
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Online Scheduling of Splittable Tasks in Peer-To-Peer
Networks

L. Epstein, R. van Stee

REPORT SEN-E0404 APRIL 21, 2004

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Online Scheduling of Splittable Tasks in Peer-To-
Peer Networks

ABSTRACT
We consider online scheduling of splittable tasks on parallel machines. In our model, each task
can be split into a limited number of parts, that can then be scheduled independently. We
consider both the case where the machines are identical and the case where some subset of
the machines have a (fixed) higher speed than the others. We design a class of algorithms
which allows us to give tight bounds for a large class of cases where tasks may be split into
relatively many parts. For identical machines we also improve upon the natural greedy algorithm
in other classes of cases.

2000 Mathematics Subject Classification: 68W25, 68W40
1998 ACM Computing Classification System: F.2.2
Keywords and Phrases: online scheduling; splittable tasks; competitive ratio; greedy algorithm

Online Scheduling of Splittable Tasks in Peer-To-Peer Networks

Leah Epstein∗ Rob van Stee†

Abstract

We consider online scheduling of splittable tasks on parallel machines. In our model, each task can
be split into a limited number of parts, that can then be scheduled independently. We consider both the
case where the machines are identical and the case where some subset of the machines have a (fixed)
higher speed than the others. We design a class of algorithms which allows us to give tight bounds for
a large class of cases where tasks may be split into relatively many parts. For identical machines we
also improve upon the natural greedy algorithm in other classes of cases.

1 Introduction

In this paper, we consider the problem of distributing tasks on parallel machines, where tasks can be split
in a limited amount of parts. A possible application of the splittable tasks problem exists in peer-to-peer
networks [5]. In such networks large files are typically split and the parts are downloaded simultaneously
from different locations, which improves the quality of service (QoS). More generally, computer systems
often distribute computation between several processors. This allows the distributed system to speed up
the execution of tasks. Naively it should seem that the fastest way to run a process would be to let all
processors participate in the execution of a single process. However in practice this is impossible. Set-
up costs and communication delays limit the amount of parallelism possible. Moreover, some processes
may have limited parallelism by nature. In many cases, the best that can be done is that a process may be
decomposed into a limited number of pieces each of which must be run independently on a single machine.

The definition of the model is as follows. In the sequel, we call the tasks “jobs” as is done in the stan-
dard terminology. We consider online scheduling of splittable jobs on m parallel machines. A sequence
of jobs is to be scheduled on a set of machines. Unlike the basic model which assumes that each job can
be executed on one machine (chosen by the algorithm), for splittable jobs, the required processing time pj

of a job j may be split in an arbitrary way into (at most) a given number of parts `. Those parts become
independent and may run in parallel or at different times on different processors. After a decision (on the
way a job is split) has been made, the scheduler is confronted by the basic scheduling problem, where each
piece of job is to be assigned non-preemptively to one machine. In the on-line version, jobs are presented
to the algorithm in a list, this means that each job must be assigned before the next job is revealed. Only
after the process of job splitting and assignment is completed, the next job is presented to the algorithm.
The goal is to minimize the makespan which is the last completion time of any part of job.

We consider two machine models. The first one is the well known model of identical machines, where
all machines have the same speed (w.l.o.g. speed 1). The second case relates to systems where several
processors are faster (by some multiplicative factor) than the others. In this case let s be the speed of the

∗School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. lea@idc.ac.il. Research supported by
Israel Science Foundation (grant no. 250/01).

†Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands. Rob.van.Stee@cwi.nl. Research
supported by the Netherlands Organization for Scientific Research (NWO), project number SION 612-061-000.

1

fast processors. The other processors have speed 1. This also contains the model where one processor
is fast and all others are identical [15, 8, 3, 14]. We call the machines of speed s fast, and all other
machines are regular machines. The number of fast machines is denoted by f whereas the number of
regular machines is m − f . The processing time of job j on a machine of speed s is pj/s. Each machine
can process only one job (or part of job) at a time, and therefore the completion time of the machine is the
total processing time of all jobs assigned to it (normalized by the speed), which is also called the load of
the machine. In the context of downloading files in a peer-to-peer network, the speeds correspond to the
bandwidths for the different connections.

We use competitive analysis and given a problem we would like to determine its competitive ratio. The
competitive ratio of an algorithm is the worst case ratio between the makespan of the schedule produced
by the algorithm, and the makespan of an optimal offline algorithm which receives all input tasks as a set
and not one by one. We denote the cost of this optimal offline algorithm by OPT. The competitive ratio of
a problem is the best possible competitive ratio that can be achieved by a deterministic on-line algorithm.
Previous work: The basic model (with ` = s = 1) was studied in a sequence of papers, each improving
either the upper bound or the lower bound on the competitive ratio [10, 7, 2, 12, 1, 9, 6, 11]. The offline
splittable jobs problem was studied by Shachnai and Tamir [19]. They showed that the problem is NP-hard
(already for identical machines) and gave a PTAS for uniformly related machines. The problem was also
studied by Krysta, Sanders and Vöcking [13] who gave an exact algorithm which has polynomial running
time for any constant number of uniformly related machines. A different model that is related to our model
is scheduling of parallel jobs. In this case, a job has several identical parts that must run simultaneously
on a given number of processors [4, 16].
Our results: We first analyze a simple greedy-type algorithm that splits jobs into at most ` parts, while
assigning them in a way that the resulting makespan is as small as possible. We then introduce a type of
algorithm that always maintains a subset of k < ` machines with maximal load (while maintaining a given
competitive ratio), and show that it is optimal as long as ` is sufficiently large in relation to m+f . The case
f = m− 1 is treated separately. For smaller `, we give an algorithm for identical machines that uniformly
improves upon our greedy algorithm. Finally, we consider the special case of four identical machines and
` = 2, which is the smallest case for which we did not find an optimal solution. The algorithms assume
that it is always possible to compute the value of OPT for a subsequence of jobs which already arrived. In
section 3 we explain how to compute this value.

