Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

f Software ENgineering

EN Rewriting-based languages and systems

J. Heering, P. Klint

ReporT SEN-E0310 Decemeer 8, 2003

CWI is the National Research Insfitute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI'is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS]

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

Rewriting-based languages and systems

ABSTRACT

Many systems are at least partly or implicitly based on term rewriting. Examples are functional
languages, computer algebra systems, and theorem provers. We give a brief survey of these
systems, and provide a more in-depth comparison of the features of systems that use term
rewriting as their primary execution mechanism. We give links to rewrite tools and projects as
well as pointers to notions and techniques covered in the preceding chapters.

1998 ACM Computing Classification System: D.3.4; 1.1.3; 1.2.3
Keywords and Phrases: rewriting-based language; rewriting-based system
Note: Published as Chapter 15 in: Terese, Term Rewriting Systems, Cambridge University Press, March 2003.

Contents

15 Rewriting-based languages and systems 787
15.1 Introduction 787
15.2 Application Areas 788
15.3 Systems 790
15.4 Implementation of Term Rewriting 799

Bibliography 803

786

Chapter 15

Rewriting-based languages and
systems

Many systems are at least partly or implicitly based on term rewriting. Ex-
amples are functional languages, computer algebra systems, and theorem
provers. We give a brief survey of these systems, and provide a more in-
depth comparison of the features of systems that use term rewriting as their
primary execution mechanism. We give links to rewrite tools and projects as
well as pointers to notions and techniques covered in the preceding chapters.
Authors: J. Heering and P. Klint

15.1. Introduction

Ideas and techniques from term rewriting are used in many programming
languages and software systems. In some cases they are hardly recognizable
as such, for instance, in the algebraic simplifications performed by optimiz-
ing compilers. In other cases term rewriting techniques are manifest, as in
computer algebra and program transformation systems.

In this chapter we present a brief survey of selected, rewriting-based, lan-
guages and systems. A survey cannot, due to lack of space, do justice to
the merits of all languages and systems being described. To compensate for
this, we provide references to publications or web sites with further detailed
information. A survey cannot be complete either: again due to lack of space
or ignorance of the authors. To obtain a well-balanced survey we used the
following guiding principles. A language or system is included if it satisfies
several of the following criteria:

— It is in use and has serious applications. We have used the existence of

!To appear as Chapter 15 in the Terese Group’s upcoming book Term Rewrit-
ing Systems, Cambridge University Press, 2002. J. Heering and P. Klint are with
CWI, Department of Software Engineering, Amsterdam, The Netherlands. FEmail:
Jan.Heering,Paul.Klint@cwi.nl

787

788 Rewriting-based languages and systems

a web site as evidence.
— The underlying theory is covered elsewhere in this book.

— It is adequately documented.
Our main grounds for not including a language or system have been:

— It is no longer in use. Systems that do not have a web page have
probably not been used for years and were not included, although they
may be mentioned for historical reasons.

— It is already very well described elsewhere. This is, for instance, the
case for functional languages and computer algebra systems.

This chapter is organized as follows. Section 15.2 summarizes the main
application areas of term rewriting, Section 15.3 gives an annotated list of
selected languages and systems, and Section 15.4 surveys implementation
techniques.

We have freely used the information from the various web pages.
Dershowitz and Vigneron [2001] and Visser et al. [2001] have been especially
useful.

15.2. Application Areas

The main application areas of term rewriting and selected systems in each
area are listed in Table 15.1. Note that a system may have several application
areas. Systems in bold face are discussed in more detail in Section 15.3. The
other ones are only mentioned in this section. We briefly describe each area.

Computer algebra deals with symbolic computation in mathematics.
Rewriting is used for the transformation and simplification of mathematical
expressions. An introduction to the algorithmic basis of the mathematical
engine in computer algebra systems is given in von zur Gathen and Gerhard
[1999].

Functional languages have their basis in the lambda calculus (Chap-
ter 10). Unlike imperative programming languages, they do not allow mul-
tiple assignment and are thus side-effect free. Clean and Haskell use lazy
evaluation (Chapter 12) and graph rewriting (Chapter 13).

Algebraic specification and rewrite languages may be used to de-
fine abstract datatypes, concurrent systems, or the semantics of languages
in terms of (conditional) equations/rewrite rules (Ehrig and Mahr [1985],
Bergstra et al. [1989]) (see also below). Algebraic specification systems are
used to prototype specifications by means of (conditional) term rewriting
(Chapter 3) and to prove certain of their properties. Elan and Maude feature
user-defined rewrite strategies (Chapter 9) and AC-rewriting (Chapter 14).

Application Areas 789

Specification of concurrent systems is a first step towards their anal-
ysis and verification. The concurrency aspects may be specified using a form
of process algebra (Bergstra et al. [2001]). In that case, term rewriting is used
to normalize the corresponding process expressions.

Language definition aims at specifying the syntax and semantics of pro-
gramming and application languages. Using algebraic semantics (Chapter 7,
Bergstra et al. [1989], Goguen and Malcolm [1996]), the typechecking, evalua-
tion, translation, transformation, and other semantic aspects of a language are
defined using equations or rewrite rules. An overview of various tool-oriented
approaches to programming languages semantics is Heering and Klint [2000].

Program transformation is used for program or code optimization in
preprocessors and compilers as well as for systematic program modification
for purposes of software maintenance and renovation. Usually, the former
is based on a cost-driven strategy (see also code generation below), while
the latter is a more traditional normalization with respect to rewrite rules
for style improvement or translation to another language version. There are
many older program transformation systems, all of them including some form
of rewriting. An overview of transformation systems is given in Visser [2001].
The HOPS program transformation system supports second-order term graph
rewriting, while Stratego supports user-defined rewrite strategies (Chapter 9).

