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We study the stationary distribution of the standard Abelian sandpile model in the box Λn =

[−n, n]d ∩ Z
d for d ≥ 2. We show that as n → ∞, the finite volume stationary distributions weakly

converge to a translation invariant measure on allowed sandpile configurations in Z
d. This allows us

to define infinite volume versions of the avalanche-size distribution and related quantities. The proof

is based on a mapping of the sandpile model to the uniform spanning tree due to Majumdar and

Dhar, and the existence of the wired uniform spanning forest measure on Z
d. In the case d > 4, we

also make use of Wilson’s method.
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Abstract

We study the stationary distribution of the standard Abelian sandpile model in the box Λn =

[−n, n]d ∩ Z
d for d ≥ 2. We show that as n → ∞, the finite volume stationary distributions weakly

converge to a translation invariant measure on allowed sandpile configurations in Z
d. This allows us

to define infinite volume versions of the avalanche-size distribution and related quantities. The proof

is based on a mapping of the sandpile model to the uniform spanning tree due to Majumdar and

Dhar, and the existence of the wired uniform spanning forest measure on Z
d. In the case d > 4, we

also make use of Wilson’s method.

1 Introduction

The Abelian sandpile model (ASM) was introduced by Bak, Tang and Wiesenfeld [2] as a model exhibiting

self-organized criticality (SOC). Roughly speaking, SOC arises when a dynamics drives a system towards

a stationary state characterized by power law correlations in space and time. The concept of SOC was

proposed in [1, 2], as a mechanism that could explain the occurrence of fractal structures in diverse

natural phenomena. Various physical situations where the concept may apply are discussed in the book

[11]. The ASM is one of the simplest models in which the complex phenomenon of SOC can be studied.

Due to its rich mathematical structure and tractability, the model has received substantial interest in the

physics literature and in recent years in the mathematical literature as well; see the review papers [9, 6]

and [14].

The Abelian sandpile is an interacting particle system (particles ≡ “grains of sand”) living on a finite

subset Λ of the d-dimensional integer lattice Z
d. In finite volume Λ, the model is defined as follows.
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Every site i ∈ Λ is occupied by a number of particles zi ∈ {1, 2, . . . }. If 1 ≤ zi ≤ 2d then the site i

is called stable, if zi > 2d, it is called unstable. The value zi is also called the height of the site. The

value zc = 2d is called the critical height. The height configuration undergoes the following discrete-time

dynamics. Given a configuration in which all sites are stable, we add a particle at a random site i ∈ Λ

which is chosen according to a distribution qΛ, with qΛ(i) > 0, i ∈ Λ. If as a result, i becomes unstable,

2d particles jump from site i, one to each adjacent site, decreasing the height of i by 2d and increasing

the height at each nearest neighbor by 1. If the unstable site i was on the boundary of Λ, we still decrease

the height of i by 2d, and one or more particles leave the system through the boundary. This operation

is called toppling, and it can be concisely written as zj → zj − ∆ij , where ∆ is the discrete Laplacian in

Λ,

∆ij =





2d if i = j,

−1 if |i− j| = 1,

0 otherwise.

It may happen that new unstable sites are created by the toppling of i. We topple them as well, until

eventually all sites become stable again. The order in which we do the topplings does not matter. One

can show that any possible sequence of topplings leads to the same stable configuration [5, 20]. This new

stable configuration is the state of the system after a single time-step. The result of particle addition at

i and subsequent relaxation is given by an operator ai : ΩΛ → ΩΛ, where ΩΛ = {1, . . . , 2d}Λ. Due to

the random choice of i, we have a Markov-chain with state space ΩΛ. The operators ai commute (hence

the name Abelian), which makes it possible to analyze the chain in some detail. In particular, there is

a unique stationary distribution νΛ, which is uniform on the set of recurrent states of the Markov chain,

and is independent of qΛ [5, 20]. For this reason, it is quite natural to fix qΛ to be the uniform measure.

We note that the above definitions and results carry over to a general graph [6, 20].

The first mathematical results about the ASM, including the statements above, were proved by Dhar, see

[4, 5, 8]. Additional background is provided by [6, 9]. For a detailed introduction to the basic properties

of the model we refer the reader to [20]. A thorough review of ‘exactly solvable’ models exhibiting SOC

is carried out in the lecture notes by Dhar [7]. A unified mean field study of SOC, including sandpile and

forest fire models, can be found in [25]. Further background about SOC is provided by [11, 6, 9] and the

references therein.

The main object of study in the model is the sequence of topplings performed in one time-step, called an

avalanche. A basic problem is to determine the properties of avalanches under the stationary distribution

νΛ. Some quantities of interest are:

(a) the number of topplings in an avalanche (size),

(b) the number of sites affected by an avalanche (range), and

(c) the distance of the furthest affected site from the initial toppling (radius).
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It is often assumed that these quantities have distributions with a power law tail in the limit Λ ↗ Z
d.

Numerical results in d = 2 indicate a rich fractal and multi-fractal structure of the distributions of (a) and

(b) [24]. Also, it has been argued that above the upper critical dimension du = 4, the probability of an

avalanche of size s decays like s−3/2 (again in the large volume limit) [23]. To the best of our knowledge,

there is no rigorous proof of power law behavior, either in d = 2 or higher. Exact computations are

possible for d = 1 [7] and on the Bethe lattice [8]. In the former case, the probability of an avalanche of

size s occurring goes to 0 for fixed s. In the latter, the probability of an avalanche of size s is asymptotic

to a multiple of s−3/2 (See (6.14) in [8]).

As a step in analyzing the above distributions, in this paper we study some aspects of the limit Λ ↗ Z
d,

and define avalanche characteristics in the infinite volume. In the two-dimensional case, Priezzhev [22]

calculated the exact values of limΛ↗Z2 νΛ(z0 = k), k = 1, . . . , 4. By an idea of Majumdar and Dhar

[18, 17], it possible to compute, in principle, the limiting probability of any finite height configuration

that satisfies a certain minimality property. In this paper, we prove that νΛ converges weakly to a limit ν

in dimensions d ≥ 2 (see Theorem 1), which implies the existence of the thermodynamic limit of the full

height configuration in the stationary state. Since the distributions of the quantities (a)–(c) above can be

defined in terms of νΛ alone (without referring to the dynamics), we obtain that limiting distributions for

(a)–(c) exist. It remains an important open problem to describe the limit in more detail, and to determine

the effect of the boundary in finite volumes. Recently, infinite volume versions of the sandpile process

have been constructed on the one-dimensional lattice [16], on an infinite tree [14], and for a dissipative

model [15]. Unlike in these articles, we do not construct a dynamics in the limit. However, our Theorem

1 is a necessary ingredient in such constructions.

