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ABSTRACT
The asymptotic decay rate of the sojourn time of a customer in the stationary M/G/1 queue
under the Foreground-Background (FB) service discipline is studied. The FB discipline gives
service to those customers that have received the least service so far. We prove that for light-
tailed service times the decay rate of the sojourn time is equal to the decay rate of the busy
period. It is shown that FB minimises the decay rate in the class of work-conserving disciplines.
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Abstract

The asymptotic decay rate of the sojourn time of a customer in the stationary
M/G/1 queue under the Foreground-Background (FB) service discipline is studied.
The FB discipline gives service to those customers that have received the least
service so far. We prove that for light-tailed service times the decay rate of the
sojourn time is equal to the decay rate of the busy period. It is shown that FB

minimises the decay rate in the class of work-conserving disciplines.

1 Introduction

The sojourn time of a customer, i.e. the time between his arrival and departure, is an

often used performance measure for queues. In this note we compute the asymptotic

decay rate of the tail of the sojourn-time distribution of the stationary M/G/1 queue
with the Foreground-Background (FB) discipline. This decay rate is then used to

compare the performance of FB with other service disciplines like PS and FIFO.
∗CWI, Amsterdam, The Netherlands, and University of Twente, Faculty of Mathematical Sciences,

The Netherlands

†KdV Institute for Mathematics, University of Amsterdam, The Netherlands
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The FB discipline gives service to those customers who have received the least amount

of service so far. If there are n such customers, each of them is served at rate 1/n.
Thus, when the age of a customer is the amount of service a customer has received, the

FB discipline gives priority to the youngest customers. In the literature this discipline

has been called LAS or LAST (least-attained service time first) as well.

Let V denote the sojourn time of a customer in the stationary M/G/1 FB queue.
Núñez Queija [6] showed that for service-time distributions with regularly varying

tails of index η ∈ (1, 2), the distribution of V satisfies

P (V > x) ∼ P (B > (1 − ρ)x), x → ∞, (1)

where ρ is the load of the system, B is the generic service time, and ∼ means that

the quotient converges to 1. Using Núñez Queija’s method, Nuyens [7] obtained (1)
under weaker assumptions. In case of regularly varying service times the tail of V

under other disciplines, like FIFO, LIFO, PS and SRPT, has been found to be heavier

than under FB, see Borst, Boxma, Núñez Queija and Zwart [1].

Additional support for the effective performance of FB under heavy tails is given by
Righter and Shanthikumar [8, 9, 10]. They show that for certain classes of service

times (including e.g. the Pareto distribution), the FB discipline minimises the queue

length, measured in number of customers, in the class of all disciplines that do not

know the exact value of the service times.
For light-tailed service times the FB discipline does not perform so well, although for

gamma densities λαxα−1 exp(−λx)/Γ(α) with 0 < α ≤ 1, FB still minimises the queue

length, and for exponential service times the queue length is independent of the service

discipline. However, for many other light-tailed service times, for example those with
a decreasing failure rate, the queue shows opposite behaviour and the queue length is

maximised by FB, see Righter and Shanthikumar [8, 9, 10]. This undesirable behaviour

of the FB discipline is very pronounced for deterministic service times. In this extreme

case in the FB queue all customers stay till the end of the busy period, and the sojourn
time under the FB discipline is maximal in the class of all work-conserving disciplines.

In this note we consider the (asymptotic) decay rate of the sojourn time, where the

(asymptotic) decay rate dr(X) of a random variable X is defined as

dr(X) =
∣∣∣ lim

x→∞x−1 log P (X > x)
∣∣∣,

given that the limit exists. Hence a larger decay rate means a smaller probability that
the random variable takes on very large values. In this sense sojourn times are better

when they have larger decay rates.
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It turns out that for the M/G/1 FB queue in which the service-time distribution has

an exponentially fast decreasing tail, large sojourn times are relatively likely, in the
following sense. Assume that the service times have a finite exponential moment, or

equivalently, the Laplace transform is analytic in a neighbourhood of zero. The main

theorem of this note is then the following.