Code generation is done by compiler backends to generate instructions
for a given machine. There are various code generator generators that use
pattern matching and dynamic programming to compute, using a cost-driven
strategy, the optimal covering of a tree with a set of patterns. Typically,
pattern cost corresponds to the cost of the machine instructions generated
for each pattern. The goal is to generate the cheapest code. All approaches
use a table generation phase for efficient pattern matching. They differ in the
way dynamic programming is handled, either during generation of the code
generator (BURG) or during use of the code generator (TWIG, BEG).

Theorem proving uses term rewriting and narrowing (Chapter 7) to
handle equality and to solve equations. In this context, term rewriting is often
called demodulation, while narrowing is called paramodulation. A demodulator
is a rewrite rule. This brings in the issue of completion (Chapter 7) and
termination proofs (Chapter 6), and some of these systems (e.g., Otter) offer
facilities for this. Others just include a basic rewriting capability. The generic
theorem proving environment Isabelle supports higher-order rewriting in the
sense of Pattern Rewrite Systems (Nipkow and Prehofer [1998]) or HRSs as
they are called in Chapter 11. Inductive proof by consistency (Chapter 7) is,
for instance, supported by RRL.

Rewriting workbenches provide tools to create, check, analyze, and
complete (Chapter 7) term rewriting systems. In addition, they may contain
facilities for automatic or interactive proof and proof checking.

790

Rewriting-based languages and systems

‘ Application area

H Selected systems

Computer algebra

Maple (Waterloo Maple, Inc. [2001]), Math-
ematica (Wolfram Research, Inc. [2001]),
MatLab (MathWorks, Inc. [2001]), Re-
duce (Cologne University [2001])

Functional languages

Clean, Haskell, SML (Bell Laboratories

[2001))

Algebraic specification and | ASF4+SDF, CafeOBJ, Elan, LP,

rewrite languages Maude, OBJ3

Specification of concurrent | LOTOS, Maude, ©nCRL, PSF

systems

Language definition ASF+SDF, OBJ3, Software Refin-
ery (Markosian et al. [1994])

Program transformation ASF+SDF, HOPS, Software Refin-

ery (Markosian et al. [1994]), Stratego,
TAMPR (Boyle [1989], Boyle et al. [1997]),
TXL

Code generation

BEG, Burg (Fraser, Hanson and Proebsting
[1992], Fraser, Henry and Proebsting [1992],
Proebsting [1995]), TWIG (Aho et al. [1989)])

Theorem proving

ACL2, AUTOMATH (de Bruijn [1980]),
CafeOBJ, Coq, daTac, EQP, Elan, Is-
abelle, LP, Maude, Nqthm, OBJ3,
OSHL, Otter, RRL, PVS, SPIKE

Rewriting workbenches

HOPS, ReDuX, Reve (Forgaard and
Guttag [1984]), RRL

Table 15.1: Main application areas of rewriting and selected systems

15.3. Systems

Name: ACL2 (A Computational Logic for an Applicative Core Language).
Features: Logic based on an applicative subset of Common Lisp, explicit
rewrite operation, conditional rewriting.

Applications: Theorem proving, symbolic execution, model checking, proof

checking.

Web site: UT Austin [2001a].

Notes:

ACL2 is both a programming language in which one can model

computer systems and a tool to help prove properties of those models. It is
based on and extends the Boyer-Moore theorem prover Nqthm (see below).
The ACL2 approach itself is presented in Kaufmann et al. [2000b] and case
studies are described in Kaufmann et al. [2000a].

Systems 791

Name: ASF+SDF (Algebraic Specification Formalism + Syntax Definition
Formalism).

Features: User-definable lexical and context-free syntax, general context-
free parsing, rewriting with both positive and negative conditions, list
matching, traversal functions, interpreter and compiler, parameterized
modules.

Applications: Language prototyping, tool generation, domain-specific
language development, program transformation, software renovation.

Web site: CWI [2001].

Notes: The ASF+SDF Meta-Environment is an interactive develop-
ment environment for the automatic generation of interactive systems for
manipulating programs, specifications, or other texts written in a formal
language. The generation process is controlled by a specification of the
target language expressed in the ASF+SDF metalanguage, which typically
defines such features as syntax, prettyprinting, typechecking, and execution
or transformation of programs in the target language (van den Brand et
al. [2001]).

Name: BEG (Backend Generator).

Features: Tree pattern matching, dynamic programming.

Applications: Code generation.

Web site: FIRST [2001].

Notes: BEG generates compiler backends from a declarative specification
of the code generation process. The generated backends use tree pattern
matching for code selection. Machine instructions are described by tree
patterns and code generation is equivalent to finding a cover of the input
tree using these tree patterns. Cost values associated with the instruction
patterns are used to indicate desired qualities of the code, e.g., speed or
code size. Ambiguities during selection of a cover are resolved in favor of the
cheapest cover. BEG has been used to generate various code generators in-
cluding a just-in-time code generator for Java. Related systems using similar
techniques are BURG (Fraser, Hanson and Proebsting [1992], Fraser, Henry
and Proebsting [1992], Proebsting [1995]) and TWIG (Aho et al. [1989]).

Name: CafeOBJ.

Features: Rewriting logic, hidden algebras, object-oriented modeling,
distributed specification development environment, proof assistant.
Applications: Software specification.

Web site: Language Design Lab [2001].

Notes: Cafe is the name of an environment for the systematic development
of formal specifications based on algebraic specification techniques. It is
designed to support semantic representations of problems and reasoning
methods not provided by current CASE tools. CafeOBJ is a successor to
OBJ3 (see below). One of the most important features of CafeOBJ is its

792 Rewriting-based languages and systems

support for object-oriented modeling (OOM). A larger scale project for
developing a network-based unified environment for CafeOBJ including a
verifier /checker, browser/editor, and library/cases is in progress.

