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ABSTRACT

This paper lays the theoretical foundations to path openings and closings. The traditional morphological filter
used for the analysis of linear structures in images is the union of openings (or the intersection of closings)
by linear segments. However structures in images are rarely strictly straight, and as a result a more flexible
approach is needed. An extension to the idea of using straight line segments as structuring elements is to
use constrained paths, i.e. discrete, one-pixel thick successions of pixels oriented in a particular direction,
but in general forming curved lines rather than perfectly straight lines. However the number of such paths is
prohibitive and the resulting algorithm by simple composition is inefficient. In this paper we propose a way
to compute openings and closings over large numbers of constrained, oriented paths in an efficient manner,
suitable for building filters with applications to the analysis of oriented features, such as for example texture.

2000 Mathematics Subject Classification: 68U10, 94A12.

Keywords and Phrases: Oriented features, algebraic morphological filters, flexible linear morphological filters.
Note: The work was of the first author was carried out under project PNA4.2 “Wavelets and Morphology”,
and was written while the first author was on sabbatical leave at CSIRO-MIS in Sydney.

1. INTRODUCTION
Practitioners of mathematical morphology are familiar with the importance of the structuring
element in morphological and algebraic openings and closings. In spite of the infinite variety
of available structuring elements, very few kinds of structuring elements are used in practice
outside of a few specialized applications. The unit ball structuring elements of the discrete
grid (e.g: diamond, square and hexagon) define a first family of common structuring elements,
useful for basic filtering, granulometries, etc.

Probably the second most used structuring element family is generated by some instance
of the discrete line segment, which is used when linear and oriented structures are present



in an application. This limited choice can be at least partly blamed on the dearth of truly
efficient algorithms for more arbitrary structuring elements [6].

However most structures in real-world images are not perfectly straight, and therefore us-
ing line segments as structuring elements in openings and closings can be inadequate in the
common situation where there exist narrow, locally oriented features in an image of interest.
In this case one might be interested in using structuring elements that are themselves nar-
row and oriented, but not perfectly straight. Unfortunately generating useful morphological
filters in the usual way by composition leads to computationally expensive and impractical
algorithms.

In this paper we introduce the concept of path openings and closings, i.e. morphological
filters that use families of structuring elements consisting of variously constrained paths, for
which there exists algorithms as efficient as those using the usual families of straight line
segments.

Path openings were originally proposed in [1] in an algorithmic, practical but incomplete
manner. Here we are more concerned with laying down the theoretical foundations of these
useful filters.

2. A GENTLE REMINDER ON MORPHOLOGY

In the sequel we assume basic familiarity of the reader with the general concepts of math-
ematical morphology. A general reference work is the recent book by Soille [5]. Two other
useful resources are [2, 3.

2.1 BINARY IMAGES
It is generally accepted that the definition and investigation of morphological operators re-
quires a partial ordering! on the space of images, henceforth denoted by L. This partial
ordering, generally denoted by ‘<’, induces a partial ordering on the family of morphological
operators on £. Given two operators 11,12, we write 91 < 19 if and only if 1 (X) < 99(X),
for every image X € L. An operator 9 : L — L is said to be increasing if X <Y implies
that ¥(X) < (Y) for every X,Y € L.

Throughout the remainder of this subsection we assume that £ = P(FE), the subsets of
FE modeling the binary images with domain E. The partial ordering under consideration is
now the set inclusion. A mapping ¢ : P(E) — P(FE) is called a dilation if it distributes over

o 6(UXZ~) = Jox).

il i€l
It follows immediately that ¢ is completely determined by the family of sets A(z) = §({z})
where z € E. Namely

5(X) = U (4= = U Al

reX zeX

In the case of an infinite translation invariant domain, say E = IR? (but the same can be said
for Z4), one often chooses A(z) = A, the translate of a given set A C R%, called structuring
element, over the vector z. If, however, E is a mask outside which the image is unknown

Tn fact, the modern setting of mathematical morphology requires the underlying image space to be a
complete lattice [2].
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(the computer screen being a typical example), and A C R? is a structuring element, we
might choose A(z) = A;NE, for z € E. In other words, A(x) is obtained by choosing a fixed
structuring element A and restricting the translate A, to points inside the window E. This
choice is an elegant way to handle the ‘border problem’ arising from the fact that we only
have local knowledge of the image of interest.