2 A greedy algorithm

In this section, we analyze a simple greedy-type algorithm that works as follows. Recall that we consider
the case where there is a group of f machines of speed s ≥ 1, and the remaining m − f machines have
speed 1. For each arriving job, the algorithm finds the way to schedule it on at most ` machines, in a way
that the resulting makespan is as small as possible. This is done by assigning the job to a subset of least
loaded fast machines and a subset of least loaded regular machines. To implement this algorithm, we need
to consider the combination of the least loaded x regular machines with the least loaded y fast machines,
for all feasible cases: x + y ≤ `, 0 ≤ x ≤ min{`,m − f} and 0 ≤ y ≤ min{`, f}. There are only O(`2)
such combinations. If the job is split into less than ` parts, it means that the makespan did not change.
Note that for ` = s = 1, this algorithm reduces to the standard greedy algorithm for load balancing.

Consider an arbitrary subset S of ` machines, and denote the number of fast machines in this subset
by g. Consider the time where the maximum load is achieved first. This happened after assigning a job on
exactly ` machines. Denote the total processing time scheduled on the i-th machine in subset S by W S

i

(i = 1, . . . , `). Let x be the job that achieves the maximum load (and by a slight abuse of notation, also its

2

processing time is denoted by x). Let W =
∑m

i=1 Wi, i.e. the total processing time of all jobs right before
the assignment of x. Let GREEDY denote the makespan of the greedy algorithm. By our assignment, we
have for any subset S

GREEDY ≤ WS
1 + . . . + WS

` + x

sg + ` − g
⇒ (sg + ` − g)GREEDY ≤ W S

1 + . . . + WS
` + x.

There are
(m

`

)

such subsets, and each machine occurs in
(m−1

`−1

)

of them. Summing the above inequality
over all

(

m
`

)

subsets, we have that each time a fast machine occurs, it contributes s to the left hand side; a

regular machine contributes 1. Thus GREEDY ·
(

s
(m−1

`−1

)

f +
(m−1

`−1

)

(m − f)
)

≤
(m−1

`−1

)

(W1 + . . .Wm) +
(m

`

)

x or (sf + m − f)GREEDY ≤ W + xm
l . Furthermore, we have OPT ≥ W+x

sf+m−f . If f ≥ ` we also
have OPT ≥ x

s` , otherwise OPT ≥ x
sf+`−f . Thus if f ≥ `

GREEDY ≤ W + xm
`

sf + m − f
≤ OPT +

s` · OPT(m
` − 1)

sf + m − f
≤

(

1 +
m − `

sf + m − f
· s

)

OPT.

and otherwise

GREEDY ≤ OPT +
(sf + ` − f)OPT(m

` − 1)

sf + m − f
=

(

1 +
sf + ` − f

sf + m − f

(m

`
− 1

)

)

OPT.

These ratios are decreasing in ` and are 1 for ` = m. For f = 0 (or equivalently s = 1) the second ratio
applies, which then becomes 2 − `/m. For larger f , the ratio is lower.

3 Computing OPT

Throughout the paper we assume that the value of OPT is known to the on-line algorithm. There are
several options to achieve this knowledge. The algorithm of Krysta, Sanders and Vöcking [13] can solve
an offline problem exactly using time which is polynomial seeing the number of machines as constant.
The drawback is that their algorithm must be exercised after every arrival of a job to find out the new value
of OPT. Another and better option is simply to use the two following lower bounds on OPT: the sum of
processing times of all jobs divided by the sum of speeds, and the size of the largest job divided by the
sum of speeds of the ` fastest machines. We already used these bounds in Section 2.

All the proofs of upper bounds use only these bounds on OPT, and therefore the knowledge of the
actual values of OPT is not required. Naturally, those bounds are not always tight as the offline problem
is NP-complete already for identical machines and any constant ` [19]. Note that in almost all cases in
this paper where we got tight bounds on the competitive ratio, the value of OPT is actually given by the
maximum of the two bounds on OPT. This is always true for ` ≥ (m + 1)/2. In these cases an optimal
offline schedule (not only its cost) can be computed by the following algorithm. This algorithm works for
the general case of uniformly related machines (where each machine i has some speed si).

Algorithm Calculate the value of OPT. We say that a job fits on a subset of machines if it can be placed
there without any machine exceeding a load of OPT (normalized by the speed). Sort the machines by
nondecreasing speeds.

Consider the largest job J . Clearly it fits on the ` fastest machines. Let i be an index such that J fits on
machines i, . . . , i + ` − 1, where all these machines except possibly the last are used completely. If there
is such an i, assign J there. We are left with machines 1, . . . , i − 1, i + `, . . . ,m and possibly a part of

3

machine i + `− 1. This is a subset of at most ` machines, since ` ≥ (m + 1)/2. Hence the remaining jobs
can be split perfectly among these machines. Since the other machines are filled completely, they must all
fit.

