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Large deviations of infinite intersections of events in
Gaussian processes

ABSTRACT

The large deviations principle for Gaussian measures in Banach space is given by the
generalized Schilder's theorem. After assigning a norm ||f|| to paths f in the reproducing kernel
Hilbert space of the underlying Gaussian process, the probability of an event A can be studied
by minimizing the norm over all paths in A. The minimizing path f*, if it exists, is called the most
probable path and it determines the corresponding exponential decay rate. The main objective
of our paper is to identify the most probable path for the class of sets A that are such that the
minimization is over a closed convex set in an infinite-dimensional Hilbert space. The
‘smoothness' (i.e., mean-square differentiability) of the Gaussian process involved has a crucial
impact on the structure of the solution. Notably, as an example of a non-smooth process, we
analyze the special case of fractional Brownian motion, and the set A consisting of paths f at or
above the line t in [0,1]. For H>1/2, we prove that there is an s such that 0<s<1/2 and that the
optimum path is at the "diagonal” on [0,s] and at t=1, whereas it is strictly above the diagonal for
on (s,1); for H<1/2 an analogous result is derived. For smooth processes, such as integrated
Ornstein-Uhlenbeck, f* has an essentially different nature, and is found by imposing conditions
also on the derivatives of the path.

2000 Mathematics Subject Classification: 60G15, 60K25, 60F10
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space; optimization
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Large deviations of infinite intersections of events in Gaussian processes

Abstract The large deviations principle for Gaussian measures in Banach space is given by the generalized Schilder's
theorem. After assigning a noriif|| to pathsf in the reproducing kernel Hilbert space of the underlying Gaussian process,

the probability of an everf can be studied by minimizing the norm over all path8.iifhe minimizing pathf *, if it exists, is

called themost probable patand it determines the corresponding exponential decay rate. The main objective of our paper is
to identify f* for the class of set& that are such that the minimization is over a closed convex set in an infinite-dimensional
Hilbert space. The ‘smoothness’ (i.e., mean-square differentiability) of the Gaussian process involved has a crucial impact
on the structure of the solution. Notably, as an example of a non-smooth process, we analyze the special case of fractional
Brownian motion, and the sétconsisting of pathg such thatf(t) >t fort € [0,1]. ForH > % we prove that there is an

s" € (0, %) such that the optimum path & the diagonal fot € [0,s"] U {1}, whereas it isstrictly abovethe diagonal for

te(s*,1); forH < % an analogous result is derived. For smooth processes, such as integrated Ornstein-Uhférizeck,
an essentially different nature, and is found by imposing conditions also on the derivatives of the path.

Key words. Sample-path large deviations, Schilder’s theorem, busy period, reproducing kernel Hilbert space,
optimization

1. Introduction

The large deviation principle (LDP) for Gaussian measures in Banach space, usually known as the (generalized)
Schilder’s theorem, has been established more than two decades ago by Bahadur and Zabell [3], see also [2,4].
In this LDP, a central role is played by the notffi|| of pathsf in the reproducing kernel Hilbert space of the
underlying Gaussian process. More precisely, the probability of the Gaussian process being in some closed set
A has exponential decay ra%¢|f*\|2, wheref* is the path inA with minimum norm, i.e., argmipca||f||. The

path f* has the interpretation of thmost probable patiMPP) in A: if the Gaussian process happens to fall in

A, with overwhelming probability it will be close td*.

For various specific sets the MPP has been found. Addé al. [1] consider a queueing system fed by a
Gaussian process with stationary increments, and succeed in finding the MPP leading to overflow. This problem
is relatively easy as the overflow event can be written as an infimiten of eventsA = Ui~ oA, such that the
decomposition

inf || f|| = inf inf || f]|

feA t>0feA
applies. Heré\; corresponds to the event of overflow at titnand due to the fact that the infimum ovgrturns
out to be straightforward, the problem can be solved. In this paper we look at the intrinsically more involved
situation thatA is anintersection rather than a union, of event&:= N;A;; decay rates, and the corresponding
MPPs, of these intersections are then usually considerably harder to determine. In our setting the norm has to
be minimized over a convex set in an infinite-dimensional Hilbert space.

Few results are known on MPPs of these infinite intersections of events. In Norros [11] it was shown that
the event of a queue with fractional Brownian motion (fBm) input having a busy period longer than, say, 1,
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corresponds to an infinite intersection of events; theAsednsists of allf such thatf(t) >t for all t € [0,1].
However, the shape of the MPP remained an open problem in [11]. Interestingly, it was shown that the
straight line, i.e., the path(t) =t, is notoptimal, unlike in the case of Markovian input, see [14, Thm. 11.24].

In [8,9] buffer overflow in tandem, priority, and generalized processor sharing queues was analyzed: first it was
shown that in these queues overflow relates to an infinite intersection of events, and then explicit lower bounds
on the minimizing norm (corresponding to upper bounds on the overflow probability) were given. Conditions
were given under which this lower bound is tight — in that case obviously the path corresponding to the lower
bound is also the MPP.

An important element in our analysis is the ‘smoothness’ of the Gaussian process involved. Here we rely on
results from Tutubalin and Freidlin [15] and Piterbarg [13], showing that the infinitesimal space of a Gaussian
proces<Z (at timet) is essentially a finite-dimensional space generated by the “aloéthe process itself,
but in addition also its derivatives atsay,Z{, Z{',... Zt(k). The implication of this result is that in our study,
processes without derivatives (such as fBm) had to be treated in another way than smooth processes (such as
the so-called integrated Ornstein-Uhlenbeck process).

This paper is organized as follows. Section 2 presents preliminaries on Gaussian processes and a number of
other prerequisites. In Section 3 we focus on the most probable path in the set of patifsthatf (t) > {(t),
for a function{ andt in some compact s&& C R. Our general result characterizes the MPP in this infinite
intersection of events. In case the Gaussian process does not have derivatives, the MPP can be expressed as
a conditional mean. Section 4 gives explicit results for the égsp=1t andS= [0, 1], i.e., the busy-period
problem. We illustrate the impact of the smoothness by focusing on examples of both a process without (fBm)
and with (integrated Ornstein-Uhlenbeck) derivatives. In the case of fBm, we prove thrﬁtﬁ(}} the MPP is
at the diagonal in some intervéd,s*], and evidently also at the end of the busy period,strittly abovethe
diagonal in between (corresponding to a positive queue lengthit for% an analogous result is derived. In the
case of integrated Ornstein-Uhlenbeck, we show how the MPP is derived by imposing conditions at two points,
namely the derivative at= 0 and the value of the function tt 1.

2. Preliminaries

This section describes some prerequisites, e.g., some fundamental results on Gaussian processes.