Our proof is based on the deep observation of Majumdar and Dhar [19], that the set of recurrent states

of the ASM can be mapped onto the set of spanning trees on Λ. This observation has also been used

in [22, 23]. It is known that νΛ is the uniform measure on the set of recurrent states, and therefore νΛ

corresponds to the uniform spanning tree measure on Λ. It is also known that the uniform spanning tree

has a limit as Λ ↗ Z
d [21, 3], called the uniform spanning forest (USF). Therefore it is not surprising that

νΛ converges as well, and in fact, when 2 ≤ d ≤ 4, a continuity property of the correspondence is indeed

sufficient to prove this. However, in the case d > 4, the correspondence becomes non-local, and making

the argument precise requires effort. The non-locality is due to the fact that the uniform spanning forest

has infinitely many components when d > 4. As a consequence, the correspondence between sandpile

configurations and trees breaks down in the infinite volume when d > 4, and a bit of extra randomness

is necessary to describe the limit. This leads to the extra permutation in (19) of Lemma 3.

The rest of the paper is organized as follows. In the next section we state some basic notation and

preliminaries. In the following Section 1.2 we state our main theorem and comment on its implications.

Section 2 contains a review of the burning test and the connections of the ASM with the uniform spanning
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tree. Finally in Section 3, we provide a proof of our main result.
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erroneous remark in the first version, their input is incorporated in Remark 1 (vi).

1.1 Notation and Preliminaries

We let PΛ denote the product of the measures νΛ and qΛ. We think of PΛ as the joint law of the

stationary height configuration and the position of particle dropping. We write XΛ for the random site

of Λ specified by qΛ. We sometimes restrict our attention to volumes of the form Λn = [−n, n]d ∩Z
d, and

write νn = νΛn
, Pn = PΛn

etc. We regard νΛ as a measure on the space Ω = {1, . . . , 2d}Z
d

in the natural

way. We denote the natural σ-algebra on Ω by G.

By a cylinder event we mean an event in G depending on the heights of finitely many sites only. For

v ∈ Z
d let τv denote translation by v. If E is a cylinder event depending on a set of sites A, then τvE

depends on the set of sites τvA = {u+ v : u ∈ A}. For a random variable Y we define τvY similarly.

Given a function f(Λ) taking values in a metric space with metric ρ, and defined for all (or all sufficiently

large) finite subsets Λ of Z
d we say that limΛ↗Zd f(Λ) = a, if given any ε > 0 there is a finite Λ0 ⊂ Z

d

such that for all finite Λ ⊃ Λ0 we have ρ(f(Λ), a) < ε.

When i and j are neighbors in Z
d we denote this by i ∼ j.

1.2 Results

Our main result is concerned with the limit of νΛ as Λ ↗ Z
d. In its statement, we assume that Xn

satisfies

lim
ε↓0

lim sup
n→∞

Pn(dist(Xn, ∂Λn) ≤ εn) = 0. (1)

This condition is clearly satisfied when Xn is uniform on Λn.

Theorem 1. Let d ≥ 2. The measures νn weakly converge to a translation invariant measure ν on Ω.
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For any cylinder event E and any v ∈ Z
d we have

ν(E) = lim
n→∞

νn(E) = lim
n→∞

νn(τvE) = lim
n→∞

Pn(τXn
E). (2)

Remark 1. (i) The first two limits in (2) exhibit the weak convergence and translation invariance. In

(10) and (34) we give expressions for ν(E) in terms of the USF on Z
d. The third equality in (2), which

is a consequence of translation invariance, says that the configuration at the position Xn has the same

limiting law as at 0. See remark (v) below.

(ii) As mentioned earlier, there is a difference in the proof according to whether 2 ≤ d ≤ 4 or d > 4. In the

former case the USF is a.s. a single tree, and in this case the one-to-one correspondence between spanning

trees and allowed configurations extends to configurations on Z
d. When d > 4, the correspondence breaks

down on Z
d, due to the fact that the USF has multiple trees. However, the limit can still be described

in terms of trees using extra randomness.

(iii) For 2 ≤ d ≤ 4, we establish the first two limits even as Λ ↗ Z
d. In d > 4, the first two limits hold

for growing regions of the form Λn = (nG) ∩ Z
d, where G is an open set in R

d with smooth boundary.

We believe the former stronger result to hold also when d > 4, but it was convenient to restrict to regular

volumes at certain points in the proof. In the case of the third limit in (2), the restriction to volumes

with regular boundary is necessary, if we want condition (1) to apply when Xn is uniform. In the case

2 ≤ d ≤ 4, our proof allows us to relax condition (1) to limn→∞ Pn(dist(Xn, ∂Λn) ≤ N) = 0 for any

N > 0.

(iv) It is known that for any Λ the set of recurrent states can be characterized as those that do not

contain any forbidden sub-configurations [20, 5]. Since forbidden sub-configurations are finite, they do

not occur in the limit, and hence ν is supported on allowed height configurations.

(v) Given a configuration in Ω, it makes sense to talk about the size, range, radius, etc. of an avalanche

when a particle is dropped at a fixed site, let’s say the origin. Let S denote one of these quantities. Then

Theorem 1 implies that p(s) = limn→∞ νn(S = s), 0 ≤ s <∞ is well defined, since the event {S = s} is a

cylinder event. By the third equality in (2), p(s) also equals the limiting probability of {τXn
S = s} when

a particle is dropped at a random site Xn. In particular, when S = avalanche size, p(s) is the asymptotic

avalanche-size distribution. It remains an open problem to determine whether
∑∞

s=0 p(s) < 1 or = 1, the

latter case being equivalent to the absence of infinite avalanches. The absence of infinite avalanches for

d > 4 will be investigated in [10].