Given a dilation ¢ on P(FE), the reciprocal dilation $ is defined by

y €d({z}) <= ze€di({y}).

Note that because of the aforementioned property of dilations, S is entirely characterised by
its behaviour on singletons.

2.2 OPENINGS AND CLOSINGS
An operator 9 on the partially ordered set £ is anti-extensive if (X) < X for all X € £. Tt
is extensive if 9(X) > X for all X € L. The operator is called idempotent if 99) = ? = 1.
An operator 9 : L — L is called an opening if 1 is anti-extensive, increasing and idempo-
tent. Throughout this paper openings will be denoted by a. The dual concept is that of a
closing which is an operator that is extensive, increasing and idempotent. In this paper we
will mostly be concerned with openings, but we emphasise here that the Duality Principle
(see [2] for a precise formulation) yields analogous results for closings without any additional
effort.
An important property of openings, and one which we will exploit throughout this paper,
is the following: if ; is an opening for every i € I, then \/,.; o; given by

(Vi) (x) = Jau(x), (2.1)

1€l i€l

is an opening, too. The best known example of an opening is the structural opening, which
is obtained as the composition of the Minkowski subtraction and addition and which is given
by the expression

XoA:U{Az :z€FEand A, C X}.

In other words, Xo is the union of all translates of structuring elements that lie within the
original image.

A special case that is of interest in the context of this paper is the supremum of openings
given by (2.1) where ¢;(X) = X o A;, and the structuring element A; is a line segment with
length L and direction ;. The resulting opening, called linear opening, is useful for the
analysis of images that contain oriented linear features. Examples are given toward the end
of this paper.

If we take the union of all structural openings using an arbitrary connected structuring
element with a given area, then we obtain the so-called area opening. In practice, the family
of structuring elements involved may be huge, suggesting that the concept of an area opening
is quite impractical. However, there does exist a very efficient algorithm due to Vincent [7]
both in the binary and the grey-scale case.



2.3 THE GREY-SCALE CASE

So far we have been dealing exclusively with the binary case. But, as we will explain in this
section, all concepts developed so far carry over immediately to the grey-scale case. We first
briefly recall the level set construction of increasing morphological operators for grey-scale
functions. We refer to [2, Chapters 10-11] for a comprehensive account. For simplicity we
restrict ourselves to the case where the grey-level set equals T = {0,1,...,255}, but, as
explained in [2], the construction holds in many other cases as well. We denote by Fun(E,T)
the grey-scale functions I : E — T.

Recall that the level set ( or threshold set) of a function I is given by

Xe(I)={z€E : I(x) >1t}, t=0,1,...,255.

Given an increasing set operator 1 on P(FE), there exists an extension ¥ to the set of grey-
scale functions Fun(E,T') defined by means of

U(I)(z) =max{0 <t <255 : z € ¢P(Xi(I))}.
It can be shown that the following relation holds:
Xt(\p([)) = /w(Xt(I)) , t= Oa 15 s ,255 :

One calls ¥ the flat function operator generated by 1. Several elementary facts regarding flat
function operators have been established in [2]. We mention only the ones that we will use
in the sequel:

(a) If ¥y, ¥y are generated by 1,19, then

— Wy, is generated by 191)1;
— Uy V Uy is generated by 1 V 19;
— Uy AWy is generated by 91 A 1.

In fact these last two properties hold for an arbitrary family of operators.

(b) If 9 is an opening, then ¥ is an opening as well.

3. PATHS AND DILATIONS

Let E be a given set of points with a binary adjacency relation ‘—’ indicating the presence of
an edge: thus = — y means that that there is an edge going from z to y. The relation ‘"’ is,
in general, neither reflexive nor symmetric?. Because of the non-symmetry, the graph given
by the vertices E and the adjacency relation — is a directed graph. We show some examples
in Fig. 1.