2.1. Gaussian process, path space, and reproducing kernel Hilbert space

The following framework will be used throughout the paper. EZet (Z);cr be a centered Gaussian process
with stationary increments, completely characterized by its variance funeipe= Var(Z;). The covariance
function ofZ can be written as

I'(t,s)=Cov(Z,Zs) = %(v(s) +v(t) —v(s—t)).

For a finite subse$ of R, denote byl"(St) the column vecto{I'(s,t) : s€ S}, by I'(t,S) the corresponding
row vector, and by (S) the matrix

r={r(st):sestes}.

In addition to the basic requirement th&t) results in a positive semi-definite covariance function, we
impose the following assumptions oft):

() v(t) is continuous, and’(S) is non-singular for any finite subs8bf R with distinct elements;
(i) there is a numbery € (0,2] such that/(h) /h% is bounded foh € (0, 1);
(iii) im0 V(t) = o0, and lim_.. v(t) /t* = O for somea., € (0,2).

The assumption (ii) guarantees the existence of a version with continuous paths, by virtue of Kolmogorov’s
lemma. Denote by2 the function space

Q =< o: ocontinuousR — R, ®(0) =0, Iimﬂ: lim ﬂ:o .
ol t]  tow L]
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Equipped with the norm

ol = sup{ |w(tz: te R}

Q is a separable Banach space. We ch@@se our basic probability space by lettifigpe the unique probability
measure on the Borel sets@fsuch that the random variablgg ®) = o(t) form a realization oZ.

Thereproducing kernel Hilbert space Rlated toZ is defined by starting from the functiodg(t,-) and
defining an inner product by (s,-),I'(t,-)) = I'(s,t). The space is then closed with linear combinations, and
completed with respect to the noifm||? = (-,-). Thus, the mapping

Zt’_’F(tv') (1)

is extended to an isometry between the Gaussian dpaifeZ, i.e., the smallest closed linear subspacéof
containing the random variabl&s, and the function spade. The inner product definition generalizes to the
reproducing kernel property

(f,r't,-))="f@), feR 2

The topology ofR is finer than that corresponding to a weighted supremum distance between the paths: by
Cauchy-Schwarz and (2),
If( )| <If|l-s HF(t )l
=R T

where the supremum on the right hand side is finite by (iii). We see that all elemeRtsaref continuous
functions,Ris a subset of2, and the topology oR s finer than that of2.

®3)

2.2. Large deviations: generalized Schilder’s theorem

The generalization of Schilder’s theorem on large deviations of Brownian motion to Gaussian measures in a
Banach space is originally due to Bahadur and Zabell [3] (see also [2,4]). Here is a formulation appropriate to
our case; for the definition @foodrate function, see, e.g., [4, Section 2.1].

Theorem 1.The function . 2 — [0, o],

1 ml2 i
- | sllolg foeR
Hw) = {oo, otherwise “)

is a good rate function for the centered Gaussian meaBuendP satisfies the large deviations principle:

: z .
: limsup = = < — :
for F closed inQ2 “n_itjp IogP(\f € F) < al)l’e]l;l(a)),

1 Z
for G inQ : liminf ~logP( —€G| > — inf |(®).
or Gopenin iminf —log (ﬁ € > 2 — inf, (w)
We call a functionf € A such thatl (f) = infgyeal (@) < 0 @ most probable patlf A. A most probable
path can be intuitively understood as a point of maximum likelihood, although there is no counterpart to the
Lebesgue measure dB. If A is convex and closed and has a non-empty intersection Ryithen the most
probable path exists and is unique.

2.3. Notes on optimization

The following standard fact from optimization theory is crucial in our analysis, see, e.g., Exercise 3.13.23 in

[7].

Proposition 1. Let H be a Hilbert space. Consider a set=A{xe H: (X,yi) > a;, i €1}, where | is a finite
index set and;yc H. Assume that'x= argmin{||x|| : x€ A} and denotel={i €l : (x*,yi) =a}. Then X €

Span{y; : i e l*}.
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The intuitive content of Proposition 1 is that conditions which are not tightly met (i.e., satisfied with equality)
at the optimal point do not appear in the solution. If the finite set of linear conditions is replaced by an infinite
one, the result does not hold without further assumptions. One particular generalization will be considered in
Section 3.

We also need the following basic infinite-dimensional result.

Proposition 2. Let H be a Hilbert space, and lefg H, 8 € R, i=1,2,..., and denote

An={xeH:(xy)>a,i=1...n},
A ={xeH: xy)>a,i=12..}.

Assume that the convex set 8 non-empty and let
On = argminXEAn ||X||7 n= 1727 s, 0.
Thenlimp_e 0t = O

Proof. Obviously ||| < || ol|.- We show first thati o || — || 0 ||- The closed balB(O0, ||a.||) is weakly com-
pact. Letag be a weak accumulation point of the sequeogeBy definition of the weak topology, for each
there is a subsequenog such that

(@0, ¥n) = lim (cm;,¥n) = an.

Thus,op € A, for everyn. It follows thatog € A and, since the sequenitay|| is non-decreasing, thdby, ||~
10|

Now, by a basic characterization of minimum norm elements in closed convex sets, wWehauwe— o) >
0, sincedx, € Ax C Ay ando, is the minimum norm element &,. But then

lotn — 0t | = || o[ — [ @] |* — 2( 0, 00 — ) < [t |* — [ ctnl|* — O.

2.4. Derivatives and the infinitesimal space

We call the Gaussian procedsmoothatt, if it has a mean-square derivativetathat is, there exists a random

variablez{ € G such that
2
nmE{(M_z;) }o
h—0 h

It follows from the stationarity of increments thatdfis smooth at 0, then it is smooth at sl R. On the other
hand, applying the above definitiontat 0, we see that proce&sis non-differentiable if ling_ov(h) /h? = oo,

Here are some more properties of a smooth Gaussian process with stationary increments. The proofs are
straightforward and left as an exercise.

Proposition 3. Assume that Z is smooth. Then

(i) I'(s,t) has partial derivatives, and the isometry counterpart pirnzR is the function

(st = Sr(st)

(i) all functions f € R are differentiable at every point, and evaluation of a derivative at t can be obtained by
taking an inner product with™(t, -):

f'(t)y=(f,I''(t,")), feRteR,;

(iii) the variance function v is twice differentiable everywhere, and

Var (Zp) = %\/’(0);
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(iv) for any st € R,

For any subseA of a Banach spack, denote by Spaathe smallest closed linear subspac&afontaining
the setA. For any seV C R, denote

Gy =Span(Z;:teV}, Ry=SpanI(t,-):teV}.
Theinfinitesimal spacef the Gaussian procegsat timepointt is defined as

Gt = ) Gi—ut+u-
u>0
By the stationarity of increments, the structure@f. — Z; is the same for alt. In R, we denote byR . the
isometry counterpart db;..
A subspacé&y (resp.R/) augmented with the infinitesimal spaces at all pointg is denoted byG) (resp.
R):
Gy =Span JG: Ry =Span JR. 5)
tev tev

The infinitesimal space of a stationary Gaussian pro¥esas characterized by Tutubalin and Freidlin [15].
Under a mild spectral conditiois ;. is a finite-dimensional space generated by the random vaiialaled the
derivatives of the process gtsay X/, X/,... )(t(k). Moreover, the corresponding ‘infinitesimatalgebra’ is
also generated by these random variables, and some sets of measure zero. Note also that, by this result, the
infinitesimal o-algebra is the same for one- and two-sided neighborhoods in the definition.