Theorem 1 Let V be the sojourn time of a customer in the stationary M/G/1 FB

queue, and let L be the length of a busy period. If the service-time distribution has a
finite exponential moment, then the decay rate of V exists and satisfies

dr(V ) = dr(L). (2)

It is shown below that the decay rate of the sojourn time in an M/G/1 queue with any

work-conserving discipline is bounded from below by the decay rate of the residual

life of a busy period. For service times with an exponential moment the latter decay

rate is equal to that of a normal busy period. Hence (2) is the lowest possible decay

rate for the sojourn time under a work-conserving discipline. Using the decay rate of
V as a criterion to measure the performance of a service discipline then leads to the

following conclusion: for service times with an exponential moment, the FB discipline

is the worst discipline in the class of work-conserving disciplines.

The paper is organised as follows. In Section 2 we present the notation, some prelim-
inaries, and prove the lower bound for the decay rate of the sojourn time under any

work-conserving discipline. In Section 3 Theorem 1 is proved. Section 4 discusses the

result and the decay rate of the sojourn time in queues operating under several other

service disciplines.

2 Preliminaries

Throughout this note we assume that the generic service time B with distribution

function F in the M/G/1 queue satisfies the following assumption.

Assumption 1 The generic service time B has an exponential moment, i.e.,

E exp(γB) < ∞

for some γ > 0.

Let in addition the stability condition ρ = λEB < 1 hold, where λ is the rate of
the Poisson arrival process. The proofs in this note rely on some properties of the

busy-period length L and related random variables, which we derive in this section.
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Under assumption 1, Cox and Smith [3] have shown that P (L > x) ∼ bx−3/2e−cx for

certain constants b, c > 0. In particular, L has decay rate c. In fact, by expression (46)
on page 154 of Cox and Smith [3] , c = λ−ζ−λg(ζ), where g is the Laplace transform

of the service-time distribution, and ζ < 0 is such that g′(ζ) = −λ−1. Hence ζ is the

root of the derivative of the function m(x) = λ − x − λg(x). Since m(x) attains its

maximum in the point ζ, we may write c in terms of the Legendre transform of B,

c = dr(L) = sup
θ
{θ − λ(EeθB − 1)}. (3)

Remark This expression shows up as well in the following context. Consider a Poisson

stream, with intensity λ, of i.i.d. jobs, where every job is distributed according to the

random variable B. Let A(x) denote the amount of work generated in an arbitrary

time window of length x. It is an easy corollary of Cramér’s theorem that

lim
x→∞

1
x

log P (A(x) > x) = − sup
θ
{θ − log EeθA(1)}. (4)

Noting that

EeθA(1) =
∞∑

k=0

e−λ λk

k!
(
EeθB

)k = exp
(
λ(EeθB − 1)

)
,

we observe that P (L > x) and P (A(x) > x) have the same decay rate. This is
somewhat surprising, as {A(x) > x} obviously depends just on A(x), i.e. the amount

of traffic in a window of length x, whereas {L > x} depends on A(y) for all y ∈ [0, x],

due to

{L > x} d= {B1 + A(y) > y, ∀y ∈ [0, x]}.

Here B1 is the first service time in the busy period L.

In renewal theory the notion of residual life, also known as excess or forward-recurrence

time, is standard. Let L̃ be the residual life of a busy period. Then P (L̃ > x) =
(EL)−1

∫ ∞
x P (L > y)dy, see for instance Cox [2]. Using standard calculus we find

dr(L̃) =
∣∣∣ lim

x→∞
1
x

log
∫ ∞

x
y−3/2e−cydy

∣∣∣ = c = dr(L). (5)

Hence L̃ has the same decay rate as L.

Another ingredient used in the proofs below is the M/G/1 queue with truncated
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generic service time B∧τ , τ > 0. Call this the τ -queue and let L(τ) denote the length

of a busy period (a τ -busy period ) in this queue. Let L̃(τ) be its the residual life and
define L∗(τ) to be the length of a τ -busy period in which the first service time B1 is

at least τ , i.e.

P (L∗(τ) > x) = P (L(τ) | B1 ≥ τ).

We now show that the random variables L(τ), L̃(τ) and L∗(τ) have the same decay

rate.

Lemma 2 Let τ > 0 be such that P (B ≥ τ) > 0. Then

dr(L(τ)) = dr(L∗(τ)) = dr(L̃(τ)) > 0.

Proof We show that L and L∗ have the same decay rate. The proof is then finished
by using (5). Let B1 denote the first service time in the busy period, hence B1

d= B.

Assume that τ > 0 is such that P (B ≥ τ) > 0. If B1 ≥ τ , then the first service time

is maximal in the τ -queue, as all service times are bounded by τ . Hence

P (L(τ) > x) ≤ P (L(τ) > x | B1 ≥ τ) = P (L∗(τ) > x), x ≥ 0.

