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Abstract

Consider the following forest-fire model where the possible loca-
tions of trees are the sites of Z. Each site has two possible states:
‘vacant’ or ‘occupied’. Vacant sites become occupied at rate 1. At
each site ignition (by lightning) occurs at ignition rate λ, the parame-
ter of the model. When a site is ignited, its occupied cluster becomes
vacant instantaneously.

In the literature similar models have been studied for discrete time,
finite (but large) volume and finite (but large) speed at which the fire
spreads out. The most interesting behaviour seems to occur when
the ignition rate goes to 0, as this allows clusters to grow very large
before being hit by lightning. It has been stated by Drossel, Clar and
Schwabl (1993) that then (in our notation) the density of vacant sites
(in equilibrium) is of order 1/ log(1/λ). Their proof uses a ‘scaling
ansatz’ and is not rigorous. We give, for our version of the model,
a rigorous and mathematically more natural proof. Our proof shows
that regardless of the initial configuration, already after time of order
log(1/λ) the density is of the above mentioned order 1/ log(1/λ). We
also point out how our proof can be modified for the model studied
by Drossel et al.
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1 Introduction

Suppose each site of the lattice Z
d is either vacant or occupied by a tree.

Vacant sites become occupied according to independent rate 1 Poisson pro-
cesses. Also, lightning strikes at any site according to independent rate λ
Poisson processes. Here λ > 0 is the parameter of the model. When a site
is hit by lightning, its entire occupied cluster burns down, that is, becomes
vacant.

When d = 1, a process with the above description can be constructed
in a standard way, by using a graphical representation; see e.g. Liggett
(1985). For this, note that if we start with a configuration in which infinitely
many sites on the negative and on the positive half-line are vacant, there are,
with probability 1, at each time t infinitely many sites (on both half-lines)
that have remained vacant througout the interval [0, t]. These sites ‘break
the infinite line into finite pieces’, which enables a graphical representation
mentioned above. When d ≥ 2, the existence of the infinite-volume process
is not clear. (In principle, the state of a given site can be influenced by
infinitely many Poisson events in finite time).

In the physics literature usually a different but closely related forest-
fire model is studied. In that model, time is discrete, space is large but
finite, and the fire does not spread instantaneously but at a finite speed.
The most interesting object of study seems to be the limiting behaviour as,
roughly speaking, the ignition rate goes to 0 and the speed of fire and the
volume go to infinity, jointly, in an appropriate way. It is believed that this
behaviour resembles, in some sense, that of statistical mechanics systems
at criticality. This belief is partly supported by heuristic arguments and
computer simulations, but very little has been proved rigorously. See Jensen
(1998) for a general overview of and introduction to these and other so-called
self-organised critical systems, and Schenk, Drossel and Schwabl (2002) for
current insights on the forest-fire model, in particular for d = 2. A paper by
Malamud, Morein and Turcotte (1998) compares the model with data from
real forest fires.

As to the one-dimensional case, one of the main statements in the paper
by Drossel, Clar and Schwabl (1993) says that under the above mentioned
asymptotics, the equilibrium probability that a site is vacant is (in our no-
tation) of order 1/ log(1/λ). Their arguments leading to this statement are
not rigorous (see our Remark at the end of Section 2.1).

We give, for our model, a rigorous and, in our opinion, more ‘natural’
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proof of the above mentioned asymptotic behaviour of the density of vacan-
cies. It turns out that, uniformly in the starting configuration, already after
time of order log(1/λ) the density is of order 1/ log(1/λ). The ingredients
of our proof are fairly elementary but the way one has to combine them is
quite subtle. We also point out (see Section 3.2) how our arguments can be
adapted to obtain the analogous results for the above mentioned model of
Drossel et al.

We believe that for each λ > 0 there is a unique invariant distribution
for the above dynamics. We have not been able to prove this, but hope that
our results and ideas can also be used to make progress on that problem.

Notation and terminology. Let Ω denote the set of all configurations ω ∈
{0, 1}Z for which there are infinitely many positive and negative i’s with
ωi = 0.