The generalization to non-stationary Gaussian processes is by Piterbarg [13]. DerstthbySchwarz
space (i.e., the space 6f°(R) functions f(x), such that thex-th derivative f¥)(x) vanishes faster than any
inverse power, fox — c and anyk € {0,1,...}). Let H be the closure of functions i with respect to the
inner product{¢q, ¢2) = [r2I(S,t)$1(S)P2(t) dsdt. The following result is due to Piterbarg [13, Th. 1].

Theorem 2. Suppose that

() 2 C R and the embedding is continuous and dense;
(ii) The space H is closed under local shifts; see for the precise defifit®yirhm. 1}
(iii) In the region{(s,t) : s,t € R, s#t}, the function"(s,t) has mixed partial derivatives of any order.

Then G.. equals the closed linear hull of all existing mean-square derivatives of Z at t.

Note that ifZ has continuously differentiable paths and the spectral densi{; denoted byf (1), satisfies
f(1) > 1/AP for somep > 0, then the characterization &.. is immediately obtained from [15].

WhenZ is a Brownian motion, it follows easily from the independence of increments that the infinitesimal
space is trivial, i.e.Gi+ = {Z}. This implies the same property for fractional Brownian motions with self-
similarity parameteH < (0,1). Indeed, the transformed process

t
M :/ s Ht—-92Mdz, t>0,
0
is a process with independent increments and $bln s € [0,t]} = Goy), see [10,12].

2.5. A note on conditional expectations

For a finite-dimensional Gaussian vecky the conditional distribution with respect to any linear condition
AX = ais again Gaussian. Moreover, the mean of this distribution is lineayivhereas its variance is inde-
pendent ofa. It is less obvious how conditional distributions and expectations with respect to linear conditions
should be defined in the infinite-dimensional case. In this subsection we show how certain conditional expecta-
tions with respect to infinite-dimensional linear conditions can be defined in an elementary way.

Let SC R be a non-empty finite set of timepoints. For ang R, the conditional expectation &, given
the vectorZs has the expression

E[Zy|Zg) =T'(u,9(S) 1Zs.
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Thus, we have for any particular vecteta natural expression for a particular condition (although evidently the
probability of the condition is zero):

E[Zy|Zs= x| =T(u,9(S) x.

Note that the expression is linearin We give another point of view to the above formula by defining for each
x a random variable
Y, =2''(S) 1Zs. (6)

We obtain, for the one particular conditig@Zs = x}, the conditional expectations of &l’s as covariances
with one and the same random varialgle

E{YzZ,} =E[Zy|Zs=z] forallueR. (7)
Further, the isometry counterpart\gf in Ris the elemenf that satisfies
(f,I'(u,")) =E{YzZ,} foralueR.
By the reproducing kernel property, this element is the function
u—E[Z,|Zs=x].

From this, we deduce the following characterization of the most probable path going through a finite number of
specified points.

Proposition 4. For any finite Sc R and anyz € RIS, the conditional expectation given the values on S and the
most probable path satisfying $) = « are equal, i.e.,

f*(uy=E[Z,|Zs==] forallueR.

Proof. As shown above, the random variag defined in (6) is the random variable with smallest variance
that satisfie® {Y,Zs} = E[Zs|Zs = ]| for all s€ S. By this minimum variance characterization, its isometry
counterpart irR is the most probable patti. The claim follows now from (7). O

Remark 1In the case thaZ is smooth, Proposition 4 still holds if there appear as conditions also valu#s of
at some points, or those of higher derivatives if they exist. The generalization to those cases is straightforward
and we skip the detalils.

It is not clear for us how far Proposition 4 can be generalized to an infinite-dimensional setting. We now
show how this can be done when the conditions aiR in

Proposition 5. Let S be a closed subset®fand let{ € R. Let f* be the most probable path satisfyin¢sf =
{(s) for every s= S. Then, for every increasing sequence of finite subsets of S suth,®at S, and for every
ueR,

f*(u) = Ainl)E[Zu|Zs: C(s)Vse 5.

Proof. Take any sequenc® and denotéy, = {f e R: f(s) = {(s) Vse S},
fn=argmingea, [|fll, n=12...,

andA =, An. Since an equality can be obtained as a pair of non-strict inequalities in opposite directions, and
sincef* € A», we can apply Proposition 2 to see tHat— f* asn — . The expression of,(u) is obtained
from Proposition 4. d

Consequently, it is unambiguous to define, for any close@seR and any{ € R,
E[Z)|Zs={(s) vsc § = lim E[Z,[Zs = {(s) VS€ Tn, ®)

whereT, is any sequence of finite sets that approadesm within.
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2.6. The Gaussian queue

Our motivation for doing this study came from queues with Gaussian input, where we encountered the problem
of identifying the most probable paths in sets of the tyge> {(t),Vt € S}. We here present two prominent
examples of this.

Busy period The first example relates to the busy period in a queue fed by Gaussian input. The queue length
process with inpuZ and service rate 1 is commonly defined as

Q =supz —Zs— (t—9)).
s<t

Following [11], letKy be the set of paths that are such that the ongoing busy period at time 0 is longer than
T>0:
Kr ={A<0<B:B—A>T},

with the random intervdlA, B] defined as
[AB] = [sup{t<0:Q =0},inf{t>0: Q =0}].

When interested in the decay rate of the probability ddrag busy period, Norros [11] showed that for fBm,
with v(t) = t?", without losing generality, attention can be restricted to the set

B={feR: f(s)>s, Vse[0,1]}
of paths inR that create non-proper busy periods starting at 0 and straddling the if@djathis is due to

I
I|m | Tz logP(Z e Kt) = *;Q};EH‘CH .
The problem is to determine the MPP B i.e., B* = argmin;g||f||. SinceB is convex and closed3* is
uniquely determined, but [11] does not succeed in finding an explicit characterization. Both Kozaehahko
[6] and Dieker [5] consider the extension of this setup to a regularly varying (rather than purely polynomial)

variance functionv(t) = L(t)t?" for a slowly varyingL(-), and show that, under specific conditions,

LT
I|m TZ( 2?4 logP(Z e Kt) =

hence in this case the same minimization problem needs to be solved.