Name: Clean.

Features: Lazy higher-order functional language, term graph rewriting,
pattern matching, polymorphic typing, uniqueness types.

Applications: General programming.

Web site: Nijmegen University [2001].

Notes: Clean and Haskell (see below) are both based on (term) graph
rewriting. In the case of Clean, the semantics of the language itself is based
on term graph rewriting and precisely describes the representation and
sharing of nodes. As a result, destructive updates of unshared nodes are
possible without destroying the functional behaviour of the language. In the
case of Haskell, different implementations may treat the sharing of nodes
differently, and graph rewriting is only a matter of efficiency.

Name: Coq.

Features: Calculus of (co)inductive constructions, Gallina specification
language.

Applications: Proof assistant.

Web site: INRIA Rocquencourt [2001].

Notes: Coq allows mechanical proof checking of assertions in the construc-
tion calculus, interactive construction of formal proofs, and extraction of a
program from the constructive proof of its formal specification.

Name: daTac.

Features: Associative/commutative deduction with constraints, paramodu-
lation.

Applications: Verification of cryptographic protocols.

Web site: LORIA Nancy [2001a].

Notes: The aim of the daTac system is to do automated deduction in
first-order logic with equality. Its specialty is to apply deductions modulo
some equational properties of operators, such as commutativity (C) or
associativity-commutativity (AC). The implemented deduction techniques,
based on resolution, paramodulation and term rewriting, are refutationally
complete.

Name: Elan.

Features: Rewriting logic language, definable rewriting strategies, AC-
rewriting, interpreter and compiler.

Applications: Theorem proving, constraint solving.

Web site: LORIA Nancy [2001b].

Notes: The Elan system (Borovansky et al. [2001]) provides an environment

Systems 793

for specifying and prototyping deduction systems in a language based on
rewrite rules controlled by user-defined strategies. It is based on the rewriting
calculus and on rewriting logic and offers a simple logical framework for the
combination of computation and deduction paradigms. Elan can support the
design of theorem provers, logic programming languages, constraint solvers,
and decision procedures. Furthermore, it offers a modular framework for
studying their combination.

Name: EQP (Equational Prover).

Features: AC-unification and -matching, paramodulation.

Applications: Theorem Proving for lattice-like structures, Robbins conjec-
ture.

Web site: Argonne National Laboratory [2001a].

Notes: EQP is an automated theorem proving program for first-order
equational logic. Its strengths are good implementations of associative-
commutative unification and matching, a variety of strategies for equational
reasoning, and fast search. It is well-suited for problems about lattice-like
structures. EQP originates from the same group that has developed Otter
(see below).

Name: Haskell.

Features: Lazy higher-order functional language, graph rewriting, pattern
matching, polymorphic typing, monads, modules.

Applications: General programming.

Web site: Yale University [2001].

Notes: Haskell has been used in applications ranging from an equational
reasoning assistant to speech recognition. One method of implementing or
prototyping domain-specific languages is to embed them in Haskell. Instead
of implementing an interpreter or compiler in it, Haskell is enriched by
libraries for domain specific datatypes and functions that turn Haskell into
a domain specific language. For further comments, see the above discussion
on graph rewriting for Clean.

Name: HOPS (Higher Object Programming System).

Features: Term graphs, second-order term graph rewriting, editing and
visualization of term graphs.

Applications: Program Transformation.

Web site: Universitédt der Bundeswehr Miinchen [2001].

Notes: HOPS is a graphical, interactive, program development and
program transformation system based on acyclic term graphs. Unlike most
systems that take a textual representation as starting point, in HOPS
programs are made up of term graphs. In term graphs, the structure is
exposed in an explicit manner, and interaction is guided by this structure.

794 Rewriting-based languages and systems

Name: Isabelle.

Features: Generic theorem prover/logic framework, higher-order meta-logic,
higher-order term rewriting in the sense of Pattern Rewrite Systems or
HRSs, type classes.

Applications: Development of logics.

Web site: Cambridge University [2001].

Notes: Isabelle has been instantiated to support reasoning in various
logics: both classical and constructive first-order logic, higher-order logic,
ZF, a version of type theory, and various modal logics, among others.

Name: LP (Larch Prover).

Features: Many-sorted first-order logic, unconditional rewriting.
Applications: Interactive theorem prover, reasoning about circuit design,
concurrent algorithms, hardware, and software.

Web site: MIT [2001].

Notes: The philosophy of LP is based on the observation that initial
attempts to state interesting conjectures correctly, and then prove them,
hardly ever succeed on the first try. As a result, LP is designed to assist
in reasoning by carrying out routine (and possibly lengthy) steps in a
proof automatically and by providing useful information about why proofs
fail, if and when they do. Because conjectures are often flawed, LP is
not designed to find difficult proofs automatically. For example, LP does
not use heuristics to formulate additional conjectures that might be use-
ful in a proof. Instead, LP makes it easy for users to employ standard
techniques such as simplification and proofs by cases, induction, and
contradiction, either to construct proofs or to understand why they have
failed. LP also provides support for rechecking proofs following changes in
axioms, conjectures, or proof strategies. This support also promotes proof
re-use: users can edit old proofs to prove new conjectures, and LP will
check that the progress of the proof stays “in sync” with the users’ intentions.

Name: LOTOS.

Features: Process expressions, abstract datatypes.

Applications: Communication protocols.

Web site: Twente University [2001].