For each x ∈ Z let Bx = {b1, b2, . . . } ⊂ (0,∞) and Ix = {i1, i2, . . . } ⊂
(0,∞) denote the birth and ignition times (respectively) at x. As said before,
these correspond to the points of independent Poisson point processes with
intensities 1 and λ respectively. We let Pλ denote the probability measure
governing B and I. Given B and I, and η(0) ∈ Ω, let {ηx(t)}(x,t)∈Z×[0,∞)

denote the forest fire process with initial configuration {ηx(0)}x∈Z. We let P
ξ
λ

denote the probability measure governing the forest fire process with lightning
density λ and initial configuration η(0) = ξ ∈ Ω. For arbitrary J ⊂ Z, we
let FJ(s, t) denote the information about the births and ignitions during the
time interval [s, t] in the set J . That is,

FJ(s, t) = σ(Bx ∩ [s, t] : x ∈ J) ∨ σ(Ix ∩ [s, t] : x ∈ J), t ≥ s ≥ 0.

When s equals 0 or J = Z, we omit these symbols from the notation. In
particular, we have the notation F(t) = FZ(0, t).

We denote the time shift operators on the underlying probability space
by (θs)s≥0.

Finally, to avoid confusion we make the following remark about our ter-
minology: Occasionally we make statements like ‘i has an ignition at time t’
and ‘i burns at time t’. There is an essential difference between these two
statements. The first means, formally, that t ∈ Ii, which informally says that
site i is hit by lightning at time t. The site may be empty in which case the
lightning has no effect. The second statement says that i is occupied just
before time t and becomes vacant at time t (by lightning at i or somewhere
else in its occupied cluster). Finally, we note that by ‘i has a birth at time
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t’ we just mean that t ∈ Bi. If i was already occupied, this ‘birth’ has no
effect.

2 Relevant scales and the blocking property

2.1 Relevant space and time scales

For a set of sites J ⊂ Z and t > 0, define the events

AJ(s, t) = {∀x ∈ J : B(x) ∩ [s, t] 6= ∅}

= {each x ∈ J has a birth at some time in [s, t]}

BJ(s, t) = {∃x ∈ J : I(x) ∩ [s, t] 6= ∅}

= {ignition occurs at some x ∈ J at a time in [s, t]}.

We denote the complements of these events by Ac
J(s, t) and Bc

J(s, t), respec-
tively. When s = 0, we simply write AJ(t) and BJ(t).

Definition. Assume λ < λ0 = (3 log 3)−1. We define n = n(λ) ≥ 2 as the
positive integer satisfying

n log n ≤
1

λ
< (n + 1) log(n + 1). (1)

For convenience, we let n(λ) = 2 when λ ≥ λ0.

In the rest of the paper we assume that n and λ are related as in the
definition.

It is easy to see that

Pλ

(

A[0,n](log n)
)

= (1 − e− log n)n+1 = (1 − n−1)n+1 ∈ (C1, 1 − C1), (2)

and that for 0 < λ < λ0

Pλ

(

B[0,n](log n)
)

= 1 − (e−λ log n)n+1 = 1 − e−λ(n+1) log n ∈ (C2, 1 − C2), (3)

for some constants C1, C2 > 0. This indicates that n and log n are the
relevant space and time scales in the model. Even if we replace, in the above
computation, the spatial scale by a constant multiple of n, the result is still
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bounded away from 0 and 1: for any α > 0, there are constants 0 < C1(α) < 1
and 0 < C2(α) < 1 such that for all 0 < λ < λ0

Pλ

(

A[0,αn](log n)
)

∈ (C1(α), 1 − C1(α)),

Pλ

(

B[0,αn](log n)
)

∈ (C2(α), 1 − C2(α)).
(4)

For the event B, we can also replace the time log n by β log n (and let C2

depend not only on α but also on β). Note that we do not have similar
flexibility in the time variable for the event A: for any β > 1 the probability
of A[0,n](β log n) tends to 1 as n → ∞.