If there is no such index i, then J fits on machines 1, . . . , ` − 1 or less machines (note that these are
the slowest machines). This implies that all jobs fit on at most ` machines: we need to add 1 to the number
of machines used for one job since for later jobs we get that both the first machine of the job and the last
one can be occupied partially by other jobs. Hence all jobs can be assigned without wasting any space.

4 Algorithm HIGH(k,R)

An important algorithm that we work with is the following, called HIGH(k,R). It maintains the invariant
that there are at least k regular machines with load exactly R times the optimal load, where R is the
competitive ratio that we want to prove. Clearly such an invariant can only be maintained for k at most
equal to `− 1 (consider the assignment of the first job), and in certain cases k has to be chosen even lower
than that to get the best ratio. We will use this algorithm in the context of identical machines and in the
case where there are several fast machines of speed s. Recall that the identical machines case is a special
case of the second case (with s = 1). We immediately present the more general algorithm.

On arrival of a job J of size x, HIGH(k,R) assigns the job to at most ` machines such that the invariant
is kept. We denote the optimal makespan before the arrival of J by OPT1, and after the arrival of J by OPT2.
We would like to sort the machines by the capacity of jobs they can accommodate. For a machine i, let Li

be its load and s′ be its speed (s′ = 1 or s′ = s). Let bi be the gap on machine i, which is the maximum load
that can be placed on the machine in this step. That is, bi = s′(R · OPT2 − Li) for i = 1, . . . ,m. We first
sort only the regular machines in non-increasing order by their gaps. Clearly, the machines which had load
ROPT1 have the smallest gap. We get b1 ≥ . . . ≥ bm−f and bm−f−k+1 = . . . = bm−f = ROPT2−ROPT1.

Let Si = bi + . . . + bi+k−1 for 1 ≤ i ≤ m − f − k + 1 . This is the sum of the gaps on k consecutive
regular machines. The algorithm can work only under the condition that Sm−f−k+1 ≤ x: if x is smaller,
then after assigning x there are less than k machines with load ROPT2. We distinguish two cases.

Case 1: S1 ≥ x. We can find a value i such that Si ≥ x and Si+1 ≤ x. If Si = x, we can clearly assign
J such that there are k regular machines with load ROPT2.

Suppose Si > x. Then i ≤ m − f − k since Sm−f−k+1 ≤ x. We use the machines i, . . . , i + k. This
is a set of k + 1 machines. We add bj to machine j for j = i + 1, . . . , i + k and put the nonzero remainder
on machine i. The remainder fits there since the job can fit on machines i, . . . , i + k − 1 even without
machine i + k. Clearly we get at least k regular machines with load ROPT2. The assignment is feasible
since ` ≥ k + 1.

Case 2: S1 < x. Here we introduce another condition which is the following. Consider the k regular
machines with the largest gaps, and among the machines that are not the k regular machines with smallest
gap, choose another ` − k machines with largest gaps. The condition for the algorithm to succeed is that
the sum of these ` gaps is at least the size x. The assignment of x first fills the gaps on the k least loaded
regular machines, and the non-zero remainder is spread between the ` − k machines with largest gaps.

We use this algorithm several times in this paper. Each time, to show that it maintains some competitive
ratio R, we will show the following two properties.

1. A new job is never too large to be placed as described. That is, if we place it on the ` machines, k
of which are the regular machines with largest gaps, and the other ` − k are the machines with the largest

4

gaps among the others (excluding the regular machines that have maximum load before), then afterwards
the load on these machines is at most ROPT2.

2. A new job is never too small for the invariant to be maintained. I.e. if we assign the job on the k
machines that had load ROPT1, then it fits exactly in the gaps, or there is a remainder. This will show that
in all cases we can make at least k machines have load ROPT2.

Note that for each arriving job, the new value of OPT can be computed in time O(1), and the worst step
in algorithm HIGH(k,R) with regard to the time complexity is maintaining the sorted order of the regular
machines, which can be done efficiently.

4.1 Many splits

We consider the case ` ≥ (m + f)/2 (since k ≤ ` − 1, if f = 0 we need ` ≥ (m + 1)/2). Note that this
leaves open the case of f = m − 1. This case will be considered separately in the next subsection.

We need some definitions in order to state the next Lemma. Let `′ be the sum of speeds of the ` fastest
machines and let m′ be the sum of all speeds. Clearly ` ≥ f and so `′ = sf + `−f and m′ = sf +m−f .
Let c = `′/m′ and

R1(c) =
1

c2 − c + 1
.

Note that R1(c) = R1(1 − c). Finally, let c1 be the real solution to c3 − c2 + 2c − 1 = 0 (c ≈ 0.56984).

Lemma 1 For c ≥ c1, algorithm HIGH(m − `,R1(c)) maintains a competitive ratio of R1(c).

Proof Let k = m− ` ≤ `− 1. We first show that the new job is never too large to be placed as described.
If it is put on the ` machines which are all machines that did not have maximum load before the arrival of
J , then the other k = m − ` regular machines have load R1(c)OPT1 because of the invariant (they were
the machines with highest load). Thus we need to show that `′R1(c)OPT2 +kR1(c)OPT1 ≥ W +x where
W is the total load of all the jobs before J arrived.