Notes: LOTOS is a specification language for describing the behaviour of
concurrent systems. It consists of a sublanguage for process definition that
contains features from CSP (Hoare [1985]) and CCS (Milner [1980]) and a
sublanguage for defining abstract datatypes based on ACT-ONE (Ehrig and
Mahr [1985]). LOTOS has played a prominent role in the standardization of
communication protocols but has also been used for modeling various phases
in the software engineering life cycle. Several tools exist for simulating the
behaviour of the specified systems. They incorporate limited term rewriting
functionality.

Systems 795

Name: Maude.

Features: Rewriting logic language, reflection, AC-rewriting.
Applications: Logical framework, models of computation, theorem provers.
Web site: SRI [2001a].

Notes: Maude is a reflective language and system supporting both
equational and rewriting logic specification and programming. Maude has
been influenced by the OBJ3 language (see below), which can be regarded
as an equational logic sublanguage. Besides supporting equational specifi-
cation and programming, Maude also supports rewriting logic computation.
Rewriting logic is a logic of concurrent change that can naturally deal
with state and with concurrent computations. Maude supports logical
reflection. This makes Maude extensible, supports an extensible algebra of
module composition operations, and allows many meta-programming and
metalanguage applications.

Name: pCRL (Micro Common Representation Language).

Features: Process expressions, abstract datatypes.

Applications: Verification of concurrent systems.

Web site: University of Amsterdam [2001a].

Notes: The Common Representation Language (CRL) is intended as
a universal intermediate language for specification languages: it contains
features of current specification languages and each of these languages could
be translated to CRL. In this way, CRL-based tools become available for
all these languages. pCRL has been introduced as an intermediate stage
that reduces semantic complexities. It contains some essential elements of
CRL, but has far less language features. It focuses on the (non-modular)
specification of data and processes and enables a thorough analysis of their
behaviour. This has resulted in a proof theory, based on natural deduction,
that can be used to prove equality of processes and data terms in a CRL
specification.

Name: Nqgthm.

Features: Quantifier-free, first-order logic resembling Pure Lisp.
Applications: Proving theorems in mathematics, metamathematics, the
theory of computation, and computer science.

Web site: UT Austin [2001b].

Notes: Ngthm is essentially an implementation of the “Boyer-Moore
theorem prover”. It is based on a Lisp-like language and the behaviour of
the prover is determined by a rule base. These rules are derived from the
axioms, definitions, and theorems submitted by the user. The user can guide
the prover by providing an appropriate sequence of lemmas. Applications
include communication protocols, concurrent algorithms, operating systems,
and hardware verification. ACL2 (see above) is a successor of Nqthm.

796 Rewriting-based languages and systems

Name: OBJ3.

Features: Order-sorted algebra, initial algebra semantics, user-definable
mixfix syntax, rewriting modulo AC, user-definable strategies, modular
specifications, parameterized programming.

Applications: Software design, prototyping, theorem proving, hardware
verification.

Web site: UCSD [2001].

Notes: OBJ3 is a broad spectrum algebraic programming and specification
language. It is based on order-sorted algebra, which provides a formal basis
for user-definable subtypes, exception handling, multiple inheritance, over-
loading, multiple representations, coercions, and more. OBJ3 also supports
user-definable mixfix syntax, user-definable execution strategies, rewriting
modulo standard equational theories (A, C, I, etc.), and memoization. OBJ3
also provides parameterized programming, with parameterized modules,
module instantiation, views, module expressions, etc., to support flexible
program structuring and reuse. OBJ3 is a member of the “OBJ” language
family that includes OBJ2, CafeOBJ (see above), and others.

Name: OSHL (Ordered Semantic Hyper Linking).

Features: Instance-based refutation, completion with AC constraints,
narrowing.

Applications: Theorem Proving.

Web site: UNC [2001].

Notes: The OSHL theorem prover is based on a first-order theorem proving
strategy — ordered semantic hyper linking. This is an instance-based refu-
tational theorem proving strategy. It solves first-order problems by reducing
them to propositional problems, and it uses an efficient propositional decision
procedure. It uses natural semantics of an input problem to guide its search.
It also incorporates term rewriting to handle equality. The propositional
efficiency, semantic guidance and equality support allow OSHL to solve
problems that are difficult for many other strategies.

Name: Otter.

Features: First-order logic with equality, demodulation/paramodulation,
term orderings, completion.

Applications: Problems in abstract algebra and formal logic.

Web site: Argonne National Laboratory [2001b].

Notes: Otter has been designed to prove theorems stated in first-order
logic with equality. Otter’s inference rules are based on resolution and
paramodulation, and it includes facilities for term rewriting, term orderings,
Knuth-Bendix completion, weighting, and strategies for directing and re-
stricting searches for proofs. Otter can also be used as a symbolic calculator
and has an embedded equational programming system. Currently, the

Systems 797

main application of Otter is research in abstract algebra and formal logic.
Otter and its predecessors have been used to answer many open questions
in the areas of finite semigroups, ternary Boolean algebra, logic calculi,
combinatory logic, group theory, lattice theory, and algebraic geometry.

Name: PSF (Process Specification Formalism).

Features: Process expressions, abstract datatypes.

Applications: Specification and simulation of concurrent systems.

Web site: University of Amsterdam [2001b].

Notes: PSF is a formal description technique developed for the spec-
ification of concurrent systems. PSF has been designed as the basis for
a set of tools to support the process algebra formalism ACP (Bergstra
et al. [2001]). It is very close to the informal syntax normally used in
denoting ACP-expressions. The part of PSF that deals with the description
of data is based on ASF (Bergstra et al. [1989]). PSF supports the modular
construction of specifications and the parameterization of modules.

Name: PVS (Prototype Verification System).

