node, always four spectral elements coin-
cide and an interface edge will be either a horizontal or a vertical connection between spectral elements.
Data transfer between adjacent spectral elements (e.g., situated at different parallel processors) can be
performed from North to South and from East to West. After two sweeps the communication process
will be accomplished. For the unstructured case, such data transfers are less straightforward: there is
no matter of horizontal/vertical connections. It may happen that the east side of a spectral element
is situated at the North side of its neighboring spectral element. Several definitions are needed to
obtain an unambiguous approach on how data streams have to take place.

Figure 1: Map of The Netherlands as an example of an unstructured grid

As an example of an unstructured grid we choose the map of The Netherlands, with its intricate
coastline, see Fig. 1. Although it is not representative for computational fluid dynamics grids, most
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characteristics of 2D grids are covered by this example. The complexity can be extended by adding
some holes in the domain. To restrict the amount of memory at the initialization phase, in which
grids are built, each spectral element only has information about itself and its adjacent neighbor
elements. Appendix A describes test cases used for the numerical experiments and their dimensions.
In Appendix B, the data structure used for spectral elements is presented. For the solution part
of the method, the same data distribution can be applied as for the structured grids and also the
implementation of the conversion step agrees with the structured case.

Large scale problems demand for robust and parallelizable iterative solvers. Numerical methods
based on the least-squares principle generate algebraic systems which are symmetric positive defi-
nite. Currently, the most popular iterative method for such problems is the preconditioned Conjugate
Gradient method. To achieve a high convergence rate, we concentrate on well parallelizable precon-
ditioners. Diagonal or Jacobi preconditioning is an example of an easy-to-parallelize method, but its
convergence results are poor. The Additive Schwarz preconditioner appears to be very suitable for
the high-order version of the LSQSEM solver.

The rest of the paper is organized in the following way. The least-squares spectral element formu-
lation of the Stokes problem will be briefly discussed in Sect. 2. For an extended discussion involving
the actual least-squares formulation, the treatment of the different boundary conditions, the a priori
estimates and the local-global mapping operator, we refer to [11]. The investigation of the grid, the
distribution of the spectral elements along the processors, the computation of the local systems, and
data conversion to one very large global system and finally the implementation of the solution process
is treated in Sect. 3. Sect. 4 describes the parallel platforms and the implementation tools. Four
different kinds of test cases, outlined in Sect. 5, have been used in the numerical experiments. Their
results, presented in Sect. 6, show that the implementation suited for distributed-memory systems is
well scalable. We show, also in that section, that the advantage of the Additive Schwarz precondition-
ing increases with the refinement of the spectral element when compared to Jacobi preconditioning.
In the last section, conclusions are given.

2. The least-squares spectral element method

We restrict ourselves to a short outline of the method in order to describe the parallelization steps.
As stated above, only the Stokes equations will be treated in the present paper. The extension of the
least-squares method to the Navier-Stokes equations is straightforward and can be found in [11].

2.1 The formulation of the Stokes problem
To obtain a bona fide least-squares formulation, the Stokes problem is first transformed into a system
of first order partial differential equations by introducing the vorticity as an auxiliary variable. By
using the identity

∇×∇× u = −∆u + ∇(∇ · u)

and the incompressibility constraint ∇ · u = 0, the governing equations, in R
2, subsequently read

∇p+ ν∇× ω = f in Ω, (2.1)

ω −∇× u = 0 in Ω, (2.2)

∇ · u = 0 in Ω, (2.3)

where u = [u1, u2]
T represents the velocity vector, p the pressure, ω the vorticity, f = [f1, f2]

T the
forcing term (if applicable) and ν the kinematic viscosity. In two dimensions, system (2.1)-(2.3)
consists of four equations and four unknowns and is uniformly elliptic of order four.



4

2.2 Discretization
The domain is discretized with a mesh of K non-overlapping conforming quadrilateral spectral elements
of the same order N . Each quadrilateral spectral element is mapped on the parent spectral element
Ωe by using an iso-parametric mapping to the bi-unitsquare [−1, 1]× [−1, 1] with local coordinates ξ1
and ξ2. In the parent element all variables, located at the Gauss-Legendre-Lobatto collocation (GLL)
points, can be approximated by the same Lagrangian interpolant. Each spectral element gives rise to
a local system of the form:

Ai zi = fi, with i = 1, · · · ,K, (2.4)

where the matrices Ai and right-hand side vectors fi are given by

Ai =

∫

Ωe

[L (ψ0,0) , · · · ,L (ψN,N )]T . [L (ψ0,0) , · · · ,L (ψN,N )] dΩ, (2.5)

and

fi =

∫

Ωe

[L (ψ0,0) , · · · ,L (ψN,N )]T F dΩ, (2.6)

respectively and where ψi,j = hi (ξ1)hj (ξ2).
Due to the continuity requirements between the C0-spectral elements, some of the variables zi

corresponding to an internal edge will belong to more than one local system which necessitates the
introduction of a global numbering.

2.3 The global system
The global assembly of the K local systems (2.4) can be obtained with:

KU = F ⇔

[
K∑

i=1

GT
i AiGi

]
U =

K∑

i=1

GT
i fi, (2.7)

where Gi is a sparse gathering or Boolean matrix. The matrix K represents the symmetrical, globally
gathered matrix of full bandwidth and the vectors U and F represent the global nodes (e.g., the
unknown variables and knowns) and the global right-hand side function, respectively.

If the known components are numbered last, one can subdivide the vector U into an unknown com-
ponent U1 and a known component U2. Consequently, the matrix K can be factored into submatrices
K1,1, K1,2, K

T
1,2 and K2,2 as well as the right-hand side vector F into the vectors F1 and F2. Hence,

system (2.7) has the following structure

[
K1,1 K1,2

KT
1,2 K2,2

] [
U1

U2

]
=

[
F1

F2

]
, (2.8)

which readily allows “static condensation” of the knowns, leading to the following sparse symmetric
and positive definite system

K1,1U1 = F1 −K1,2U2 , (2.9)

which can be solved with a (preconditioned) conjugate gradient method. The results in [10] revealed
that it is necessary to construct the global system (2.9) in parallel to obtain a good scalable solver.