Further,

P (L(τ) > x) ≥ P (L(τ) > x, B1 ≥ τ) = P (L(τ) > x | B1 ≥ τ)P (B1 ≥ τ)

= P (L∗(τ) > x)P (B1 ≥ τ), (6)

From (6) it follows that P (L∗(τ) > x) and P (L(τ) ≥ x) differ only by a term inde-

pendent of x. Hence dr(L) = dr(L̃). �

In this note we need the following lemma about the decay rate of the sum of two

independent random variables.

Lemma 3 Let X and Y be non-negative, independent random variables such that

dr(X) = dr(Y ) = α for some α > 0. Then also dr(X + Y ) = α.

Proof Since both X and Y are positive, −α is clearly a lower bound for dr(X + Y ).

For the upper bound let n ∈ N be fixed. Then,

P (X + Y > x) ≤
n−1∑
i=0

P
(
X ≥ ix

n

)
P

(
Y ≥ (n − i − 1)x

n

)
.
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Fix ε > 0. For x sufficiently large, for all i ∈ {0, . . . , n − 1},

P
(
X ≥ ix

n

)
P

(
Y ≥ (n − i − 1)x

n

)
≤ exp

(
− (α − ε)

ix

n
− (α − ε)x

n − i − 1
n

)

= exp
(
− (α − ε)

(n − 1)x
n

)
.

Hence,

lim sup
x→∞

1
x

log P (X + Y > x) ≤ −(α − ε)
(
1 − 1

n

)
. (7)

Since (7) holds for every n ∈ N and ε > 0, we may take the limits n → ∞ and ε ↓ 0,
and the result follows. �

Let D be the time from the arrival of a customer till the first moment that the system

is empty. The following proposition is valid also in the case that Assumption 1 does
not hold.

Proposition 4 Consider a stationary queue with an arbitrary service-time distribu-
tion, Poisson arrivals and a work-conserving discipline. Then D

d= AL̃ + L, where

P (A = 1) = ρ = 1 − P (A = 0) and A, L̃ and L are independent.

Proof The value of the random variable D does not depend on the service discipline.

There are two possibilities. With probability 1 − ρ the customer finds the system

empty. In this case D is just the length L of the busy period started by the customer.
Secondly, if our customer enters a busy system, then the server may first finish all the

work in the system apart from the work of our tagged customer. The moment the

remainder of the original busy period, which has length L̃, is finished, our customer

starts a sub-busy period. This length of this sub-busy period, which is independent

of L̃, is distributed like L. �

For the stationary τ -queue with Poisson arrivals and a work-conserving discipline,

we have the following corollary.

Corollary 5 In the stationary τ -queue, the random variable D satisfies

D
d= A(τ)L̃(τ) + L(τ),

where P (A(τ) = 1) = λE(B ∧ τ). If the customer has service time τ in the τ -queue,

then D
d= A(τ)L̃(τ) + L∗(τ).
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Since the system is work-conserving, the sojourn time of a customer is not longer than

D. Hence V ≤st D for every service discipline. Since AL̃ and L satisfy the conditions
of Lemma 3, the following corollary holds.

Corollary 6 For every work-conserving service discipline, the sojourn time V of a
customer in the stationary queue satisfies

lim sup
x→∞

1
x

log P (V > x) ≤ lim
x→∞

1
x

log P (AL̃ + L > x) = −dr(L).

An immediate consequence of this Corollary and Theorem 1, which will be proved in

the next section, is the following.

Corollary 7 The FB discipline minimises the decay rate of the sojourn time in the

class of work-conserving disciplines.

In Section 4 it is discussed that there are service disciplines with a strictly larger decay

rate, e.g. FIFO.
Interestingly, for service times with certain Gamma distributions, the FB discipline

minimises the queue length, as was mentioned in the introduction, but the sojourn

time has the smallest decay rate. This shows that optimising one characteristic in a

queue may have an ill effect on other characteristics.
The existence of a finite exponential moment in the corollary is crucial: for heavy-

tailed service times the tail of V cannot be bounded by that of L. For example, in the

M/G/1 FIFO queue with service times satisfying P (B > x) = x−νL(x), where L(x) is

a slowly varying function at ∞ and ν > 1, De Meyer and Teugels [4] showed that

P (L > x) ∼ (1 − ρ)−ν−1x−νL(x).