Remark: In the paper by Drossel, Clar and Schwabl, an analog of (4)
alone is taken as sufficient support to conclude that n is the ‘relevant space
scale’. This quantity is then explicitly inserted in the postulation of a ‘scaling
ansatz’. This ansatz, combined with other computations (concerning the
conditional equilibrium probabilities of the local configuration near site 0,
given that site 0 is vacant), leads to the earlier mentioned order 1/ log(1/λ)
for the density of vacant sites. See the arguments between (7) and (9) in
their paper. We do not see how their arguments can easily be made rigorous.
Our rigorous proof for the asymptotic density is very different from their
arguments and uses properties much more subtle than (4) (see Lemmas 1 and
2 in Section 2.2). On the other hand we avoid the computations regarding
the equlibrium probabilities mentioned above (although these are interesting
in themselves), so that our proof is in some sense more direct.

2.2 Blocking intervals

From (4) we see that if we start with a configuration in which [0, n] is empty,
then with probability bounded away from 0, there is at each time s ∈ [0, log n]
at least one vacant site in [0, n] (consider the event Ac

[0,n](log n)). Such events
are useful, because they imply that the halflines to the left and to the right
of [0, n] ‘do not communicate’, that is, no fire can pass through in either
direction.

Below we prove two technical lemmas concerning such and related ‘block-
ing intervals’. For the proof of our main result, Theorem 4 in Section 3, we
will need an initially vacant spatial interval of length of order n to maintain a
certain blocking property during time β log n for some β > 1. However, as we
said in the lines following (4), for each such β we have that Pλ(A

c
[0,n](β log n))

tends to 0 as λ → 0. Nevertheless, as the first lemma shows, we can indeed,
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by more subtle arguments involving suitable fires in space intervals of length
nα (with some α < 1), reach our goal. It is important here that we establish
the blocking property irrespective of what happens outside the initially va-
cant interval. In the second lemma, we show that a vacant interval of length
n is created in time O(log n) with probability bounded away from 0, regard-
less of the initial configuration. The combination of these lemmas allows us
to create suitable blocking intervals after time 2 log n with reasonable prob-
abilities, regardless of the initial configuration (Proposition 3 below). From
this, Theorem 4 follows quite easily.

For J ⊂ Z, let NJ(t1, t2) denote the event that no fire propagates from J
to Jc during the interval [t1, t2]. (Formally this is the event that there are no
s ∈ [t1, t2], j ∈ J , k ∈ J c and space interval I containing both j and k, with
the properties that η(s−) ≡ 1 on I, and j has an ignition at time s).

Definition. For a segment J ⊂ Z, we define the event

HJ(s, t) = NJ(s, t) ∩ {for all u ∈ [s, t] there exists x ∈ J with ηx(u) = 0},

with NJ(s, t) as above.

The complement of this event will be denoted by Hc
J(s, t). Note that

HJ(s, t) implies that during [s, t] no fire propagates from the half-line left of
(and including) the rightmost point of J to the complement of this halfline.
A similar statement holds with ‘left’ and ‘right’ interchanged. When HJ(s, t)
occurs, we say that the segment J blocks during [s, t].

Lemma 1. (a) For any α > 0 there is a constant C3 = C3(α) > 0, such that
for all 0 < λ < λ0 and all intial configurations ξ with ξ ≡ 0 on [0, αn],

P
ξ
λ

{

H[0,αn] ((3/2) log n)
}

> C3.

(b) For all α > 0 and β > 0 there is a constant C4 = C4(α, β) > 0, such
that for all 0 < λ < λ0 and all intial configurations ξ with ξ ≡ 0 on [0, αn],

P
ξ
λ

{

H[0,αn](β log n)
}

> C4.

(c) Above we can even replace H[0,αn](β log n) by an event that implies it,
and is in F[0,αn](β log n). More precisely, for all α > 0 and β > 0 there is a
constant C4 = C4(α, β) > 0, such that for all 0 < λ < λ0 there is an event
Ĥ[0,αn](β log n) ∈ F[0,αn](β log n) such that

{η(0) ≡ 0 on [0, αn]} ∩ Ĥ[0,αn](β log n) ⊂ H[0,αn](β log n),
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and
Pλ

{

Ĥ[0,αn](β log n)
}

> C4.

Remark. Note that parts (b) and (c) with β ≤ 1 are trivial; they follow
immediately from (4) and the fact that Ac

[0,αn](log n) implies H[0,αn](log n).