3. Parallel implementation aspects

We distinguish six steps in the LSQSEM method.
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3.1 Investigation of the grid
First the coordinates of the numbered nodes are read from file. Each spectral element receives a unique
number; a spectral element is determined by its four corners (also read from file). Furthermore, the
boundary conditions of a spectral element on the physical boundary are given.

We start by determining, on a single processor called ROOT, the neighbors of a spectral element. For
structured grids, it is simple to determine the North, East, South and West neighbors, as described in
[9]. For unstructured grids, however, the North edge of a spectral element will not always border on
the South edge of an adjacent spectral element, especially if the number of elements having a common
vertex does not equal to four. The following definition is used to determine whether two spectral
elements are neighbors:

Definition 1 Two spectral elements are neighbors when they have two successive vertices in common.

The edges are numbered and the number of the adjacent spectral element will be stored for each edge.
A spectral element with less than four neighboring spectral elements must be a boundary element.

In order to treat special unstructured cases around internal vertices and along the boundaries, several
LOGICAL arrays (of length 4) are a part of the TYPE structure of a spectral element. The information
stored per spectral element is only restricted to the spectral element itself and its neighbors, according
to Def. 1. Information of neighbors of neighbors is not available to limit the amount of data, see
Appendix B.
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Figure 2: Interior node cases

Let a spectral element, also called a cell, be the smallest computational unit. In the initialization
phase, the collocation points get their velocity-vorticity-pressure values, a local number, but also a
unique global number. Especially for unstructured grids, this global numbering takes more effort
in a distributed-memory environment. It is necessary to indicate for which spectral element the
initialization of a vertex takes place to preclude that a component of a collection point awards more
than one global number. Secondly, it must be determined in advance that if values are received from a
neighboring cell whether they have to be copied through or not. Consider, e.g., the triple interior node
illustrated in Fig. 2. Suppose the internal node components have been initialized in S1 at p1, then its
values have to be sent to the left (S3 at p3) and to the right (S2 at p2). After this send operation,
processor p1 is ready to perform another task. At the same time processors p2 and p3 receive their
data from p1 and the initialization is finished. However in case of a four- or five-fold interior node,
the data p2 receives, has to be sent to its right neighbor S3 on processor p3 (see Fig. 2, center and
right pictures). In other words, somehow the situation which is valid on a processor must be known
and this information is stored in the LOGICAL arrays mentioned above.

Similar situations can occur for boundary nodes. Although S2 in Fig. 3 is not really a boundary
spectral element, one of its edges finds itself on the boundary and therefore its values are set according
to the imposed boundary conditions. Moreover, S1 and S4 (right picture) are no neighbors according
to Def. 1, but they have the same boundary node in common. The use of unstructured grids allowing
the special cases as shown in Fig. 2 and 3 enables to improve the numerical solution.
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Figure 3: Special boundary cases

3.2 Spectral Element distribution
When the composition of the grid is known, the spectral elements can be distributed across MIN(K,P)
processors, where P denotes the number of processors. One of the simplest partitioning schemes, the
so-called linear scheme, is to assign each spectral element according to its number: the first K/P
spectral elements are assigned to processor 0, the next K/P to 1, etc. Another simple partitioning is
to scatter the spectral elements: the first one to processor 0, the second one to 1 etc., in such a way
that the balance is preserved. We remark that in most cases the number of spectral elements will not
be a multiple of the number of processors. We have tried to improve the mentioned partitionings by
using Chaco [6], a software package designed to partition graphs. Some reduction in wall clock time
was obtained in the Geometry phase (see Sect. 3.3), but disappears in the conversion phase, which
appears to profit from a random partitioning. At the end, we choose for the linear scheme.

3.3 Geometry: grid initialization and numbering
This phase denotes the initialization of the grid, including the mapping from local to global numbering,
which is one of the most complicated steps of the parallelization process. To acquire a unique global
numbering, it is required to define which collocation points at the edges and in the vertices belong to
a particular spectral element:

Definition 2 Collocation points in a vertex belong to the spectral element numbered with the smallest
value. In case the vertex is situated on the boundary, the collocation points belong to the boundary
spectral element numbered with the smallest value.

Definition 3 Collocation points situated on an interface edge belong to the spectral element numbered
with the smallest value.

Definition 4 Collocation points situated on a boundary edge belong to that particular spectral element.

As soon as the collocation points of the spectral elements according to definitions (2)-(4) have been
initialized and all of its components have been locally numbered, a unique global number can be
attributed to its components, as described in [9]. The global numbers associated with internal edges
and vertices will be copied to neighboring spectral elements. Fig. 4 illustrates how the global number-
ing sweeps through the grid: capital T denotes that components have already received their global
number, capital F denotes that components are waiting for their values. The upper figures reflect
the initialization phase and the arrows denote that the values on that edge are ready to be copied.
The values associated with an edge of a spectral element numbered k, are ready to be copied to an
edge of a neighboring spectral element numbered l, when the components of the vertices of spectral
element numbered k, have already been initialized, denoted by a T in both end nodes, and k < l. The
lower figures of Fig. 4 show the result of the first sweep and again the arrows indicate the next sweep.
Notice that it takes four sweeps to complete the initialization in the left figure and two for the right
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Figure 4: Example of the way the components get their global number

figure. Although there is very intensive data traffic between the processors this process requires less
than a second of wall clock time (see e.g., Tables 2 and 4).