Features: Typed higher-order logic, propositional and quantifier rules,
induction, rewriting, decision procedures for linear arithmetic.
Applications: Formalization of requirements and design-level specifications,
analysis of intricate and difficult problems.

Web site: SRI [2001b].

Notes: PVS and its predecessors have been chiefly applied to algorithms
and architectures for fault-tolerant flight control systems, and to problems
in hardware and real-time system design. It is optimized for large proofs.

Name: ReDuX.

Features: Many-sorted, first-order, algebraic specifications, completion,
term orderings.

Applications: Workbench for term rewriting, mathematical problems,
hardware verification.

Web site: University of Tiibingen [2001].

Notes: ReDuX is a work-bench for programming and experimenting
with term rewriting systems. It is oriented towards the implementation of
completion procedures. In particular, it provides Knuth-Bendix completion,
Peterson-Stickel completion modulo associativity and commutativity, and
inductive completion. Another important feature of ReDuX is that it
supports fast rewriting for specifications containing standard datatypes.

Name: RRL (Rewrite Rule Laboratory).

Features: First-order logic with equality, completion, proof by consistency,
cover sets.

Applications: Software verification, protocol verification, mathematical

798 Rewriting-based languages and systems

problems.
Web site: University of Iowa [2001].
Notes: RRL is an automated reasoning system based on rewriting

techniques. It has implementations of completion procedures for gener-
ating a complete set of rewrite rules from an equational axiomatization,
associative-commutative matching and unification, algorithms for orienting
equations into terminating rewrite rules, refutational methods for first-order
theorem proving and methods for proving first-order equational formulas by
induction. RRL has been used to solve mathematical problems in automated
reasoning and has been applied to investigate the use of formal methods in
hardware and software design.

Name: SPIKE.

Features: Induction based on AC matching, lexicographic path ordering,
simultaneous induction, saturation, paramodulation, superposition, sufficient
completeness.

Applications: Circuit verification, program verification.

Web site: LORIA Nancy [2001c].

Notes: SPIKE performs proofs in theories whose axioms are first-order
conditional equations. The equations are oriented as rewrite rules using the
lexicographic path ordering. Systems of rewrite rules are completed by means
of saturation, an extension of Knuth-Bendix completion for conditional rules.
The primary focus is on the fully automatic proof or refutation of inductive
theorems in conditional theories.

Name: Stratego.

Features: Single-sorted rewrite rules, programmable rewriting strategies,
interpreter and compiler.

Applications: Program transformation, compiler construction.

Web site: Utrecht University [2001].

Notes: In Stratego, basic transformation rules are expressed by means of
labeled rewrite rules. Exhaustively applying all rewrite rules in a collection of
valid rules is often not desirable. A system of rules can be non-terminating,
or, more frequently, non-confluent. To control the application of transfor-
mation rules, Stratego provides a language for defining rewriting strategies
based on primitives for sequential programming and abstract syntax tree
traversal. A rewriting strategy selects a number of rules from the available
rules and defines in what order these rules are applied to a program fragment.

Name: TXL (Transformation Language).

Features: Context-free grammars, transformation rules based on pattern/re-
placement pairs, programmable application of transformation rules.
Applications: Programming language processing, software engineering and
renovation, database query optimization and schema translation.

Implementation of Term Rewriting 799

Web site: The TXL Company [2001].

Notes: The TXL programming language is a hybrid functional /rule-based
language with unification, implied iteration, and deep pattern matching.
Each TXL program has two components: (1) a description of the structures
to be transformed specified as an EBNF grammar, and (2) a set of structural
transformation rules specified by example, using pattern/replacement pairs.
TXL has similarities with rewriting but is actually a pattern-based tree
transformation language that allows full programming of tree traversals and
operations.

15.4. Implementation of Term Rewriting

The following brief account is more or less chronological, but does not make
claims to completeness. An earlier survey of TRS implementation techniques
is Bouma and Walters [1989]. A standard reference on (lazy) functional lan-
guage implementation is Peyton Jones [1987]. Many of the functional and
rewrite language implementations in existence at the time of its publication
are compared in Hartel et al. [1996].

A top-down matching algorithm that reduces first-order term matching
to string matching is given in Hoffmann and O’Donnell [1982]. Basically,
the set of left-hand sides of a TRS is transformed into a deterministic finite
automaton (DFA). This approach was used in the implementation of the
Equation Interpreter (O’Donnell [1985]), an equational programming system
featuring parallel outermost reduction, a normalizing strategy for orthogonal
rewriting systems (Chapter 4). DFA code for term matching is generated
by most current rewrite language compilers. Optimization of the matching
automaton under a left-to-right constraint is discussed in Nedjah et al. [1997].

Translation of first-order term rewriting systems to Prolog has been used
to prototype algebraic specification formalisms in terms of rewriting. Vari-
ous translation schemes are compared in Drosten [1988]. Term rewriting is
obtained by term decomposition and unification, but the full power of unifi-
cation is not needed and the resulting Prolog code is inefficient.

In the same vein, translation of higher-order term rewriting systems (Chap-
ter 11) to AProlog is discussed in Felty [1992], Heering [1992]. AProlog is an
extension of Prolog to typed A-terms (Nadathur and Miller [1988]). Basically,
the functions declared in a AProlog program generate a domain of polymor-
phically typed A-terms, and polymorphic higher-order unification takes the
place of first-order unification in the proof procedure.