The examples in (a)-(c) are periodic, or more precisely, they are restrictions of a periodic
adjacency relation on Z? to a finite window. If z — y, we call y a successor of  and z a
predecessor of y. Using the adjacency relation we can define a dilation on P(FE) by putting

i({z}) ={y e E : z—y}.

2Reflexive’ would mean that z —  for every € E. ‘Symmetric’ would mean that x — y iff y — z, for
every z,y € E.
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Figure 1: Directed graphs.

In other words, the dilation of a subset X C F comprises all points which have a predecessor
in X. These concepts are further illustrated in Fig. 2. Here by, bo, b3 are successors of a
and d({a}) = {b1,b2,b3}. Furthermore, a1,a9,as are the predecessors of b and d({b}) =

{a’la az, 03}.

Figure 2: by, be,b3 are successors of a and a1, a2,a3 are the predecessors of b.

The L-tuple a = (a1, a2,...,ar) is called a path of length L if ay — axy1, or equivalently,
if
agy1 € (5({ak}), fork=1,2,...,L—1.
Henceforth we refer to such a path as a d-path of length L. Tt is evident that @ = (a1, a9, ..., ar)
is 0-path if and only if the reverse path @ = (ar,ar_1,...,a1) is a 6-path and obviously, both
paths have the same length L. We denote the set of all §-paths of length L by II; and the
set of all 0-paths of length L by II;,. Given a path a in E, we denote by o(a) the set of its
elements:
o(ai,a9,...,ar) = {a1,ae,...,ar}.



The set of d-paths of length L contained in a subset X of E is denoted by Iz (X), i.e.,
I,(X)={acll : o(a) C X},

and the d-paths of length L in X by II;(X).

In our approach, we first provided the adjacency relation and we defined the dilation
afterward. It is straightforward to see that we might as well start with a dilation § on P(E)
and define the adjacency relation as

z—yifyed{z}).

Both approaches are equivalent and it is a matter of taste which one is taken.

Note that in the first three examples in Fig. 1, the adjacency relation is periodic away
from the borders. The fact that we can choose any dilation as a starting point enables us to
handle the border in consistent and flexible manner. Note also the following major difference
between the adjacency relation in Fig. 1 (a) and (c) and the one in (b). In (a) and (c), the
graph structure is translation invariant with respect to any translation (again away from the
borders), whereas in (b), this is only true if translation takes place over an even number of
rows. Rephrased in terms of the dilation, this means that the structuring element is different
at odd and at even rows. We will briefly address the issue of choosing the adjacency relation
in Section 10.

4. PATH OPENING
We define the operator ar,(X) as the union of all §-paths of length L contained in X:

ar(X) = J{o(a) : aeTL(X)}.

It is easy to see that ar is an opening, and we call it the path-opening. We can define
the reciprocal path-opening &7, (X) in a similar way. Since a € II1(X) iff @ € II;(X) and
o(a) = o(a) we get immediately that

ay = OVAL .
It is obvious that oy = id. We can show that that

aL+1§aL fOI‘LZl.

To prove this, assume that z € ap41(X). Thus there is a d-path (aq,a9,...,a541) of
length L 4+ 1 which contains z and lies inside X. But then both dé-paths (a1,as,...,ar)
and (a9, as,...,ar+1) of length L lie inside X and at least one of them must contain the

point z. This proves that = € ar(X), too. In Fig. 3 we show an example of a path opening
where L = 6.

4.1 PATH DECOMPOSITION
By definition, z € ar(X) iff there exists a §-path a € II1(X) that contains z, i.e., x = ay, for
some k between 1 and L. In that case we have

(a1,a9,... a5 1,2) € (X)) and (z,ax41,...,a5) € g 11(X). (4.1)
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Figure 3: A set X C E (black points at the left) and its opening ag(X) (black points at the
right). Unfilled points at the right have been discarded.