3.4 The computation of the local systems
The third phase computes the local systems and the right-hand side values. This part is the most
time-consuming part of the calculations on spectral elements and can be perfectly parallelized (cf.
Table 4, third column)

3.5 Data conversion
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Figure 5: Schematic drawing of the computation of the global matrix K, being the sum over the
contributions of K = 4 spectral elements and K is subdivided into P = 4 strips

After the local systems have been computed, the matrix K, or rather its parts K1,1 and K1,2 (cf.
eq. (2.9)) can be constructed. In the preparation step, called SUM, the contribution of the local systems
to matrix K are gathered. In [9] the way of communication applied in this step is treated in detail.

Of each spectral element, its components in the collocation points contribute to the large, global
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matrix K, as illustrated in Fig. 5. These contributions to K are very sparse and in most cases the
nonzeros are situated ‘close’ together, based on their global numbering. The sparsity of K asks for a
Compressed Sparse Row(CSR)-formatted storage approach. For basic operations on matrices, stored
in CSR-format, subroutines from SPARSKIT [16] were used. A CSR-matrix addition C = A+B with
different sparsity patterns for A and B, is rather time-consuming. In general, the sparsity pattern
of the resulting matrix C will deviate from those of the input matrices. In case the matrix K is
constructed on a single process, K − 1 CSR-additions must be performed. However, in case of a
block-rowwise distribution of K across the processors, many of these additions will not be performed
because the contribution of a single spectral element to such a strip is empty, due to the clustering
of the nonzeros. Wall clock times for the CSR-matrix addition(s), being a part of the construction
of a strip of the global matrix K, are listed in Table 1. In general, this process is not well-balanced,
therefore the maximum measured time is given. We observe that in case of 8 or more PEs, the speed-
up becomes larger than the number of PEs involved. In other words, super-linear speed-up is achieved
in the matrix addition phase of the conversion step and is typical for the current parallel formulation.

Table 1: The maximum wall clock time on SGI 3800(TERAS) for the CSR-formatted matrix addition
C = A+B. P denotes the number of processors used. (Airfoil I, N = 6)

P 1 4 8 16 32 48 64 80 96 128
time 203 74.8 19.2 6.19 1.23 .479 .286 .288 .131 .105
speed-up 1.00 2.71 10.6 32.7 165 423 708 704 1547 1930

3.6 The preconditioned Conjugate Gradient process
Since the least-squares spectral element method yields symmetric positive definite algebraic matrices,
a natural choice for the iterative solver is the preconditioned Conjugate Gradient (CG) method. In
particular, since it can be proved that this method converges in a finite number of iteration steps.

It is well-known that an increase of the polynomial order improves the accuracy. However, the
condition number of the stiffness matrix K grows rapidly with the polynomial degree N . As a
consequence, the number of CG iterations increases and starts to dominate the solution method.
To improve the convergence rate of the Conjugate Gradient process, Jacobi and Additive Schwarz
preconditioners are applied. Both preconditioners can be parallelized, a necessary condition for our
parallel code.

To start, the parallel Jacobi or diagonal preconditioner was used, but its convergence rate was low
as shown in Sect. 6. A possibility to improve the convergence is to use overlapping or non-overlapping
Additive Schwarz methods [15, 3] as preconditioning. For LSQSEM, based on non-overlapping sub-
domains, a preconditioner based on domain decomposition will be most plausible. A domain should
coincide with a single spectral element or with a couple of neighboring spectral elements. Ainsworth et
al.[1] proves that the growth of the condition number of the Additive Schwarz preconditioned system
is bounded by (1 + log N)2 for an open surface and (1 + log N) for a closed surface. Moreover, this
preconditioner attempts to be well parallelizable. The basic Additive Schwarz iteration is as follows:

1. For i = 1, . . . ,K do
2. Compute δi = GT

i A
−1

i Gi(b−Ax)
3. End do
4. xnew = x+

∑K

i=1
δi .

An obvious characteristic of this approach is that the components in each subdomain are not
updated until a whole cycle of updates through all domains are completed. This is a very opportune
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quality for parallel processing.
Let us consider the fixed-point iteration method of the form

xnew = Gx+ f. (3.1)

When preconditioning is applied, the system to be solved is commonly written as

M−1Ax = M−1b, (3.2)

where the matrix M is called the preconditioning matrix. By applying the formulation of (3.1), we
obtain the matrix

G = I −M−1A. (3.3)

Following Saad [15], we define the matrix

Ti = GT
i A

−1

i Gi and Pi = GT
i A

−1

i GiA (3.4)

to obtain

xnew = x+

K∑

i=1

Ti(b−Ax) = (I −

K∑

i=1

Pi)x+

K∑

i=1

Tib. (3.5)

Observe that here

G = (I −

K∑

i=1

Pi) and f =

K∑

i=1

Tib. (3.6)

The result is that

M−1A =
K∑

i=1

Pi and M−1 =
K∑

i=1

PiA
−1 =

K∑

i=1

Ti. (3.7)

According to Saad [15], the Additive Schwarz Preconditioner can be written as

1. Input v : Output : z = M−1v
2. For i = 1, . . . ,K do
3. Compute zi = Tiv
4. End do
5. Compute z := z1 + z2 + · · · + zK

In Sect. 3.5, we mentioned that it is to prefer to construct the global system in order to solve
eq. (2.9). Analogously, the preconditioning matrix M−1 will be assembled such that a preconditioning
step corresponds to a (parallel) matrix-by-vector product. Therefore we have to interpret the operation
Ti = GT

i A
−1

i Gi carefully, especially its role on the interface nodes. Two possibilities to construct the
preconditioning matrix arise:

1. The first one corresponds to the way the global system has been composed: collocation points
on vertices and interface edges achieve contributions of neighboring spectral elements. Once the
updated matrices Ti have been constructed they can be inverted and converted to a large global
matrix.



10

2. The second approach is to start with the global matrix

K =
K∑

i=1

GT
i AiGi.

