
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

MAS
Modelling, Analysis and Simulation

 Modelling, Analysis and Simulation

Continuity and computability of reachable sets

P.J. Collins

REPORT MAS-R0401 DECEMBER 2004

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3703

Continuity and computability of reachable sets

ABSTRACT
The computation of reachable sets of nonlinear dynamic and control systems is an important
problem of systems theory. In this paper we consider the computability of reachable sets using
Turing machines to perform approximate computations. We use Weihrauch's type-two theory of
effectivity for computable analysis and topology, which provides a natural setting for performing
computations on sets and maps. The main result is that the reachable set is lower-computable,
but is only outer-computable if it equals the chain-reachable set. In the course of the analysis,
we extend the computable topology theory to locally-compact Hausdorff spaces and
semicontinuous set-valued maps, and provide a framework for computing approximations.

2000 Mathematics Subject Classification: 93B40; 93B03.
Keywords and Phrases: computable analysis; reachable set; computable topological space; semicontinuous function;
approximation representation.
Note: This work was supported by the European Commission through the project Control and Computation (IST-2001-
33520) of the Program Information Societies and Technologies.

Continuity and Computability of Reachable Sets

Pieter Collins

Centrum voor Wiskunde en Informatica,

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.

Tel. +31 20 592 4094 Fax +31 20 592 4199

Email: Pieter.Collins@cwi.nl

Abstract

The computation of reachable sets of nonlinear dynamic and control systems is an impor-
tant problem of systems theory. In this paper we consider the computability of reachable sets
using Turing machines to perform approximate computations. We use Weihrauch’s type-two
theory of effectivity for computable analysis and topology, which provides a natural setting
for performing computations on sets and maps. The main result is that the reachable set is
lower-computable, but is only outer-computable if it equals the chain-reachable set. In the
course of the analysis, we extend the computable topology theory to locally-compact Haus-
dorff spaces and semicontinuous set-valued maps, and provide a framework for computing
approximations.

Keywords: computable analysis; reachable set; computable topological space; semicontinuous function;
approximation representation.

AMS Subject Classification: 93B40; 93B03.

1 Introduction

The purpose of this paper is to study the computability of reachable sets for nonlinear dynamic and
control systems, and to introduce the computable analysis and topology as a powerful tool for the study
of nonlinear systems. The reachability problem is important in applications, since it can be viewed as a
nonlinear verification problem, and used for the validation of safety properties of the system. Further,
of all the important problems in nonlinear systems the reachability problem also seems to be the most
amenable to study by the methods of computable analysis and topology, and hence forms a good starting
point for the application of these techniques.

We use the framework of type-two effectivity developed by Weihrauch [23] and co-workers. In this theory,
computations are performed by standard Turing machines with input tapes, which can only be sequentially
read, and output tapes, which can only be sequentially written to, and work tapes. Unlike standard
computability theory (type-one effectivity) in which inputs and outputs are words (elements of Σ∗),
type-two machines can compute on sequences (elements of Σω). This allows representations of, and
computations on, the standard objects of analysis and topology, such as real numbers, open, closed
and compact subsets of Euclidean space, continuous functions and semicontinuous multivalued functions.
Type-two effectivity theory provides a standard representation for elements of a topological space, and the
main result of the theory is that only continuous functions are computable in the standard representation.

The reachable set for a discrete-time system F with initial set X0 is defined by Reach(F,X0) :=⋃∞

i=0 F
i(X0). There are already many software packages which compute approximations to the reach-

able set, such as d/dt for linear hybrid systems [2]. However, since general sets and functions cannot

1

be represented exactly in a finite amount of data, there is always the question of what is it possible to
compute. In particular, we wish to know whether it is possible to compute the standard representations
of the reachable set (an infinite computation), and whether it is possible to compute approximations to
the reachable set by a finite computation.

We show that given arbitrarily good lower approximations to the initial set and the system, we can
compute arbitrarily good lower approximations to the reachable set. Unfortunately, it is not possible, in
general, to compute arbitrarily good outer approximations. Instead, for uniformly bounded systems, we
show that it is possible to compute outer approximations to the chain reachable set, ChainReach(F,X0),
which contains all points which can be reached by introducing an arbitrarily small amount of noise. (An
introduction to ε-chains can be found in Conley [10].) Finally, we show that it is only possible to compute
arbitrary-precision approximations to the reachable set if cl(Reach(F,X0)) = ChainReach(F,X0).

The main results of the paper are summarised in the following theorem.

Theorem 1.1. It is possible to compute lower approximations to the reachable set of
a lower-semicontinuous system, and outer approximations to the chain-reachable set of an
upper-semicontinuous system. It is possible to compute arbitrary-precision approximations to the reach-
able set of a continuous system if, and only if, the closure of the reachable set equals the chain reachable
set.

We remark that the negative computability results here assume that the only information we have about
sets and systems are lower and upper approximations. If more detailed information is available (e.g. a
description in terms of polynomials with rational coefficients) then it may be possible to determine the
reachable and chain reachable sets exactly, even if they differ. In other words, a lack of computability in
the approximative sense used here does not imply a lack of computability in some other computational
framework. On the other hand, there may be reachability questions which cannot be answered exactly
but can be determined approximately.

The computational topology used here for the representation of sets and functions is based mostly on
Chapters 5 and 6 of Weihrauch [23]. However, rather than restrict ourselves to Euclidean spaces or sep-
arable metric spaces, we generalise to second-countable, locally compact Hausdorff spaces. The resulting
theory is essentially the same as that for Euclidean spaces, and provides the most general natural setting
for our results. While we anticipate that the main application areas will be Euclidean spaces, the more
general approach also includes, for example, computability on manifolds. For more detailed description
of computability on subsets of metric spaces, see Brattka and Presser [8] and Brattka [7].

We also develop new approximation representations of sets and semicontinuous functions. These allow
sets and functions to be represented be sequences of denotable sets and functions, which can be spec-
ified exactly. Denotable sets and functions are already used in packages for rigorous numerics such as
GAIO [11], which allows outer approximations of Lipschitz continuous systems.

There are a number of other works in which set-valued methods, and approximations to reachable sets are
considered. A number of applications of set-valued methods to control problems are given in Szolnoki [22].
There is a large body of literature on approximation methods in viability theory such as Aubin and
Frankowska [5] and Cardaliaguet et. al. [9]. Approximation methods based on ellipsoidal techniques have
been considered by Kurzhanski and Varaiya [16, 17]. The integration of differential inclusions has been
studied by Puri, Varaiya and Borkar [21]. The relation between reachability and chain reachability has
been considered by Asarin and Bouajjani [1]. Reachability for systems with piecewise-constant derivatives
was shown to be undecidable for by Asarin, Maler and Pnueli [3]. For an approximation framework based
on first-order logic over the reals, see Franzle [12, 13].

The paper is organised as follows. We first give a simple example system for which the reach set fails
to be computable, in order to motivate the results of the rest of the paper. In Section 2, we give an
introduction to the topological aspects of the computable analysis of Weihrauch, which form the core
techniques. In Section 3 we develop computable topology for semicontinuous multivalued maps, which
provide our basic model for control systems. In Section 4 we apply these techniques to solve reachability
problems for (semi)continuous systems, and also discuss the subclass of closure-interior systems for which
inner and outer approximations to the reachable set are possible. In Section 5, we relate the abstract

2

representations of points and sets defined in [23] to approximations by denotable elements. Finally, we
state some conclusions and give directions for future work in Section 6.

We have endeavoured to make the paper as self-contained as possible, and have hence included a brief,
but comprehensive introduction to general topology, computable analysis and multivalued maps. The
material in these sections can mostly be found in the books [14, 20, 23]. Although we give definitions
and state theorems formally in terms of the language of type-two effectivity, we write proofs in the
language of standard topology and analysis, since we feel that this is more transparent for the reader.
The proofs of the results can therefore be viewed as “constructive topology”. For a self-proclaimed work
of constructivist propaganda, see Bishop and Bridges [6].

Example 1.2. We now give a simple example which illustrates the difficulties involved in computing
reachable sets. Consider the maps fε : R → R given by

fε(x) := ε+ x+ x2 − 9x4, (1)

where ε is a small parameter.

q+(ε)

p
−
(ε)

p+(ε)

q
−
(ε)

q+(0)

p(0)

q
−
(0)

q+(ε)

q
−
(ε)

(c)(a) (b)

Figure 1: The map f(x) := ε+ x+ x2 − 9x4 for (a) ε < 0, (b) ε = 0 and (c) ε > 0.

For ε = 0, there are fixed points at p(0) = 0, q−(0) = −1/3 and q+(0) = +1/3, as shown in Figure 1(b).
Since f ′

0(−1/3) = 5/3 and f ′
0(1/3) = 1/3, the fixed points q−(0) and q+(0) are hyperbolic, and can be

continued to give families of fixed points q−(ε) and q+(ε) for some neighbourhood of ε = 0, as shown in
Figure 1(a-c). The fixed point p at x = 0 can be continued to two branches of fixed points p−(ε) and
p+(ε) for ε < 0, as shown in Figure 1(a), but does not exist for ε > 0, as shown in Figure 1(c).

Since f ′
ε(x) = 1 + 2x − 36x3, we can show that f ′

ε(x) > 0 for x 6 5/14, and hence fε is an increasing
function. If ε > 0 is sufficiently small, then fε(x) > x for all x ∈ (q−(ε), q+(ε)), and fε(x) > x + ε if
x ∈ [−1/3,+1/3].

Consider an initial point x0 ∈ (−1/3, 0). For ε sufficiently close to 0, we have x0 > q−(ε) and x0 < p−(ε)
if ε < 0. Let xi = f i

ε(x0) for i ∈ Z+. Then the reachable set of fε starting from x0 is just the orbit
{xi : i ∈ Z+}.

If ε < 0, then since q−(ε) < x0 < p−(ε), we have f(q−(ε)) < f(x0) < f(p−(ε)) by monotonicity of fε, so
q−(ε) < x1 < p−(ε). Hence xi ∈ (q−(ε), p−(ε)) for all i. Further, since f(x) > x for x ∈ (q−(ε), p−(ε)),
the orbit (xi) is an increasing sequence in [x0, p−(ε)]. Indeed, we can show that limi→∞ xi = p−(ε). In
particular, Reach(fε, {x0} ⊂ [x0, p−(ε)]. Similarly, if ε = 0, we see that Reach(f0, {x0}) ⊂ [x0, 0].