The first condition can be rewritten as
(z,ar_1,a5_9,...,a1) € ﬁk(X) . (4.2)
We define the operator 1, as

P(X) ={a1 : aellx(X)},

that is, ¥ (X) contains the first point of every d-path of length k in X. The operator vy, is
defined analogously. Obviously, ¥ = zzl =id.

Now the first condition in (4.1), which is equivalent to (4.2), can be written as = € 9, (X),
and the second condition can be written as z € 9_,41(X). Combined, they give

7 € Pr_p41(X) NPp(X),

and we have shown that .

ar=\/ (¢k /\TZL—kH) ; (4.3)

k=1
where we have interchanged k and L — k + 1.
Note that e =id A (6 V 0), which is known in the literature as the annular opening [2,4].

4.2 RECURSIVE STRUCTURE OF THE OPERATORS
We will prove below that the following relations hold:

Yrr1 = id A 5¢k and ’J,Z]H_l =idA (51};]9 . (4.4)

The decomposition of ay, in (4.3) together with the iterative formulas in (4.4) provide an
efficient algorithm for the computation of the path opening ar. Algorithm 2 in Section 9



provides an illustration for a vertical path on a square grid with the adjacency of Fig 1(a).
This algorithm has complexity O(L) which is similar to that of the more common union of
openings by line segments, as shown in [1].

We will prove only the first identity in (4.4) as the second is nothing but its reciprocal
version. To prove ‘<’ assume that z € 1,1(X). This means that there exist as, ..., a1
such that (z,as,...,ax41) € My1(X). Now (ag,...,ax41) € Ix(X) and z € §({az}). Since
ag € P (X) this yields that = € 6(¢(X)), and we conclude that z € X N &(y(X)).

To prove ‘>, let z € (id A d¢;)(X), ie., z € X and = € §({y}) with y € 9 (X). The latter
means that there exist as,...,ar such that (y,as,...,ax) € Ix(X). Now (z,y,as,...,a;) €
II;41(X), which yields that x € 1y 1(X).

The path opening oy depends strongly upon the dilation, or equivalently, the adjacency
relation. This is clearly seen in Fig. 4 where we have computed the opening a5(X) of a set
X for three different adjacencies.

[ ] ( ] o (e] (o] (¢]
] o
{ ] { ] ] (o) (0]
[ ] ( ] [ ] [ ] (0] (o] (o] o (0] (0]
[ L ] (o] (0]
(] [ ] O (¢] o o o (©]

Figure 4: A set X C E (left) and its opening as(X) for three different adjacencies.

In Section 2 we have seen that a union of openings is an opening. Therefore we can, for
example, take the union of the first two openings in Fig. 4, i.e., two figures in the middle, to
get an opening that allows both horizontal and vertical oriented paths. Note however, that
this is not the same as combining both adjacencies into one and computing the opening with
respect to this new adjacency.

Finally we note that

¢k¢l = Ilpk-l—l—la for kal > 1a

which implies in particular that 1/)§ = k41, that is
PYpe1 = (idA)E, for k> 1.

The proof of these semi-group identities is rather straightforward and left as an exercise for
the reader.

5. OPENING TRANSFORM

Often, we are interested in all openings ar,(X) of a set X for a range of values of L rather than
for a single value only. For example, it is quite common that we do not know beforehand
which L to choose in a particular application. In such cases it may be more efficient to
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compute the so-called opening transform of the image. Given a set X C E and an ordered
family of openings A = {ar,}, the opening transform Ax of X with respect to A is a function
mapping the domain E into Z, = {0,1,2,...} such that its threshold sets correspond with
the various openings ar(X): see (5.2) below for an exact formulation.

Throughout this section we assume that there exist only finite paths. More precisely we
assume that there exists an integer N > 1 such that 6 ({z}) = 0, for every z € E, i.e.,
6N (E) = (. Note, however, that this assumption does not necessarily mean that F is finite.
Furthermore, we take N to be the smallest integer with this property. Thus the maximal
length of a path in F is N. Define A(z) as the maximal length of a §-path with begin-point
x:

AMz) = max{L>1 : Ja €Il such that a; = z}
max{L >1 : z € " 1(E)}.