(vi) It is possible to show that p(s) > 0 for s ≥ 0 when d ≥ 2. To see this, we give an explicit finite

configuration Cs such that ν(Cs) > 0, and Cs produces an avalanche of size s on addition at 0. For

s = 0, C0 consists of a single 1 at the origin. Let e1, . . . , ed denote the coordinate vectors. For s ≥ 1,

we consider a string of s sites ik = (k − 1)e1 (1 ≤ k ≤ s), and we set zik
= 2d. We also set zi1−e1

= 1;
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zi1±ej
= 1 (2 ≤ j ≤ d); zik±ej

= 2 (2 ≤ j ≤ d, 2 ≤ k ≤ s); and zis+e1
= 2. These values make up

the configuration Cs. We denote the support of Cs by A. It is easy to check that Cs is allowed (does

not contain any forbidden sub-configurations), and produces an avalanche of size s if we add at 0. Also,

Cs is minimal, in the sense that decreasing any value creates a forbidden sub-configuration. By the

technique of Majumdar and Dhar [18, 17], recurrent configurations in Λ containing Cs are in one-to-one

correspondence with recurrent configurations containing Cs in a modified graph Λ′ (with toppling matrix

∆′). In Λ′, the set A is connected by the single edge {is + e1, is + 2e1} to the rest of the lattice. This

gives νΛ(Cs) = νΛ′(Cs)det(∆′)/det(∆). The ratio of the two determinants can be evaluated in terms of

the Green function by the method of [18]. In any case, the ratio remains strictly positive in the limit

Λ ↗ Z
d (one way to see this is by counting spanning trees, and using Wilson’s algorithm [3]). In the

cases s = 0, 1, one has νΛ′(Cs) = 1, and for s ≥ 2, νΛ′(Cs) is a positive number that only depends on A.

These observations imply ν(Cs) > 0.

(vii) In [18], the authors compute the correlation between the events that sites 0 and x (respectively)

have height 1, in the large volume limit. Their computation directly implies that

ν(z0 = 1, zx = 1) − ν(z0 = 1)ν(zx = 1) ∼ |x|−2d, as |x| → ∞.

That is, under ν, at least the random field I[zx = 1] has power law correlations.

(viii) It is natural to ask if one can define dynamics in the infinite volume. This question has been

addressed in the one-dimensional case [16], for the Bethe lattice [14] and for a dissipative model [15].

In the last two cases, the absence of infinite avalanches was an important ingredient (see remark (v)).

Construction of infinite volume dynamics for d > 4 will be addressed in [10]. There the authors will also

investigate ergodic properties of ν, based on tail triviality of the USF [3].

2 Relation to the uniform spanning tree

Below we review the correspondence between the ASM and the uniform spanning tree [19], and then

quote the necessary results about the USF.

2.1 The burning test

The following algorithm, called the “burning test” [5, 19, 20], checks whether a configuration in ΩΛ

is recurrent. At the same time, it establishes a one-to-one map between recurrent configurations and

spanning trees on a suitable modification of Λ. Define the graph Λ̃ by adding a new site δΛ to Λ which is

joined to each i in the boundary ∂Λ by 2d−deg(i) edges. Given a stable configuration, we set A0 = {δΛ},
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and call A0 the set of sites burning at time 0. For t ≥ 1 we recursively define At (the set of sites burning

at time t) as follows. Site i is burning at time t if its height is larger than the number of its unburnt

neighbors.

In other words, for j ∈ Λ let

nt(j) = #{i ∈ Λ : i ∼ j, i 6∈ ∪t−1
r=0Ar} and At = {j ∈ Λ : zj > nt(j), j 6∈ ∪t−1

r=0Ar}.

Given a recurrent configuration z = (zi)i∈Λ we define a spanning tree TΛ = φ(z) of Λ̃ rooted at δΛ. We

build the tree in such a way that At is the set of sites at graph distance t from the root. It is easy to

see from the definitions that any site j ∈ At has at least one neighbor in At−1 (t ≥ 1). Therefore, to

complete the definition of TΛ, we only need to specify how to choose the parent of j ∈ At, when there

are more than one neighbors in At−1. For this first observe that for t ≥ 1 we have

j ∈ At if and only if nt−1(j) ≥ zj > nt(j), (3)

where we set n0(j) ≡ zc = 2d. The number of possible parents of j, that is

r(j) = nt−1(j) − nt(j), (4)

is therefore equal to the number of possible values of zj that are allowed by (3). Thus we can choose the

parent of j depending on the value of zj in a one-to-one fashion according to some fixed rule.

The above algorithm produces a tree TΛ, which spans Λ̃ if and only if the sets (At)t≥1 exhaust Λ. It is

known that this happens if and only if z was recurrent [19, 20].

The procedure can be reversed to show that φ is one-to-one and onto. We also describe φ−1 in detail.

Given a spanning tree TΛ, let Bt denote the set of sites at graph distance t from the root, t ≥ 0. Let

mt(j) = #{i : i ∼ j, i 6∈ ∪t−1
r=0Br}. For any j ∈ Bt the number of neighbors of j in Bt−1 ismt−1(j)−mt(j),

and one of these neighbors is the parent of j. We set the value of zj in such a way that for j ∈ Bt the

inequalities mt−1(j) ≥ zj > mt(j) are satisfied, and we pick that value which corresponds to the parent

of j according to our fixed rule. It is clear that the resulting configuration z is such that in the burning

test At = Bt, nt(j) = mt(j) and φ(z) = TΛ.

Remark 2. (i) In order to reconstruct zj , it is enough to know the distance of j from the root of TΛ

relative to the distances of its neighbors from the root. This usually allows one to reconstruct zj knowing

only a small portion of TΛ. Let v denote the earliest common ancestor of all neighbors of j (earliest means

furthest from δΛ), and let F denote the subtree consisting of all descendants of v. We regard the site v

as the root of F . The pair (F, v) already determines the value of zj . This is because the distances of j

and its neighbors from v in F give us the necessary information about mt−1(j) and mt(j), even without

knowing for which t we have j ∈ Bt.
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(ii) By the argument of (i), it is enough to know, in fact, the relative order of the distances from each

neighbor of j to the root. This observation will play a key role in the case d > 4.