If ε > 0, the situation is very different. Since fε(x) > x + ε for x ∈ (−1/3,+1/3), it must be the case
that xi > 1/3 for some i. In fact, for ε sufficiently small, we have limi→∞ xi = q+(ε). The reachable set
is therefore not contained in a small neighbourhood of [x0, 0] for ε > 0, even if ε� 1, and in fact jumps
discontinuously at ε = 0.

Hence, to find a good approximation to the reachable set, it is necessary to determine whether ε > 0.
If ε is known precisely (e.g. ε is a given rational), then Reach(fε, x0) can be approximated to arbitrary

3

precision. However, if ε is only known approximately, then it may be impossible to decide whether ε > 0,
and hence find a good approximation to Reach(fε, x0).

The above example shows that computability of system properties depends on the class of systems under
consideration, and the representation of systems in that class. In the framework of computable analysis, a
function is described approximately; even for a polynomial function with real coefficients, the coefficients
are given by approximating sequences of rationals or rational intervals. In an algebraic framework, such
as polynomial systems with rational coefficients, we can describe a system exactly, and more quantities
may be computable. However, the class of systems we can deal with algebraically is restricted compared
with that of computational analysis.

We could conceive of a reachability algorithm using special techniques for one-dimensional polynomial
systems, and more general techniques for other systems. Unfortunately, the question of whether a one-
dimensional continuous function (described in terms of computational analysis) is a polynomial with
rational coefficients is undecidable. Hence a dual-method algorithm would need to be told whether its
input was a polynomial description or an approximate description.

2 Computable analysis and topology

Computable analysis deals with real numbers, continuous functions on real and Euclidean spaces, and
subsets of Euclidean spaces. We consider a more general computable topology dealing with continuous
functions on Hausdorff spaces. In this section, we review the elements of the literature which we need.
The material in Section 2.1 can be found in [20], and that of the other subsections in [23].

2.1 Topological spaces

We first recall the basic facts of general topology.

A topological space is a pair (M, τ) where M is a set and τ is a set of subsets of M (i.e. τ ⊂ P(M)) such
that

1. ∅ ∈ τ and X ∈ τ ,

2. If U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ , and

3. If U ⊂ τ , then
⋃
U ∈ τ .

The sets in τ are called open sets, and the complement of an open set is a closed set. A set B is a
neighbourhood of a point x if there exists and open set U ∈ τ such that x ∈ U ⊂ B.

A topological space (M, τ) is T0 or Kolmogorov if given any two disjoint points x, x′, there is an open
set U containing exactly one of x and x′. The space (M, τ) is T2 or Hausdorff if given any two disjoint
points x, x′, there are disjoint open sets U,U ′ such that x ∈ U and x′ ∈ U ′. The Hausdorff space (M, τ)
is T4 or normal if given any two disjoint closed sets A,A′, there are disjoint open sets U,U ′ with A ⊂ U
and A′ ⊂ U ′.

An open cover of a set B ⊂M is a set U ⊂ τ such that B ⊂
⋃
U . A set C ⊂M is compact if every open

cover of C has a finite subcover. A set B ⊂ M is pre-compact if cl(B) is compact. A topological space
(M, τ) is locally compact if every point has a compact neighbourhood.

An open cover U of M is locally finite if for every compact C ⊂M , {U ∈ U : U ∩C 6= ∅} is finite. We say
an open cover U2 is a refinement of a cover U1, denoted U2 ≺ U1, if for all U2 ∈ U2, there exists U1 ∈ U1

such that U2 ⊂ U1. We say a refinement U2 of U1 is a strong refinement, if for all U2 ∈ U2, there exists
U1 ∈ U1 such that U2 ⊂ U1, and a proper refinement if for all U1 ∈ U1, U1 =

⋃
{U2 ∈ U2 : U2 ⊂ U1}.

A subset β of a topology τ on M is a base for τ if every element of τ is a union of elements of β. If β
is a base of τ , then an element U ∈ β is a basic (open) set, and cl(U) is a basic closed set. A subset σ

4

of a topology τ on M is a subbase or generator of τ if τ is the smallest topology containing σ. (i.e. τ is
the smallest subset of P(M) which contains σ and satisfies the axioms for a topology.) A base for the
topology generated by σ is given by all finite intersections of elements of σ.

A topological space is second countable if it has a countable base of open sets. In particular, if a topology
τ has a countable generating set σ, then it has a countable basis (consisting of all finite intersections of
elements of σ).

If (M, τ) is a T0 topological space and σ is a generator for τ , then for any pair x, x′ ∈ M with x 6= x′,
there is an element U of σ containing exactly one of x, x′. This means that every point x can be specified
by giving the subset {U ∈ σ : x ∈ U} of elements of σ containing x.

A sequence (xn) converges to x∞ if for every open set U containing x∞, there exists N ∈ N such that
xn ∈ U for all n > N . If (M, τ) is a Hausdorff space, then any convergent sequence has a unique limit,
but otherwise limits need not be unique. (Unique limits for non-Hausdorff spaces can be defined using
convergent nets.)

Where there is no confusion as to the topology on M , we denote the set of open subsets of a topological
space M by O(M), the set of closed subsets by A(M), and the set of compact subsets by K(M).

2.2 Computability and naming systems

We consider computability in terms of words and sequences on a finite alphabet Σ. For digital computers,
Σ = {0, 1}, words Σ∗ can be thought of as files or data structures, and sequences Σω can be thought
of as infinite “data streams”. The binary alphabet {0, 1} can of course be used to represent any other
alphabet, such as the ASCII character set. The alphabet Σ is frequently taken to contain a special blank
symbol , which can denote a space or the end of an input.

Computations are performed by Turing machines with n input tapes and a single output tape. Each input
tape must be specified as either containing a word or a sequence. A partial function f :⊂ Y1, . . . , Yn → Y0

with Yi ∈ {Σ∗,Σω} for i = 0, . . . , n is computable if there is some Turing machine which computes
y0 = f(y1, . . . yk), where in the case Y0 = Σ∗ the computation halts with y0 on the output tape, and in
the case Y0 = Σω the computation continuous forever, writing y0 on the output tape.

The theory of computability on words and sequences is known as type-two effectivity (TTE), as opposed
to type-one effectivity, which can be considered as “ordinary” computation on words.

In order to formalise computability on more general sets, we consider naming systems.

Definition 2.1 (Naming systems).

1. A notation of a set M is a surjective partial function ν :⊂ Σ∗ →M .

2. A representation of a set M is a surjective partial function δ :⊂ Σω →M .

A notation ν is effective if the set

{(u, v) ∈ Σ∗ × Σ∗ : u, v ∈ dom(ν) and ν(u) = ν(v)}

is recursively enumerable (r.e.).

Note that the domain of an effective notation is recursively enumerable. In most situations of interest,
the equivalence problem ν(u) = ν(v) will be recursive (decidable), or even trivial (i.e. ν(u) = ν(v) ⇐⇒
u = v.)

Remark 2.2. We could also use functions ν :⊂ N → M as notations, and functions δ : Nω → M as
representations.. This is more in the language of recursive function theory, whereas our naming systems
are in the language of Turing computability.

5

Definition 2.3 (Translation and equivalence). Given two naming systems γ :⊂ Y → M and γ ′ :⊂
Y ′ → M ′, where Y, Y ′ ∈ {Σ∗,Σω} and M ⊂ M ′, we say a computable function f :⊂ Y → Y ′ translates
γ to γ′ if γ(y) = γ′(f(y)) for all y ∈ dom(γ). We write γ 6 γ ′ if some computable function translates γ
to γ′. We say γ and γ′ are equivalent, denoted γ ≡ γ ′, if γ 6 γ′ and γ′ 6 γ.

Definition 2.4 (Realisation). Given a function f : M → M ′, and naming systems γ :⊂ Y → M and
γ′ :⊂ Y ′ →M ′, a function g : Y → Y ′ is a realisation of f if γ ′(g(y)) = f(γ(y)) for all y ∈ dom(γ).

Given a notation ν of a set M we may wish to give a representation of tuples M ∗ and sequences Mω.
There are a number of methods for performing such a “tupling” operation:

1. If Σ contains a blank symbol which is not contained in any word in dom(ν), we can construct a
representation δ by

δ(w0 w1 w2 · · ·) = (ν(w0), ν(w1), ν(w2), . . .) .

2. If dom(ν) ⊂ Σ∗ is prefix free, then any sequence p ∈ Σω parses uniquely into a sequence p =
w0w1w2 · · · with each wi ∈ dom(ν). We can take

δ(w0w1w2 · · ·) = (ν(w0), ν(w1), ν(w2), . . .) .

3. We can construct a wrapping function ı : Σ∗ → Σ∗ such that ı(Σ∗) is prefix-free. One particular
choice for Σ = {0, 1} is

ı(a1a2 · · ·an) = 110a10a20 · · ·0an011.

A representation for Mω is then given by

δ(ı(w0)ı(w1)ı(w2) · · ·) = (ν(w0), ν(w1), ν(w2), . . .).

Regardless of which “tupling” method is chosen, will write 〈w0, w1, w2, . . .〉 for the tupling of words
(w0, w1, w2, . . .), and write w � p if p = 〈w0, w1, w2, . . .〉 and w = wi for some i ∈ N. We may also tuple
finitely many words 〈w1, . . . , wk〉, a word and a sequence 〈w, p〉, finitely many sequences 〈p1, . . . , pk〉 or
even infinitely many sequences 〈p1, p2, . . .〉. The tupling of sequences may be effected by shuffling, e.g.
〈p1, p2〉 = 〈w1,1, w2,1, w1,2, w2,2, w1,3, w2,3, . . .〉 where pi = 〈wi,1, wi,2, wi,3, . . .〉 for i = 1, 2.