Obviously, if z — y then A(z) > A(y) + 1. Moreover, it is not difficult to prove that
AMz) =1+ max{\(y) : =~ y},

where the maximum is taken to be zero if  has no successors. Similarly S\(z) is the maximal
length of a path with endpoint 2 . Then

Az) = Mz) + A=) — 1, (5.1)

is the length of the longest path that contains .

To understand why this is correct, assume that A(z) = m and A(z) = n. Thus we know that
there exist paths of the form (a1,...,a,-1,2) and (z,be,...,by) in E. The concatenation
(a1,...,an-1,2,ba,...,by) of these two paths has length n + m — 1. It is also obvious that
there cannot be a longer path in E containing z, for such a path could then be broken at
position z yielding two paths (a1,...,ay 1,2) and (z,bs,..., by ) with either m’ > m or
n' > n or both.

Define the disjoint partition E1, Fs, ..., Ex of E by

Er={z€FE : XNz)=L}.

In the figures at the left in Fig. 5 we depict this partition for two different adjacency relations;
here the arrows indicate the relation z — y.

Now we define a function Fx : E — Z by means of algorithm 1 which resembles a geodesic
propagation algorithm.

Algorithm 1.

Fx=0on E /* initialisation %/
fork=1to N
forx e ExNX
Fx(z) =14+ max{Fx(y) : y— z}
end
end
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The second column of Fig. 5 shows the function Fx for a given image X (grey pixels). In
a similar way we can define Fy by using the partition E'1, Ez, EN
The following lemma shows that 1, (X) can be obtained by thresholding of Fx.

Lemma 5.1. With the definitions given before we have
(X)) ={z €E : Fx(z) >k} and yp(X)={z € E : Fx(z) >k},
fork=1,2,...,N.

Proof. Let z € Ej and suppose that Fx(z) = [. Obviously, | < k and there must exist a
d-path z = ay,a9,...,q; in I[}(X) such that a; € Ex_;11 and Fx(a;) =1 —14+ 1. This implies
that = € 1;(X). Conversely, if z € 1;(X), then there is a path z = a1,a9,...,q; in II;)(X).
Now if z € Ey, where k > [, then a; € Fx_; 1 and Fx(a;) =1 —1i+ 1. O

This lemma can be used to prove the following result.
Proposition 5.2. The function Ax = Fx + Fx —1 is the opening transform of X, that is
ar(X)={z€E : Ax(z) > L}, (5.2)
for every L>1 and X C F.

Proof. We use the expression for oy in (4.3) which says that z € ar(X) implies that z €
Pi(X) NYr_g41(X) for some k =1,2,..., L. Therefore, Fx(z) > k and Fx(z) > L —k+1,
which yields that Ax(z) > L. This proves ‘C’ in (5.2). The converse is proved similarly. [

In Fig. 5, the algorithm for the opening transform is shown for two different adjacencies,
namely (a) and (c) in Fig. 1.

6. BORDER ISSUES

Throughout this section, E will be a finite rectangular window within Z?, and the adjacency
on E is the restriction of a periodic adjacency on Z? like in Fig. 1 (a)-(c). The inward
boundary of E, denoted by OF, is the set of points in E which have a predecessor outside E:

OF ={x € E : Jy € E° such that y — z},

where E°¢ is the complement of E. The outward boundary of E, denoted by 5E, is given by
5E:{:v€E : dy € E° such that z — y},

There are various ways to deal with the border problem:

(a) We can simply ignore the existence of the borders and treat paths that contain boundary
points in the same way as any other path. In fact, this is the choice that we have
implicitly made so far.

(b) The other extreme is to set the length of a path that crosses the border to +00, meaning
that all points on such a path are contained in every opening ar,(X). In fact, this choice
means that we extend X outside E by adding all points in E*.