It may be seen that in this case the tail of B̃, the residual life of the generic service

time B, is one degree heavier than that of B. Now note that for the FIFO discipline

we have VFIFO ≥ AB̃. Hence the tail of V is at least one degree heavier than that of L,

see also Borst et al. [1] for further references. In the light-tailed case this phenomenon
is absent since the tails of L and L̃ have the same decay rate.

3 Proof of the theorem

In this section Theorem 1 is proved. The results in this section rely on the following

decomposition of V . Let V (τ) be the sojourn time in the stationary M/G/1 queue of
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a customer with service time τ . The sojourn time V of an arbitrary customer in the

stationary queue satisfies

P (V > x) =
∫

P (V (τ) > x)dF (τ). (8)

Here F is the service-time distribution. Hence we may write

P (V > x) = EBP (V (B) > x),

where B is a generic service time independent of V (τ), and EB denotes the expectation

w.r.t. B. Theorem 1 is proved using this representation of V . In the next lemma we

compute the decay rate of V (τ).

Proposition 8 Let τ > 0 be such that P (B ≥ τ) > 0. If the service-time distribution

satisfies Assumption 1, then dr(V (τ)) = dr(L(τ)).

Proof By the nature of the FB discipline, the sojourn time V (τ) of a customer with

service time τ who enters a stationary queue is the time till the first epoch that no
customers younger than τ are present. This is the time till the end of the τ -busy period

that he either finds in the τ -queue, or starts. By Corollary 5, V (τ) then satisfies

V (τ) d= A(τ)L̃(τ) + L∗(τ), (9)

where L̃(τ) is the residual life of a τ -busy period, L∗(τ) is a τ−busy period that starts

with a customer with service time τ , P (A(τ) = 1) = 1−P (A(τ) = 0) = λE(B∧τ) and

A(τ), L̃(τ) and L∗(τ) are independent. By Lemma 2 the random variables A(τ)L̃(τ)
and L∗(τ) satisfy the condition of Lemma 3. From (9) and again Lemma 2, it follows

that

dr(V (τ)) = dr(A(τ)L̃(τ) + L∗(τ)) = dr(L(τ)). (10)

This completes the proof. �

Having found the upper bound for the decay rate in Corollary 6, the following lemma

provides the basis for finding the lower bound. The endpoint xF of the service-time
distribution F is defined as xF = inf{u ≥ 0 : F (u) = 1}.
Lemma 9 Let V be the sojourn time of a customer in the stationary M/G/1 FB

queue. Suppose the service-time distribution satisfies Assumption 1. If τ0 > 0 and

P (B ≥ τ0) > 0, then

lim inf
x→∞

1
x

log P (V > x) ≥ −P (B ≥ τ0)−1

∫
[τ0,xF ]

dr(L(τ))dF (τ). (11)

Here F is the distribution function of the generic service time B.
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Proof Let B and V denote the service time and the sojourn time of a customer in

the stationary queue. Let τ0 > 0 be such that P (B ≥ τ0) > 0. Then

P (V > x) ≥ P (V > x, B ≥ τ0) = P (V > x | B ≥ τ0)P (B ≥ τ0). (12)

Using the representation (8), we find

log P (V > x |B ≥ τ0) = log EB[P (V (B) > x) |B ≥ τ0]. (13)

Since log x is a concave function, applying Jensen’s inequality to the conditional ex-

pectation in (13) yields

log EB [P (V (B) > x) |B ≥ τ0] ≥ EB[ log P (V (B) > x) |B ≥ τ0]. (14)

From (12), (13) and (14) it follows that Θ := lim infx→∞ 1
x log P (V > x) satisfies

Θ ≥ lim inf
x→∞

1
x

log
∫

[τ0,xF ]
log P (V (τ) > x)dF (τ)/P (B ≥ τ0). (15)

Applying Fatou’s lemma to (15) yields

Θ ≥ P (B ≥ τ0)−1

∫
[τ0,xF ]

lim
x→∞

1
x

log P (V (τ) > x)dF (τ).

The result now follows from Proposition 8. �

The following lemma is used to develop the lower bound for the decay rate of V from
Lemma 9. We introduce the notation c(τ) = dr(L(τ)), so that c = dr(L) = c(xF ).