2.3 Computable topological spaces

The essence of a computable topological space is to perform all computations on a countable generator
σ of τ . Computability properties may therefore depend on the generator chosen. To formally relate
computability concepts to Turing computability, we need a naming system for elements of σ in terms of
some finite alphabet Σ.

If (M, τ) is a T0-topological space, then every point is specified by the set of open sets containing it. This
property also holds for a generator σ of τ , so every point is specified by {U ∈ σ : x ∈ U}. This gives us a
way of representing points in topological spaces in a way which respects the topology.

Definition 2.5 (Computable topological space). A computable topological space is a quadruple
(M, τ, σ, ν) such that M is a non-empty set, τ ⊂ P(M) is a topology on M , σ ⊂ τ is generator of τ , and
ν : Σ∗ → σ is an effective notation for σ.

We denote the closures of the elements of σ by ν(w) := cl(ν(w)). We also consider all finite unions of

elements of σ, with notation ν̃〈w1, . . . wk〉 :=
⋃k

i=1 ν(wi).

There is a canonical representation of elements of a computable topological space.

Definition 2.6 (Standard representation). The standard representation δS of a computable topo-
logical space S = (M, τ, σ, ν) is the representation δS :⊂ Σω →M given by

δS(p) = x :⇐⇒ {ν(w) : w � p} = {J ∈ σ : x ∈ J}

6

Remark 2.7. Informally, we can think of the standard representation δ of (M, τ, σ, ν) as encoding a
sequence (Ji)i∈N

containing all sets Ji ∈ σ for which x ∈ Ji. When writing proofs, we shall usually
consider the sequence encoded by the representation, and not the representation itself, to avoid obscuring
the idea of the proof in technical notation.

Definition 2.8 (Admissible representation). Let (M, τ) be a second-countable T0-space. A repre-
sentation γ :⊂ Σω →M is admissible with respect to τ if γ ≡ δS for some computable topological space
S = (M, τ, σ, ν).

We will want to consider sets and functions on Hausdorff spaces with a given base.

Definition 2.9 (Computable Hausdorff space). A computable topological space (X, τ, β, ν) is a
computable Hausdorff space if (X, τ) is a locally-compact separable Hausdorff space, and β is a base for
τ such that each I ∈ β is pre-compact.

Following Brattka and Presser [8], we now define some important properties of a computable topological
spaces.

Definition 2.10 (Effectivity properties). A computable topological space (X, τ, β, ν) has

1. the effective intersection property, if {(w0, w1) : ν(w0) ∩ ν(w1) 6= ∅} is r.e.,

2. the effective disjointness property, if {(v0, v1) : ν(v0) ∩ ν(v1) = ∅} is r.e.,

3. the effective inclusion property, if {(v, w) : ν(v) ⊂ ν(w)} is r.e., and

4. the effective covering property, if {(v, 〈w0, . . . , wn〉) : ν(v) ⊂
⋃n

i=0 ν(wi)} is r.e.

These sets are typically not recursive, since we can only verify robust properties in general. We note that
the effective covering property implies the effective inclusion property. We will see later the the effective
intersection property of a computable topological space is equivalent to lower-computability of all basic
closed sets, and the effective disjointness property is equivalent to upper-computability, and the effective
covering property is equivalent to upper-computability of basic closed sets considered as compact sets.

The main theorem of computable analysis is that only continuous functions are computable in the stan-
dard representation. We use the following form, which is Corollary 3.2.12 of [23].

Theorem 2.11 (Computable implies continuous). For i = 0, . . . , k let Si = (Mi, τi, σi, νi) be a com-
putable topological space, and δi the standard representation of Si. Then every (δ1, . . . , δk; δ0)-computable
function f : M1 × · · · ×Mk →M0 is (τ1, . . . , τn; τ0)-continuous.

2.4 Representations of real numbers

Let R be the set of real numbers, and τ the standard topology on R. A base for τ is given by the set
of all finite open rational intervals, β := {(a, b) : a, b ∈ Q, a < b}. Given a notation ν for β, we obtain
a computable topological space (R, τ, β, ν). The standard representation ρ of a real number x encodes a
list of all (a, b) with a < x < b.

However, it is more natural to consider other representations. In particular, instead of considering all
intervals containing x, we need only take a sequence of intervals (an, bn) such that an < an+1 < bn+1 < bn
for all n, and {x} =

⋃
n∈N

(an, bn). This gives the interval representation ρI , defined formally as

ρI〈w1, w2, . . .〉 = x :⇐⇒ ∀i ∈ N, ν(wi+1) ⊂ ν(wi) and
⋂∞

i=1 ν(wi) = {x} (2)

It is also possible to define weaker topologies τ< and τ> on R, with bases β< := {(a,∞) : a ∈ Q} and
β> := {(−∞, a) : a ∈ Q}, respectively. The resulting standard representations are denoted ρ< and ρ>,
and give lower and upper bounds for x, respectively.

7

Euclidean space (Rn, τn) has a base βn consisting of all rational cubes,

βn := {(a1, b1) × · · · × (an, bn) : ai, bi ∈ Q, ai < bi for i = 1, . . . , n} (3)

and becomes a computable Hausdorff space by giving a notation νn for βn. The resulting standard repre-
sentation is ρn, which encodes a list of all open cubes containing a point x. An equivalent representation
is to use a decreasing sequence of cubes (Ji) such that J i+1 ⊂ Ji and {x} =

⋂∞

i=1 Ji as a name for x.

2.5 Representations of closed sets

We now consider topologies on the set of closed subsets of a second-countable locally compact Hausdorff
space (X, τ). Let β be a base for τ on M , and define

σA
< :=

{
{A ∈ A(X) : A ∩ J 6= ∅} : J ∈ β

}

σA
> :=

{
{A ∈ A(X) : A ∩ J 6= ∅} : J ∈ β

}

σA := σA
< ∪ σA

> .

(4)

Let τA< , τA> and τA be the topologies generated, respectively, by σA
< , σA

> and σA. We denote the topological
spaces (A(X), τ<), (A(X), τ>) and (A(X), τ) by, respectively, A<(X), A>(X) and A=(X).

We can give representations ψ<, ψ> and ψ for the topologies which are equivalent to the standard
representations as follows.

ψ<(p) = A :⇐⇒ {ν(w) : w � p} = {J ∈ β : A ∩ J 6= ∅}

ψ>(p) = A :⇐⇒ {ν(w) : w � p} = {J ∈ β : A ∩ J = ∅}

ψ〈p, q〉 = A :⇐⇒ ψ<(p) = A and ψ>(q) = A.

(5)

The representation ψ< encodes a list of all basic open sets J such that A ∩ J 6= ∅, and ψ> encodes a
list of all basic closed sets J such that A ∩ J = ∅. The representations are robust in the sense that if
A∩ J 6= ∅, then there exists I with I ⊂ J such that A∩ I 6= ∅, and if A∩ J = ∅, then there exists I with
J ⊂ I such that A ∩ I = ∅.

A closed subset A of X recursively enumerable if A is ψ<-computable, co-recursively enumerable if it is
ψ>-computable, and recursive if it is ψ-computable. Note that membership of a recursive set need not
be decidable.

The topologies τA< and τA> are T0 topologies, since given two distinct closed sets A0 and A1, there is a
point x0 of A0 \A1 (or A1 \A0). Then since (X, τ) is normal there is a basic open set J 3 x0 such that
J ∩ A1 = ∅. Hence A0 ∈ {A ∈ A : A ∩ J 6= ∅} but A1 6∈ {A ∈ A : A ∩ J 6= ∅}. A similar argument shows
that if A0 and A1 are distinct closed sets, then there is a basic closed set J such that J intersects exactly
one of A0 and A1. The topology τA is a normal Hausdorff topology.

The following result on intersection and union operations on closed sets is Theorem 4.1.13 of
Weihrauch [23].

Theorem 2.12.

1. Union (A,B) 7→ A ∪ B on A is (ψ<, ψ<;ψ<)-computable, (ψ>, ψ>;ψ>)-computable and (ψ, ψ;ψ)-
computable.

2. Intersection (A,B) 7→ A ∩ B on A is (ψ>, ψ>;ψ>)-computable.

3. The function A 7→ A ∩ {0} is not (τA; τA<)-continuous, and so intersection (A,B) 7→ A ∩ B on A
is not (τA, τA; τA<)-continuous or (ψ, ψ;ψ<)-computable.

We note that, since τA is a stronger topology than τA< , it is immediate that intersection is not
(τA, τA; τA)-continuous. Similarly, intersection is not (ψ, ψ, ψ)-computable, or (ψ<, ψ<;ψ<)-computable,
since ψ translates to ψ<.

8

2.6 Representations of open sets

Since an open set is the complement of a closed set, we can use the representations of closed sets to give
representations of open sets. We let τO< , τO> and τO be the topologies generated, respectively, by σO

< , σO
>

and σO defined below:

σO
< :=

{
{U ∈ O(X) : (X \ U) ∩ J = ∅} : J ∈ β

}
=

{
{U ∈ O(X) : J ⊂ U} : J ∈ β

}

σO
> :=

{
{U ∈ O(X) : (X \ U) ∩ J 6= ∅} : J ∈ β

}
=

{
{U ∈ O(X) : J 6⊂ U} : J ∈ β

}

σO := σO
< ∪ σO

> .

(6)

The topologies τO< and τO> are T0 topologies, and τO is a Hausdorff topology. We can give representations
θ<, θ> and θ for the topologies which are equivalent to the standard representations as follows.

θ<(p) = U :⇐⇒ {ν(w) : w � p} = {J ∈ β : J ⊂ U}

θ>(p) = U :⇐⇒ {ν(w) : w � p} = {J ∈ β : J 6⊂ U}

θ〈p, q〉 = U :⇐⇒ θ<(p) = U and θ>(q) = U.

(7)

The representation θ< encodes a list of all basic closed sets J such that J ⊂ U (equivalently
(X \ U) ∩ J = ∅) and θ> encodes a list of all basic open sets J such that J 6⊂ U (equivalently
(X \ U) ∩ J 6= ∅).