6. Border issues 11

I\1|1|1|1]1 111 5 5
21212222 2
313(3(13(3]3 3|1 31414 5 4
4144|444 4 4122 2 3 5 4
x| 4 51515 5 3 1 5
6 616|616 1|4 111 1|4
function function F function Fy opening transform Ay
6514|321 2|1 2|3 3
71615432 1
81716543 3121 314|535 5
9187|654 4 312|1 2 1124 5 4
10] ¥ 71615 5 1 5
1% |87|6 413 12 4|4
partition £, function Fy function Fy opening transform Ay

Figure 5: Computation of the opening transform for two different adjacencies indicated by
the arrows in the first column, which also shows the partition of E. The second and third
columns depict the functions Fx and Fy for the set X represented by the grey pizels. The
right column shows the opening transform Ax and the opened set as(X) represented by the
pizels with the thick boundaries.

(¢)

An intermediate option is to try to compensate for the points cut off by restricting to
a finite window by replacing the computed length L of a path that has a begin-point
in OE or an endpoint in E by h(L). One possible choice for h would be k(L) = 2L.
Such a choice could be justified by the presumption that on average only half of the
path falls inside the window. Another possibility is to add a fixed compensation to the
length of a border-crossing path, i.e., h(L) = L+ Lj. Note, that one might use different
compensation functions for paths that start on 0F and end on JF.

A possibility which is easy to implement is to enlarge the window E with a border
B of thickness Lg. Denote by o/ the corresponding path opening on P(E’), where
E' = E U B denotes the enlarged window. Thus we can compute o according to the
algorithm given in the previous sections. Define the opening ay, on P(E) by

ar(X)=ad (XUB)NE.

In Fig. 6 we show that in this case, two paths which were originally disjoint may
considered to be part of the same path which lies partially outside the window.
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boundary

SR

Figure 6: Opening ag(X) of set X (left) according to option (a) (middle) and (d) (right).

7. INCOMPLETE PATH OPENINGS
The path-opening ar,(X) of a set X comprises the union of all length-L paths contained
inside X. We can relax this condition by demanding that only k out of L vertices of the path
lie inside X, thus yielding a so-called incomplete path-opening a’i (X). Incomplete paths can
be used to robustify path openings against noise. We present a formal definition below.

Define IT% (X) as the collection of length-L paths in E which contain at least k points inside
X:

M (X)={a €Ty : |o(a)NX|>k}.

Note that this definition only makes sense for 0 < k < L, and that

Mg (X) = TE(X) CTp~H(X) C--- CTE(X) C My (X) =T,

Define the incomplete path-opening
o (X) = J{o(@)nX : a T (X)}.

It is obvious that

o

N

L-1 0
oy S...SaL’

and that
of =apand A(X)={z € X : A(z) > L},

where A(z) was defined in (5.1). Putting
E,={z€E : Azx)>L},

we get that B
A(X)=XnEy.

Furthermore, we define
PE(X) ={a : a€Tf(X)}.
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We have 5
Yf =yrand $(X) ={z € E : Nz) > L} = | Bs.
k>L
Henceforth we use the convention that ¢f = ¢ if k > L. We will now express ¢} in
terms of 1/12+1 and 9% . Observe that = € 1/12111 (X) if there exists @ = (a1, ...,ar) such that

(z,a1,...,ar) € ML and either z € X and a € 9%(X) or a € ¥5T1(X). We have shown
that

PEEL = (id A Syh) v Skt

Since ¢§+1 < ¢§ we can also write
k+1 sy Rkl A ¥
¢L¢1 = (id vV 5¢L+ ) A (51#2 ]

Note that for K = L we obtain wfﬂ =id A quf , which coincides with the expression derived
in (4.4).

Now consider a point z € ok (X), where 1 < k < L. Thus there is a path a € II; with
z € o(a) such that |o(a) N X| > k. Assume that a; = z. Now a is the concatenation of
the sequences b = (aq,...,0; 1,z) and ¢ = (z,a;41,...,ar). Define j = |o(b) N X|, hence
lo(e) N X| =k +1—j. We conclude that

vj k—j+1
x € (%) Nk iTi(x).
Since the length of b and ¢ is [ and L 4+ 1 — [, respectively, we have
1<j<landk+1—-3<L+1-1.