Since all recurrent states have equal weight under νΛ, the image of νΛ under φ is uniform on all spanning

trees of Λ̃. It is called the uniform spanning tree on Λ with wired boundary conditions. We denote its

law by µΛ. It is known (see Theorem 2 below) that as Λ ↗ Z
d, µΛ weakly converges to a limit called

the wired uniform spanning forest. We refer to the limit simply as the USF. (On Z
d the wired and free

spanning forests coincide [3].)

2.2 Properties of the USF

The theorem below summarizes the results we need about the USF. The theorem was proved by Pemantle

[21], except for an extension proved in [3]. For more background on spanning trees see [3]. In the statement

of the theorem below, µΛ is the law of a random subset TΛ of edges of Z
d.

Theorem 2. Let d ≥ 1.

(i) If B is any finite set of edges in Z
d, and B ⊂ Λ ⊂ Λ′ with Λ′ finite, then

µΛ(B ⊂ TΛ) ≤ µΛ′(B ⊂ TΛ′). (5)

(ii) For any finite sets B ⊂ K of edges in Z
d the limit

µ(T ∩K = B)
def
= lim

Λ↗Zd
µΛ(TΛ ∩K = B) (6)

exists, and defines a translation invariant probability measure, called the USF.

(iii) The USF has no cycles µ-a.s. If d ≤ 4, the USF is a single tree a.s. For 2 ≤ d ≤ 4 the USF has one

end a.s., meaning that any two infinite paths in T have infinitely many vertices in common.

(iv) If d > 4 then a.s. the USF has infinitely many components, each component is infinite and has a

single end.

Proof. All statements, except for the last statement of (iv), are either proved in [21] or are implicitly

present there. The last statement of (iv) is proved in [3], and proofs of the other statements can be found

there as well. In particular, (i) follows directly from [3, Corollary 4.3]. For the special case K = B, the

existence of the limit in (6) follows from the monotonicity in (5). The general case B ⊂ K follows by

inclusion-exclusion. Statements (iii) and (iv) follow from [3, Corollary 9.6], and [3, Theorem 10.1]
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3 Proof of Theorem 1

3.1 The case 2 ≤ d ≤ 4

As indicated earlier, the proof of Theorem 1 in this case is accomplished by exploiting the continuity

of the correspondence between spanning trees and the sandpile model. In Section 3.2 we use a more

concrete approach that would also apply here. We begin by listing some conventions and definitions.

1. It will be convenient to regard µΛ and µ (from Theorem 2) as measures on the space Ω′ = {0, 1}E
d

,

where E
d denotes the set of all bonds of Z

d, and 1 represents an edge being present. We consider

Ω′ with the metrizable product topology. For ω ∈ Ω′ let ω|Λ denote the restriction of ω to edges

joining vertices in Λ. Let X ⊂ Ω′ denote the set of spanning trees of Z
d with one end.

2. Let F be a finite rooted tree in Z
d with root x. F will be assumed to denote the edge set and V (F )

the vertex set. For a set of sites B ⊂ V (F ), we define eca(B;F ) as the ‘earliest common ancestor’ of

B in F . More formally, this can be described as the unique site furthest from x and common to all

paths that start in B, end at x and stay in F . It may so happen that for certain B, eca(B;F ) = x.

Let desc(B;F ) denote the tree (or forest) consisting of all descendants of B in F .

3. We consider the sandpile configuration in a fixed finite set A0 ⊂ Z
d for Λ ⊃ A0. Let A denote the

set of sites that are either in A0 or have a neighbor in A0. Let

F = F(A) =

{
(F, x) :

F is a finite rooted tree in Z
d with

root x, A ⊂ V (F ), eca(A;F ) = x

}
.

Given (F, x) ∈ F , let HF,x denote the set of edges incident on a site in V (F ), excluding those edges

incident on x that do not belong to F . In particular, F ⊂ HF,x.

4. We write T for the USF, that is, T ∈ Ω′ with distribution µ. If we define the “root” of T to be at

infinity, we call x∗ = eca(A;T ) and F ∗ = desc(x∗;T ).

5. We use the notation H∗(ω) for the set valued random variable whose value is HF,x on the event

ω ∩ HF,x = F and Z
d otherwise. We also extend the definition of F ∗ and x∗ whenever H∗(ω) is

finite by letting F ∗(ω) = F , x∗(ω) = x on the event ω ∩HF,x = F .

Before we proceed to the proof, we observe the consistency of the above list. First, note that due to

Theorem 2 (iii), µ(X ) = 1. Similarly, µΛ(XΛ) = 1 for the set XΛ defined by

XΛ =

{
ω ∈ Ω′ :

ω|Λ has no cycles, and each component

of ω|Λ is joined to Λc by a unique edge

}
.

9



Secondly, Theorem 2 (iii), ensures that (F ∗, x∗) is µ-a.s. well-defined for 2 ≤ d ≤ 4, and we have

(F ∗, x∗) ∈ F . Thirdly, for different (F, x) ∈ F , the events {ω ∩ HF,x = F} are disjoint, which implies

that H∗ is well defined. Finally, observe that

{(F ∗, x∗) = (F, x)} = {T ∩HF,x = F}, µ-a.s., (7)

which means that the extended definition of F ∗ and x∗ makes sense. We will assume the last observation

for now and provide a proof at the end of this subsection.

Proof of Theorem 1. We observe that by Remark 2 (i), for ω ∈ XΛ, the sandpile configuration in A0

is already determined by (F ∗, x∗), independently of Λ, when H∗ ⊂ Λ. More precisely, defining the

auxiliary space ΩA0
= {1, . . . , 2d}A0 , the configuration is given in terms of a function ψ : F → ΩA0

. The

correspondence in Section 2.1 can be recast in terms of functions fΛ, f : Ω′ → Ω̄A0
defined below. Let

Ω̄A0
= ΩA0

∪ {∗} (endowed with the discrete topology), and define

fΛ(ω) =




φ−1

Λ (ω|Λ)|A0
ω ∈ XΛ,

∗ ω ∈ Ω′ \ XΛ.

f(ω) =




ψ(F, x) when H∗(ω) = HF,x,

∗ otherwise.