Tandem The second example corresponds to overflow in the second queue of a tandem queueing network.
Assume that the first queue is emptied at a constantiatehereas the second has link raggwith c1 > ¢y).
Clearly, the steady-state queue length of the first queue can be represented as

Q1= su;:(Z, —C1S).

Also, the total queue length behaves as a queue with linkcsate

Q1+ Q2 =supZ_t —cot).
>0

Therefore, expressing the occupancy of the second queue as the difference of the total buffer content and the
content of the first queue,
{Q2>b}={3t>0:¥s>0:Z—Z s—cCot+c15> b};

it is easily seen that we can restrict ourselves ¢0[0,t], andt > t, = b/(c; — ¢2). By a straightforward time-
shift, we conclude that the decay rate of our interest equaiscy 3| f||%, where

U=|JU, with U ={f eR: Vse [0,t] : f(S) > b+cot —ci(t—9)}.

t>ty

This decay rate obviously readsinf;>y, infscy, 3| f||>. Mandjes and van Uitert [8] partly solve the problem of
finding the MPP irlJ;: for large values of; (above some explicit threshold valdg) the MPP is known, and
for smallc; the MPP is known under some additional condition (thawasfulfilled in the case of fBm).
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3. The most probable path in{Z > { on S}

The central problem in this paper is of the following form: given a functjand a set of timepointS, what is
the most probable path in the evdi® > { on S}? In the rest of the paper, we assume that Gaussian pracess

satisfies the conditions of Theorem 2 so that the infinitesimal spaces are generated sigply. b&t(k), where
k is the number of derivatives.

In order to keep the presentation simpler, we only consider{gets { on S}, with { € R There are two
immediate generalizations, which may be included without too much extra effort. The requireménttRat
is certainly quite restrictive; point-wise and certain discontinuous conditions can also be handled along the
same lines. On the other hand, instead of considefihg ¢ on S}, one could also study sefZsign({) >

gsign({) on S}

Our first general result is a generalization of Proposition 1.
Theorem 3.Let{ € R and let SC R be compact. Denote
Bs={feR: f(s)>{(s) Vse S}.
There exists a functiof* € Bs with minimal norm, i.e.,
B* = argmingcg| |-

Moreover,
B* R,
where
s ={tes: B M) =¢(M)}.
If the infinitesimal space of the process Z is trivial, i.e4 & generated by random variable,Zhenf* € Rs,

and
B*(t) =E[Z|Zs= {(s) Vs€ S'].

Remark:The notationR. is explained in (5) in Section 2.4, and the meaning of the conditional expectation in
(8) in Section 2.5.

Proof. SinceBg contains{ and it is convex and closed, it has a unique element with minimum norn§, Let
a non-decreasing sequence of finite subse&sofch thas, = |J S, is dense irS. Denote

Bi={feR: f(s>{(s)Vse S}, n=12,...,

and letf, be the element iB, with smallest norm. By Proposition 2, the sequefigeonverges, and since the
functions inR are continuous, the limit ig*.
LetU be a bounded open interval such tBat U. Form=1,2,... denote

Um:{teu:ﬁ*(t)>§(t)+;}.

Since

Ba(t) = B*(O) = [(Bn = B* I'(t,-))| < [|Bn— Bl Sgup\/l“(u,u)

for allt € U, there is a numbary, such tha{3,,,(t) >t + 1/(2m) for all t € Up,.
By Proposition 1,
B € SPANI'(S,-) : S€ Sy, NUg} € Rgy,,-

Since the sequence of closed subsp&egg, is decreasing imandfn,, — 8, it follows that
B e[ Rug=Rs.
m=1

The last assertion follows directly from Proposition 5. O
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Remark 2The setS* in Theorem 3 need not be the smallest set fulfilling the assertions. For exanipls tife
minimum-norm function with conditiod (1) = 1, and 1€ S, then the theorem would give the &itself asS',
although the singletofil} would suffice.

Remark 3In the case of trivial infinitesimal space, Theorem 3 has a clear intuitive content: the ‘cheapest’ way
to push the process aboges to push it exactly to the curte— {(t) in the subse§*; the paints inS\ S* then
come ‘for free’.

The information provided by Theorem 3 is still insufficient for characterizing the MPP in any concrete case.
Such a characterization can often be obtained by studying ‘least likely’ finite-dimensional approximations of
B*, defined in such a way that their norm is always less or equgBtd. This idea is borrowed from [8, 9].

For any seV C S denote

By ={feR: ft)>¢(t)vteV}, Ly={feR:f(t)=L(t)VteV}.
Let the unique element with smallest normBpa andLy be, respectively,

¢V = argmingeg, ||@|l, @’ = argminger, |¢|l.

In this context we identify a vectdre R" with the set of its distinct components. Note that for g S, ||V ||
is a lower bound of|3*||, but it is possible thaf®" || > ||8*]|.

Next, we state a proposition showing that the coefficients of the-), v € V in the representation ap”
are strictly positive if every is needed to make functiap” feasible.

Proposition 6. Assume a finite V. If for eacha/V/ it holds thatp¥ \{V} (v) < ¢ (v), then the coefficient, in the
representation

9/ =5 arw)

ve

are all strictly positive.

Proof. Takev € V and denote 3
P\ =5 are,).
teVi{v}

The assumption thag"\(¥} (v) < ¢ (v) implies that][@" || > [|@"\(}|. Thus
0< [’ —9"|?

= (@' 9"\, 3 (B-8)r () +6I(v))
teVi{v}

= 6,(S(v) -9\ M (v)).
O

The nature of the MPP i& depends crucially on the smoothnessZofSection 3.1 is on the non-smooth
case, and Section 3.2 on the smooth case.

3.1. The case of nhon-smooth Z
Theorem 4 describes the MPP for non-smaotfProposition 7 is crucial in the proof of Theorem 4.

Proposition 7. Assume that Gaussian process Z satisfies the assumptions of Theorem 2. Then the mappings
T—9 and T— ¢ from{JCR: |J| < »} to R are continuous for every fixéde R, if and only if G, the
infinitesimal space of Z, is trivial.