We have OPT1 ≥ W/m′, OPT2 ≥ (W + x)/m′ and OPT2 ≥ x/`′. Therefore

OPT2 ≥ α
W + x

m′
+ (1 − α)

x

`′
for any 0 ≤ α ≤ 1 (1)

Taking α = `′/m′, we get kOPT1 + `′OPT2 ≥ kW/m′ + `′α(W + x)/m′ + `′(1 − α)x/`′ = (W +
x)(α`′/m′ + 1 − α) = (W + x)(1 − `′/m′ + `′2/m′2) = W+x

R1(c) , as needed.
Second, we show that J is always large enough such that we can again make k regular machines have

load R1(c)OPT2. That is, x ≥ kR1(c)(OPT2 − OPT1). There are three possibilities for OPT2: it is either
x/`′, (W + x)/m′ or y/`′, where y is the processing time of some old job.

If OPT2 = y/`′ we are done, since then OPT1 = y/`′ as well. Otherwise, we use that OPT1 ≥ W/m′.
Thus OPT2 − OPT1 ≤ max(x/`′, x/m′) = x/`′. We need to show that kR1(c)x/`′ ≤ x or kR1(c) ≤ `′.
This holds if c3 − c2 + 2c − 1 ≥ 0, which holds for c ≥ c1. This completes the proof of the upper bound
of HIGH(m − `,R1(c)). �

Lemma 2 No algorithm for the scheduling of `-splittable jobs on a system of f fast machines of speed s
and m − f regular machines has a better competitive ratio than R1(c).

Proof The values m′ and `′ are defined as above. Thus m′ = sf + m − f . Furthermore, `′ is the sum of
speeds of the ` fastest machines, so `′ = sf + `− f if ` ≥ f , `′ = s` otherwise. The lower bound consists
of very small jobs of total size m′ = sf + m− f , followed by a single job of size W −m′, where W will
be determined later. The optimal offline makespan after the small jobs is OPT1 = 1, and after the large job
it is OPT2 = W/m′.

5

Consider an online algorithm A. After the small jobs have arrived, the algorithm “knows” it has to
keep room for another single job. Therefore it can load the m − ` machines it is not going to use for that
job with the maximum load ROPT1 (if it puts more on some machine, the final job does not arrive). There
are many cases according to how many fast machines it loads. Let k1 be the number of fully loaded regular
machines and k2 = m − ` − k1 the number of fully loaded fast machines.

If A maintains a competitive ratio of R, we must have that W ≤ ROPT1(k1 + sk2) + ROPT2((m −
f − k1) + s(f − k2)). This implies

R ≥ W

m − ` − k2 + sk2 + OPT2(k2 + ` − f + sf − sk2)
. (2)

We can see that this number is minimized by minimizing k2, since the coefficient of k2 in the denominator
is (OPT2 − 1)(1 − s) < 0. Therefore the lower bound is obtained by taking k2 = 0 if ` ≥ f , and
k2 = f − ` otherwise. We choose W such that W − m′ = m′`′/(m′ − `′). We rewrite (2) to get
W ≤ (m′ − `′)ROPT1 + `′ROPT2. Then since OPT1 = 1 and since from W = (m′)2/(m′ − `′) follows

OPT2 = m′/(m′ − `′), we get R ≥ (m′)2

(m′−`′)2+m′`′
= (m′)2

(m′)2−m′`′+(`′)2
= R1(c). �

These two lemmas imply the following theorem.

Theorem 1 For `′/m′ ≥ c1 and ` ≥ m
2 + 1

2 max(f, 1) (i.e. f 6= m−1), the algorithm HIGH(m−`,R1(c))
is well-defined and optimal.

4.2 The case of f = m − 1 fast machines

For completeness, in this section we consider the case f = m − 1. We give tight bounds for many cases,
including the case of m−1 parts, i.e. each job may run on all machines but one. Clearly we already solved
the cases f = 0, . . . ,m−2 and f = m (this is the same case as f = 0) for large enough `. The solution of
the case f = m− 1 is very different from the other cases. First the algorithm is not the same for all values
of s. For small s, for the first time we use an invariant on the fast machines. For large s, for the first time
we do not use all the machines. Again we use m′ as the sum of all speeds, i.e. m′ = (m − 1)s + 1, and `′

as the sum of speeds of the ` fastest machines, i.e. `′ = s`. We introduce a new notation k′ which is the
sum of speeds of the machines that are kept at maximum load. This value is determined by the algorithm.

For large s, we use an algorithm which never uses the regular machine. For the case ` = m − 1 it is a
simple greedy algorithm that splits each job in a way that it keeps the load balanced on all fast machines.
This gives the algorithm the ratio 1 + 1

s(m−1) (easily proved by area considerations). For ` < m − 1 the
algorithm ignores the regular machine, and uses HIGH(m − 1 − `,R21) on m − 1 fast machines only,
where R21 is defined as a function of m′ and `′ (which are functions of m, ` and s):

R21 =
(m′)2

(m′)2 − (m′ − `′)(`′ + 1)
=

(m′)2

(m′)2 − m′ − k′`′
.

We have k′ = sk = s(m − ` − 1). The algorithm keeps k = m − ` − 1 fast machines with load R21OPT.
Since k must be smaller than `, we require ` ≥ m/2.

On arrival of a job, let OPT1 and OPT2 be the optimal offline makespan before and after the arrival of
the new job, respectively. The algorithm is the same as before but the properties are slightly different. We
need to show that the following two properties hold:

1. x ≥ k′R(OPT2 − OPT1).
2. The gaps on the ` least loaded fast machines can contain x.