By the observations above, for ω ∈ XΛ and H∗(ω) ⊂ Λk ⊂ Λ we have fΛ(ω) = f(ω) = ψ(F ∗, x∗). This

implies that for u ∈ ΩA0

lim sup
Λ↗Zd

∫
|I[fΛ = u] − I[f = u]| dµΛ ≤ lim

k→∞
lim

Λ↗Zd
µΛ(H∗ 6⊂ Λk) = 0. (8)

Here in the last step we used that {H∗ ⊂ Λk} is a cylinder event, and that H∗ is finite µ-a.s. It is easy to

see using the definition of H∗ that f is continuous at every ω ∈ X , and therefore by the general theory

of weak convergence [13, Section 12]

lim
Λ↗Zd

∫
I[f = u]dµΛ =

∫
I[f = u]dµ. (9)

Now (8) and (9) imply that for any u ∈ ΩA0

lim
Λ↗Zd

νΛ(z|A0
= u) = lim

Λ↗Zd

∫
I[fΛ = u]dµΛ =

∫
I[f = u]dµ

def
= ν(z|A0

= u).

This exhibits the weak convergence of νΛ to a limit ν. For a cylinder E depending on the set of sites A0

we have

ν(E) =
∑

(F,x)∈FE

µ(T ∩HF,x = F ), (10)

where

FE = {(F, x) ∈ F : ψ(F, x) ∈ E}. (11)
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Translation invariance of the limit follows, since for any fixed v ∈ Z
d we have

lim
Λ↗Zd

νΛ(τvE) = lim
Λ↗Zd

ντ−vΛ(E) = lim
Λ↗Zd

νΛ(E) = ν(E). (12)

For the third equality in (2), observe that for fixed N and n > N

Pn(τXn
E) = Pn(τXn

E, dist(Xn, ∂Λn) ≤ N) +
∑

v∈Λn:
dist(v,∂Λn)>N

νn(τvE)Pn(Xn = v).

The first term is bounded by Pn(dist(Xn, ∂Λn) ≤ N), and goes to 0 as n→ ∞. By (12) the second term

is arbitrarily close to ν(E) when N is large, and n→ ∞..

Proof of (7). First we show that (F ∗, x∗) = (F, x) implies the event on the right hand side. Since F = F ∗,

we have F ⊂ T , and hence F ⊂ T ∩HF,x. Consider an edge f = 〈u1, u2〉 ∈ HF,x \ F , with u1 ∈ V (F ).

We show that f 6∈ T . In the case when we also have u2 ∈ V (F ), we are done, since T has no cycles. If

u2 6∈ V (F ), then first note that u1 6= x, by the definition of HF,x. Therefore, if we had f ∈ T , then u2

would be a descendant of x∗ in T , and we would have f ∈ F ∗ = F , a contradiction.

Now assume that T ∩HF,x = F occurs. First, this implies F ⊂ T . It also implies, by the definition of

HF,x, that if an edge incident on any u ∈ V (F ) with u 6= x does not belong to F , then it does not belong

to T either. Hence the only site in V (F ) that is connected (in T ) to infinity without using edges of F is

x. This implies that V (F ) is precisely the set of descendants of x in T , and that F consists precisely of

those edges of T that are descendants of x. It is simple to deduce from this that x∗ = x and F ∗ = F .

3.2 The case d > 4

We will be borrowing most of the definitions and conventions from the previous case. The few modifica-

tions we will make are due to the fact that there are multiple components in the USF.

1. We need to modify the definition of the set F . We let

F̄ = F̄(A) =





(Fi, xi)
r
i=1 :

Fi are vertex-disjoint finite rooted trees in

Z
d with root xi, eca(A ∩ V (Fi);Fi) = xi,

i = 1, . . . , r, and A ⊂ ∪r
i=1V (Fi), r ≥ 1




.

We write (F̄ , x̄) to denote an element of F̄ .

2. For Λ ⊃ A, recall TΛ from Section 2.1. Since TΛ falls apart into multiple components as Λ ↗ Z
d,

any two fixed sites u and v are either connected within a ‘short distance’, or the connection occurs

through the root δΛ. We decompose TΛ into vertex disjoint trees by removing δΛ. With slight abuse
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of language, we refer to these trees as the components of TΛ. The decomposition of TΛ induces a

decomposition of A into (random) sets Ai, 1 ≤ i ≤ r, where u, v ∈ A belong to the same Ai if and

only if eca({u, v};TΛ) 6= δΛ. Here r is random, and the indexing of the Ai’s is determined by some

fixed rule that assigns a particular indexing to any partition of A. We let x∗Λ,i = eca(Ai;TΛ) and

F ∗
Λ,i = desc(x∗Λ,i;TΛ). It is clear that (F̄ ∗

Λ, x̄
∗
Λ) = {(F ∗

Λ,i, x
∗
Λ,i)

r
i=1} ∈ F̄ .

It is straightforward to extend these definitions to the case Λ = Z
d, noting that each component

of the USF has one end a.s. Letting Ai, 1 ≤ i ≤ r denote the non-empty intersections of A

with a component of T , we define x∗i = eca(Ai;T ) and F ∗
i = desc(x∗i ;T ). By Theorem 2 (iv),

(F̄ ∗, x̄∗) = (F ∗
i , x

∗
i )

r
i=1 is µ-a.s. well-defined, and is an element of F̄ .

3. Define

XΛ,i = distTΛ
(x∗Λ,i, δΛ), 1 ≤ i ≤ r,

where distTΛ
denotes the graph distance in TΛ. Let Σr denote the set of permutations of {1, . . . , r}.

We define the random permutation σ∗
Λ ∈ Σr by the conditions XΛ,σ∗

Λ
(1) ≤ · · · ≤ XΛ,σ∗

Λ
(r), where in

case of ties we make a choice for σ∗
Λ in a fixed but arbitrary manner. We also define

YΛ = min
1≤i<j≤r

|XΛ,i −XΛ,j |.

For convenience, we set YΛ = ∞ when r = 1.