The elements of this matrix already have the correct values, being precisely the sum of the
contributions of the spectral elements also those corresponding to interface collocation points
on edges and vertices. Obviously, only values related to the unknowns will be of interest for
the preconditioning matrix. This yields that not K but its submatrix K1,1 contains exactly the
values we are looking for.

A reverse operation from the global matrix K1,1 to the local, updated matrices Ui, i = 1, · · · ,K
forms the basis for the preconditioning. The distribution of the matrices Ui is chosen equal to
the Ai distribution.

The inverse of Ui can be easily computed by the LAPACK routines _POTRF and _POTRI. We remark
that the sparsity of U−1

i differs from that of Ai and in practice the number of zeros in U−1

i appears
to be less. The computation of the preconditioning matrix

M−1 =

K∑

i=1

GT
i U

−1

i Gi (3.8)

can be performed analogously to the computation of K1,1.

Remark 1 Numerical experiments with an alternative preconditioner which uses the non-updated local
matrix A−1

i instead of U−1

i , demonstrate that the number of iterations does not decrease. Another
attempt with a simply weighted update of Ai with weighted factors corresponding to the multiplicity of
the values on edges and vertices does not improve the convergence either.

Remark 2 The Additive Schwarz preconditioning requires substantially more memory than the Jacobi
diagonal preconditioning. Both the large global matrices K1,1 and M−1 must be available simultane-
ously, of course distributed over the processors involved and stored in CSR format. At the time of
construction of the preconditioner also memory for the updated matrices Ui must be allocated. The
original matrices Ai embedded in K1,1 and K1,2 have already become superfluous at that time.

4. Parallel platforms and implementation tools

The calculations have been performed on

• Cray T3E system Vermeer (named after the Dutch painter) at HPαC, Centre for High Per-
formance applied Computing of the Delft University of Technology, with 128 user processing
elements (PEs) interconnected by the fast 3D torus network with a peak performance of 76.8
Gigaflop/s. The T3E uses the DEC Alpha 21164 for its computational tasks. Each PE is config-
ured with 128 Mbytes of local memory, providing more than 16 Gbytes of globally addressable
distributed memory.

• The SGI Origin 3800 TERAS with 1024 500 MHz RI 14000 processors, subdivided into six
partitions, two (interactive) 32-CPU partitions and four batch partitions of 64, 128, 256 and
512 CPU’s, respectively. The theoretical peak performance is 1 Teraflop/s. A message passing
model is allowed on the Origin using optimized SGI versions of e.g., MPI.

To obtain good portable programs which may run on distributed-memory multiprocessors, networks
of workstations as well as shared-memory machines we use MPI. Besides the standard communication
mode, it appears to be necessary to use the buffered-mode send operation MPI_BSEND (see e.g., [14]).
This operation can be started independent of whether a matching receive has been posted. Its com-
pletion does not depend on the occurrence of a matching receive. In this way deadlock situations, in
which all processes are blocked, are prevented.
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5. The test cases

5.1 The Netherlands test case
The performance of the ‘The Netherlands’ grid (see Fig. 1) is demonstrated by means of a smooth
model problem. The velocity boundary condition is used in the numerical simulations; the pressure
level is set at one node. More details, like the number of spectral elements, can be found in Appendix A.

5.2 Cylinder test cases
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Figure 6: The spectral element grids (of order N = 4) used to simulate the Stokes flow of the cylinder
test cases: large (cyl01), medium (cyl02) and small(cyl03)

In [11], three test cases of a Stokes flow around a cylinder have been considered. In this paper,
the same simulations are examined, except that here the emphasis is on the parallel performance of
the solution method. For more details on the overall quality of the least-squares spectral element
method concerning the cylinder test cases compared to the Galerkin method, we refer to [11]. For
these simulations, a cylinder with diameter d moves with speed 1 along the centerline of a narrow
channel of height h = 1.5 filled with a fluid with density ρ = 1. The three different cylinders have
been considered while keeping the geometry of the channel wall fixed. The cylinder diameters d are
1.0, 0.5 and 0.25, respectively. We refer to these test cases as the large, the medium and small cylinder
test case. The level of difficulty for the three test cases is comparable with respect to parallelization.
The grid of the large cylinder test can be considered as a structured grid with a rectangle hole inside.
The middle and small test cases are examples of unstructured grids. For all cases the same technique,
developed for unstructured grids has been used to build up the global system.
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More details, like the number of spectral elements, can be found in Appendix A. The grids are
shown in Fig. 6. The boundary conditions are defined in the following way: the velocity components
(u = [1, 0]) are prescribed on the channel boundary. A no-slip velocity boundary condition (u = 0)
has been prescribed on the boundary of the cylinder. The pressure constant has been set to zero at
point (x, y) = (−1.5, 0.75).

5.3 NACA-4412 airfoil test cases
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Figure 7: Two boundary-fitted grids around the NACA-4412 airfoil: Airfoil I (left graph), and
Airfoil II, (right graph)

Another class of Stokes problems considered in this paper corresponds to flow around a NACA-4412
airfoil (Fig. 7). More details, like the number of spectral elements, can be found in Appendix A.

5.4 Stokes cylinder test case
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Figure 8: The Stokes Cylinder test case

Along the cylinder wall of the Stokes cylinder test grid (see Fig. 8) a no-slip condition has been
prescribed. The velocity components on this boundary are: u = (1, 0). The pressure has been set
to zero on the left boundary. More details, like the number of spectral elements, can be found in
Appendix A.
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6. Numerical experiments

In this section several aspects of the parallelization of the least-squares spectral element are discussed.
The emphasis is on the scalability of the method on the platforms discussed in Sect. 4 using a large
number of processors. Although on both machines the same MPI-implementation is executed, the
scalability varies, because of a different ratio between the computational speed and communication
time of the Cray T3E(Vermeer) and the SGI 3800(TERAS). Moreover, the Vermeer has been used in
dedicated mode, which implies that a request for P PEs will always result in allocation of exactly P
processors. This contrasts the behavior of the TERAS on which several processes will run on the same
processor and the number of processors involved may differ from P . As a consequence, the timing
results achieved for the Vermeer are more reliable than those measured for the TERAS.