6

The second property can be reformulated as

`′ROPT2 + k′ROPT1 ≥ W + x

where W is the total processing time of jobs which arrived before the job of processing time x. This
follows from `+k = m−1. Regarding the first property, similarly to before, we can bound the difference
of the optimal offline costs by OPT2 − OPT1 ≤ x/`′. This gives the condition R21 ≤ `′/k′.

To show the second property we again use the bounds OPT1 ≥ W
m′ and (1). We need to show

k′W

m′
+ `′

(

α
W + x

m′
+ (1 − α)

x

`′

)

≥ W + x

R .

Taking 1 − α = k′

m′ , we get that this condition is satisfied for R = R21.
For small s, we use a variation on previous algorithms. The algorithm keeps k = m− ` fast machines

with load ROPT, where

R22 =
m′2

m′2 − (m′ + s − 1 − `′)`′
=

(m′)2

(m′)2 − k′`′
. (3)

The value we use for k′ is k′ = s(m − l). The algorithm is defined as HIGH(m − `,R22), except that the
roles of the fast machines and the regular machine have been reversed. In other words, we use the gaps on
fast machines to fit the job, and if it needs more room we use at most m − k − 1 fast machines and the
regular machine as well.

On arrival of a job, let OPT1 and OPT2 be the optimal offline makespan before and after the arrival of
the new job, respectively. We again need the following two properties to hold:

1. x ≥ k′R(OPT2 − OPT1).
2. The gaps on the m − k other machines (that do not maintain the invariant) can contain x.

(m′ − k′)ROPT2 + k′ROPT1 ≥ W + x.

The first property again translates into R22 ≤ `′/k′. To show the second property we again use the bounds
OPT1 ≥ W

m′ and (1). We need to show

k′W

m′
+ (m′ − k′)

(

α
W + x

m′
+ (1 − α)

x

`′

)

≥ W + x

R .

Taking 1 − α = k′`′

m′(m′−k′) , we get that this condition is satisfied for R = R22.
We now give a lower bound that proves that these bounds are tight. The lower bound is actually more

general, and holds for all values of ` and s.

Lemma 3 For f = m − 1, any online algorithm has a competitive ratio of at least min(R21,R22).

Proof We define a sequence of jobs with the following processing times: P1 = 1, Pj = `′

m′−`′
∑j−1

i=1 Pi.
Let OPTj be the optimal offline cost on the subsequence of the first j jobs. Then we see that for j ≥ 3 we
have

OPTj =
1

m′ − `′

j−1
∑

i=1

Pi =
Pj

`′
and Pj =

m′

m′ − `′
Pj−1.

Consider the behavior of the on-line algorithm starting from the third job.
If the algorithm never splits a job using the regular machine, we need to consider two cases. If ` =

m − 1, the competitive ratio tends to the ratio 1 + 1
s(m−1) of the greedy algorithm that does not use the

7

regular machine. The second case ` ≤ m − 2 is slightly more difficult. Only the first two jobs might be
scheduled on the regular machine. Consider job Pj . If A maintains a competitive ratio of R until this
point, then on each of the fast machines that it does not use for job j it has placed at most sROPTj−1, and
we find

∑j
i=3 Pi − (m − ` − 1)sROPTj−1

`′
≤ ROPTj

which implies that R(`′OPTj + s(m − ` − 1)OPTj−1) + P1 + P2 ≥
∑j

i=1 Pi. We use
∑j

i=1 Pi = Pj +
∑j−1

i=1 Pi = Pj(1 + m′−`′

`′) = m′

`′ Pj to rewrite this condition in terms of Pj , and divide by Pj . For large
enough j we can neglect P1 and P2 and find

R
(

1 +
s(m − ` − 1)(m′ − `′)

m′`′

)

≥ m′

`′
.

This gives R ≥ R21.
Otherwise (some job uses the regular machine), let j be the index of the first job for which a part

is assigned to the regular machine. If A maintains a competitive ratio of R until this point, then on the
machines that it does not use for job j (which are all fast) it has placed at most sROPTj−1, and we find

∑j
i=1 Pi − s(m − `)ROPTj−1

s(` − 1) + 1
≤ ROPTj

which implies that R(OPTj(s(` − 1) + 1) + s(m − `)OPTj−1) ≥
∑j

i=1 Pi. We use
∑j

i=1 Pi = m′

`′ Pj to
rewrite this condition in terms of Pj , and divide by Pj to find

R
(

s` − s + 1

`′
+

s(m − `)(m′ − `′)

`′m′

)

≥ m′

`′

which leads to R ≥ R22. �

We summarize our results in the following Theorem.
Let s1 = (m − 1 +

√
m2 − 2m + 1 + 4`)/(2`).

Theorem 2 For the case of m − 1 fast machines of speed s. If s ≥ s1, and (m/2 ≤ ` ≤ m − 2 and
R21 ≤ `′/(m′ − `′ − 1)) or ` = m− 1, then the optimal competitive ratio of any online algorithm is R21.
If s ≤ s1, ` > m/2 and R22 ≤ `′/(m′ − `′ + s − 1), then the optimal competitive ratio of any online
algorithm is R22.

Corollary 1 For f = ` = m − 1, the optimal competitive ratio is min(R21,R22).