Working directly with Lisp function calls rather than Prolog unifica-
tion, compilation of first-order (conditional) term rewriting systems to Lisp
(Kaplan [1987]) in the Asspegique algebraic specification environment (Bidoit
and Choppy [1985]) was a step forward. Oriented towards an innermost re-

800 Rewriting-based languages and systems

duction strategy, each function in the signature of the TRS is compiled to a
Lisp function whose body contains the matching conditions for the rewrite
rules defining the function in the TRS. The generated Lisp code is then fed
to a Lisp compiler for further code generation. With various refinements and
different target languages (in particular C), this basic scheme is still used in
current compilers.

Some compilers generate abstract machine code. The lazy functional lan-
guage Clean, for instance, is compiled to code for the ABC abstract graph
rewriting machine (Plasmeijer and van Eekelen [1993]). Graph rewriting
(Chapter 13) is widely used as a method for improving the space and time
efficiency of functional language implementations.

The equational programming language Epic is compiled to code for the
Abstract Rewrite Machine (ARM) (Fokkink et al. [1998]). Based on the no-
tion of minimal term rewriting systems (MTRS), compilation to ARM code
basically amounts to bringing rewrite rules in so-called minimal form. A com-
piler for the lazy functional language Haskell generating extended Microsoft
Intermediate Language (MS-ILX) is described in Syme [2001].

Because of its flexibility and wide availability, and despite some shortcom-
ings (Peyton Jones et al. [1998]), C has become a de facto standard target
for code generation. Folk wisdom has it that C code is 2-3 times slower
than native code, but this is not borne out by the “Pseudoknot” benchmark
results reported in Hartel et al. [1996], where the best functional language
and rewrite language compilers generate C code. The probable reason is that
many C compilers perform sophisticated optimizations.

Among others, the rewriting-based language definition formalism
ASF+SDF (van den Brand et al. [2000]), the rewrite language Elan (Kirchner
and Moreau [2001]), and the lazy functional language Haskell (Peyton Jones
et al. [1993]) are compiled to C. While the Haskell compiler generates graph
rewriting code, the ASF+SDF and Elan compilers use a maximal subterm
sharing scheme that is transparent to the rewriting process (van den Brand
et al. [1999]). In this scheme, known as hash-consing in Lisp (Allen [1978]),
(sub)terms are created during rewriting only when they do not yet exist.
The unique storage of terms reduces overall memory requirements and allows
structural equality checks to be replaced by pointer equality checks, thus
improving execution speed.

Some rewrite languages, among them Elan and Maude, support
associative-commutative rewriting. ASF+SDF features list rewriting, a spe-
cial case of associative (or string) rewriting. Both are examples of rewriting
modulo an equivalence as discussed in Chapter 14, Section 14.3. While term
matching is linear, both AC- and A-matching are NP-complete (Benanav et
al. [1985]). A general AC-matching algorithm is given in Eker [1995], but
since the actual patterns to be matched are known at compile time, the Elan
compiler is often able to generate specialized AC-matching code that is more

Implementation of Term Rewriting 801

efficient. Similarly, the ASF+SDF compiler can often generate specialized list
matching code. Nevertheless, AC and list rewriting remain expensive features
that should be used with restraint.

Bibliography

Aho, A.V.; M. Ganapathi and S.W.K. Tjiang [1989]. Code generation using
tree matching and dynamic programming, ACM Transactions on Pro-
gramming Languages and Systems 11, pp. 491-516.

Allen, J.R. [1978]. Anatomy of Lisp, McGraw-Hill.

Argonne National Laboratory [2001a]. EQP Equational Prover. http://
www-unix.mcs.anl.gov/AR/eqp/.

Argonne National Laboratory [2001b]. Otter: An automated deduction sys-
tem. http://www-unix.mcs.anl.gov/AR/otter/.

Bell Laboratories [2001]. Standard ML of New Jersey. http://cm.
bell-labs.com/cm/cs/what/smlnj/.

Benanav, D., D. Kapur and P. Narendran [1985]. Complexity of matching
problems, in: J.-P. Jouannaud (ed.), Rewriting Techniques and Appli-
cations (RTA ’85), Lecture Notes in Computer Science 202, Springer-
Verlag, pp. 417-429.

Bergstra, J.A., J. Heering and P. Klint (eds.) [1989]. Algebraic Specification,
ACM Press/Addison-Wesley.

Bergstra, J.A., A. Ponse and S.A. Smolka [2001]. Handbook of Process Alge-
bra, Elsevier.

Bidoit, M. and C. Choppy [1985]. Asspegique: An integrated environment
for algebraic specifications, in: H. Ehrig et al. (eds.), Formal Methods
and Software Development (TAPSOFT ’86), Lecture Notes in Computer
Science 186, Springer-Verlag, pp. 246-260.

Borovansky, P., H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E.
Moreau, C. Ringeissen and M. Vittek [2001]. ELAN User Manual, v3.4
edition, LORIA Nancy, Nancy, France.

Bouma, L.G. and H.R. Walters [1989]. Implementing algebraic specifications,
in: J.A. Bergstra, J. Heering and P. Klint (eds.), Algebraic Specification,
ACM Press/Addison-Wesley, pp. 199-282.

803

804 Bibliography

Boyle, J.M. [1989]. Abstract programming and program transformation —
An approach to reusing programs, in: T.J. Biggerstaff and A.J. Perlis
(eds.), Software Reusability, Vol. 1, ACM Press, pp. 361-413.