The execution speed of the TERAS compared to those of the Vermeer is much higher, since:

• the peak performance per processor is nearly twice as high,

• the communication between processors is faster,

• more memory per processor.

For small numbers of processors, the processors may run out of memory. In those cases no results are
shown (see e.g., Fig. 9 (Vermeer)) and the speed-ups are based on extrapolated values.

The importance of testing the execution on many parallel processors (about one hundred) is that
the negative effect on the parallel speed-up of non-scalable operations like broadcasting becomes
visible. In Sect. 6.4, the broadcast operation dominates the performance of the solution process for
large P , and, therefore an alternative approach has been implemented. Secondly, Sect. 6.5 urges
effective preconditioning since large problems mostly suffer from large condition numbers. Thirdly,
the use of memory deserves particular notice. Some aspects of the geometry of the spectral element
discretization will be determined on a single processor: e.g., which elements are neighbors and what
will be the multiplicity of both the internal and boundary nodes. Clearly, the required amount of
information on the ROOT processor depends on the problem size and may not cause memory overflow.
To prevent overflow on ROOT, the data must be restricted per spectral element. After the data have
been distributed/broadcasted to the processors involved, it may be extended per spectral element.

6.1 Memory use
In Appendix B the data structure of a spectral element/cell is shown. The memory for the allocat-
able arrays will be allocated after the distribution of the spectral elements. Unfortunately, due to
allocation and deallocation of memory during execution of the different phases and the conversion of
one distribution into another one, a good reliable formula for the amount of data required on a single
processor is not available. We emphasize that everywhere in the code the allocation of memory has
been minimized as much as possible. Especially, the data conversion part has been coded very flexible
such that the allocation of data is not bounded by an estimate, but based on the really counted num-
ber. As an example, consider the construction of the global matrix K. Theoretically, each processor
may receive data from all spectral elements distributed across all available processors. In practice
however, an increase of P will lead to less communication between the spectral elements and a part
of the global matrix. It appears that only a restricted number of spectral elements contributes to a
particular matrix strip.(Recall Sect. 3.5.) We remark that an allocation statement may never depend
linearly on P , because then an increase of P will lead to an increase of data allocation per processor
instead of a decrease.

6.2 Wall clock times
To give an impression of the execution times achieved for LSQSEM, we present the results in different
ways: i) for both machines the wall clock times, depending on P , including the timings of parts of
the implementation, ii) for several test cases the wall clock times as a function of the number of
processors, iii) for a fixed number of processors the wall clock times as a function of the system size,
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and iv) for a single machine the wall clock times, depending on P , including the timings of parts of
the implementation for different polynomial orders.

Table 2: Wall clock times (in seconds) obtained for The Netherlands grid with N = 4

SGI 3800, TERAS
P Spectral elements Conversion CG Complete

Geometry Stokes SUM CSR time time
1 0.54 16.80 3.08 235.05 2478.2 2734.4
2 0.24 8.40 1.55 74.94 1267.2 1352.7
4 0.18 4.17 0.80 24.10 740.9 770.4
8 0.08 2.02 0.42 8.06 330.3 341.2

16 0.10 1.10 0.50 3.02 210.3 215.8
24 0.10 0.72 0.24 1.61 152.0 154.9

Cray T3E, Vermeer
P Spectral elements Conversion CG Complete

Geometry Stokes SUM CSR time time
8 0.36 40.37 2.58 70.36 1361.4 1476.0

16 0.22 20.44 1.33 25.17 740.2 788.6
32 0.16 10.44 0.71 8.22 646.4 667.2
64 0.14 5.23 0.44 3.33 237.0 248.5

The global system of the the Netherlands grid is solved by about 3400 CG iterations (Jacobi pre-
conditioning) with as stopping criterion:

||residual||2 ≤ tolrel × ||residualinit||2 + tolabs, (6.1)

where tolrel = 10−10 and tolabs = 10−16. Table 2 lists the wall clock times achieved on both the
TERAS and the Vermeer. Obviously, most time is spent by the CG solution process (more than
90 %). The conversion part is expensive in case a few processors are involved. In Sect. 6.3 we will
elaborate upon this point. The initialization part of the spectral elements (called Stokes) takes a few
seconds and is perfectly scalable.

To display comparable wall clock times for the cylinder test cases, the polynomial approximation
N of the spectral elements has been set to 6 for the computations on the Vermeer and to 8 for the
computations on the TERAS for all cylinder diameter problems. In case N = 6, Additive Schwarz
preconditioning results in 356, 357 and 365 CG iterations, respectively, independently of the number
of processors used. The number of CG iterations required in case of N = 8 is 581, 566 and 567,
respectively. In general, varying the number of processors results into a constant number of iterations.
Fig. 9 (left) represents the wall clock times (in seconds) for the cylinder test cases (cf. Sect. 5.2) on
both the Vermeer and the TERAS. Along the horizontal axis the number of processors P is shown.
The results achieved for the T3E satisfy our expectations: the wall clock times decrease for growing
P . We like to comment on the deviant behavior of the results achieved at the TERAS for large P .
We analyzed that this behavior arises from the solution process of the global system. In Sect. 6.4, we
will give an explanation about this deviation.