Furthermore we have
i<k,
and we conclude that
L min{l,k}
(V3] k—i
=\ (Favi i) (7.1)
I=1 j=max{1,k+I—L}
for 1 <k < L. Observe that this expression reduces to the one in (4.3) if K = L.
Denote by (L, k) the number of terms in (7.1). One can show that
02p—1,k) = k(2p—k), fork=1,...,p
02p—1,k) = 02p—1,2p—k), fork=p+1,...,2p—1,

and that

0(2p,k) = k(2p—k+1), fork=1,...,p
0(2p, k) = 0(2p,2p—k+1), fork=p+1,...,2p.
For example, if L is even and the degree of relaxation r = L — k is small, then the number

of terms in (7.1) is approximately (r + 1)L so for fixed L the computational complexity is
proportional to r + 1.
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8. CYCLE OPENINGS
In most of the examples considered so far, the adjacency did not allow cyclic paths (henceforth
called cycles) a = (ay,...,ar) with ap = a;. Moreover, the assumption 6" (E) = () made in
Section 4 explicitly excludes the existence of a cycle. In this section we will briefly discuss the
case where cycles may exist. Moreover, we define a new family of openings which preserves
only cycles in a set. We start with some definitions.

We say that that the dilation ¢ (or alternatively, the adjacency relation ‘—’) is p-recurrent
if

z € P({z}) for every x € E,

and if p is the smallest integer for which this holds. This means that for every z € E there
exist y1,...,Yp—1 such that z — y; = yo = --- = y, 1 — . In other words, every z lies on
a cycle of length p. We show two examples in Fig. 7.

Figure 7: A 3-recurrent and a 4-recurrent adjacency relation.

If § is not p-recurrent for any integer p, then we say that § is non-recurrent. It is evident
that ¢ is p-recurrent if and only if §is p-recurrent. Similarly, § is non-recurrent if and only if
§ is non-recurrent.

Define aj (X) as the union of all length-L cycles contained in X, and a°(X) as the the
union of all cycles (with length > 2) contained in X:

a®(X) = | J ez (X).

L>2

Recall that 92(X) = X N §(X) removes begin-points of a path and, dually, that 12(X) =
X N4(X) removes end-points. Thus applying w = 12 A1py we remove all begin- and end-points
of paths within the set and after iteration we are left with the cycles:
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9. THE GREY-SCALE CASE
In this section we use the framework discussed in §2.3 to extend the results developed in the
previous sections to the grey-scale case, with the exception of the opening transform which
is not defined in the grey-scale case to the best of our knowledge.

First we define the grey-scale analogue of paths of length L in the grey-scale image I. This
involves an additional parameter ¢ representing the grey-level of the path:

() ={acly : I(a;) >t, k=1,2,...,L}.

It is easy to see that

I, (1) = L (X(T)) .
Let U be the flat extension of 1), defined by means of the level set construction, and let Ay,
be the flat extension of ay,.

Proposition 9.1. The operator ¥y, and the opening Ar, on Fun(E,T) are, respectively, given
by

U(I)(z) = max{t€T : (z,a,...,a;) € TL(I)
for some ag,...,a, € E},
Ap(D)(z) = max{t €T : 3 a i (I) with z € o(a)}.

From the theory on flat function operators we know that the expressions in (4.3) and (4.4)

J

carry over immediately to the function case. Let A and A be the extension of § and 4,
respectively, to functions, i.e.,

(N(z) = max{I(y) : y+ =z}
(I(z) = max{I(y) : z+— y}.

Putting Jj, = U (I) and Jy, = U (I) (hence J; = J; = I) we obtain from (4.4) that
Je+1(z) = min {I(m), A(Jk)(x)} = min {I(w), max Jk(y)}

Jea@) = min{1(2), AU @)} = min { 10, max i) |
We consider the path opening associated with the North-South adjacency in Fig. 1(a). For
a given vertex z, the adjacency x — y characterises three vertices y which are denoted by
T, T1, T ~. Similarly, the reciprocal adjacency y — z characterises the vertices =,z , 2.
With this notation we arrive at the following algorithm which, for a given input image I and
path length L, computes the path opening I* = A (I).