Lemma 10 The function c(τ) is decreasing in τ . Furthermore, c(τ) → c(xF ) as

τ → xF .

Proof For all τ , the function hτ (θ) = θ−λ(Eeθ(B∧τ)−1) is concave in θ, since any mo-

ment generating function is convex. Furthermore limθ→−∞ hτ (θ) = limθ→∞ hτ (θ) =

−∞. By definition of L(τ) and (3), we may write c(τ) = supθ{hτ (θ)}. Then c(τ) is
decreasing in τ , since hτ (θ) is decreasing in τ . Since c(τ) ≥ hτ (0) = 0 for all τ , and

c(τ) is decreasing, c(τ) converges for τ → xF . Now note that hτ (θ) is continuous in

τ for all θ ∈ [0, sup{η : EeηB < ∞}), even if B has a discrete distribution. Since the

supremum of θ−λ(EeθB−1) is attained in this interval, we have limτ→xF c(τ) = c(xF ).

�

Proposition 11 Let V be the sojourn time of a customer in the stationary M/G/1

FB queue. If the service-time distribution satisfies Assumption 1, then

lim inf
x→∞

1
x

log P (V > x) ≥ −dr(L). (16)
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Proof If P (B = xF ) > 0, then choosing τ0 = xF in (11) yields

lim inf
x→∞

1
x

log P (V > x) ≥ −c(xF ) = −dr(L),

and (16) holds. Assume P (B = xF ) = 0, and let ε > 0. By Lemma 10 there exists an

xε < xF such that c(τ) ≤ c + ε for all τ ≥ xε. Choosing τ0 = xε in (11) then yields

lim inf
x→∞

1
x

log P (V > x) ≥ −P (B ≥ xε)−1

∫
[xε,xF ]

c(τ)dF (τ)

≥ −P (B ≥ xε)−1

∫
[xε,xF ]

(c + ε)dF (τ) = −c − ε.

Since ε > 0 was arbitrary, the lower bound (16) follows. �

Proof of Theorem 1 The upper bound is established in Corollary 6 and the lower

bound in Proposition 11. �

4 Discussion

The decay rate of the sojourn time V in the M/G/1 FB queue is the same as for
the preemptive LIFO queue. Indeed, the sojourn time of a customer in the stationary

M/G/1 queue under the preemptive LIFO discipline is just the length of the sub-busy

period started by that customer. From Theorem 1 it follows that the decay rates of

the sojourn times for LIFO and FB are equal.
The sojourn time of a customer in the stationary queue under FIFO satisfies VFIFO =

B + W , where W is the stationary workload. From the Pollaczek-Khinchin formula,

Ee−sW =
s(1 − ρ)

s − λ + λE exp(−sB)
, (17)

it follows that the decay rate of W is the value of s for which the denominator in (17)

vanishes. Hence dr(W ) is the positive root θ0 of h(θ) = θ−λ(EeθB −1). Furthermore,
since dr(B) = inf{θ : h(θ) = −∞}, we have θ0 < dr(B) ≤ ∞. An analogue of Lemma

3 then yields that cFIFO := dr(VFIFO) = θ0.

Since h is concave, h(0) = 0 and h′(0) = 1−λEB < 1, we have by Theorem 1 and (3)

that

cFB := dr(VFB) = dr(L) = sup
θ

h(θ) < θ0 = cFIFO < dr(B), (18)

see also Figure 2 below. Hence, in the FIFO system, the decay rate of the sojourn time

is strictly larger than that in the FB queue. As an illustration, consider the M/M/1
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queue in which the service times have expectation 1/µ. For stability we assume λ < µ.

Straightforward computations then yield that cFB = (
√

µ −√
λ)2, cFIFO = µ − λ and

dr(B) = µ. Since λ < µ, we conclude that for the M/M/1 queue, inequality (18) is

satisfied.

Finally, Mandjes en Zwart [5] consider the PS queue with light-tailed service requests.

They show that the decay rate of P (VPS > x) is equal to dr(L) as well, under the
additional requirement that, for any positive constant k,

lim
x→∞

1
x

log P (B > k log x) = 0.

For deterministic requests, clearly this criterion is not met. Indeed, in [5] it is shown

that the decay rate of V in the M/D/1 queue with the PS discipline is larger than

dr(L).

0 c, cFB

h(θ)

θ

cFIFO dr(B)

Figure 1 The decay rates of the sojourn time under FB and FIFO.
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