Proof. First we show the continuity @' andeT under the triviality assumption, i.eGo+ = {0}. Consider the
mapT — @' .
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1. LetT, andT be finite subsets & such thafl, — T. (Notice that in principlél' can have a lower cardinality
than theT,.) For everye > 0, letn, be the smallest number such tAatC T + [—¢, ¢] for all n > n;.
2. For a closed subspa¥eof R, denote byR, the orthogonal projection ovi. For closed set¥ C R we also
use the shorthand notati® = Py, . Note that evidentlyp ™ = Pr. £, and@' = Pr .
3. Further, for any € R, denote by
Rf,e =R et OR = {fe Rt etie © (f,I'(t,-)) =0},
i.e., R, is the orthogonal complement 8 with respect tR_¢ ;.. The orthogonal complement &
with respect tRr, |_, ¢ satisfies
Rgl',s = RT+[78,8] SRr C Spa”{Rﬁg te T} : (9)
4. Now, forn > n¢ (which is needed in the second equality),
@™ =Pr,{ =Pr,Pri egl =PrPr{+PrP (.
As n — oo, the first term converges & { (due to the assumed convergeige- T; note thatP; { is afinite
combination ofl '(t,-)’s, t € T). On the other handr, Pre C — 0 (ash — ), because the triviality of the
infinitesimal spaces, in conjunction with (9), |mpI|esLm;bPRc f = 0 for any fixedf € R
Then consider the map— ¢'.
1. For any finiteT, denote
T={teT: o (t)=¢(1)},
and note thatp” = (p Choosee > 0 such that for allj,t; € T it holds that|t; —t;| > 2¢. Denote also
Th=ToN (T +[—¢,€]). ThenT, — T asn — «, and by the first part of the proposition we have
P =g =" (10)
2. LetthenT’ be any accumulation point of the sequefigeand let(ny) be a subsequence such that — T'.
By the continuity ofg ',
oM =g~ (12)
3. For anyt € T, takety € Ty, such that, — t. Because convergence implies uniform convergence on
compacts by (3),
P ()= lim T (k) = im ™ (t) > lim L (t) = (1),
where the first equality is due mT' being continuous, the second by virtue of (11), the inequality because
ty € Tp,, and the last equality due t:obeing continuous. Thu@T/ € Br. As ¢ is the element oBt with
minimal norm, we conclude thdp" || > [loT].
4. Now we prove thap " Ty ¢ BTn for largek. For anyt € Tnk eV|dentIy<pT“k( t) = {(t). Now pickt € Ty, \'fnk.
By (10) and continuity ofp™™ and(, we see thaET"k( t) > ¢ (t) for k large enough.
5. The fact thaip ™ € BTn for largek, in conjunction with the property that™ is the element oBTn with

minimum norm, implies the inequalityp ™| < ||(pT”k|| for largek. Thus, we have obtained the chain

lo™ll < llg™ [ = lim ™| < lim @™ = lloT|

and see that equality must hold everywhere. By the uniqueness of the minimum norm element, we deduce

that@T' = ¢'. Finally, because the limit is independent of the accumulation gdinive get the desired
convergence™ — @,
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Finally, let us show that the existenceZjfimplies that the mappings’ andg' cannot be continuous. We
first verify this statement fop' . Suppose the mean-square derivaijeexists. Takel, = {1/n} and let{ be

any element iR such that;’(0) > 0. Then limT, = {0} andg{® = 0, but

) (1Y ro
7= 7 () ~ 2 )

n’

Sinceg(s = 3!s whenever (s) > 0, we obtain a counterexample fof as well. O
We now consider set¢ of at mostn timepoints such that the norm @V is aslarge as possible: let
b = sup{[|l¢"[|: V CS V| <n}.

By Proposition 2b, 7 ||*|| (cf. the proof of Theorem 3). The following theorem shows that for eatte value

b, is attained at some s&, and provides detailed information on this set. This theorem is the key element in
our method for identifying most probable paths satisfying an infinite number of conditions. We shall see later
that the theorem does not hold in the smooth case.

Theorem 4. Assume that Gaussian process Z satisfies the conditions of Theorem 2 and that the infinitesimal
spaces are trivial. Letpbe as above, and denote bythe possibly infinite numbefr=inf{ne N: b, = bn;1}.
Then

(i) For each n, there exists a (generally non-unique) seL S with at most n elements such g™ || = by;
(i) If ||@S|| = ||@S+1|| for some n, the* = pS;
(i) If n < n*, thenpS =@

(iv) limp_e @ = B*;

(v) Assume that'n= c. Then

NUscs,
m=1n=m

where S is the set defined in Theorem 3.

Proof. (i): Take anyn if n* = oo, otherwise anyn < n*. Form=1,2,..., choose am-element sef,, C Ssuch
that

1
™| > b1+ (1 m> (b —bn1).

If there were a point € T, such thaip™(t) > {(t), we could, by Proposition 1, remove it from the optimization

without changing the optimal point, i.e., we would hap®&\{t} = ¢™_ This is not possible however, because
Tm

we required|@™|| > by_;. Thus we havep™ =@
Let us identify the set$;, with elements in
De={teR":t; <-- <ty tj € SVi}.

SinceD4d is compact, the sequendg has a subsequendg, converging to some eleme§ € D, that might
have less than distinct elements. In any case, Proposition 7 yields that

%] = Jim [|@™|| = by, (12)

Finally, the proof of the next claim shows that in the case: o we can just tak&, = Sy for n > n*.
(ii): If [[ @] = ||@S+1|| but o> 5 B*, thenp™ ¢ Bs. Then some of the hyperplanks, strictly separates

@ from Bs, that is, S (t) < £(t). It follows that
QI £ o,

which by the uniqueness minimum norm elements implies|tpat-{t}|| > || eS|
(iii): This was shown already in the proof of claim (i).



12 Michel Mandjes et al.

(iv): Take an arbitrary sequence of s¢B3,} satisfyingD,, C D1 C Sand having a dense limit sB, =
limp_ Dy in S. Then by the continuity of", Rp,, is dense irRs, which implies thatp®» — B*. Since||oPn|| <
lo*]| for anyn, @[] — || B*].

It suffices to show that

lo™ =B < IB*[1>— l9™[|*.
But this is easily seen to be equivalent to the conditipr, B* — @) > 0, which is true sincg8* is on the
same side of the hyperplagd : (o>, f) = ||9™||?} as the seBs.

(v): By Cauchy-Schwarz,

B (s) —9%(s) _ B (9—L(9)

¥ S > —
P == e = ireol
for anyn and anys € S,. Denote
~ Br(t)—¢(t) }
U =qteS: ————~>¢,.
‘ { ()l
If |B* — % < ¢, thenS, C US. On the other hand,
(Us=s.
e>0

O

The claim (iii) of the previous proposition is crucial, because it makes it possible to compute thepaths
when the se§, is known. Our example with fractional Brownian motion in Section 4.1 indicates that the explicit
identification of theS,’s is usually impossible in practice, but general properties can often be deduced.

Here are some other useful properties of the paths

Proposition 8. Assume that Gaussian process Z satisfies the conditions of Theorem 2 and that the infinitesimal
spaces are trivial. Let rC n*.

(i) For each se S,
P\ (9) < ¢ ().
(ii) The coefficient®s in the unique representation

¢ = Znesns,-) (13)

are all strictly positive.