Wall clock times for the NACA-4412 airfoil test cases are given in Fig. 9 (right). For a small value P
the speed-up for the complete process is very good (more than 13 achieved on 16 PEs of the Vermeer
(Airfoil I, N = 2, T3E)). Again, we observe that an extension of the number of processors does not
always reduce the wall clock time for experiments on the TERAS (dotted lines) with P > 48. Results
achieved on the Vermeer do not show a large increase in wall clock time. In Sect. 6.4, we will return
to this.
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Figure 9: The total wall clock time for the cylinder test cases (left) and the NACA-4412 airfoil test
cases (right) executed on both the Cray T3E(Vermeer) and the SGI 3800(TERAS). Additive Schwarz
has been used as a preconditioner

Table 3: The NACA-4412 grids and their wall clock times on 32 processors

N System size # iterations Complete time
P = 32

Airfoil I 2 9334 1430 9.2
Airfoil I 4 37376 4032 102.7
Airfoil II 2 59072 4575 211.8
Airfoil I 6 84096 8159 857.4
Airfoil I 8 149504 14120 2863.2
Airfoil II 4 236288 14648 3324.6

Table 3 shows the system size, the number of iterations and the wall clock time (on the SGI
3800(TERAS)) achieved on 32 processors. In accordance to an increase of the system size, the number
of iterations grows. We do not give judgment on the best choice for grid and polynomial order.

Table 4 gives the wall clock times for the Stokes cylinder problem for the Cray T3E(Vermeer).
Geometry does not depend on N , whereas the third column, called Stokes, shows scalable results,
Conversion is expensive for small P , just like the computation of the Additive Schwarz preconditioner.
In case P = 96, it takes about 1.5 % of the execution time. The percentage of the solution time by
CG to the complete time increases from 93 % for N = 2 to 97 % for N = 4.

6.3 The performance of process steps
Fig. 10 illustrates the speed-up for several parts of the LSQSEM code: 1) the computation of the local
systems (make local systems) 2) the construction of the Additive Schwarz preconditioning matrix
(make preconditioner) and 3) data conversion phase (convert data). Especially, the speed-up lines
achieved for the Cray T3E illustrate the good parallel performance of the initialization steps of the
LSQSEM code. Again, like in the data conversion step discussed in Sect. 3.5 super-linear speed-up is
obtained, now for make preconditioner. We remark that the main parts of the implementation of
make preconditioner are also used within the data conversion step, like the CSR-formatted matrix
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Table 4: Wall clock times (in sec.) measured on the Cray T3E(Vermeer) for the Stokes cylinder grid

Stokes cylinder, N = 2
P Spectral elements Conversion Make CG Complete

Geometry Stokes SUM CSR preconditioner time time
8 0.19 0.35 0.35 14.71 32.70 106.94 156.15

16 0.15 0.18 0.23 6.29 11.50 63.01 82.22
32 0.13 0.09 0.18 2.24 3.55 41.29 48.35
48 0.12 0.06 0.16 1.34 1.83 37.69 42.02
64 0.15 0.05 0.16 1.08 1.29 33.11 37.29
80 0.13 0.05 0.15 0.94 0.97 35.56 39.46
96 0.13 0.04 0.16 0.78 0.73 34.05 36.78

Stokes cylinder, N = 4
64 0.18 0.46 0.30 7.40 12.54 523.04 544.81
80 0.16 0.36 0.28 5.32 8.84 491.90 507.73
96 0.16 0.33 0.26 3.92 6.69 473.59 485.82

addition C = A+ B, see also Table 1. The speed-up achieved on the TERAS is a bit disappointing.
Both the make preconditioner and convert data phases require communication, which is slow
compared to the computing capacity of the TERAS.

6.4 CG Solution process
Fig. 11 shows the wall clock times of the solution process of the NACA-4412 Airfoil I grid (N = 4)
achieved for the Cray T3E(Vermeer,left) and SGI 3800(TERAS,right). Obviously, the amount of
parallelism decreases; for the Cray T3E we obtain T32 : T64 = 1.62 and T48 : T96 = 1.50. For the
TERAS the results are even worse: T32 : T64 = 0.98 and T48 : T96 = 0.72. An increase in the number
of used processors results in a growth of the wall clock time!

Let us concentrate on the main parts of the solution process: each CG iteration involves three
SAXPY operations, two inner products and one matrix-by-vector product. Application of the Additive
Schwarz preconditioning adds one more matrix-by-vector product per iteration step. The SAXPY

operations can be performed perfectly in parallel, and are also well-scalable. The computation of the
inner products requires communication, of course. However, from numerical experiments it appears
that their contribution to the total execution time is small and can therefore be neglected. Hence, the
decrease in speed-up must arise from the matrix-by-vector product(s), something we did not expect
in advance.

What makes the matrix-by-vector so expensive for a large number of CPUs? The Compressed
Sparse Row storage format of the global matrix is one of the most general schemes for storing sparse
matrices. To perform the matrix-by-vector product y = Ax in parallel, using this format results in
a vector y of which each component can be computed independently as the dot product of the i-th
row of the matrix with the vector x. Each processor will handle a few rows that are assigned to it.
If the matrix has been partitioned well-balanced the speed-up will be close to linear, in case each
processing element contains a copy of the complete vector x. It appears that the origin of the growth
in execution time is caused by the gathering of the x-vector on behalf of the matrix-by-vector product.
Such a matrix-by-vector product results in a vector distributed across the processors corresponding
to the distribution of the matrix over the PEs. However, to perform the next multiplication the
resulting vector y will play the role of x and its parts must therefore be assembled on ROOT and be
broadcasted to all processors. In case of the Additive Schwarz preconditioning it occurs twice per
step. Fig. 11 presents, in addition, the main components of the solution process performed by CG.
The line (gather RHS) denotes half the time for the complete gathering process; it corresponds to
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Figure 10: The speed-up for several parts of the LSQSEM code, achieved for the large cylinder test case
executed on the Cray T3E(Vermeer,left) and the SGI 3800(TERAS,right)
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Figure 11: The Vermeer(Cray T3E,left) and TERAS(SGI 3800,right) wall clock times for several parts
of the solution process of the NACA-4412 Airfoil I grid with N = 4. After 4032 CG iteration steps
with Additive Schwarz preconditioning the residual has become small enough

the wall clock time of the gathering on behalf of (MV precond) or the wall clock time on behalf of
(MV solve). The matrix-by-vector product (MV solve), that does not include the gathering of the
input vector, denotes the time needed to multiply by the matrix K1,1, the main contribution in case
no preconditioning is applied. Additive Schwarz preconditioning takes the sum of the matrix-by-
vector product (MV precond) and the gathering of the right-hand side vector. The matrix-by-vector
multiplication with the preconditioning matrix M−1 requires more time than those on behalf of the
solution process because this matrix is less sparse than the original global matrix K1,1.