The difficulty is to prove (b) and (c) for some β > 1. That is part (a) of the
Lemma. We will see that once we have part (b) for some β > 1, it follows
quite easily for β + 3/4, and hence for all positive β.

Proof. [Lemma 1] We first give the proof of part (a). Let J1 = [0, αn/4),
J2 = [αn/4, α3n/4), J3 = [α3n/4, αn]. Here we assume, without loss of gen-
erality, that αn is sufficiently large, so that subdivision makes sense. Subdi-
vide J2 into αn1/4 segments of length n3/4, denoted K1, K2, . . . . (To reduce
notation we write here, and in many other places in this paper, possibly non-
integer numbers (αn1/4 and n3/4 in this case) while we obviously mean their
integer parts).

Consider the following events (i)–(v):

(i) There is no ignition in J1 ∪ J3 before time (3/2) log n. In formal nota-
tion, this event is:

Bc
J1∪J3

((3/2) log n).

(ii) The intervals J1 and J3 do not try to fill before time log n. More
precisely,

Ac
J1

(log n) ∩ Ac
J3

(log n).

(iii) There is no ignition in J2 before time (3/4) log n. That is,

Bc
J2

((3/4) log n).

(iv) At least one of the blocks Ki has the following three properties: it
tries to fill before time (3/4) log n; it has an ignition between times
(3/4) log n and (7/8) log n; and it does not try to fill in the interval
((3/4) log n, (3/2) log n]. More formally, this is the event

αn1/4

⋃

i=1

AKi

(

3

4
log n

)

∩ BKi

(

3

4
log n,

7

8
log n

)

∩ Ac
Ki

(

3

4
log n,

3

2
log n

)

.
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(v) There is no ignition in J2 between time (7/8) log n and time (3/2) log n.
That is,

Bc
J2

((7/8) log n, (3/2) log n).

Now we will show that if each of the events (i)–(v) occurs, then the event
in part (a) of the Lemma occurs. First of all, events (i), (ii) and (v) guar-
antee that no fire propagates from [0, αn] to its complement during the time
[0, (3/2) log n]. Further, let Ki be a block with the three properties mentioned
in (iv). Its first property, together with events (i), (ii) and (iii), ensure that Ki

is indeed fully occupied at time (3/4) log n. Its second property then ensures
that at some time between (3/4) log n and (7/8) log n it becomes completely
vacant. This, together with its third property then guarantees that some
site in Ki remains vacant during [(7/8) log n, (3/2) log n]. Finally, this last
property of Ki together with (ii) ensures that at each time in [0, (3/2) log n]
some site in [0, αn] is vacant.

By independence of (i)–(v), it now suffices to show that for given α > 0
each of the events (i)–(v) has probability bounded away from 0, uniformly
in λ. For the events (i)–(iii) and (v), this follows easily from (4). The same
computations which led to (4) show that for each i the probability that Ki has
the first and third property in event (iv) is larger than some constant c1 > 0.
The probability that it has the second property is 1−exp(−λn3/4(1/8) log n),
which by (1) and some elementary computations is larger than or equal
to c2n

−1/4, where c2 is a positive constant. So, if Xi is the indicator of
the event that Ki has the three properties mentioned above, then, since
we have αn1/4 blocks, the expectation of the sum of the Xi’s is at least
αn1/4c1c2n

−1/4 = αc1c2. Since the Xi’s are independent, the probability that
at least one Xi equals 1, and hence that event (iv) occurs, is therefore larger
than some constant c3(α). This completes the proof of part (a) of the Lemma.

Now we prove part (c), which clearly implies part (b). For β = 3/2,
and hence for all β ≤ 3/2, we already know that part (c) holds: take for
Ĥ[0,αn](0, (3/2) log n) the intersection of the events (i)–(v) in the proof of
part (a). Now suppose part (c) holds for some β ≥ 3/2. We will show that it
then also holds for β+3/4. Let, as above, J1 = [0, αn/4), J2 = [αn/4, α3n/4),
J3 = [α 3n/4, αn]. Consider the following events (I)–(V):

(I)
ĤJ1

(β log n) ∩ ĤJ3
(β log n).
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(II) Each site in the interval J2 has a birth before time log n, that is,

AJ2
(log n).