2.7 Representations of compact sets

Let K(X) be the set of compact subsets of X . A subset of a locally compact Hausdorff space is compact
if it is closed and bounded. We can specify a bound for a compact C as a finite open cover of C by basic
open sets. The standard representations of compact sets are then given by

κ<〈u, p〉 = C :⇐⇒ C ⊂ ν̃(u) and ψ<(p) = C

κ>〈u, p〉 = C :⇐⇒ C ⊂ ν̃(u) and ψ>(p) = C

κ〈u, p, q〉 = C :⇐⇒ C ⊂ ν̃(u) and ψ〈p, q〉 = C,

(8)

where u ∈ Σ∗ and p, q ∈ Σω. Note that this differs slightly from that of [23], in which only a single basic
open set can be used as a cover. (The representation here is more general, since we do not require that
every compact set is contained in a single basic open set.)

We can define topologies on compact sets by using generators

σK
> :=

{
{C ∈ K : C ⊂

⋃k

i=1 Ji} : J1, . . . Jk ∈ β
}

σK := σA
< ∪ σK

>,
(9)

and taking τK> and τK to be the topologies generated, respectively, by σK
> and σK. The resulting topo-

logical spaces are K>(X) := (K(X), τK>) and K=(X) := (K(X), τK).

The standard representations of the computable topological spaces give representations

κcv
> (p) = C :⇐⇒ {(ν(w1), . . . , ν(wk)) : 〈w1, . . . , wk〉 � p}

= {(J1, . . . , Jk) ⊂ β : C ⊂
⋃k

i=1 Ji}

κcv〈p, q〉 = C :⇐⇒ ψ<(p) = C and κcv
> (q) = C.

(10)

The representation κcv
> encodes a list of all tuples of basic open sets (J1, . . . , Jk) such that C ⊂

⋃k

i=1 Ji.

The representation is robust, since if C ⊂
⋃k

i=1 Ji, then there exists (I1, . . . , Ik) with I i ⊂ Ji for i =

1, . . . , k and C ⊂
⋃k

i=1 Ii.

By Lemma 5.2.5 of [23], we have κcv
> ≡ κ> and κcv ≡ κ. The equivalence of κ> and κcv

> implies that
every open cover of C can be computed from a single open cover and a list of basic closed sets disjoint
from C.

9

The situation for lower approximations is rather more complicated. We are not aware of (and conjecture
that there does not exist) a topology on K for which κ< is an admissible representation. However, the
topology τA< |K provides a topology on K for which many operations on compact sets are continuous. The
representation κ< strengthens the representation ψ<|K by supplying a bound on the compact set. Hence,
for lower approximations, we often consider properties of ψ< as well as κ<, since ψ< is a more natural
representation.

2.8 Representations of continuous functions

The natural topology for the space of continuous functions f : X → Y is the compact-open topology, τ C .
This topology is generated by the open sets

σC :=
{
{f ∈ C (X → Y) : f(C) ⊂ U} : C ∈ K(X), U ∈ O(Y)

}
. (11)

The compact-open representation is the standard representation of this topological space, and is given by

δco(p) = f :⇐⇒ {(νX(w1), νY (w2)) : (w1, w2) � p} = {(I, J) ∈ βX × βY : f
(
I
)
⊂ J}. (12)

The representation δco encodes a list of pairs (I, J) with I ∈ βX and J ∈ βY for which f(I) ⊂ J .
Equivalent to f(I) ⊂ J is I ⊂ f−1(J). The compact-open representation is robust, in the sense that if
(I, J) is such that f(I) ⊂ J , then there exist (K,L) with I ⊂ K, L ⊂ J such that f(K) ⊂ L.

As discussed in [23, Chapter 6.1], there are a number of equivalent representation for the space of
continuous functions C (X → Y). In particular, there is a standard representation δ→ under which the
evaluation map (f, x) 7→ f(x) and the composition map (g, f) 7→ g ◦ f are computable. The equivalence
of the representation δ→ and the compact-open representation δco is shown by [23, Lemma 6.1.7].

The compact-open representation has the following properties:

Theorem 2.13.

1. The evaluation map (f, x) 7→ f(x) is (δco, ρ; ρ)-computable.

2. The composition map (g, f) 7→ g ◦ f is (δco, δco; δco)-computable.

3. The set-image map (f,A) 7→ cl(f(A)) for A ∈ A(X) is (δco, ψ<;ψ<)-computable.

4. The set-image map (f, C) 7→ f(C) for C ∈ K(X) is (δco, κ<;κ<)-computable, (δco, κ>;κ>)-
computable and (δco, κ;κ)-computable.

A representation for sequences is given by the compact-open representation of functions N → X .

The graph of a map f : X → Y is the set

Graph(f) := {(x, y) ∈ X × Y : y = f(x)}.

Since the graph of a continuous function f : X → Y is closed, we can consider the representations ψ<,
ψ> and ψ of this set. It turns out that the representation ψ> of A(X × Y) gives a representation δcc of
C (X → Y) which is equivalent to the standard representation if Y is compact.

2.9 Union and intersection of sets

We need to extend the results on unions and intersections to the case of infinite unions and intersections.
For countable sequences, we use the topology of convergence on finite sequences. Countable unions and
intersections have the following computability properties.

Theorem 2.14 (Countable unions and intersections).

10

1. Countable closed union (A1, A2, . . .) 7→ cl(
⋃

n∈N
An) on A is (ψ<, ψ<, . . . ;ψ<)-computable.

2. Countable intersection (A1, A2, . . .) 7→
⋂

n∈N
An on A is (ψ>, ψ>, . . . ;ψ>)-computable.

3. Countable intersection (C1, C2, . . .) 7→
⋂

n∈N
Cn on K is (κ>, κ>, . . . ;κ>)-computable.

Proposition 2.15.

1. Countable closed union is neither (τA, τA, . . . ; τA>)-continuous nor (τK, τK, . . . ; τK>)-continuous.

2. Countable intersection is neither (τA, τA, . . . ; τA<)-continuous nor (τK, τK, . . . ; τK<)-continuous.

The proofs are straightforward.

3 Multivalued maps

In system theory, it is useful to consider multivalued maps F : X ⇒ Y , since these represent control
systems f : X × U → X as F (x) = f(x, U).

We typically represent a multivalued map F : X ⇒ Y by a single-valued map X → P(Y), but may
also identify F with its graph, Graph(F) := {(x, y) ∈ X × Y : y ∈ F (x)}. If A ∈ P(X), then we define
F (A) := {y ∈ Y : ∃x ∈ A, y ∈ F (x)}. Thus a multivalued map F : X ⇒ Y induces a single valued map
P(X) → P(Y). If F : X ⇒ Y and G : Y ⇒ Z, the composition of F and G is G ◦ F : X ⇒ Z given by
G ◦ F (x) := G(F (x)) = {z ∈ Z : ∃ y ∈ Y, y ∈ F (x) and z ∈ G(y)}. Note that G ◦ F (A) = G(F (A)), and
composition is associative.

There are two natural set-valued preimages of F : X ⇒ Y , the weak preimage F−1(B) = {x ∈ X :
F (x) ∩ B 6= ∅}, and the strong preimage, F⇐(B) = {x ∈ X : F (x) ⊂ B}. The graph of F−1 is the
“transpose” of the graph of F ; i.e. (x, y) ∈ Graph(F) ⇐⇒ (y, x) ∈ Graph(F−1). If F : X ⇒ X , then
an orbit of F is a sequence (xi) such that xi+1 ∈ F (xi) for all i, so the reverse of an orbit of F is an orbit
of F−1.

We say F is lower-semicontinuous if F−1(U) is open whenever U is open, or equivalently, if F⇐(A)
is closed whenever A is closed. F is upper-semicontinuous if F−1(A) is closed whenever A is closed,
or equivalently, if F⇐(U) is open whenever U is open. A function F is weakly upper-semicontinuous
if F−1(C) is closed whenever C is compact. A multivalued function is continuous if it is both lower-
semicontinuous and upper-semicontinuous.

Henceforth, we restrict attention to functions with closed values, which means that F (x) is closed for
all x, denoted F : X → A(Y). We also consider functions with compact values, which means F (x) is
compact for all x, denoted or F : X → K(Y).

A closed-valued function F : X → A(Y) is lower-semicontinuous if, and only if, it is (τX ; τ
A(Y)
<)-

continuous, and weakly upper-semicontinuous if, and only if, it is (τX ; τ
A(Y)
>)-continuous. A compact-

valued function F : X → K(Y) is upper-semicontinuous if, and only if, it is (τX ; τ
K(Y)
>)-continuous.

If F is locally-bounded, then F is (strongly) upper-semicontinuous if F : X → K>(Y) is continuous. A
multivalued function is continuous if it is both lower-semicontinuous and upper-semicontinuous.

We denote closed-valued lower-semicontinous functions by LSCA, closed-valued weakly upper-
semicontinuous functions by USCA, and compact-valued upper semicontinous functions by USCK. We
denote closed-valued weakly continuous functions by CA and compact-valued continuous functions by
CK.

If F ∈ LSCA, then F (cl(A)) ⊂ cl(F (A)) for any set A, and therefore cl(G ◦ F (x)) = cl(G(cl(F (x)))).
If F ∈ USCA, then F (C) is closed whenever C is compact, and F ∈ USCK, then F (C) is compact
whenever C is compact, but in both cases F (A) need not be closed even if A is closed. If F ∈ USC A if,
and only if, Graph(F) is closed.

11

Upper-semicontinuity with compact values is preferable to weak upper-semicontinuity with closed values,
since (strong) upper-semicontinuity is preserved under composition.

For a closed-valued lower-semicontinuous function F , the image F (A) need not be closed even if A is
closed. This means that the composition (F,G) 7→ F ◦G need not be closed-valued. We therefore take a
closed-valued composition (F,G) 7→ cl(F ◦G) defined by cl(F ◦G) (x) := cl(F (G(x))).

For more information on multivalued functions, see Klein and Thompson [14].