Proof. (i): By claim (i) of Theorem 4, all points i, are relevant. It follows that we cannot hage \{ (s) = s,
because otherwise we would hage\{$ = g5 = ¢ Assume that

P\l (s) > ¢(s).
Then
ES‘\\{S} c Bg1
Since@™\8 £ % andp™ € Lg,\ (5, we obtain the contradictory chain of inequalities

[P | < [@% ) = %] < lg= .

Thus, >\ (s) < ¢(s).
(ii): Follows from Proposition 6. O

So far we have made rather few assumptions on the variance function. In the last general proposition in the
non-smooth case, we make the additional assumptiowv{hiat I'(t,t) be everywhere differentiable, including
the origin (necessarily thevi(0) = 0). We show thatp™ then toucheg smoothly at the points o, that are
interior points ofS,
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Proposition 9. Assume that Gaussian process Z satisfies the conditions of Theorem 2 and that the infinitesimal
spaces are trivial. Consider a connected closed set S. Assume v be differentiable on tHe.wkble< n* and
denote §= {s}i":l, wheremin{se S} < < < - <5y <max{se S}.

@) Fori=2,...,n-1,
a(psq(t)’tzs = C/(S)a

and d d
&(Psn(t)hzsl > CI(51)7 &(ps“(t)‘tzsn < CI(Sﬂ)7

where an inequality can be replaced by an equality, if pojrirss, is an inner point of S.
(i) Assume additionally that(¥) be twice differentiable outside the origin, anti(®) = «. Then the curve
@™(t) touches the ling (t) from below at the points;s. .., s 1.
Proof. (i): Denotet = (ty,...,ty), (t) = ({(ty),...,¢(ty)T and
F(tL 3
fOy=co're"| =6Mr(,),
I(tn,)
whered (t) = £(t) T (t)~L. Thusf(t) = ¢ (t;) fori = 1,...,n. Taking the derivative of at pointsty, k=1,...,n,
gives

f'(tg) = ;9. (t,t)+ %Gk(t) vV (ty) (14)

(note that here we need th&t0) = 0).
Since thes maximize the norm,

=0 fork=2,....n—1 (15)

t=s

J 2
FAL

Observing thaf| f||> = (f,8(t)"(t,-)) = B(t){ (1), this condition can be written as

(ake( ))C( ):—C,(Sk)ek(S), k:27"'7n_1a (16)
whered (t) = 77-6(t).
On the other hand, we can wrife||> = 6(t)I"(s)8(t)" and obtain the expressions

inHZ e ZZGI I(t,))6;(t)
_ z ZZQ t,, 8k91 )+ ;ZGK )6 (1) <aan(r(ti,tk)> + Gk(t)z\/(tk)

=2(O))C(1)O(1)T +26(1)f'(tx), k=1,...,n—1,
where the last line follows from (14). Finally, notice tHatt)0(t)" = {(t), replacet by s, and use (16) to get
! _ 1 _ !
f(s) = G (k6(s)) E(s) = £'(s0)-

For pointss; ands,, the equality in (15) is replaced by an inequality. Otherwise, the proof is similar.
(ii): By claim (i), it is enough to show that

d? s,
ﬁ‘P (<o
at the pointssy, ..., S,—1. A direct computation yields
d2 ,
@ H=5 Z 6i(s —V'(t—5)).

By claim (ii) of Proposition 8 and the assumptigh(0) = «, this expression equalsw at all the pointsy. [J
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3.2. The case of smooth Z

When procesg has derivatives up to the ordee {1, 2, ...}, the analysis gets more involved since the mappings
T— " andT — @' are not continuous anymore. Fortunately, in the case of smooth processes, only a small
number of points is often enough to determine the most probable path. For example, the most probable path
for the busy period of a queue fed by integrated Ornstein-Uhlenbeck process is solved using just two points
(Section 4.2) whereas infinitely many points are needed in the case of fractional Brownian input (Section 4.1).
The general approach is left for future studies. In this paper, as a starting point, we present in Section 4.2
the solution of the special case of busy periods of the integrated Ornstein-Uhlenbeck inputs (which are once
differentiable).

Instead of imposing conditions on the valueZadt some points, in the smooth case we could equivalently
also put requirements on the infinitesimal neighborhoods of those points. More precisely, we can require that
the projections B to the infinitesimal spacd’.. satisfy the original condition in someneighborhood, i.e.,
for V again a finite subset &

By ={feR: RLf(s)>RL{(s), VteV, Vsc|t—e,t+¢]NS for somee > 0}. a7

For anyf € By we have naturallyf (t) > {(t) for allt € V. Moreover, if{ is nicely behaving, it is also possible
that f(s) > ¢ (s) in the neighborhood dfe V, even iff (t) = {(t). There is no easy way to write a generalization
to Ly, sinceR.+ is spanned by (t,-),..., ' (t,.), and often only some subset of these derivatives results in a
sharp condition.

As an example, let us consider a connected close8@ad the case &= 1, i.e., processes which are once
differentiable. Proposition 3 implies that for ahg V the condition in (17) can be written as

1 -1
0< (10-¢0). 1O -¢0) (3570 o)) (16 3)
— (1)~ L)+ (0 - C'()ge(s)

for sin somee-environment oft, and theg;(s) functions defined appropriately; notice that \&) = %\/’(0)
and Co\Z,Z{) = 3(V(t) —V(0)) = 3V(t) for smoothZ. One can show thag(s) is positive fors in the
neighborhood of, whereasy,(s) changes its sign at DenoteS := {sc S: |s—y| >0Vy e R\S}, S :=
min{s€ S} andS := max{s € S}, i.e., the inner, left boundary and right boundary pointScfhenBy can

written as the intersectioy = B\(,i) N B\(,') N Bf,r), where
B) = {feR:vtevnS: {f(t)>{(t)} or {f(t) = {(t)andf'(t) = {'(1)}},
B)) = {feR:vtevns : {f(t)> ¢(t)} or {f(t) = {(t)andf'(t) > ¢'(t)}},
By = {feR:WteVNS : {f(t)>¢(t)} or {f(t)={(t)andf’(t) < {'(t)}}.

4. Example: busy periods of Gaussian queues

As an application of the results derived in Section 3, we consider the problem of busy periods of a queue with
Gaussian input, introduced in Section 2.6. We consider both an example of non-smooth input (fBm, Section 4.1)
and smooth input (integrated Ornstein-Uhlenbeck, Section 4.2).

4.1. Fractional Brownian motion

Our results enable an explicit characterizatiordfin the case thaZ is a fractional Brownian motion (fBm),
S=[0,1], and{(t) =t for t € S As discussed in Section 2.6, this gives the logarithmic asymptotics of the
probability of long busy periods in a queue with fBm input.