(III) The interval J2 has no ignition before time (β − 1/4) log n, but does
have an ignition between times (β−1/4) log n and (β−1/8) log n. That
is,

Bc
J2

((β − 1/4) log n) ∩ BJ2
((β − 1/4) log n, (β − 1/8) log n).

(IV) J2 does not try to fill during ((β − 1/4) log n, (β + 3/4) log n). That is,

Ac
J2

((β − 1/4) log n, (β + 3/4) log n).

(V) There are no ignitions in [0, αn] during (β log n, (β + 3/4) log n). That
is,

Ac
J2

(β log n, (β + 3/4) log n).

With very similar (and even somewhat simpler) arguments as in the proof
of part (a), one can show that the events (I)–(V) imply H[0,αn]((β+3/4) log n):
event (I), together with (II) and (III) ensure that J2 is completely occupied
at time log n and becomes vacant at some time between (β − 1/4) log n and
(β − 1/8) log n. This, with (IV) implies that some site in J2 remains vacant
during (β log n, (β + 3/4) log n). Finally, this, together with (I) and (V)
implies that indeed H[0,αn]((β + 3/4) log n) occurs. Since the events (I)–(V)

are F[0,αn]((β +3/4) log n)-measurable, we can define the desired Ĥ[0,αn]((β +
3/4) log n) as the intersection of these events.

Since the five events are independent (note that here we use that the
events ĤJ1

(β log n) and ĤJ3
(β log n) in (I) are FJ1

(β log n)-measurable and
FJ3

(β log n)-measurable respectively), it remains to show that each of the
events (I)–(V) has a probability that is larger than some positive constant
which depends on α and β but not on λ. The probability of (I), again using
the above mentioned measurability properties, is at least (C4(α/4, β))2. Suit-
able lower bounds for the other events follow easily from (4). This completes
the proof of part (c) and hence of part (b).

For the second lemma, define for J ⊂ Z the stopping time

TJ = inf{t > 0 : ηx(t) = 0 for all x ∈ J}. (5)
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Lemma 2. Let
T = T[0,n] ∧ T[n,2n] ∧ T[2n,3n].

(a) There exists C5 > 0 such that for all 0 < λ < λ0 and all initial configu-
rations ξ,

P
ξ
λ(T ≤ 2 log n) > C5.

(b) We can even replace the event above by an F[0,3n](2 log n)-measurable
event. More precisely, there is an F[0,3n](2 log n)-measurable event A = A(λ)
with A ⊂ {T ≤ 2 log n} and

Pλ(A) > C5.

Proof. Suppose each of the three events Bc
[0,3n](log n), A[n,2n](log n) and

B[n,2n](log n, 2 log n) occurs. We show this implies T ≤ 2 log n. Since each of
these events is clearly F[0,3n](2 log n)-measurable and by (4) has a probability
bounded away from 0, this will prove the Lemma.

Let

σL = inf{t > 0 : site n burns at time t},

σR = inf{t > 0 : site 2n burns at time t}.

If σL ∧ σR > log n, then, by this and the first of the three events above, no
site in [n, 2n] burns before time log n and hence, by the second of the three
events, this segment [n, 2n] is filled at time log n. Finally, by the third event,
it will then burn completely down at some time between log n and 2 log n, so
that we have T ≤ T[n,2n] ≤ 2 log n.

On the other hand, if σL ∧ σR ≤ log n, there must, by the first of the
three events, have been a fire before or at time log n from outside [0, 3n]
which reached the site n or the site 2n. So this fire has completely burnt the
segment [0, n] or the segment [2n, 3n] and hence T ≤ log n.

From Lemma 1 and Lemma 2 we obtain the following Proposition.