3.1 Topology of multivalued semicontinuous functions

To define topologies on the spaces of closed-valued (semi)continuous maps, we identify LSC A(X ⇒ Y)
with C (X → A<(Y)), USCA(X ⇒ Y) with C (X → A>(Y)) and CA(X ⇒ Y) with C (X → A(Y)),
and use the compact-open topologies. Explicit generators for the topologies τMA

< on LSCA and τMA
> on

LSCK are given by

σMA
< :=

{
{F ∈ LSCA : I ⊂ F−1(J)} : I ∈ βX , J ∈ βY

}
,

σMA
> :=

{
{F ∈ USCA : I ∩ F−1(J) = ∅} : I ∈ βX , J ∈ βY

}
.

(13)

Note that I ⊂ F−1(J) ⇐⇒ ∀x ∈ I, F (x) ∩ J 6= ∅, and that I ∩ F−1(J) = ∅ ⇐⇒ F (I) ∩ J = ∅.

The lower-semicontinuous functions LSCK(X ⇒ Y) are somewhat degenerate, and have no natural
topology other than that induced from LSCA(X ⇒ Y). To define topologies on the spaces of compact-
valued (semi)continuous maps, we identify USCK(X ⇒ Y) with C (X → K>(Y)) and CK(X ⇒ Y) with
C (X → K(Y)), and again use the compact-open topologies. An explicit generator for the topology τMK

>

on USCK is

σMK
> :=

{
{F ∈ USCK : I ⊂ F⇐(

⋃k

i=1 Ji)} : I ∈ βX , J1, . . . Jk ∈ βY

}
. (14)

Note that I ⊂ F⇐(
⋃k

i=1 Ji) ⇐⇒ F (I) ⊂
⋃k

i=1 Ji.

3.2 Representations of multivalued semicontinuous functions

We now define representations µ< for lower-semicontinuous maps, µA
> for weakly upper-semicontinuous

maps, and µK
> for upper-semicontinuous compact-valued maps.

Admissible representations for τMA
< , τMA

> and τMA are given by

µA
<(p) = F ∈ LSCA :⇐⇒ {(νX(v), νY (w)) : 〈v, w〉 � p}

= {(I, J) ∈ βX × βY : I ⊂ F−1(J)},

µA
>(p) = F ∈ USCA :⇐⇒ {(νX(v), νY (w)) : 〈v, w〉 � p}

= {(I, J) ∈ βX × βY : I ∩ F−1(J) = ∅}

µA〈p, q〉 = F ∈ CA :⇐⇒ µA
<(p) = µA

>(q) = F.

(15)

Note that µA
< encodes a list of all pairs (I, J) with I ∈ βX , J ∈ βY such that I ⊂ F−1(J) (equivalently,

∀x ∈ I, F (x)∩J 6= ∅), and µA
> encodes a list of all pairs (I, J) with I ∈ βX , J ∈ βY such that F (I)∩J = ∅.

An admissible representation for compact-valued upper-semicontinous functions is given by

µK
>(p) = F ∈ USCK :⇐⇒ {(νX(v), νY (w1), . . . , νY (wk)) : 〈v, w1, . . . , wk〉 � p}

= {(I, J1, . . . , Jk) : I ⊂ F−1(
⋃k

i=1 Ji)}.
(16)

Note that µK
> encodes a list of all tuples (I, J1, . . . , Jk) such that F (I) ⊂

⋃k

i=1 Ji.

The following result on representations is immediate from the definitions.

Lemma 3.1.

12

1. The representations µA
< of LSCA(X ⇒ Y) and δco of C (X → A<(Y)) are equivalent.

2. The representations µA
> of USCA(X ⇒ Y), δco of C (X → A>(Y)), and ψ> of Graph(F) are

equivalent.

3. The representations µK
> of USCA(X ⇒ Y) and δco of C (X → K>(Y)) are equivalent.

For single-valued maps, the situation is simpler.

Lemma 3.2. The representations δco, µA
<, µK

>, and µK are equivalent representations for C (X → Y).

Proof. The representations δco and µA
< are trivially equivalent, since f(C) ⊂ U if, and only if, ∀x ∈ C,

f(x)∩U 6= ∅. We need then only show that µA
< and µK

> are equivalent, since the other equivalences follow
by definition.

µA
< 6 µK

>:

We need to compute a list of all (K,L1, . . . , Ll) with f(K) ⊂
⋃l

j=1 Lj from a list of all (I, J) with f(I) ⊂ J .

We claim that an algorithm which outputs (K,L1, . . . , Ll) if there exists a finite set {(Ii, Ji) : i = 1 . . . k}

with F (I i) ⊂ Ji for i = 1, . . . k such that K ⊂
⋃k

i=1 Ii and J i ⊂
⋃l

j=1 Lj (covering) for all i = 1, . . . , k
performs the calculation.

If (K,L1, . . . , Ll) is output, then F (I i) ⊂ Ji, K ⊂
⋃k

i=1 Ii and J i ⊂
⋃l

j=1 Lj , so F (K) ⊂
⋃l

j=1 Lj .

If F (K) ⊂
⋃l

j=1 Lj , then every x ∈ K has a neighbourhood Ix such that F (Ix) ⊂ Jx with Jx ⊂
⋃l

j=1 Lj .

Since K is compact, there is a finite subset {xi : i = 1, . . . , k} with K ⊂
⋃k

i=1 Ixi
. Hence (K,L1, . . . , Ll)

is output.

µK
> 6 µA

<:
We need to compute a list of all (I, J) with f(I) ⊂ J from a list of all (K,L1, . . . , Ll) such that f(K) ⊂⋃l

j=1 Lj . To do this, we simply output (I, J) = (K,L1) if F (K) ⊂
⋃l

j=1 Lj with l = 1.

3.3 Counterexamples for multivalued functions

We now give some examples illustrating counterexamples for multivalued semicontinuous functions.

The following example shows that a map F : X → A>(Y) may have F (x) compact for all x ∈ X , but
not be continuous as a map F : X → K>(Y).

Example 3.3. Let F : R ⇒ R be given by F (x) = {0} if x 6 0, and F (x) = {0, 1/x} if x > 0. Then
F : R → A>(R) is continuous, but F−1(−1, 1) = (−∞, 0]∪(1,∞) which is not open, and F⇐[1,∞) = (0, 1]
which is not closed, so is not upper-semicontinuous with compact values.

If G(x) = {0} if x < 1, and G(x) = {0, 1} for x > 1, then G is upper semicontinuous, but G ◦F (x) = {0}
if x ∈ (−∞, 0] ∪ (1,∞) and G ◦ F (x) = {0, 1} if x ∈ (0, 1], so G ◦ F is not upper semicontinuous.

Rather than consider compact-valued maps, we could consider, with more generality, closed-valued
maps. However, the composition of two closed-valued upper-semicontinuous maps need not be upper-
semicontinuous, as Example 3.4 shows.

Example 3.4. Let F (x) = {0, 1/x} for x > 0, and F (0) = {0} . Let G(x) = {0, 1} if x > 1 and
G(x) = {0} if x < 1. Then G ◦ F (x) = {0} if x = 0 or x > 1, and G ◦ F (x) = {0, 1} if 0 < x 6 1. Hence
G ◦ F is not upper-semicontinuous.

We could also consider the representation ψ< of Graph(F) on A(X × Y) as a lower representation for
USC (X ⇒ Y). It is straightforward to show that µ< 6 ψ< on USC (X ⇒ Y). However, a ψ< is strictly
weaker than µ<, even for continuous functions, as the following example shows.

13

(a) F
n

(b) F

Figure 2: The limit of a continuous multivalued map may exist in the graph topology but not
the compact-open topology. (a) Fn, (b) the limit F .

Example 3.5. Let g(x) : [−1, 1] → [−1, 1] be continuous, and let Fn(x) = {g(x) sin(nx)}. Then in the
τA topology on A(X × Y), Graph(Fn) → {(x, y) : |y| 6 |g(x)|} = Graph(F), a continuous multivalued
map, but Fn does not converge in the compact-open topology τM< on multivalued maps, since if C is
compact and U = (0, 1), then (C,U) is a pair such that ∀x ∈ C, F (x) ∩ U 6= ∅ and U ⊂ (0, 1), then for
sufficiently large n, ∃xn ∈ C with sin(nxn) < 0, and then Fn(xn) ∩ U = ∅. Hence Fn does not converge
to F .

3.4 Composition of multivalued maps

We now show that composition of multivalued maps, where continuous, is computable in the appropriate
representation.

Theorem 3.6.

1. The closed composition function (F,G) 7→ cl(F ◦G) is (µA
<, µ

A
<;µA

<)-computable.

2. The composition function (F,G) 7→ F ◦G is (µA
>, µ

K
>;µA

>)-computable and (µA, µK;µA)-computable.

3. The composition function (F,G) 7→ F ◦G is (µK
>, µ

K
>;µK

>)-computable and (µK, µK;µK)-computable.

Proof. (F,G) 7→ cl(F ◦G) is (µA
<, µ

A
<;µA

<)-computable:

Output (I,K) if there exists a finite set {(Ii, Ji) : i = 1 . . . k} such that I ⊂
⋃k

i=1 Ii (covering), I i ⊂
G−1(Ji), and J i ⊂ F−1(K).

If (I,K) is output, then ∀x ∈ I , ∃i with x ∈ Ii. Then G(x)∩Ji 6= ∅, so ∃y ∈ G(x)∩Ji, and F (y)∩K 6= ∅
since y ∈ J i, so F ◦G(x) ∩K 6= ∅.

Conversely, if I ⊂ (F ◦ G)−1(K), then ∀x ∈ I , ∃y ∈ Y, z ∈ K with y ∈ G(x) and z ∈ F (y). Hence
by lower-semicontinuity, ∃Jx such that y ∈ Jx and z ∈ F (Jx), so Jx ⊂ F−1(K). Similarly, ∃Ix such
that x ∈ Ix and Ix ⊂ G−1(Jx). Since I is compact, there is a finite subset {xi : i = 1, . . . , k} with

I ⊂
⋃k

i=1 Ixi
. Hence (I,K) is an output.

(F,G) 7→ F ◦G is (µA
>, µ

K
>;µA

>)-computable:

Output (I,K) if there exists a finite set {J1, . . . , Jk} such that G(I) ⊂
⋃k

i=1 Ji and F (J i) ∩K = ∅ for
i = 1, . . . , k.