4. We need some more notation in order to formulate the analogue of (11). We define the events

DΛ(x̄) = DΛ

(
(xi)

r
i=1

)
= {x1, . . . , xr belong to distinct components of TΛ},

for x1, . . . , xr ∈ Z
d, and

BΛ(F̄ , x̄) = DΛ(x̄) ∩ {TΛ ∩HFi,xi
= Fi, 1 ≤ i ≤ r}, (13)

for (F̄ , x̄) = (Fi, xi)
r
i=1 ∈ F̄ . When Λ = Z

d, we denote the corresponding events by D(x̄) and

B(F̄ , x̄). Analogously to the case 2 ≤ d ≤ 4, we can show

{(F̄ ∗
Λ, x̄

∗
Λ) = (F̄ , x̄)} = BΛ(F̄ , x̄) {(F̄ ∗, x̄∗) = (F̄ , x̄)} = B(F̄ , x̄), (14)

for any (F̄ , x̄) ∈ F̄ and Λ ⊃ ∪r
i=1HFi,xi

.

Remark 3. Note that the events on the right hand side of (14) are disjoint for different (F̄ , x̄) ∈ F̄ . By

Remark 2 (i), the occurrence or not of E is already determined by (F̄ ∗
Λ, x̄

∗
Λ) and (XΛ,i)

r
i=1. In fact, it is

enough to know (F̄ ∗
Λ, x̄

∗
Λ) and the value of all differences XΛ,i −XΛ,j , 1 ≤ i < j ≤ r. In view of Remark

2 (ii), even less information about the XΛ,i is sufficient. The configuration in A0 is determined by the

relative order of the distances distTΛ
(w, δΛ) for w ∈ A. For w ∈ Ai we have

distTΛ
(w, δΛ) = distF∗

Λ,i
(w, x∗Λ,i) +XΛ,i.

12



Therefore, the relative order within the i-th component only depends on (F ∗
Λ,i, x

∗
Λ,i). To determine the

relative order between w1 ∈ Ai and w2 ∈ Aj , i 6= j, we need to consider

distTΛ
(w1, δΛ) − distTΛ

(w2, δΛ) = [distF∗

Λ,i
(w1, x

∗
Λ,i) − distF∗

Λ,j
(w2, x

∗
Λ,j)] + [XΛ,i −XΛ,j ]. (15)

We can expect that the fluctuations of the differences XΛ,i −XΛ,j grow as Λ ↗ Z
d, and that the second

term on the right hand side of (15) will dominate, and determine the order. For this, it is in fact enough if

YΛ > max1≤i≤r diam(F ∗
Λ,i), where diam denotes the graph diameter. When this happens, we say that the

XΛ,i are ‘well separated’. If the XΛ,i are well separated, then by Remark 2 (ii), already the permutation

σ∗
Λ defined above and (F̄ ∗

Λ, x̄
∗
Λ) determine the occurrence or not of E.

5. Fix (F̄ , x̄) ∈ F̄ and σ ∈ Σr, where r is the number of components of (F̄ , x̄). Assume that the events

BΛ(F̄ , x̄) and {σ∗
Λ = σ} occur. By the above consideration, this already determines whether E

occurs or not, independently of Λ, whenever YΛ is larger than some constant K = K(F̄ ). We take

K(F̄ ) = max1≤i≤r diam(Fi). Let

F̄E =

{
(F̄ , x̄, σ) :

BΛ(F̄ , x̄) and σ∗
Λ = σ imply φ−1(TΛ) ∈ E,

whenever YΛ > K(F̄ ) and Λ ⊃ ∪r
i=1HFi,xi

}
. (16)

The family F̄E collects those spanning tree configurations and permutations, that contribute to the

event E, given that the XΛ,i are well-separated. It will be part of Lemma 3 below to show that

configurations with YΛ ≤ K(F̄ ) do not contribute in the limit; see (18).

6. Let H∗
Λ denote the random set whose value equals ∪r

i=1HFi,xi
on the event BΛ(F̄ , x̄), (F̄ , x̄) ∈ F̄ .

We will need the following Lemma.

Lemma 3. Let d > 4. We have

lim
k→∞

lim inf
Λ↗Zd

µΛ(H∗
Λ ⊂ Λk) = 1. (17)

For fixed (F̄ , x̄, σ) ∈ F̄E, we have

lim
n→∞

µn

(
Bn(F̄ , x̄), Yn ≤ K(F̄ )

)
= 0, (18)

and

lim
n→∞

µn

(
Bn(F̄ , x̄), σ∗

n = σ, Yn > K(F̄ )
)

=
1

r!
µ(B(F̄ , x̄)). (19)

Due to (18), the event Yn > K(F̄ ) in the last statement could be omitted, without affecting the limit.

However, it is instructive to keep it in for its use in the proof of Theorem 1; see (35).
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Proof of Lemma 3. Denote by x ↔ y the event that sites x and y belong to the same component of TΛ

(or T ). The first step in showing (17) is to prove that for any x, y ∈ A

lim sup
Λ↗Zd

µΛ(x↔ y, but not inside Λm) → 0, as m→ ∞. (20)

To see this, note that when x ↔ y, there is a unique self-avoiding path ω : x → y in Λ (or in Z
d) such

that the edges of ω belong to TΛ (or T ). Therefore, using (5), the expression in (20) can be bounded by

lim sup
Λ↗Zd

∑

ω:x→y
ω⊂Λ

ω 6⊂Λm

µΛ(ω ⊂ TΛ) ≤
∑

ω:x→y
ω 6⊂Λm

µ(ω ⊂ T ) = µ(x↔ y, but not inside Λm).

Here the right hand side goes to 0 as m → ∞. Now assume that m is such that for any x, y ∈ A

either x ↔ y inside Λm, or x 6↔ y. Then H∗
Λ ⊂ Λk can be ensured if desc(Λm;TΛ) ⊂ Λk−1. Since each

component of T has a single end, for fixed m we have limk→∞ µ(desc(Λm;T ) ⊂ Λk−1) = 1. By Theorem

2 (ii) this implies

lim
k→∞

lim inf
Λ↗Zd

µΛ(desc(Λm;TΛ) ⊂ Λk−1) = 1.

This proves (17).

We next turn to the proof of (18). For a site x, let ZΛ(x) = distTΛ
(x, δΛ). Then it is sufficient to prove

that for any x, y ∈ A

lim
n→∞

µn(x 6↔ y, |Zn(x) − Zn(y)| ≤ 2K(F̄ )) = 0. (21)

Indeed, YΛ ≤ K(F̄ ) and the occurrence of BΛ(F̄ , x̄) would imply that there exist x, y ∈ A such that

x 6↔ y, and |ZΛ(x) − ZΛ(y)| ≤ 2K(F̄ ). Therefore we are going to study the paths from x and y to

the boundary of Λ conditional on x 6↔ y. The key tool for this is Wilson’s method. It is described for

example in [3, 26].