Algorithm 2 (North-South path opening).
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J1<—I; jl(—I;
for1<k<L-1do

Jisa (@) = min{ I(w), max(Jy(z,), Je(w,), Te(@,)) }
Jesa(@) = min{ (), max (Ji (o< ), o (ay), Ju(w.) } 7
end for ;
for 1<k<Ldo
J(2) = min(Jy(2), Fpopin (2))

end for ;

I%(z) = max (J{(z), J$(2), ..., J¢(z)}

10. EXAMPLE

Figure 8 is an example of path closing compared with other methods. We chose to illustrate
with a closing rather than an opening because of the better contrast in the printing process,
but the same conclusions would apply to both.

Fig. 8(a) is the original 500 x 160 image. This is an image of DNA (the long thin structure)
observed in a scanning electron microscope. The objective is to separate the DNA from the
noisy background, and we use various closings as a pre-processing filtering.

Fig. 8(b) is the result of applying a closing by intersection of 44 segments of length 23
pixels, each in a different direction, approximately uniformly oriented (subject to the digital
grid). As can be seen this closing filters the background is mostly filtered out but so is the
DNA.

Fig. 8(c) is a path closing with path length of 33 pixels. While this is longer than that
of the straight segments family in (b), the shape and contrast of the DNA is well preserved,
while the background is reasonably filtered out.

Fig. 8(d) is an area closing with parameter 50 square pixels. The DNA is well preserved
as in (c) but the background is not as filtered out.

As can be seen, the path closing was able to better preserve the shape of the object of
interest than the closing with segments, while removing more of the unwanted background
than the area closing, which was the intended behaviour.

For this example, we ran algorithm 2 four times and took the infimum of the four results.
The final result is still therefore a closing. In the first two instances, the adjacency graph
was (1) vertical, each pixel being connected to the 3 pixels immediately above (N, NW and
NE directions) and the 3 pixels below (S, SW and SE directions) ; and (2) horizontal, each
pixel being connected to the 3 pixels immediately to the right and the 3 pixels immediately
to the left, each of the those in the basic 3 x 3 neighborhood of the square grid.
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In the last two instances, the adjacency graph was diagonal: instance (3) in the NE-SW
direction, the central pixel in the 3 x 3 neighborhood being connected to the three pixels in
the N, NE and E direction on the one hand, and to the three pixels in the S, SW and W
direction. The last instance (4) was in the NW-SE direction symmetrically.

The result of this combination was to choose a family of paths such that at each point the
entirety of the path was contained in a 90 degree angle double-ended cone, either vertically or
diagonally. In some sense this captures the idea of a family of oriented, but flexible structuring
elements.

It is of course possible to modify the adjacency graphs in order to constrain these paths
more or less.

11. CONCLUSIONS

In this paper we have explored the theory of path openings and closings on binary and grey-
level images. Path openings are openings over large number of connected or disconnected
paths, which extend the useful notions of openings by unions of line segments by allowing the
use of oriented, narrow but non-straight segments as a family of structuring elements. Because
of the oriented nature of the family of structuring elements used, the resulting operators are
more constrained than area openings.

Path openings and closing essentially allow practitioners to close the gap between open-
ings by line segments (which are constrained and anisotropic) and area openings (which are
unconstrained and isotropic). The framework developed in this paper allows for paths which
behave more closely like one or the other, which should be useful as well, by varying the
adjacency relation.

We have provided a workable algorithm for such path openings with low complexity, which
makes the computation of such paths possible.

Finally we have explored the questions of how to deal with border effects, how to compute
path opening transforms (only in the binary case) and how to extend path openings to
incomplete paths, which could provide a degree of robustness against noise.
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Figure 8: Example of path closing compared with closing with segments and area closing.
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