If (I,K) is output, then G(F (I)) ⊂ G(
⋃k

i=1(Ji)) ⊂
⋃k

i=1G(J i), so G ◦ F (I) ∩K = ∅.

Conversely, suppose F (G(I)) ∩K = ∅. Since F is weakly upper-semicontinuous, F−1(K) is closed, and
so V = F⇐(Z \K) is open. Hence G(I) ⊂ V , and since G is compact-valued upper-semicontinuous, G(I)

is compact. Thus there exist J1, . . . , Jk such that G(I) ⊂
⋃k

i=1 Ji and J i ⊂ V for i = 1, . . . , k. Hence
F (J i) ∩K = ∅ for i = 1, . . . , k, and so (I,K) is output.

14

(F,G) 7→ F ◦G is (µA, µK;µA)-computable:
Immediate since (F,G) 7→ F ◦G is (µA

<, µ
A
<, µ

A
<)-computable and (µA

>, µ
K
>, µ

A
>)-computable.

(F,G) 7→ F ◦G is (µK
>, µ

K
>;µK

>)-computable:

Output (I,K1, . . .Kk) if ∃ J1, . . . Jm such that G(I) ⊂
⋃m

j=1 Jj and F (J j) ⊂
⋃k

i=1 Ki for j = 1, . . . ,m.

If (I,K1, . . . ,Kk) is output, then F ◦G(I) ⊂ F (
⋃m

j=1 Jj) and F (J j) ⊂
⋃k

i=1 Ki for all j, so F ◦G(I) ⊂
⋃k

i=1Ki.

Conversely, if F ◦G(I) ⊂
⋃k

i=1 Ki, then F (y) ⊂
⋃k

i=1 Ki for all y ∈ G(I). By upper-semicontinuity, for

each y ∈ G(I), there exists Jy such that F (Jy) ⊂
⋃k

i=1Ki, and since G(I) is compact, there is a finite

subset {y1, . . . ym} of G(I) such that G(I) ⊂
⋃m

j=1 Jyj
. Then G(I) ⊂

⋃m

j=1 Jyj
and F (Jyj

) ⊂
⋃k

i=1Ki for

j = 1, . . .m. Hence (I,K1, . . . ,Kk) is output.

(F,G) 7→ F ◦G is (µK, µK;µK)-computable:
Immediate since (F,G) 7→ F ◦G is (µA

<, µ
A
<, µ

A
<)-computable and (µK

>, µ
K
>, µ

K
>)-computable.

A closed set A can be considered as a function from a one-point space 1 to A. Then the representations
ψ<, ψ> and ψ of A(X) are equivalent, respectively, to µA

<, µA
> and µA of C (1 ⇒ X). Similarly, the

representations κ<, κ> and κ of K(X) are equivalent, respectively, to µK
<, µK

> and µK of CK(1 ⇒ X).
This gives the following

Corollary 3.7.

1. The function (F,A) 7→ cl(F (A)) is (µA
<, ψ<;ψ<)-computable.

2. The function (F,C) 7→ F (C) is (µA
>, κ>;ψ>)-computable and (µA, κ;ψ)-computable.

3. The function (F,C) 7→ F (C) is (µK
>, κ>;κ>)-computable and (µK, κ;κ)-computable.

If F is an upper-semicontinuous map, then F (A) need not be closed even if A is closed. We can consider
the composition function (F,A) 7→ cl(F (A)) for F ∈ USCK and A ∈ A, and attempt to compute a
ψ>-name of cl(F (A)). However, the following result shows that this is impossible.

Theorem 3.8. The function (F,A) 7→ cl(F (A)) is not (τMK, τA; τA>)-continuous.

Proof. Let A = [0,∞), and Fa(x) = {0} if x 6∈ [a − 1, a+ 1], Fa(x) = [0, x − a + 1] if x ∈ [a− 1, a] and
Fa(x) = [0, a+ 1 − x] if x ∈ [a, a+ 1]. Then Fa → F given by F (x) = {0} as a → ∞, but Fa(A) = [0, 1]
which does not converge to F (A) = {0}. Hence (F,A) 7→ cl(F (A)) is not (τMK, τA; τA>)-continuous.

4 Reachability problems

We now apply the material developed in Section 3 to the study of the reachability problem for semicon-
tinuous systems. We first define the reachable, closed-reachable and chain-reachable sets, and give an
alternative formulation of the chain reachable set. We then prove some straightforward results on com-
putability of countable unions and intersections, and use these to prove the main results on reachability.
Finally, we discuss closure-interior systems, which have inner as well as outer approximations, and show
that the computability results extend to these systems as well.

4.1 Reachable and chain reachable sets

Definition 4.1 (Reachability). Let F : X ⇒ X be a multivalued map, and X0 ⊂ X . Then the
reachable set of F from X0 is

Reach(F,X0) := {y ∈ X : ∃x0, x1, . . . xn such that
x0 ∈ X0, (xi, xi+1) ∈ F for i = 0, . . . , n− 1, and xn = y.

(17)

15

The reachable set need not be closed, so we take its closure, and define the closed reachable set as

Reach(F,X0) := cl(Reach(F,X0)). (18)

We now briefly recall the concepts of ε-chains as considered by Conley [10]. If (X, d) is a metric space
and F : X ⇒ X is a multivalued map, then a sequence of points x0, x1, . . . , xn is an ε-chain if there exist
y1, . . . , yn ∈ X with yi+1 ∈ F (xi) and d(yi+1, xi+1) < ε for i = 0, . . . , n− 1. A point x is ε-reachable from
a set X0 if there is an ε-chain x0, x1, . . . , xn with x0 ∈ X0 and xn = x. A point x is chain-reachable from
X0 if there is an ε-chain from X0 to x for all ε > 0.

The concept of chains can be generalised to non-metric spaces as follows:

Definition 4.2 (U-chain). Let U be an open cover, and F : X ⇒ X . A sequence x0, . . . , xn is a
U-chain for F if there exist points y1, . . . , yn ∈ X and open sets U1, . . . , Un ∈ U such that yi+1 ∈ F (xi)
and xi+1, yi+1 ∈ Ui+1 for i = 0, . . . , n− 1.

Equivalently, we can define the U-neighbourhood of a set B by NU(B) :=
⋃
{U ∈ U : B ∩ U 6= ∅}. Then

a sequence x0, . . . , xn is a U-chain for F if, and only if, xi+1 ∈ NU (F (xi)) for i = 0, . . . , n− 1.

Definition 4.3 (Chain reachability). Let F : X ⇒ X be a multivalued map, and X0 ⊂ X . Define

Reach(F,X0,U) := {x ∈ X : ∃ U-chain x0, x1, . . . , xn for F such that x0 ∈ X0 and xn = x} (19)

the set of points reachable from X0 by a U-chain. The chain reachable set of F from X0 is

ChainReach(F,X0) :=
⋂

U Reach(F,X0,U), (20)

where U runs over all locally finite open covers of X .

It is straightforward to show [10] that ChainReach(F,X0) is closed for any system F and any initial set
X0. An equivalent definition of the chain reachable set of an upper-semicontinuous closed-valued function
can be given in terms of graphs.

ChainReach(F,X0) =
⋂

{Reach(G,X0) : G ∈ LSCO and Graph(F) ⊂ Graph(G)} (21)

We now give an alternative characterisation of the chain reachable set which will be useful when per-
forming a computability analysis. We use the following lemma on compact chain-reachable sets.

Lemma 4.4. If ChainReach(F,C) is compact, then for any open neighbourhood U of ChainReach(F,C),
there exists an open cover U such that cl(Reach(F,C,U)) ⊂ U . In particular, there exists an open cover
U such that Reach(F,C,U) is pre-compact.

Proof. Suppose ChainReach(F,C) is compact, and let V be a pre-compact open neighbour-
hood of ChainReach(F,C) such that cl(V) ⊂ U . Then since F is upper-semicontinuous and
F (ChainReach(F,C)) ⊂ ChainReach(F,C), we see that F⇐(V) is an open neighbourhood of
ChainReach(F,C). Hence there is an open neighbourhood W of ChainReach(F,C) such that cl(W) ⊂ V
and F (cl(W)) ⊂ V . Choose an open cover V such that NV(F (cl(W))) ⊂ V , and let B = cl(V) \W , a
compact set. Now if U is any refinement of V , then either Reach(F,C,U) ⊂W , or there exists a U-chain
x0, x1, . . . , xn with x0 ∈ C, xi ∈ W for i < n and xn 6∈ W . Then xn ∈ NU (F (xn−1)) ⊂ NV(F (cl(W))) ⊂
V , so xn ∈ B, and hence cl(Reach(F,C,U)) ∩ B 6= ∅. Since cl(Reach(F,C,U)) decreases on taking re-
finements, and converges to ChainReach(F,C,U), we must have cl(Reach(F,C,U)) ∩ B = ∅ for some U .
Then cl(Reach(F,C,U)) ⊂W , so cl(Reach(F,C,U)) ⊂ U and Reach(F,C,U) is pre-compact.

Theorem 4.5 (Characterisation of the chain-reachable set). Let F ∈ USCK and C a compact
set. Suppose ChainReach(F,C) is compact. Then

ChainReach(F,C) =
⋂
{U ∈ O(X) : C ⊂ U and F (cl(U)) ⊂ U}. (22)

16

Proof. We first show that for any neighbourhood V of ChainReach(F,C), there exists U ⊂ V with C ⊂ U
and F (cl(U)) ⊂ U . For any open cover U , we have C ⊂ Reach(F,C,U) and cl(F (Reach(F,C,U))) ⊂
Reach(F,C,U). By Lemma 4.4, if V is any open neighbourhood of ChainReach(F,C), then there
is an open cover U such that cl(Reach(F,C,U)) ⊂ V . Hence there is an open set U such that
C ∪ cl(F (Reach(F,C,U))) ⊂ U and cl(U) ⊂ Reach(F,C,U). Then U ⊂ V , C ⊂ U and F (cl(U)) ⊂
F (Reach(F,C,U)) ⊂ cl(F (Reach(F,C,U))) ⊂ U as required.