How can the wall clock time be reduced for the gathering process of the vector to be multiplied?
Let us again focus on the sparse matrix-by-vector product y = A.X on P parallel processors, where
A is a block-rowwise distributed matrix and X denotes the entire vector, consisting of the parts of
the distributed input vector xi stored on processor i, i = 0, · · · ,P − 1. Each row of A requires only
a few elements of X, i.e., the number of nonzeros of that particular row of A. The entire matrix A,
however, will need the entire vector X. For increasing number P , the number of rows per processor
is decreasing and consequently, the dimension of the input vector xi, i = 0, · · · ,P − 1. There will be
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Figure 12: Wall clock times for the gathering part of the solution process of the NACA-4412 Airfoil

I grid with N = 2 (left), and N = 4 (right). After 1562 and 4424 CG iteration steps, respectively,
with Additive Schwarz preconditioning convergence has been achieved

a P such that the transfer of vector xi to processor Pj on which a particular part of A is stored is
superfluous: column numbers on Pj do not correspond to the elements of xi on Pi. In such case, the
operation to create the entire vector X on each processor by gathering and broadcasting might be too
expensive. An alternative solution is to create per processor a vector X̂ of the same dimension as X
of which those parts xi agree with X, which have at least one element that corresponds to a column
number of A on the particular processor. Notice that, in case of large P , the vectors X̂ differ per
processor.

Fortunately, the iteration matrix A does not change per step, which enables to determine which
parts xi must be transferred only once. Hence, the wall clock time for that determination can be
neglected. Fig. 12 illustrates that the wall clock time of the combination of MPI_GATHER_VECTOR and
MPI_BROADCAST, denoted by OLD, increases for increasing P . Note that MPI_GATHER_VECTOR creates
the same vector X, independent of P . In the best case, the wall clock time for this operation will be
independent of P . It is even more likely that the time increases with the number of processors. The
vector X, that has to be broadcasted, has the same dimension for each value of P , but the number of
times it will be broadcasted equals P . We assume that the entire time for P broadcasts will depend
linearly on P . The lines indicated by NEW are the results from the alternative approach, in which X̂ is
computed instead of X. For P ≤ 16 the results agree with the old approach since much better results
were obtained than by computing X̂, which will not or hardly differ from X. For larger values of P
the gain is obvious, especially for the SGI 3800(TERAS).

6.5 Convergence behavior
Fig. 13 shows the number of matrix-by-vector products of both preconditioners for the cylinder test
cases where AS denotes Additive Schwarz preconditioning and Diag denotes diagonal scaling. The
results have been achieved for 16 processors. Since the initial residual error is larger in case of
Additive Schwarz, we applied as stopping criterion:

||residual||2 ≤ tolabs,

where tolabs = 10−10, instead of the stopping criterion mentioned in (6.1). The reduction factor in the
matrix-by-vector multiplications by applying Additive Schwarz compared to Jacobi preconditioning
is more obvious for larger values of the polynomial degree N : it grows from 1.14 (N = 4) to 1.58
(N = 10), respectively. Only rounding errors sometimes cause some extra iterations. Despite the
increase of memory allocation we prefer the Additive Schwarz approach.
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Figure 13: The convergence behavior of the Conjugate Gradient process for the large cylinder test
case (cyl01, N = 4, 6, 8, 10)(above) achieved with Additive Schwarz preconditioning(AS) and Diagonal
scaling(Diag), and, of the Airfoil I test case (N = 4, 6, 8)(below). A Jacobi CG iteration step takes
one matrix-by-vector product, an Additive Schwarz iteration two matrix-by-vector products

The reduction in matrix-by-vector multiplications does not imply a reduction in wall clock time
automatically, as can be concluded from Table 5. On the Vermeer (Cray T3E), a slight gain is obtained
for N = 8. In all other cases the diagonal preconditioning takes less time. On the TERAS(SGI 3800)
Additive Schwarz preconditioning is more expensive.

Table 5: The wall clock time in seconds for the solution process of the large cylinder test case. Timings
were achieved for 32 processors on the Vermeer(Cray T3E) and 16 processors on the TERAS(SGI
3800). Diag cyl01 (N = 10) ran on 64 processors on the Vermeer, AS cyl01 (N = 10) was too large
for the Vermeer

Vermeer TERAS
N = 4 N = 6 N = 8 N = 10 N = 4 N = 6 N = 8 N = 10

AS cyl01 5.01 29.88 118.33 too big 1.32 6.09 34.07 132.74
Diag cyl01 4.75 29.28 119.69 237.83 1.36 5.83 20.21 114.08
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7. Conclusions

Least-squares spectral element methods result in symmetric and positive definite systems of linear
equations which can be solved in parallel by CG. The parallelization of this kind of problems requires
two different strategies. The numerical results confirm the good parallel properties of the element-by-
element parallelization strategy. The combination of this strategy with the parallel CG solver results
in a good parallelizable code to solve incompressible flow problems.