Assume that the fBrZ has self-similarity parametét € (0,1), such that

1
I(st)= E(sZH +t2H —|s—t2).

Let us first state some properties of the derivativedffor fixedn < n*.
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Proposition 10.Let H> 1/2, and let n< n*. Denotey(t) = %(psn(t) and § = {s}i”:l, where0 < s <9 <
-+ <5 < 1. Then

@) shn=1,

(i) y(s)=1landy/(s)=—ofori=1,....n—1;

(iii) w(0) <1, andy(t) = 1for only one point in(0,s; );

(iv) Foreachi=1,...,n—2, y(t) = 1 for only one point in(s,S+1);
(v) (1) < 1, andy(t) = 1 for two points in(sh—1,1).

Proof. (i) Denotes= (sy,...,s,)". The self-similarity of fBm gives

S Sj)
r'(s,sj)="r=>2).
s =g (22
Thus,
[@%)> =s"T(9)s=s 3T (3)3,

wheres = (%,...,%,1) =(&,...,%1,1). Sincep™ :ES“ for n < n*, and by recalling thas, maximizes
the norm, we concluds, = 1.

(ii) This follows from Proposition 9; note that'(0) = c.

(iii) Write y(t) in the form

y(t)=C|t*+ Snz ps(s—1)* — %Z ps(t—S)“] ) (18)
SeSy, s>t €S, s<t
where 0
a=2H-1€(0,1), C=H Y 6, ps=———¢c(0,1).
s ZFES. 6

Note that in the right hand side of (18), the first term is increasing and concave, the second is decreasing and
concave, and the third (negative) is decreasing and convex. Heigstrictly concave between 0 asd Due
to this property, in conjunction withy(s;) = 1, y can obtain the value 1 at most once(s;). On the other
hand, this does happen at least once by the mean value theorempSitg¢ = [5* y(7)dr = s1.
(iv) Sincey’(s) < 0,i =1,...,n—1, it is enough to show that withifs,s+1), ¥’ can change its sign at

most twice. Write
th— Snz Ps(s_t)ﬁ - g ps(t _S)ﬁ )
se;y, s>t Sy, s<t
wheref = a—1€ (—1,0). Witht € (s,5+1), make the change of variable
x=o —th
1/B
t= ()" xe(od-<,).

This transforms the first tertf into a linear function. The powers in the first sum read, in terms of

gj(x) = <sj - (S{Bx)l/ﬁ)ﬁ, j>i.

A straightforward calculation shows thgit(x) > 0, thusg; is convex. An essentially identical calculation shows
the convexity of the functions

v (t) =Ca

B

hi(X)ﬁ<(%ﬁ—X)l/ﬁ—Sj> , I=h

appearing in the second sum. Now the stated follows by observing that the convex function

. Z Ps;i 9 (x) + lesj hj (%)
=

j=1+1
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can cross the linear functicnﬁ — x at most twice.

(v) The sign-change argument of the previous item also works on the inferval 1). It remains to note
that

d
y()=S 6,—I'(st)]._, < 0s(s,1) =1,
L Sdt |t_1 sé

as a consequence of the fact

d I'(st)
—I'(s,t 0 <t.
@ (st) < T <s<
Thus sincey(1) < 1, there are two points of$,_1, 1) such thaty(t) = 1. O

Applying the previous proposition together with results of Section 3, we get the following qualitative char-
acterizations of the pathg™.

Proposition 11.LetH > 1/2and $ = {s}i"zl, where0< s << <=1

(i) The functionp™(t) is concave for t 1/2;
(i) Forn >2,5_1<1/2;
(iii) There exists a time pointe (s,-1,1) such that

(iv) oS (t) <t on|0,up] unless tc S,U{0,un}, and@S(t) >t on (up,1);
(v) The number his infinite.

Proof. (i) Since for anyt > 0 the second derivative @(t, -) is negative after the poiny2 (i.e., %F(t,s) <0
for all s>1/2), and the coefficientds in the representation (13) are positive by claim (ii) of Proposition 8, the
second derivative ap is negative after the time poiny/2. This proves the claim on concavity fop 1/2.
(i) By Propositions 9 and 103'—t @ (t) must be increasing somewhere afigry, i.e., there is a subinterval
of (sy_1,1) wherep™(t) is convex. However by (i}p™(t) is concave if1/2, 1].
(i) and (iv) Follows directly from Proposition 10.
(v) The infiniteness ofi* follows from the fact that the above characterization of$kie was shown to hold
for anyn. (If n* were finite, we would haveS (t) >t for allt € [0,1].) O

Proposition 12.Let H < 1/2. The number his infinite. Let = {s}{.;, where0 < 5 < 5, < --- < §, < L. The

number g is 1 for all n. The functiorp™(t) is concave for &< 1/2. There exists a time point € (0,5;) such
that

>t
<t, te[unl].

Moreover,p™(t) <t on [un,1] unless te ;U {un}, andeS(t) >t on (0, up).

Proof. The proof is a simpler variant of the cade> 1/2, sincep™ turns out to be convex inside each interval

(sj,sj+1). This is seen by the applying the change of variable used in item (iv) in the proof of Proposition 10,

applied directly to the path itself instead of the second derivative. As regards the fgriniaf(0,s; ), we only

need to note that the derivative @ is convex in this interval. O
Examples of the shapes of the pai#t8 are shown in Figure 1. We can now prove our main result on fBm:

Theorem 5. For an fBm with H> 1/2, the set Shas the form

S =[0,s|u{1},
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H=0.8 H=0.2
0.015

0.125
0.0125 0.1
0.01 0.075
0.0075 0.05
0.005 0.025

0.0025 0.2 0.4 O.GW
7.2 0.4 0.6 0.8 T 000

Figure 1. The shapes op=(t) —t for fBm with H = 0.8 (left; in this cases; is too close to 0 to be seen in the figure) and
H = 0.2 (right).

where § € (0,1). The function3* has the expression

B*(t) =E[Z]|Zs=sVs€[0,5],Z1 =1]

Cov|z, 21| F
= Xpos](t) + \W(l—%[asﬂ(l»,
where.# = 0(Zs: s€0,s"]), and

(1- 20s7(1)?
Var(Z, —E[Z1| Zs, s€[0,57]])

1B*11% = ll0.5 1% +

wherey|oy is the most probable path in R satisfyigg, (s) = s for all s€ [0,t].
For an fBm with H=1/2 (i.e., the Brownian motion), we have

S =10,1].

For an fBm with H< 1/2, we have
S =1[s"1],

where $ € (0,1),

B*()=E[z|Zs=sVsc[s | =xsy and [B]2=xsyl?
wherey; 1) is the most probable path in R satisfyigg i (s) = s for all s€ [t, 1].
Remark 4 For the casél = 1/2, S is not the minimal set, the singletdd} would suffice.

Proof. H> 1/2:

1° SetS* cannot be the whole interval since the cfisét) =t for all t € [0,1] is ruled out because we
know from [11] thatyo 4 is notthe optimal busy period path. On the other ha®id# {1}, sincel'(1,-) is not
in B.