To complete the proof, we let U be such that C ⊂ U and F (cl(U)) ⊂ U , and need to show that
ChainReach(F,C) ⊂ U . We have NU(F (cl(U))) ⊂ U for some open cover U . Defining sets Xn recursively
by Xn+1 := NU(F (Xn)), we see by induction that Xn ⊂ U for all n, so Reach(F,C,U) ⊂ U and hence
ChainReach(F,C) ⊂ U .

To consider computability of the reachable and chain reachable sets, we reformulate the reachability
conditions as operators. The closed reachability operator naturally operates on lower-semicontinuous
maps, and the chain reachability operator on upper-semicontinuous maps.

Definition 4.6 (Reachability operators).

1. The closed reachability operator is the function Reach : LSC A(X ⇒ X)×A(X) → A(X) given by
Reach(F,A) := cl(Reach(F,A)).

2. The chain reachability operator is the function ChainReach : USCK(X ⇒ X) × A(X) → A(X)
given by ChainReach(F,A) :=

⋂
U

Reach(F,A,U), where U runs over all locally-finite open covers.

The following example shows that the chain reachability operator may be badly behaved if the chain-
reachable set is not compact.

−1

−1

F
a
(x)

0 a+1aa−1 x

Figure 3: The map Fa of Example 4.7.

Example 4.7. Define continuous multivalued maps F : R ⇒ R and Fa : R ⇒ R by

F (x) :=

{
{0} if x 6 0,

{0, x} if x > 0
Fa(x) :=





F (x) ∪ {a− 1 − x} if x ∈ [a− 1, a],
F (x) ∪ {x− a− 1} if x ∈ [a, a+ 1],

F (x) otherwise.
(23)

The graph of Fa is shown in Figure 3. Note that Fa → F as a → ∞ in τMK, since for any compact set
C, Fa|C = F |C for a sufficiently large, and that F (x) ⊂ Fa(x) for all x.

Let X0 = {0}, and consider chain reachable sets ChainReach(F,X0). We have ChainReach(F, {0}) =
[0,∞), since we can reach any point in [0,∞) from 0 by an ε-chain (xi) by taking yi+1 = xi as x ∈ F (x)
for all x, and xi+1 > yi. Since Fa(x) ⊃ F (x) for any x, we must have ChainReach(Fa, {0}) ⊃
ChainReach(F, {0}) for any a. Hence [a − 1, a + 1] ⊂ ChainReach(Fa, {0}), and so [−1, 0] ⊂
ChainReach(Fa, X0), since Fa([a − 1, a + 1]) ⊂ [−1, 0]. Thus ChainReach(Fa, {0}) = [−1,∞) for any
a.

We therefore have a situation in which Fa → F in µK as a → ∞, but ChainReach(Fa, {0}) does not
converge to ChainReach(F, {0}) as a→ ∞ in τA> .

17

4.2 Computability of reachable sets

We now consider the computability of the closed reachability operator and the chain reachability operator.
We find that the closed reachability operator is lower-computable in all cases, and the chain reachability
operator is upper-computable if the chain-reachable set is compact. Using these results, we can obtain
semi-decision algorithms for verification of system properties.

Theorem 4.8 (Computability of closed reachability).

1. The closed reachability operator for lower-semicontinuous discrete-time systems is (µA
<, ψ<;ψ<)-

computable.

2. The closed reachability operator for bounded discrete-time systems is not (τMK, τK; τK>)-continuous.

Proof. 1. Since (F,A) 7→ cl(F (A)) is (µA
<, ψ<, ψ<)-computable, and the function (F,A) 7→ Ai :=

cl(F i(A)) is (µA
<, ψ<, ψ<)-computable for all i ∈ N. Since Reach(F,A) := cl(

⋃∞

i=0 F
i(A)) =

cl(
⋃∞

i=0 Ai), and countable closed union is (ψ<, ψ<, . . . ;ψ<)-computable, the result follows.

2. Consider the system fε defined in Section 1.2. Then fε → f0 in τMK, and {q−(ε)} → {q−(0)} in
τK, but Reach(fε, [q−(ε), 0]}) = [q−(ε), q+(ε)] for ε > 0, which does not converge to [q−(0), 0] =
Reach(F0, [q−(0), 0]) in τK> .

We can Theorem 4.8(1) to verify system controllability. Suppose we wish to check whether it is possible
to reach an open set U starting from some initial point x. We compute a ψ<-name of Reach(F, {x}), and
verify controllability if the ψ<-name contains some set J with J ⊂ U . If the set is not reachable, then
the procedure does not terminate.

Theorem 4.9 (Computability of chain reachability).

1. If ChainReach(F,C) is compact, then (F,C) 7→ ChainReach(F,C) is (µK
>, κ>;κ>)-computable.

2. The map (F,C) 7→ ChainReach(F,C) is not (τMK, τK, τA>)-continuous.

3. The map (F,C) 7→ ChainReach(F,C) is not (τMK, τK; τA<)-continuous.

Proof. 1. A κ> name of C encodes a list of all basic open covers of C. A µK
>-name of F encodes

a list of all tuples (I, J1, . . . , Jk) such that F (I) ⊂
⋃k

i=1 Ji For each basic open cover {I1, . . . , Ik}

of C, we let U =
⋃k

j=1 Ij . Then F (cl(U)) ⊂ U if, and only if, F (I i) ⊂
⋃k

j=1 Ij for all i. Hence

we can compute a list of all open U with A ⊂ U such that U =
⋃k

j=1 Ij and F (cl(U)) ⊂ U . By
Theorem 4.5, the intersection of all such U equals ChainReach(F,A), hence we have computed a
κ>-name of ChainReach(F,A).

2. Consider the systems Fa of Example 4.7. Then Fa → F∞ in τMK as a → ∞. However,
ChainReach(Fa, {0}) = [1,∞) whereas ChainReach(F∞, {0}) = [0,∞), so ChainReach(Fa, {0})
does not converge to ChainReach(F∞, {0}) in τA> . Hence (F,C) 7→ ChainReach(F,C) is not
(τMK, τK, τA>)-continuous. (A similar example can be made in two-dimensions with a single-valued
continuous map.)

3. Consider the map fε defined in Example 1.2. Then {p−(ε)} → {0} in τκ as ε → 0. We have
ChainReach(fε, {p−(ε)}) = {p−(ε)} for ε < 0, and ChainReach(f0, {0}) = [0, q+(ε)]. Hence
ChainReach(fε, {p−(ε)}) does not converge to ChainReach(f0, 0) in τA< . Therefore (F,C) 7→
ChainReach(F,C) is not (τMK, τK; τA<)-continuous.

We can use the chain reachable set to check safety properties of a system, that is, whether it is possible to
leave an open set S of safe states starting from some initial set X0. We compute a κ>-representation of
ChainReach(F,X0), and verify safety if there exists some open cover {J1, . . . , Jk} of ChainReach(F,X0)

such that the set U :=
⋃k

i=1 Ji with ChainReach(F,X0) ⊂ U is a subset of S.

18

We say that reachable set is robust if Reach(F,A) = ChainReach(F,A). We have seen that we can
compute inner and outer approximations to Reach(F,A) if the reachable set is robust. The following
result shows that this condition is sharp.

Theorem 4.10 (Uncomputability of reachability). The closed reachable set is (µK, κ;κ)-computable
if and only if it is robust.

Proof. We have already shown that Reach(F,A) is computable if Reach(F,A) = ChainReach(F,A).

Conversely, suppose Reach(F,A) 6= ChainReach(F,A). Let Fn be a sequence of continuous multivalued
maps converging to F such that Graph(F) ⊂ int(Graph(Fn)) for all n. Then ChainReach(F,A) ⊂
Reach(Fn, A) for all n, and Reach(Fn, A) → ChainReach(F,A) as n→ ∞.

For any name p of F , there is a sequence pn of names of Fn such that pn → p, since any elements in
a µA

<-name of F are present in a µA
<-name of Fn, and for n sufficiently large, the first m elements of

p give rise to sets disjoint from Graph(F). Any computation of the first m elements of ψ>-name of
Reach(F,A) depends only on the first k elements of a ψ-name of F , and hence is equal to the first m
elements of a ψ>-name of Reach(Fn, A) for n sufficiently large. In particular, the first m elements of a
ψ>-name of Reach(F,A) are disjoint from Reach(Fn, A), and hence from ChainReach(F,A). Since this
is true for any m ∈ N, we see that it is impossible to compute a lower bound for Reach(Fn, A) smaller
than ChainReach(F,A).

4.3 Closure-interior systems

A set which is the closure of its interior may be both inner- and outer-approximated.

Definition 4.11 (Closure-interior sets). A set A is a closure-interior or clint set if A = cl(int(A)).
We denote the set of all closure-interior subsets of X by CI(X).

If A ∈ CI(X), then the set U := int(A) satisfies U = int(cl(U)). Conversely, if U = int(cl(U)), then
A := cl(U) ∈ CI(X).

Unlike general closed sets which admit outer approximations but not inner approximations (we use lower
approximations instead), clint sets admit natural outer and inner approximations. We use a representation
combining a θ<-name for int(A) (as defined in Section 2.6) and either a ψ>-name or a κ>-name for A,
as appropriate.

A continuous function F such that Graph(F) is a clint set may be specified by a ψ>-name or κ>-name
for Graph(F), and by a θ<-name for Graph(G) where G is defined by Graph(G) = int(Graph(F)). Note
that a function G is lower-semicontinuous with open values if, and only if, Graph(G) is open, and if
G1 and G2 have open graphs, then so does G1 ◦ G2.The following theorem shows that continuous clint
systems behave nicely when operating on sets.

Theorem 4.12. If G is a continuous, open-valued function, and U is open, then cl(G(U)) = F (cl(U)),
where Graph(F) = cl(Graph(G)).