In [11], a direct substructuring method is presented, which seems very efficient for medium-scale
two-dimensional problems. This strategy is not very useful for large-scale problems. For these kinds of
problems iterative methods are to be preferred. However, the Conjugate Gradient method with Jacobi
preconditioning is not efficient to solve the algebraic systems resulting from least-squares spectral
element discretizations. By introducing the Additive Schwarz method, the convergence rate improves,
especially for high values of the Lagrangian interpolants (N >= 4). By this, the choice between
p-refinement and h-refinement becomes more obvious. Although the level of parallelism for the h-
refinement version is higher, at least in the initial phase, due to a larger number of spectral elements,
we expect that also on distributed memory machines p-refinement is advantageous: higher accuracy
results can be obtained for the same CPU costs. The reason for that is that the largest part of the
execution time is spent by the solution process. In that phase, the distribution along the available
processors is always optimal, and, independent of the number of spectral elements.

A relatively high price for the gathering and broadcasting of the iteration vector on a large number of
processors, especially measured at the TERAS, has been replaced by a more flexible approach. Not the
entire input vector for the matrix-by-vector multiplication is created and broadcasted but only those
parts are gathered which are actually needed on that particular processor. The main disadvantage
of the previous implementation, an absolutely non-scalable part in the expensive solution process, in
which an increase of the number of processors used causes a larger wall clock time, has disappeared.
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Appendix A

List of test cases with their dimensions

N # SE Interfaces Interiors Knowns
The Netherlands 2 676 8117 2704 1059
The Netherlands 4 676 18933 24336 2115
Large cylinder 4 86 2383 3096 553
Large cylinder 6 86 3747 8600 829
Large cylinder 8 86 5111 16856 1105
Large cylinder 10 86 6475 27864 1381
Medium cylinder 6 74 3219 7400 781
Medium cylinder 8 74 4391 14504 1041
Small cylinder 6 68 2955 6800 757
Small cylinder 8 68 4031 13328 1009
Airfoil I 2 584 7008 2336 568
Airfoil I 4 584 16352 21024 1136
Airfoil I 6 584 25696 58400 1704
Airfoil II 2 3692 44304 14768 1056
Airfoil II 4 3692 103376 132912 2112
Stokes cylinder 2 1432 17131 5728 829
Stokes cylinder 4 1432 39991 51552 1657
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Appendix B

The data structure used for a spectral element

! define type NODE

TYPE,PUBLIC :: node

REAL(DOUBLE) :: X,Y

END TYPE node

The TYPE node declaration statement is used to declare the x- and y-coordinates of a node in a 2D
domain. It is also used within the TYPE node declaration statement:

! define type cell

TYPE,PUBLIC :: cell

INTEGER :: NUMBER

INTEGER :: N1,N2

TYPE(NODE),DIMENSION(0:3) :: CORNERS

TYPE(NODE),DIMENSION(:,:),POINTER :: XYS

INTEGER,DIMENSION(0:3) :: SIDE

REAL(DOUBLE) :: AREA

REAL(DOUBLE),DIMENSION(:,:),POINTER :: DETERMINANT,DXIDX1,DXIDX2,&

& DETADX1,DETADX2

LOGICAL,DIMENSION(0:3) :: KNOWN_CORNER,READY_TO_COPY,&

& IC,IC_INIT,IC_COPY,&

& BC0,BC1,BC2,BC3,BC_END

LOGICAL :: BOUNDARY

INTEGER :: CELLFACE

CHARACTER(LEN=32) :: CELLTYPE

END TYPE cell

in which NUMBER denotes the spectral element number, 1 ≤ NUMBER ≤ K. The INTEGERs N1 and N2

denote the polynomial order of the spectral element in x- and y-direction, respectively. Note that for
unstructured grids those values must agree. The array CORNERS stands for the coordinates of the four
corners/vertices of a spectral element, whereas XYS denotes the coordinates of the Gauss-Legendre
points of that spectral element, including the interface points on edges and in vertices.

The entities SIDE(0), SIDE(1), SIDE(2) and SIDE(3) correspond to the spectral element number
of the adjacent below, right, above, and left spectral element. Although we can not speak about left
and right for unstructured grids, a certain order must be defined. If SIDE(I) == 0, for 0 ≤ I ≤ 3,
then SIDE(I) will be a boundary edge.

The entities AREA, DETERMINANT, DXIDX1, DXIDX2, DETADX1 and DETADX2 are used for the compu-
tation of the local systems. The LOGICAL arrays are used for the global numbering of the collocation
points, such that a global number of a component in a collocation point agrees with the number of
all spectral elements of which it is a part of. If KNOWN_CORNER(I) then the collocation points in the
vertex between the edges SIDE(I-1) and SIDE(I) have received their global number (cf. capital T

in Sect. 3.3), otherwise the points are not yet initialized and are still waiting for their correct value
(cf. capital F in Sect. 3.3). If READY_TO_COPY(I) then all data in the collocation points on edge
I are ready to copy to spectral element numbered SIDE(I) if that spectral element is at the same
processor, otherwise they are ready to be sent by calling MPI_BSEND. The receiving processor will call
MPI_IPROBE to check whether the data have arrived. By means of a call to MPI_RECV the data will be
actually received and stored in the right location. The receiving processor knows exactly how much
messages it will receive. For those people who are interested in MPI implementations, we remark that
since a processor may be both on the buffered send side and on the receiving side, the communication
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is not finished when all messages have been sent, but at the moment all messages have been received.
In some cases an extra loop was required to empty the buffer between two processors.

The LOGICAL arrays IC, IC_INIT and IC_COPY are used in the special internal node cases illustrated
in Fig. 2 and the arrays BC0, BC1, BC2, BC3 and BC_END for the special boundary cases shown in Fig. 3.
A global number will be given to a component of CORNER(I) if IC_INIT(I) and then it will be copied
or sent to spectral element SIDE(I), 0 ≤ I ≤ 3. Finally the values BOUNDARY, CELLFACE and CELLTYPE

are used by the geometry to prescribe the boundary conditions on boundary spectral elements.