Proof For small s, if ` = m − 1 then the value of R21 is defined properly to be 1 + 1
s(m−1) , attained by

the greedy algorithm that only uses fast machines. This ratio is thus tight.
For large s, if ` = m−1 then the first property to be checked leads to the condition sR(OPT2−OPT1) ≤

x. Similarly to before, we can bound the difference of the optimal offline costs by OPT2 − OPT1 ≤
x/(sm− s). Using (3), this leads to the condition s2(m− 1)2 ≤ (m− 2)(sm− s+1)2. This is true since
s(m − 1) < sm − s + 1 and m ≥ 3. Thus the condition on the ratio in Theorem 2 is satisfied as well as
the condition on `. �

4.3 Few splits on identical machines

Following Theorem 1, we now consider the case c < c1. Let

R3(c) =
1

2

(

c2 − c + 2 − (c − 1)
√

c2 + 4
)

.

8

We examine algorithm HIGH(`/R3(c),R3(c)), i.e. k = `/R3(c), and verify that it maintains a com-
petitive ratio of R3(c). The second condition is immediately satisfied, since the only relevant case is
OPT2 − OPT1 ≤ x/`, which leads to the constraint kR3(c) ≤ ` as in the previous subsection. Moreover,
we have that k + ` ≤ m for all c ≤ c1, since c/R3(c) + c ≤ 1 for c < c1.

Suppose a new job is placed on the ` machines with lowest load. By the invariant and since k+` ≤ m,
there are k machines with load R3(c)OPT1. Denote the total load on the remaining machines (not the k
old machines or the ` machines that were just used) by V . Then

V ≥ (W − kR3(c)OPT1) ·
m − k − `

m − k

since these machines were not the least loaded machines before the new job arrived.
Thus we need to check that

kR3(c) · OPT1 + `R3(c) · OPT2 + V ≥ W + x

or

kR3(c) · OPT1 ·
`

m − k
+ `R3(c) · OPT2 ≥ W · `

m − k
+ x.

As before, we use that OPT1 ≥ W/m and OPT2 ≥ αW+x
m + (1 − α)x

` for any 0 ≤ α ≤ 1. We take
α = m−k

2m−k−` ≤ m−k
m ∈ [0, 1].

We find

k`OPT1

m − k
+ `OPT2 ≥

(

k`

m − k
+ `α

)

W

m
+

(

` · α

m
+ 1 − α

)

x ≥
W`

m−k + x

R3(c)
,

since R3(c) satisfies R3(c) = 2m−k−cm
m−kc (using k = `/R3(c) = cm/R3(c)).

Theorem 3 For `/m < c1, the algorithm HIGH(`/R3(c),R3(c)) maintains a competitive ratio of R3(c),
where c = `/m.

We now show a lower bound for this case. This lower bound uses a technique originally introduced by
Sgall [17, 18].

Theorem 4 For m divisible by `, the competitive ratio of any randomized (or deterministic) algorithm is
at least 1

1−(1− `
m)

m/` . This gives a general lower bound of R4(c) =
(

1 −
(

c−1
c

)c)−1
for c = `/m.

Proof Fix a sequence of random bits to be used by the algorithm. Start with (m − `)/` jobs of size `.
Then define µ = m/(m − `) and give jobs Ji of size `µi−1 for i = 1, . . . ,m/`.

Since µ− 1 = `/(m− `), we have
∑m/`

i=1 `µi−1 = `µm/`−1
µ−1 = (m− `)(µm/` − 1). Therefore the total

size of all the jobs is W = m − ` + (m − `)(µm/` − 1) = (m − `)µm/` = mµm/`−1. After job Ji has

arrived we have OPTi = µi−1. So
∑m/`

i=1 OPTi = (µm/` − 1)/(µ − 1).
For 1 ≤ i ≤ m, let Li be the load of machine i at the end of the sequence after sorting the machines

by non-increasing load. Removing any i − 1 jobs still leaves a machine with load of at least L`i+1.
Therefore A(Jm) = L1, A(Jm−1) ≥ L`+1 and in general A(Ji) ≥ L`(m−i)+1 ≥ 1

`

∑`
j=1 L`(m−i)+j , so

∑A(Ji) ≥ W/`.
It follows that

R ≥ W/`
∑m/`

i=1 OPTi

≥ mµm/`−1(µ − 1)/`

µm/` − 1
=

µm/`

µm/` − 1
=

1

1 −
(

m
m−`

)−m/`
=

1

1 −
(

1 − `
m

)m/`
.

9

The value of the lower bound tends to e/(e− 1) for m/` → ∞, for instance when ` is constant and m
grows without bound. For m = c` we find a lower bound of

R4(c) =

(

1 −
(

c − 1

c

)c)−1

,

independent of m. �

We give an overview of the various upper and lower bounds in Figure 1.

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

Figure 1: Upper and lower bounds for identical machines. The horizontal axis is `/m, the vertical axis is
the competitive ratio. The top line is the greedy algorithm, the middle line is our best upper bound and the
lower line is our best lower bound. For c ≤ 1/2, this lower bound also holds for randomized algorithms.

5 A special case: four machines, two parts

Already for this sub-problem it is nontrivial to give an optimal algorithm. Surprisingly, in this case the
lower bound from Lemma 2 is not tight. This hints that for the cases where we do not give matching upper
bounds, it is likely that the lower bounds are simply not the best possible.

For the case of three parts the previous section gives an algorithm of competitive ratio 16/13 ≈ 1.23.
For two parts, we use the algorithm HIGH(1, 10/7) which maintains the invariant that at least one machine
has load exactly 10

7 OPT. Note that our greedy algorithm maintains only a competitive ratio of 1 + `
m(m

` −
1) = 3/2.

Theorem 5 For four machines and 2-splittable jobs, the algorithm HIGH(1, 10/7) maintains a competi-
tive ratio of 10/7.