Wilson’s method gives a construction of TΛ via loop-erased random walks [12]. In particular, using the

method with root at δΛ, it follows that the paths from x and y to δΛ can be generated in the following

way. Let {S(i)(n)}n≥0, i = 1, 2 be two independent simple random walks starting at S(1)(0) = x and

S(2)(0) = y. Let T (i) = T
(i)
Λ be the hitting time of Λc by the two walks. Let LE denote the operation

of erasing loops from a path in sequence, as they are created, and let γ
(i)
Λ = LE

{
S(i)[0, T (i))

}
, i = 1, 2.

Then conditional on GΛ = {S(2)[0, T (2)) ∩ γ
(1)
Λ = ∅}, the joint law of (γ

(1)
Λ , γ

(2)
Λ ) is the same as the joint

law of the paths in TΛ from x and y to δΛ conditional on x 6↔ y. In the sequel we assume that the

latter paths have been generated by the random walks in this way. In particular, we assume that the

constructions in different volumes Λ are coupled by using the same infinite random walks S(1) and S(2).

Denote by ρ(n) the number of points remaining of the first n points after loops are erased from a random

walk S[0,∞). It is shown in [12, Theorem 7.7.2], that for d ≥ 5 there exists a constant a > 0 such that

lim
n→∞

ρ(n)

n
= a, a.s. (22)
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We claim

ZΛ(x) = ρ(1)(T
(1)
Λ ) + E1, (23)

where E1/T
(1) → 0 a.s. as Λ ↗ Z

d. We use the notion of a (two-sided) loop-free point, a concept

introduced in [12, Lemma 7.7.1]. A random walk S[0,∞) has a natural extension to a two-sided random

walk S(−∞,∞). We call a point j loop-free for S, if S(−∞, j]∩S(j,∞) = ∅. If j0 < j1 < j2 are loop-free,

then loop-erasure on [j0, j1] does not interfere with loop-erasure on [j1, j2]. Let

j
(1)
Λ = max{j < T

(1)
Λ : j is loop-free}.

Note that E1 ≤ T
(1)
Λ − j

(1)
Λ . Let π(1)(n) denote the number of loop-free points in [0, n) for the random

walk S(1). By the ergodic theorem,

lim
n→∞

π(1)(n)

n
= b = P (0 is loop-free) > 0, a.s.,

where in the last step we used d ≥ 5 [12]. This implies that for any δ > 0, as Λ ↗ Z
d we have

(1 + δ)bj
(1)
Λ ≥ π(1)(j

(1)
Λ ) = π(1)(T

(1)
Λ ) − 1 ≥ (1 − δ)bT

(1)
Λ

eventually a.s. This implies that (1−δ)/(1+δ) ≤ j
(1)
Λ /T

(1)
Λ ≤ 1 eventually a.s., and therefore E1/T

(1) → 0

follows. Similarly to the above one can show that on the event GΛ,

ZΛ(y) = ρ(2)(T
(2)
Λ ) + E2, (24)

where E2/T
(2) → 0 as Λ ↗ Z

d a.s.

It follows from (22), (23) and (24), that

ZΛ(x)

ZΛ(y)

T
(2)
Λ

T
(1)
Λ

→ 1, as Λ ↗ Z
d a.s. on G, (25)

where G =
{
S(2)[0,∞) ∩ LE

{
S(1)[0,∞)

}
= ∅

}
. Since for d ≥ 5 the walks S(1)[0,∞) and S(2)[0,∞) have

finitely many intersections a.s. [12, Proposition 3.2.3], we have limΛ↗Zd I[GΛ] = I[G] a.s.

For simplicity, let us restrict to Λ = Λn, and consider n→ ∞.

Consider two independent Brownian motions in R
d started at 0, and let τ (i), i = 1, 2 denote their first

exit times from (−1, 1)d.

It follows from Donsker’s theorem [13, Section 42.2] that

T
(1)
n

T
(2)
n

⇒
τ (1)

τ (2)
, as n→ ∞, (26)

where ⇒ denotes weak convergence. It is simple to deduce from (26), (25) and I[Gn] → I[G] that

lim
δ→0

lim sup
n→∞

P

(
Gn,

Zn(x)

Zn(y)
∈ [1 − δ, 1 + δ]

)
= 0. (27)
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This in turn implies (21), since Zn(x), Zn(y) → ∞ as n→ ∞. Note that the fact that Zn(x)/Zn(y) does

not ‘concentrate mass at 1’ provides the proof that the probability of Yn ≤ K(F̄ ) vanishes.

Finally, we show that a strengthening of the preceding argument also proves (19). For this we describe the

event in (19) in terms of Wilson’s algorithm. Enumerate the sites in ∪r
i=1V (Fi) starting with x1, . . . , xr

and followed by an arbitrary list y1, y2, . . . of the rest of the sites. We apply Wilson’s method with root δΛ

and with paths starting successively at the sites enumerated above. Let S(i), i = 1, . . . , r be independent

simple random walks started at xi, with T (i) the hitting time of Λc. Let γ
(i)
Λ be the loop-erasure of

S(i)[0, T (i)) as before. For the event DΛ(x̄) we require the occurrence of the event

GΛ =
{
S(i)[0, T (i)) ∩

(
∪i−1

j=1γ
(j)
Λ

)
= ∅, i = 1, . . . , r

}
. (28)

In addition, BΛ(F̄ , x̄) gives conditions on the paths starting at y1, y2, . . . , namely these paths have to

realize the events TΛ ∩HFi,xi
= Fi, given the paths γ

(i)
Λ . We denote the latter event by CΛ. Thus CΛ is

a sub-event of GΛ, which occurs if and only if given the paths implicit in the event GΛ, the loop-erased

random walks started at y1, y2, . . . realize TΛ ∩ HFi,xi
= Fi. Analogously we can define events G and

C ⊂ G, which are the Λ = Z
d versions of GΛ and CΛ.