Proposition 3. There is a constant C6 > 0 such that the following holds.
Let m be a positive integer, and K1, . . . , Km disjoint segments ⊂ Z of length
3n each. For all 0 < λ < λ0, all t > 2 log n, and any initial configuration ξ
we have

P
ξ
λ

{

∩m
i=1HKi

(t, t + log n) | F(∪m
i=1

Ki)c

}

> (C6)
m, (6)

and
P

ξ
λ

{

∪m
i=1HKi

(t, t + log n) | F(∪m
i=1

Ki)c

}

> 1 − (C6)
m. (7)
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Proof. For each i write Ki as the union of three segments Ki(1), Ki(2)
and Ki(3) of length n each. We look from time t0 = t − 2 log n > 0. For
J ⊂ Z, let

τJ = inf{t > t0 : ηt(x) = 0 for all x ∈ J} = θt0(TJ),

with TJ as in (5). Further, for 1 ≤ i ≤ m let

τ(i) = τKi(1) ∧ τKi(2) ∧ τKi(3). (8)

We know from Lemma 2 that there is an FKi
(t0, t)−measurable event A(i) ⊂

{τ(i) ≤ t} satisfying Pλ(A(i)) > C5. From Lemma 1 we know that there is
an FKi(1)(3 log n)-measurable event ĤKi(1)(3 log n) such that ĤKi(1)(3 log n)∩

{η(0) ≡ 0 on Ki(1)} ⊂ HKi(1)(3 log n) and Pλ(ĤKi(1)(3 log n)) > C4, and we

have similar events ĤKi(2)(3 log n) and ĤKi(3)(3 log n) for Ki(2) and Ki(3)
respectively. Let Li be the minimizing segment in (8). Note that if τ(i) ≤ t
and θτ(i)ĤLi

(3 log n) occurs, then HLi
(t, t + log n) occurs. Moreover, if also

Bc
Ki\Li

(τ(i), τ(i) + 3 log n) occurs, then HKi
(t, t + log n) occurs. The price to

pay for the latter event is (C2(2))3, with C2 as in (4).
If, for each i, τ(i) would be a stopping time with respect to the filtra-

tion (FKi
(s))s≥0, the above observations would immediately give that the

left hand side of (6) is at least (C4C5(C2(2))3)m. However, τ(i) is not a
stopping time with respect to that filtration but with respect to (F(s))s≥0.
Nevertheless, with some more care one can, using fairly standard arguments,
still obtain the above mentioned bound (C4C5(C2(2))3)m. Similar arguments
apply to (7).

3 Main Theorem

3.1 Statement and proof of the main theorem

We are ready to prove our result on the asymptotic density of vacant sites.
The theorem is formulated in a way that the former restriction λ < λ0 can
be dropped.

Theorem 4. There exist constants C7, C8 > 0 such that for any initial con-
figuration ξ, any λ > 0 and for all t > 3 log n(λ) + 1

C7

log(1/λ) ∨ 1
≤ P

ξ
λ(η0(t) = 0) ≤

C8

log(1/λ) ∨ 1
.
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Proof. We start with the lower bound and with the more interesting case
0 < λ < λ0. Let t0 = t− log n−1 > 2 log n. It is clear that, to have η0(t) = 0
it is sufficient that each of the following events occur: H[−4n,−n](t0, t − 1),
H[n,4n](t0, t − 1), A(−n,n)(t0, t − 1), Bc

(−n,n)(t0, t − 1), B(−n,n)(t − 1, t) and

Ac
0(t − 1, t). By Proposition 3 and (4), this has probability at least

(C6)
2 C1(2) C2(2) (1 − e−(2n−1)λ) e−1,

which, by (1), gives the desired lower bound.
For the case λ ≥ λ0, note that the event η0(t) = 0 is implied by the event

Ac
0(t− 1, t)∩B0(t− 1, t). This has probability e−1(1− e−λ) ≥ e−1(1− e−λ0),

completing the proof of the lower bound.
We continue with the proof of the upper bound. In the case λ ≥ λ0, the

upper bound is trivial. For the case 0 < λ < λ0, we need the following claim.
Claim. There is a constant c1 > 0 such that for all 0 < λ < λ0 and all

t > 2 log n(λ),

P
ξ
λ(O burns at some time in [t, t + 1]) ≤ c1/ log n. (9)

Proof of Claim. It is easy to check that, if the event in the claim happens,
then there exists an integer k ≥ 0 such that the following events (i) and (ii)
occur:

(i) We have {S(k) ≤ t + 1}, where

S(k) = inf{s ≥ t : η(s) ≡ 1 on [−4kn, 0] or η(s) ≡ 1 on [0, 4kn]}.