Proof The proof proceeds similarly to before.
First, we show that a new job is not too large. Suppose it is placed on the two lowest machines. Then

the other machines have load 10
7 OPT1 (because of the invariant) and β ≥ (W − 10

7 OPT1)/3 (because it
was the second highest machine before J arrived). The total load on all the machines must be bounded by
10
7 OPT1 + 20

7 OPT2 + β ≥ 10
7 (2

3 OPT1 + 2OPT2) + W/3.

10

Similarly to before, we find

OPT1

3
+ OPT2 ≥ W

12
+

αW

4
+

αx

4
+ (1 − α)

x

2
=

7

60
(2W + 3x)

by taking α = 3/5. Therefore 10
7 OPT1 + 20

7 OPT2 + β ≥ W + x, as needed.
Second, we show that a new job is always large enough so that the new maximum load is 10/7 times

the optimal load. We have OPT2 − OPT1 ≤ x/2, and 10
7

x
2 ≤ x. �

Lemma 4 Any on-line algorithm for minimizing the makespan of 2-splittable jobs on four parallel ma-
chines has a competitive ratio of at least R4 = (47 −

√
129)/26 ≈ 1.37085.

Proof Suppose A maintains a competitive ratio of R. Two jobs of size 2 arrive. OPT = 1 (already after
the first job). We number the machines from 1 to 4, and denote the loads of the machines by M1 ≥ M2 ≥
M3 ≥ M4. If A puts the first two jobs on two or fewer machines, we are done immediately. This leaves
us with two cases. We use A to also denote the makespan of A.

Case 1. A puts the first two jobs on 3 machines. Then M4 = 0, M1 ≤ R4, M3 ≥ 4− 2R4, M2 +M3 ≥
4 −R4 and therefore M2 ≥ (4 −R4)/2 = 2 −R4/2.

A job x of size 2 arrives. If A puts no part of x on machine 4, we are done since M3 +1 ≥ 5− 2R4 >
3R4/2 (we have OPT = 3/2).

So A must put a part of x on machine 4. Finally, a job of size 6 will arrive. The best thing A can do is
to put it on the two machines with lowest load (after x has been assigned). Which machines are these?

Case Lowest load is on and is at least
1a 2 and 3, 1 and 3 or 1 and 2 4 −R4

1b 2 and 4 8 − 4R4

1c 3 and 4 8 − 4R4

This covers the cases, since if part of x is put on 4, either machine 2 or machine 3 receives nothing and
remains lower than machine 1. We now prove the entries in the last column.

Case 1a. Suppose machines 2 and 3 are the lowest. Already before assigning x we had M2 + M3 ≥
4−R4. Now suppose machines 1 and 3 are the lowest. Clearly M1 +M3 ≥ M2 +M3 ≥ 4−R4. Finally,
if machines 1 and 2 are the lowest then M1 + M2 ≥ M3 + M2 ≥ 4 −R4.

Case 1b. It must be that x goes to machines 3 and 4. A should put as little as possible on 4 in order to
minimize the load on the two lowest machines after this (2 and 4). A can put at most 3R4/2−(4−2R4) =
7R4/2 − 4 on machine 3 and thus puts at least 2 − (7R4/2 − 4) = 6 − 7R4/2 on machine 4. After this,
the load of the two lowest machines (2 and 4) is at least 2 −R4/2 + 6 − 7R4/2 = 8 − 4R4.

Case 1c. Again A should put as little as possible on 4 in order to minimize the load on the two lowest
machines after this (3 and 4). It can put at most 3R4/2 − (2 −R4/2) = 2R4 − 2 on machine 1 or 2 and
must therefore put at least 2 − (2R4 − 2) = 4 − 2R4 on machine 4. After this, the load of the two lowest
machines (3 and 4) is at least 8 − 4R4.

This concludes the discussion of the subcases. We find that after assigning x, the load on the two
lowest machines is at least min(4 −R4, 8 − 4R4) = 8 − 4R4 since R4 > 4/3. Finally the job of size 6
arrives, now OPT = 3 and A ≥ (8 − 4R4 + 6)/2 > 3R4.

Case 2. A puts the first two jobs on 4 machines, each machine has one part of one job. Then M2 +M3 =
M1 + M4 = 2 and

M1 ≤ R4.

11

It is possible that a job of size 4 arrives. Then OPT = 2 and A must be able to place it such that
A ≤ 2R4. Therefore we must have (M3 + M4 + 4)/2 ≤ 2R4 or

M3 + M4 ≤ 4(R4 − 1).

Together these equations give

M1 + M2 ≥ 8 − 4R4, M2 ≥ 8 − 5R4 and M4 = 2 − M1 ≥ 2 −R4.

Thus, if these inequalities do not hold after the first two jobs arrive, a job of size 4 arrives and we
are done. Otherwise, we let a job of size x (x ≤ 1) arrive where x will be determined later. Then
OPT = 1 + x/4. After this a final job of size y = x + 4 will arrive. We have a similar division into cases
as in Case 1.

Case Lowest load is on and is at least
2a 2 and 3, 1 and 3 or 1 and 2 2
2b (1 or 2) and 4 10 − 6R4

2c 3 and 4 10 − 6R4

Case 2a. We have M2 + M3 = 2, the rest is as in Case 1a.
Case 2b. We have M2 + M4 ≥ 10 − 6R4, so also M1 + M4 ≥ 10 − 6R4.
Case 2c. We are left with the case where machines 3 and 4 are the lowest. We will choose x so large

that it cannot be assigned to machines 1 and 2 only: M1 + M2 + x > 2R4(1 + x/4), in other words
x > (12R4 − 16)/(2 −R4).