Boyle, J.M., T.J. Harmer and V.L. Winter [1997]. The TAMPR program
transformation system: Simplifying the development of numerical soft-
ware, in: E. Arge, A.M. Bruaset and H.P. Langtangen (eds.), Mod-
ern Software Tools in Scientific Computing (SciTools '96), Birkhauser,
pp. 353-372.

van den Brand, M.G.J., J. Heering, P. Klint and P.A. Olivier [2000]. Com-
piling language definitions: The ASF+SDF compiler, Technical Report
SEN-R0014, CWI. http://www.cwi.nl/CWIreports/SEN/SEN-R0014.
ps.Z.

van den Brand, M.G.J., P. Klint and P. A. Olivier [1999]. Compilation
and memory management for ASF+SDF, in: S. Jdhnichen (ed.), Com-
piler Construction (CC ’99), Lecture Notes in Computer Science 1575,
Springer-Verlag, pp. 198-213.

van den Brand, M.G.J., A. van Deursen, J. Heering, H. A. de Jong, M. de
Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J.
Vinju, E. Visser and J. Visser [2001]. The ASF+SDF Meta-Environment:
A component-based language development environment, in: R. Wilhelm
(ed.), Compiler Construction (CC 2001), Lecture Notes in Computer
Science 2027, Springer-Verlag, pp. 365-370.

de Bruijn, N.G. [1980]. A survey of the project AUTOMATH, in: J.P. Seldin
and J.R. Hindley (eds.), To H.B. Curry: Essays in Combinatory Logic,
Lambda Calculus, and Formalism, Academic Press, pp. 579-606.

Cambridge University [2001]. Isabelle. http://www.cl.cam.ac.uk/
Research/HVG/Isabelle/.

Cologne University [2001]. Reduce. http://www.uni-koeln.de/REDUCE/.

CWI [2001]. ASF+SDF Meta-Environment. http://www.cwi.nl/projects/
MetaEnv/.

Dershowitz, N. and L. Vigneron [2001]. Rewriting Home Page. http://www.
loria.fr/~vigneron/RewritingHP/.

Drosten, K. [1988]. Translating algebraic specifications to Prolog programs:
A comparative study, in: J. Grabowski, P. Lescanne and W. Wechler
(eds.), Algebraic and Logic Programming (ALP ’88), Lecture Notes in
Computer Science 343, Springer-Verlag, pp. 137-146.

Bibliography 805

Ehrig, H. and B. Mahr [1985]. Fundamentals of algebraic specifications
I, EATCS Monographs on Theoretical Computer Science 6, Springer-
Verlag.

Eker, S.M. [1995]. Associative-commutative matching via bipartite graph
matching, Computer Journal 38, pp. 381-399.

Felty, A. [1992]. A logic programming approach to implementing higher-order
term rewriting, in: L.-H. Eriksson, L. Hallnds and P. Schroeder-Heister
(eds.), Extensions of Logic Programming (ELP ’91), Lecture Notes in
Artificial Inteligence 596, Springer-Verlag, pp. 135-158.

FIRST [2001]. The backend generator BEG. http://www.first.gmd.de/
beg/.

Fokkink, W.J., J.F.Th. Kamperman and H.R. Walters [1998]. Within ARM’s
reach: Compilation of left-linear rewrite systems via minimal rewrite
systems, ACM Transactions on Programming Languages and Systems
20, pp. 679-706.

Forgaard, R. and J.V. Guttag [1984]. REVE: A term rewriting system gen-
erator with failure-resistant Knuth-Bendix, in: J.V. Guttag, D. Kapur
and D. Musser (eds.), Proceedings of the NSF Workshop on the Rewrite
Rule Laboratory, General Electric Corporate Research and Development
Center, Technical Report 84GENO00S, pp. 5-32.

Fraser, C.W., D.R. Hanson and T.A. Proebsting [1992]. Engineering a sim-
ple, efficient code-generator generator, ACM Letters on Programming
Languages and Systems 1, pp. 213-226.

Fraser, C.W., R.R. Henry and T.A. Proebsting [1992]. BURG — Fast optimal
instruction selection and tree parsing, ACM SIGPLAN Notices 27(4),
pp. 68-76.

von zur Gathen, J. and J. Gerhard [1999]. Modern Computer Algebra, Cam-
bridge University Press.

Goguen, J.A. and G. Malcolm [1996]. Algebraic Semantics of Imperative
Programs, MIT Press.

Hartel, P.H. et al. [1996]. Benchmarking implementations of functional lan-
guages with ‘Pseudoknot’, a float-intensive benchmark, Journal of Func-
tional Programming 6, pp. 621-655.

Heering, J. [1992]. Implementing higher-order algebraic specifications, in:
D. Miller (ed.), Proceedings of the Workshop on the \Prolog Program-
ming Language, University of Pennsylvania, Philadelphia, Technical Re-
port MS-CIS-92-86, pp. 141-157. http://www.cwi.nl/~jan/HO.WLP.

ps.

806 Bibliography

Heering, J. and P. Klint [2000]. Semantics of programming languages: A
tool-oriented approach, ACM SIGPLAN Notices 35(3), pp. 39-48.

Hoare, C.A.R. [1985]. Communicating Sequential Processes, Prentice-Hall
International.

Hoffmann, C.M. and M.J. O’Donnell [1982]. Pattern matching in trees, Jour-
nal of the ACM 29, pp. 68-95.

INRIA Rocquencourt [2001]. The Coq proof assistant. http://pauillac.
inria.fr/coq/.

Kaplan, S. [1987]. A compiler for conditional term rewriting systems, in:
P. Lescanne (ed.), Rewriting Techniques and Applications (RTA 87),
Lecture Notes in Computer Science 256, Springer-Verlag, pp. 25-41.

Kaufmann, M., P. Manolis and J. Strother Moore [2000a]. Computer-Aided
Reasoning: ACL2 Case Studies, Kluwer Academic Publishers.

Kaufmann, M., P. Manolis and J. Strother Moore [2000b]. Computer-Aided
Reasoning: An Approach, Kluwer Academic Publishers.