By claim (iv) of Theorem 4B* is a limit of the functionsp™. By Proposition 11¢p>(t) is at or below the
diagonal or{0, up] and strictly above it oifun, 1). On the other hand, Proposition 10 shows that on each interval
(s,s41) (fori=0,...,n—1; 59 =0 ands, = 1) ¢> is first concave then convex and finally concave again.
Thus, on intervalun, 1], 3 is either concave or first convex and then concave; this behavior is qualitatively
illustrated by thep> shown in Figure 1. Combine this with the properties mentioned in the first paragraph to
get
lim %(t) =t, vt € [0,s" | U{1} mdm@@m>nwa§nwu

n—oo

for somes* € (0,1).
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2° For any functionf € R, define
oi(t) =E[Z|Zs= f(s) Vs€ [0,5"]],
yi(t) =E[Z|Zs= f(s) Vs€ [0,8"]; Z1 =1].
The conditional distribution of the paiiz;,Z;) w.r.t. .Z is a two-dimensional Gaussian distribution with (ran-

dom) meark [ (Z,Z;)|.#]. Thus, the further conditioning ofZ; = 1} can be computed according to the for-
mula of conditional expectation in a bivariate Gaussian distribution:

B Cov[z,Z,|.7] . _ 3
vi(t) = ¢ (t)+—Var[Zl|f/“] (1—-01(1) = s (t) +c(t)((1— @1 (1)),
wherec(t) = Cov[Z,Z; | .%] /Var|Z1 | %] does not depend oh Applying this to the functiorf (t) = 0 yields
c(t) = yo(t).

Since(yp,I'(u,-)) = 0 foru € [0,s"], yo minimizes theR-norm in the set
RosN{f: f(1)=1}.
Denote byP the orthogonal projection on the subsp&ggs. Forg € R[ﬁs*], we have
9(1) =(g.I'(1,)) = (g, (1 =P)I"(L,)),

and it follows that the elemerg in R, 051 {f: f(1) =1} with minimal norm must be a multiple off —
P)I"(1,-). Thus,
v : (1
0= T o 2
10 =P)L(1,-)]2
The counterpart oPI"(1,-) in the isometry (1) iSE[Z; | #], and it follows that the counterpart af, is the
random variable

“P)I(L,-).

21-E[21] 7]
Var(Zlf]E[Zl\ﬁ])'

Thus,
lwol|? = Var(zy —E[Z1| Z]) .

Now, note that
B*(t) =E[Z|Zs=sVsc[0,s"],Z1 =1 = vy,
Pros = X057 andyyp is orthogonal tgo ). Thus,

* (1- 205 (1)?
1817 = ||X[0~S*]“2+Var(21 —[OES*[]ZH«?])'

H = 1/2: A well known result.

H < 1/2: Using the similar type of argument as fér> 1/2, it is seen that the shapes of & (see Figure
1) are such that the limiting path must be of the f¢rift) >t if t € (0,s*) andB*(t) =t if t € {0} U [s", 1] for
somes* € (0,1). O

The quantities in the expressionf@f can be computed. The functign ) is the counterpart of the random
variableMg in [12] in the isometry (1), see also [11]. Let us focus on the ¢hse 1/2. Note first that for a
multivariate Gaussian distribution the conditional variances and covariances, given a subset of the variables, are
constants, and this carries over to Gaussian processes as well. Then apply the general relation,

CoV|Zs, Z;|Zy, u € [0,1]] = EZsZ; — Cov(E[Zs|.# ], E[Z|F]),

recall the prediction formula of Thm. 5.3 in[12]

E[Z|Zu, uc [0,5] / W (s, u)dz,,
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Figure 2. The difference3*(t) —t for fBm with H = 0.8 (left) andH = 0.2 (right).
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Figure 3. The derivative of3*(t) for fBm with H = 0.8 andH = 0.2. The dashed lines correspond to the server rate 1.

and use the covariance formula

st s
Cov(/0 lI’s(s*,u)dZu,/o ‘I{(s*,v)dzv>

st rs
=H(2H - 1)/0 A Py(s*, u) ¥ (s, v)|u—v|2? ~2dudv.
The expression d¥5(s*,u) contains an integral, and numerical computatiof ofrom an expression contain-
ing multiple integrals may be hard. As regards the nun#®gewe have not found how to obtain any explicit
expression for it.
However, by knowing the structure &, or even by just knowing from Theorem 3 that the MPP is deter-
mined by a set where it touches the diagonal, it is easy to obtain discrete approximations of the MPPs using
some graphical mathematical tool. Figures 2 and 3 show the shapes of th@ patteo fBm cases.

4.2. Integrated Ornstein-Uhlenbeck process

Consider a Gaussian proc&swith stationary increments and variange) =t — 1+ e*. This is an integrated
Ornstein-Uhlenbeck model, which can be interpreted as the Gaussian counterpart of the Anick-Mitra-Sondhi
model [1]. Since the rate process is defined by the stochastic differential equation

whereW denotes the standard Brownian moti@nis exactly once differentiable and the infinitesimal space

G4 is generated by; andZ/; in the above differential equation bofhando should be equated to 1 to get the
desired variance function. The differentiability property can also be deduced by observing the spectral density
of Z, which is I/ (4n(1+ A?)).
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Figure 4. Integrated Ornstein-Uhlenbeck model witft) =t — 1+e~t. On the left, the differenc*(t) —t. On the rigth,
the derivative of3*(t) (solid line) and the server rate (dashed line).

Input paths irB, i.e., path resulting in a busy period starting at0 and lasting at least titl= 1, necessarily
belong to the set
F={feR:f(0)>1 f(1)>1}.

The next theorem shows that the most probable path i also the most probable path i) despiteB C F.
The resulting path is shown in Figure 4.

Theorem 6.Assume that() =t — 1+ et. Then the most probable path inB{f € R: f(s) >s Vs [0,1]}
is given by

e, (e=D2(t—14e)— (¢ -1)%!
Br(t) =t+ e ‘

Proof. Application of Proposition 3 gives that the mimimizing pathHris

(19)

f* =argmin{||f||: f eR, (f,I(0,)) > 1, (f,["(1,-)) > 1}.

It is easy to see that both conditiofg, I"’(0,-)) > 1 and(f,I"(1,-)) > 1 are needed, and by Proposition 1,
f* € SpaI"(0,-),I'(1,-)}. Thus,

= (1) (%y(m v ) o (r'<o,->) .
V() V(D) ra,.)
Insertingv(t) =t — 1+ e and doing some simple manipulations gives that) equals the formula in the
right hand side of (19). One can show thatt) >t for all t € [0,1], for example, using the Taylor series

representation. Thus the optimum pdthin the ‘larger set’F is also in the ‘smaller setB. Conclude that
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