Thus some part of x is assigned to machine 3 or 4. A will use machines 3 and 4 for the last job, so it
is best to put as much of x as possible on 1 or 2. WLOG this part is put on machine 2 since M2 ≤ M1.
Denote the part of x that is assigned to machine i by xi. We have x2 ≤ (1 + x/4)R4 − M2 and

M3 + x3 = 2 − M2 + x − x2 ≥ 2 − M2 + x(1 −R4/4) −R4 + M2 = 2 −R4 + x(1 −R4/4).

Therefore M3 + M4 + x3 ≥ 4 − 2R4 + x(1 −R4/4).
We take x such that 10−6R4 = 4−2R4+x(1−R4/4), in other words x = (24−16R4)/(4−R4) =

(16
√

129 − 128)/(
√

129 + 57) ≈ 0.7859. Note that x > (12R4 − 16)/(2 −R4), as needed.

This concludes the discussion of the subcases. We find that the load of the two lowest machines is at
least 10− 6R4 after assigning job x, independently of A’s decision. (Note 10− 6R4 < 2 for R4 > 4/3.)

After the last job arrives, OPT = y/2. The best thing that A can do is to put y on the two machines
with lowest load. Its final load is thus at least (10 − 6R4 + y)/2. The competitive ratio is (10 − 6R4 +
4 + x)/(4 + x) = R4. �

6 Conclusion

This paper considered the classical load balancing model in the context of parallelizable tasks. We de-
signed and analyzed several algorithms, and showed tight bounds for many cases. As for open problems,
there is a large amount of work done on various multiple machines scheduling and load balancing prob-
lems. Many of those on-line (and offline) problems are of interest to be studied for scenarios where
parallelization is allowed.

For the special case of four machines and two parts, which is the smallest case for which we do not
have a tight solution, we show a lower bound of 1.37085 and an upper bound of 10/7. This is a better

12

lower bound than Lemma 2, hinting that in areas where our bounds are not tight, the lower bound can be
improved.

References

[1] Suzanne Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29:459–473,
1999.

[2] Yair Bartal, Howard Karloff, and Yuval Rabani. A better lower bound for on-line scheduling. Infor-
mation Processing Letters, 50:113–116, 1994.

[3] Yookun Cho and Sartaj Sahni. Bounds for List Schedules on Uniform Processors. SIAM Journal on
Computing, 9(1):91–103, 1980.

[4] Anja Feldmann, Jiřı́ Sgall, and Shang-Hua Teng. Dynamic scheduling on parallel machines. Theo-
retical Computer Science, 130:49–72, 1994.

[5] Amos Fiat and Jared Saia. Censorship resistant Peer-to-Peer content addressable networks. In Pro-
ceedings of the 13th Annual ACM-SIAM Symposium On Discrete Algorithms (SODA 2002), pages
94–103, 2002.

[6] Rudolf Fleischer and Michaela Wahl. Online scheduling revisited. Journal of Scheduling, 3:343–353,
2000.

[7] Gabor Galambos and Gerhard J. Woeginger. An on-line scheduling heuristic with better worst case
ratio than Graham’s list scheduling. SIAM Journal on Computing, 22:349–355, 1993.

[8] Teofilo F. Gonzalez, Oscar H. Ibarra, and S. Sahni. Bounds for LPT Schedules on Uniform Proces-
sors. SIAM Journal on Computing, 6(1):155–166, 1977.

[9] Todd Gormley, Nick Reingold, Eric Torng, and Jeffery Westbrook. Generating adversaries for
request-answer games. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 564–565, 2000.

[10] Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45:1563–1581, 1966.

[11] J.F. Rudin III. Improved bounds for the on-line scheduling problem. PhD thesis, The University of
Texas at Dallas, May 2001.

[12] David R. Karger, Steven J. Phillips, and Eric Torng. A better algorithm for an ancient scheduling
problem. Journal of Algorithms, 20:400–430, 1996.

[13] Piotr Krysta, Peter Sanders, and Berthold Vöcking. Scheduling and traffic allocation for tasks with
bounded splittability. In Proc. of the 28th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2003), pages 500–510, 2003.

[14] Rongheng Li and Lijie Shi. An on-line algorithm for some uniform processor scheduling. SIAM
Journal on Computing, 27(2):414–422, 1998.

13

[15] Jane W. S. Liu and C. L. Liu. Bounds on scheduling algorithms for heterogeneous computing sys-
tems. In Jack L. Rosenfeld, editor, Proceedings of IFIP Congress 74, volume 74 of Information
Processing, pages 349–353, 1974.

[16] Edwin Naroska and Uwe Schwiegelshohn. On an on-line scheduling problem for parallel jobs. In-
formation Processing Letters, 81(6):297–304, 2002.

[17] Jiřı́ Sgall. A Lower Bound for Randomized On-Line Multiprocessor Scheduling. Inf. Process. Lett.,
63(1):51–55, 1997.

[18] Jiřı́ Sgall. On-Line scheduling on parallel machines. PhD thesis, Carnegie-Mellon University, Pitts-
burgh, PA, USA, 1994.

[19] Hadas Shachnai and Tami Tamir. Multiprocessor scheduling with machine allotment and parallelism
constraints. Algorithmica, 32(4):651–678, 2002.

14