(ii) An ignition occurs in (−4(k+1)n, 4(k+1)n) at some time in [S(k), t+1].

It is clear that given (i), the conditional probability that (ii) happens is
bounded above by

Pλ(B(−4(k+1)n,4(k+1)n)(1)) ≤ 8λ(k + 1)n ≤
8(k + 1)

log n
,

where again we have used (1). Moreover, for fixed k the probability that (i)
holds is at most 2(C6)

k by (7) in Proposition 3. Combining these facts, the
probability in the statement of the claim is at most

1

log n

∞
∑

k=0

16 (k + 1)(C6)
k,
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from which the claim follows.
We continue the proof of the upper bound in Theorem 4. If η0(t) = 0,

then either η0(s) = 0 for all s ∈ [t − (1/2) log n, t] or there is an integer k ∈
[0, (1/2) log n] such that O burns at some time in the interval [t−k−1, t−k]
and has no birth attempt in [t − k, t]. Hence, using the above Claim,

P
ξ
λ(η0(t) = 0) ≤ exp(−(1/2) log n) +

∑

k: 0≤k≤(1/2) log n

c1

log n
exp(−k),

from which the upper bound in Theorem 4 follows immediately.

3.2 Remarks and discussion

(i) Note that Theorem 4 immediately implies that if µ is a distribution that
is invariant under the dynamics, then

C7

log(1/λ) ∨ 1
≤ µ(η0 = 0) ≤

C8

log(1/λ) ∨ 1
. (10)

For the special case where µ is also invariant under spatial translation, we
have a considerably simpler proof of (10). (In particular, the proof of the
lower bound in (10) then only needs a combination of the arguments in the
proof of Lemma 2 and general stationarity arguments). Since we do not have
a proof that all equlibrium distributions are translation invariant, our present
argument is needed. Furthermore, Theorem 4 is much stronger than (10).
Its major ingredient, Proposition 3, which in turn is based on Lemmas 1 and
2, gives strong properties of the spatial and temporal dependencies in the
process. We believe these properties will also be useful for other purposes,
for instance for the study of the question whether the model has a unique
equlibrium distribution.

(ii) As we wrote in the Introduction, our model is somewhat different from
the one studied by Drossel et al (1993). In that paper the fire propagates
at a finite speed. In some more recent papers (see e.g. Schenk, Drossel and
Schwabel (2002)) the speed is infinite, like in our model; that is, when a
tree is hit by lightning, its occupied cluster becomes vacant instantaneously.
Nevertheless we will point out in (a) and (b) below how a modification of
our arguments also works for the original model of Drossel et al. (1993).

(a) Another look at the proofs shows that the arguments and estimates lead-
ing to Theorem 4 are, in some sense ‘local’: the births and ignitions outside

13



the space interval [−4n, 4n] ‘do not matter’. In particular this means the
following. Suppose that instead of the infinite line we have a finite forest,
with locations −N, . . . , N . The forest-fire process is then clearly a finite-
state continuous-time Markov-chain. It is easy to see that it is irreducible
and hence has a unique equilibrium (invariant distribution), which we denote
by µλ,N . For all λ > 0 and N > 4n(λ) we have,

C1

log(1/λ) ∨ 1
≤ µλ,N (η0(t) = 0) ≤

C2

log(1/λ) ∨ 1
.

(b) Apart from the above mentioned spatial locality, the arguments also have
a locality in time. They essentially reduce to ‘controlling’ what happens in
certain space-time blocks, with spatial length of order n and time length of
order log n. If we would modify our model and let the fire spread at some
finite rate κ, a closer examination of our arguments show that they still work
when the time it takes a fire to move through the segment [0, n] is typically
o(log n). That is, when n/κ � log n. This in turn is guaranteed if κ � 1/λ,
which corresponds with the condition p � p/f in the paragraph preceding
(2) in Drossel et al. (1993).
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