Applying Wilson’s algorithm in Z
d with root at infinity, it is clear that P (C) = µ(B(F̄ , x̄)). As before,

(27) takes care of the condition Yn > K(F̄ ) in (19). Therefore, specializing to Λ = Λn and using (27),

(19) will be proved, once we show

lim
n→∞

P
(
Cn, Zn(xσ(i)) < Zn(xσ(i+1)), i = 1, . . . , r − 1

)
= P (C)

1

r!
. (29)

Arguing as in the proof of (18), we have

lim
n→∞

Zn(xσ(i))

Zn(xσ(i+1))

T
σ(i+1)
n

T
σ(i)
n

= 1, a.s. on G, i = 1, . . . , r − 1. (30)

Since C ⊂ G, the above convergence also holds a.s. on C.

Next we show I[CΛ] → I[C] a.s. We may assume the occurrence of G, since as before, we already know

I[GΛ] → I[G]. When C occurs, the random walks started at y1, y2, . . . remain inside a finite (random)

box up to their respective hitting times. This implies that CΛ occurs for large enough Λ. If G occurs

but C does not, then two things can happen. One is that for some j the random walk started at yj has

infinite hitting time. In this case CΛ cannot occur. The other is that all hitting times are finite, but at

least one of the events T ∩HFi,xi
= Fi is not realized. When this happens, it also happens for all large

Λ, and thus CΛ does not occur.

By the previous paragraph, we can replace Cn by C in (29) without affecting the limit. Also, by (30) and

(27) we can replace each Zn by the corresponding hitting time without affecting the limit. Therefore we

are left to show

lim
n→∞

P
(
C, T σ(i)

n < T σ(i+1)
n , i = 1, . . . , r − 1

)
= P (C)

1

r!
, (31)
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We complete the proof by approximating C by Cm for 0 < m < n, keeping m fixed but large. The

probability on the left hand side of (31) can be written as

P
(
Cm, T

σ(i)
n < T σ(i+1)

n , i = 1, . . . , r − 1
)

+ η(m,n), (32)

where limm→∞ lim supn→∞ η(m,n) = 0 by I[Cm] → I[C]. Also, we can replace T
σ(j)
n by T

σ(j)
n − T

σ(j)
m in

(32). For fixed m, Cm and (T
(i)
n − T

(i)
m )r

i=1 are conditionally independent given (S(i)(T
(i)
m ))r

i=1. Similarly

to (26) we have

T
(i)
n − T

(i)
m

T
(j)
n − T

(j)
m

⇒
τ (i)

τ (j)
, 1 ≤ i < j ≤ r,

uniformly in (S(i)(T
(i)
m ))r

i=1 for fixed m as n→ ∞. This gives

lim
n→∞

P
(
Cm, T

σ(i)
n < T σ(i+1)

n , i = 1, . . . , r − 1
)

= P (Cm)P
(
τσ(i) < τσ(i+1), i = 1, . . . , r − 1

)

= P (Cm)
1

r!
.

(33)

Since P (Cm) → P (C), (32) and (33) proves (31) by letting m → ∞. This completes the proof of the

lemma.

We are now ready to present the proof of the Theorem.

Proof of Theorem 1. We write down an expression for the limit ν(E). In the lemma we have shown that

conditioned on BΛ(F̄ , x̄), σ∗
Λ is asymptotically uniform on Σr. Therefore we define

ν(E)
def
=

∑

(F̄ ,x̄,σ)∈F̄E

1

r!
µ(B(F̄ , x̄)), (34)

where the value of r in the summand is the number of components of F̄ .

For k ≥ 1 we let

F̄(k) =
{
(Fi, xi)

r
i=1 ∈ F̄ : ∪r

i=1HFi,xi
⊂ Λk

}

F̄E(k) =
{
(F̄ , x̄, σ) ∈ F̄E : (F̄ , x̄) ∈ F̄(k)

}
.

Let k be large, and isolate contributions to the event E where H∗ 6⊂ Λk, or where separation of the XΛ,i

does not occur. By the discussions preceding (16), we have

∣∣∣νn(E) −
∑

(F̄ ,x̄,σ)∈F̄E(k)

µn

(
Bn(F̄ , x̄), σ∗

n = σ, Yn > K(F̄ )
)∣∣∣

≤ µn

(
H∗ 6⊂ Λk

)
+

∑

(F̄ ,x̄,σ)∈F̄E(k)

µn

(
Bn(F̄ , x̄), Yn ≤ K(F̄ )

)
.

(35)

Given ε > 0, by (17) we can choose k large, so that the lim sup of the first term on the right hand

side, as n → ∞, is at most ε. Fixing such a k, and noting that F̄E(k) is finite, the second term on the
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right hand side of (35) is less than ε, if n is large enough, by (18). Also, for each (F̄ , x̄) ∈ F̄E(k), the

summand on the left hand side of (35) approaches µ(B(F̄ , x̄))/r! by (19). Now letting ε→ 0 proves that

limn→∞ νn(E) = ν(E).

For the second limit in Theorem 1, we can apply the same argument, using a minor modification of Lemma

3. Note that the convergence is in fact uniform in v, as long as the distance of v from the boundary is at

least αn, for any fixed α > 0. To see this, first note that under this condition, no problem arises where

we have shown convergence as Λ ↗ Z
d. Therefore we only need to verify that there is uniformity in the

application of Donsker’s theorem as well.

To make the last observation more precise, let z = (z1, . . . , zd) ∈ [−(1− α), 1− α]d, and let Tn(z) be the

exit time from [−n, n]d for simple random walk started at v = nz. Then Tn(z)/(2dn2) ⇒ τ(z) where

τ(z) is the exit time from (−1, 1)d for Brownian motion started at z. What we need to verify is that for

any t > 0

P (Tn(z)/(2dn2) < t) → P (τ(z) < t) uniformly in z. (36)

Let (Sn)n≥0 = (Sn,1, . . . , Sn,d)n≥0 be simple random walk started at 0.The event on the left hand side of

(36) can be recast as

d⋃

i=1

[{
max

0≤m≤2dn2t

Sm,i

n
≥ 1 − zi

}
∪

{
min

0≤m≤2dn2t

Sm,i

n
≤ −1 − zi

}]
.

Thus the claim follows from the weak convergence of the joint law of the maxima and minima in this

event.

With this observation we can prove the third equality of the theorem arguing similarly to the case

2 ≤ d ≤ 4, and letting α→ 0.
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