Kirchner, H. and P.-E. Moreau [2001]. Promoting rewriting to a program-
ming language: A compiler for non-deterministic rewrite programs in
associative-commutative theories, Journal of Functional Programming
11, pp. 207-251.

Language Design Lab [2001]. CafeOBJ. http://www.ldl.jaist.ac.jp/
cafeobj/.

LORIA Nancy [2001a]. daTac. http://www.loria.fr/equipes/protheo/
SOFTWARES/DATAC/ .

LORIA Nancy [2001b]. Elan. http://www.loria.fr/equipes/protheo/
SOFTWARES/ELAN/.

LORIA Nancy [2001c]. SPIKE. http://www.loria.fr/equipes/protheo/
SOFTWARES/SPIKE/.

Markosian, L., P. Newcomb, R. Brand, S. Burson and T. Kitzmiller [1994].
Using an enabling technology to reengineer legacy systems, Communi-
cations of the ACM 37, pp. 58-70.

MathWorks, Inc. [2001]. MatLab. http://www.mathworks.com/products/
matlab/.

Milner, R. [1980]. A Calculus of Communicating Systems, Springer-Verlag.

MIT [2001]. LP. http://www.sds.lcs.mit.edu/Larch/LP/overview.html.

Bibliography 807

Nadathur, G. and D. Miller [1988]. An overview of AProlog, in: R.A. Kowalsi
and K.A. Bowen (eds.), Logic Programming — Proceedings of the Fifth
International Conference and Symposium, Vol. 1, MIT Press, pp. 810
827.

Nedjah, N.; C.D. Walter and S.E. Eldridge [1997]. Optimal left-to-right
pattern-matching automata, in: M. Hanus, J. Heering and K. Meinke
(eds.), Algebraic and Logic Programming (ALP °97/HOA ’97), Lecture
Notes in Computer Science 1298, Springer-Verlag, pp. 273-286.

Nijmegen University [2001]. Clean. http://www.cs.kun.nl/"clean/.

Nipkow, T. and C. Prehofer [1998]. Higher-order rewriting and equational
reasoning, in: W. Bibel and P. Schmitt (eds.), Automated Deduction —
A Basis for Applications. Volume I: Foundations, Applied Logic Series
8, Kluwer, pp. 399-430.

O’Donnell, M.J. [1985]. Equational Logic as a Programming Language, MIT
Press.

Peyton Jones, S.L. [1987]. The Implementation of Functional Programming
Languages, Prentice-Hall International.

Peyton Jones, S.L., C.V. Hall, K. Hammond, W.D. Partain and P.L.. Wadler
[1993]. The Glasgow Haskell compiler: A technical overview., Proceedings

of Joint Framework for Information Technology Technical Conference
(JFIT), Keele, DTT/SERC, pp. 249-257.

Peyton Jones, S.L., T. Nordin and D. Oliva [1998]. C--: A portable assembly
language, in: C. Clack, K. Hammond and T. Davie (eds.), Implemen-
tation of Functional Languages (IFL ’97), Lecture Notes in Computer
Science 1467, Springer-Verlag, pp. 1-19.

Plasmeijer, R. and M. van Eekelen [1993]. Functional Programming and Par-
allel Graph Rewriting, Addison-Wesley.

Proebsting, T.A. [1995]. BURS: Automata generation, ACM Transactions on
Programming Languages and Systems 17, pp. 461-486.

SRI [2001a]. The Maude system. http://maude.csl.sri.com/.

SRI [2001b]. The PVS specification and verification system. http://pvs.
csl.sri.com/.

Syme, D. [2001]. ILX: Extending the .NET Common IL for functional
language interoperability, Proceedings Babel °01. http://research.
microsoft.com/~dsyme/papers/babelOl.pdf.

808 Bibliography
The TXL Company [2001]. The TXL transformation system. http://www.
txl.ca/.

Twente University [2001]. LOTOS. http://wwwtios.cs.utwente.nl/
lotos/.

UCSD [2001]. The OBJ family. http://www.cse.ucsd.edu/users/goguen/
sys/obj.html.

UNC [2001]. OSHL. http://www.cs.unc.edu/ zhu/prover.html.

Universitdt der Bundeswehr Miinchen [2001]. HOPS. http://ist.
unibw-muenchen.de/kahl/HOPS/.

University of Amsterdam [2001a]. The pCRL programming environment
project. http://www.science.uva.nl/pub/programming-research/
software/muCRL/.

University of Amsterdam [2001b]. PSF Process Specification Formalism.
http://adam.wins.uva.nl/“psf/.

University of Iowa [2001]. RRL. http://www.cs.uiowa.edu/ hzhang/
induc.html.

University of Tibingen [2001]. ReDuX. http://www-sr.informatik.
uni-tuebingen.de/~buendgen/redux.html.

UT Austin [2001a]. ACL2. http://www.cs.utexas.edu/users/moore/
acl2/.

UT Austin [2001b]. Nqthm, the Boyer-Moore prover. ftp://ftp.cs.utexas.
edu/pub/boyer/nqthm/index.html.

Utrecht University [2001]. Stratego. http://www.stratego-language.org.

Visser, E. [2001]. A survey of strategies in program transformation systems,
in: B. Gramlich and S. Lucas Alba (eds.), Proceedings of the Work-
shop on Reduction Strategies in Rewriting and Programming (WRS-01),
Electronic Notes in Theoretical Computer Science 57, Elsevier.

Visser, E. et al. [2001]. Program-Transformation.Org. http://www.
program-transformation.org/.

Waterloo Maple, Inc. [2001]. Maple. http://www.maplesoft.com/.
Wolfram Research, Inc. [2001]. Mathematica. http://www.wolfram.com/.

Yale University [2001]. Haskell. http://www.haskell.org/.