Proof. Clearly cl(G(U)) ⊂ F (cl(U)) since F (cl(U)) is closed. Suppose y 6∈ cl(G(U)). Then there exists
a neighbourhood Z of y such that Z ∩ G(U) = ∅. Then G−1(Z) ∩ U = ∅, and since Z is open and G
is lower-semicontinuous, G−1(Z) ∩ cl(U) = ∅. Choose a neighbourhood W of y with cl(W) ⊂ Z. Then
G−1(cl(W)) ∩ cl(U) = ∅, and since G is lower-semicontinuous, G−1(cl(W)) is closed. Hence there exists
open V with cl(U) ⊂ V such that G−1(cl(W))∩V = ∅. Then W ∩G(V) = ∅, so Graph(G)∩V ×W = ∅,
and so Graph(F) ∩ V ×W = ∅, and hence y 6∈ F (cl(U)).

If G is not continuous, then the result may not be true, as the following example shows.

Example 4.13. Let G(x) = (0, 1) if x ∈ (0, 1], F (x) = (0, 2) if x ∈ (1, 2). Then F (x) = [0, 1] if
x ∈ [0, 1), F (x) = [0, 2] if x ∈ [1, 2]. Let U = (0, 1) and A = cl(U) = [0, 1]. Then G(U) = (0, 1) but
F (A) = [0, 2] 6= cl(G(U)).

19

Corollary 4.14. If F,G are continuous, closure-interior systems, then so is F ◦G.

The following result shows that the reachable set is inner-computable for closure-interior systems.

Theorem 4.15. Let G be a continuous, open-valued multivalued function, and U an open set. Then the
operator (G,U) 7→ Reach(G,U) is (µO

< , θ<; θ<)-computable.

Proof. We first show that the map (G,U) 7→ G(U) is (µO
< , θ<; θ<)-computable. Output I with I ⊂ G(U)

if there exist J1, . . . Jk and K1, . . . ,Kk such that J i ⊂ U and J i ×Ki ⊂ Graph(G) for i = 1, . . . , k, and

I ⊂
⋃k

i=1 Ki. It is straightforward to check that these I encode a θ<-name of G(U).

The function (G,U) 7→ Gn(U) is then (µO
< , θ<; θ<)-computable for all n. It is straightforward to check

that countable union ON → O is (θ<, θ<, . . . ; θ)-computable.

The chain reachable set is (µK
>, κ>;κ>)-computable as before. However, by modifying the Example 1.2,

it is straightforward to show that it is still impossible to compute a better upper approximation for the
reachable set than the chain reachable set.

Thus closure-interior systems admit inner approximations to the reachable set, which may be useful in
verifying certain reachability properties and in the construction of algorithms, but the reachable set may
still be uncomputable.

4.4 Continuous-time systems

Up to now, we have considered reachability for discrete-time systems. We can also consider continuous-
time systems described by a differential inclusions

ẋ(t) ∈ F (x(t)) (24)

where F is a multivalued section of the tangent bundle TX . Then Graph(F) is a subset of TX , and
define the differential inclusion by (x, ẋ) ∈ Graph(F).

The following result of Puri, Varaiya and Borkar [21] shows that computable Lipschitz differential inclu-
sions may be integrated to give computable continuous multivalued maps.

Theorem 4.16 (Puri, Varaiya, Borkar). Suppose ẋ ∈ F (x) is a Lipschitz differential inclusion.
Then for any γ > 0 and any t > 0, we can compute a set R as a union of polyhedrons such that
Reach(F,X0, t) ⊂ R and dH(Reach(F,X0, t), R) < γ.

We define the flow Φ of F by Φt(x) := Reach(F, {x}, t), and Φ6t(x) :=
⋃

τ∈[0,t] Φτ (x). It is immediate
that

Reach(F,X0) = Φ6t(Reach(Φt, X0)) = Reach(Φ6t, X0). (25)

The following result follows from Theorem 4.16

Corollary 4.17. For any rational t, and for F a Lipschitz differential inclusion, the functions F 7→ Φt

and F 7→ Φ6t are computable.

Proof. That Φt is computable is immediate. To show that Φ6t is computable, consider the system F̃

with F̃ (x) = conv (F (x) ∪ {0}) for all x. Then Φ6t(x) = Reach(F, {x}, [0, t]).

We define the chain reachable set for an upper-semicontinuous Lipschitz differential inclusion by

ChainReach(F,X0) :=
⋂
{Reach(G,X0) : G ⊂ O(TX) and F ⊂ G} (26)

Since ChainReach(F,X0) = Φ6t(ChainReach(Φt, X0)), we obtain the following result.

Theorem 4.18 (Reachability of Lipschitz differential inclusions).

20

1. The map (F,X0) 7→ Reach(F,X0) is (µK, ψ<;ψ<)-computable for Lipschitz F .

2. The map (F,X0) 7→ ChainReach(F,X0) is (µK, κ>;κ>)-computable for Lipschitz F .

Notice that the results presented here have only been proved for Lipschitz differential inclusions and
for the µK representation. We would expect that the map (F,X0) 7→ Reach(F,X0) to be (µA

<, ψ<;ψ<)-
computable and (µK

<, κ>;κ>)-computable for appropriate classes of differential inclusion. It may be pos-
sible to weaken the Lipschitz restriction slightly, but the following example shows that Hölder continuity
is insufficient for lower-computability.

Example 4.19. Consider the Hölder-continuous differential equation

ẋ = fε(x) :=
√
|x| + ε. (27)

For ε < 0, we have Reach(fε, {0}) = (−ε2, 0] and ChainReach(fε, {0}) = [−ε2, 0]. For ε > 0, we have
Reach(fε, {0}) = ChainReach(fε, {0}) = [0,∞).

The interesting case is ε = 0, where ẋ =
√
|x|. Here, the solutions are not unique; indeed, for any a > 0,

we have a solution
x(t) = 0 for t 6 a; x(t) = 1

4 (t− a)2 for t > a (28)

Then the time-t reachable set Reach(f0, {0}, t) is therefore [0, t2/4], and so the time-t reachable set does
not vary continuously with ε. The reachable set Reach(f0, {0}) is therefore [0,∞), and therefore Reach
is not (τMA

< , τA< ; τA<)-continuous.

Lipschitz continuity of the right-hand side is therefore a necessary condition for the time-t reachable set to
be (µA

<, ψ<;ψ<)-computable. However, we expect that the time-t chain-reachable set to be (µK
>, κ>;κ>)-

computable with only a continuous F .

5 Approximation methods

Although the representations of sets given in Section 2 are convenient for a general analysis of com-
putability properties, they require an infinite amount of data. We often want to describe a set by giving
an approximation using a finite amount of data. To do this, we first choose a denumerable collection
of denotable sets, which can be described exactly, and describe other sets by giving an approximating
denotable set and an error bound. Such approximations are used in existing software for performing
set-based analysis, including GAIO [11] and the ellipsoidal calculus of Kurzhanski and Valyi [15].

Figure 4: Approximations of compact sets on a grid.

A particularly important class of denotable sets in applications is that based on cuboidal grids, as shown
in Figure 4. We can take a decreasing sequence of grids Gq based on the dyadic rationals Q2 := {p/2q :
p ∈ Z, q ∈ N} as unions of cuboids of the form

I =
[

p1

2q ,
p1+1
2q

]
×

[
p2

2q ,
p2+1
2q

]
× · · · ×

[
pn

2q ,
pn+1

2q

]
(29)

21

By taking finer and finer grids, better approximations can be computed.

From a computability viewpoint, we are interested in whether it is possible to compute approximations to
a set to arbitrary precision. We therefore consider approximation representations, in which we represent
a set by a convergent sequence of denotable sets. The advantage of approximation representations over
the standard representations is that the approximating denotable elements have the same type as the
element being represented. For real numbers, points in Euclidean space, and open and closed sets, we can
find approximation representations equivalent to the standard representations. Hence the computability
results for reachable and chain reachable sets in the standard representations are also valid for the
approximation representations.

We first give an outline of approximation methods in a more general setting, with the example being
that of the real numbers and points in Euclidean space. We then consider different types of denotable
closed sets, with particular emphasis on those defined on cuboidal grids. Finally, we consider those
approximation representations which correspond to the standard representations ψ< of A and κ> and
κ of K. The material in this section is only an introduction to the use of approximation methods; a
complete treatment is beyond the scope of this paper.

5.1 Approximation representations

We first define a general framework for considering approximations.

Definition 5.1 (Denotable element). Let (X, τ) be a second-countable Hausdorff space, and ξ :⊂
Σ∗ → X be a function whose range is a dense subset of X . We say an element x ∈ X is denotable if
x = ξ(w) for some w ∈ dom(ξ). The triple (X, τ, ξ) is a denotable topological space.

Appropriate choices for denotable real numbers are the rationals Q or the dyadic rationals Q2. Appro-
priate choices for denotable points in Euclidean space Rn are Qn and Qn

2 .

We can now define representations of elements of X by convergent sequences.

Definition 5.2 (Approximation representation). Let (X, τ, ξ) be a denotable topological space. An
approximation representation of (X, τ, ξ) is a function δ :⊂ Σω → X such that

δ〈w1, w2, . . .〉 = x :⇐⇒ 〈w1, w2, . . .〉 ∈ dom(δ) and limi→∞ ξ(wi) = x. (30)

In other words, an approximation representation encodes a convergent sequence of denotable elements
(xi), where xi := ξ(wi).

The main difficulty when considering approximation representations is that no finite portion of a general
convergent sequence gives any information about its limit. The main challenge is therefore to restrict the
domain of the representation δ to sequences with appropriate properties, so that meaningful approxima-
tions can be extracted. We henceforth often restrict approximation representations to (strictly) increasing
or decreasing sequences, or effective Cauchy sequences with d(xi, xj) 6 εi whenever j > i, where (εi) is
a strictly decreasing sequence of rationals with limi→∞ εi = 0, a typical choice being εi = 2−i

Many of the representations of real numbers R given in [23, Section 4.1] are approximation representations,
most notably the Cauchy representation ρC given by

ρC〈w1, w2, . . .〉 = x :⇐⇒ |ξ(wi) − ξ(wj)| 6 2−i for i < j and x = limi→∞ ξ(wi).

The Cauchy representation is an approximation representation with domain given by

〈w1, w2, . . .〉 ∈ dom(ρC) :⇐⇒ xi := ξ(wi) satisfy |xi − xj | < 2−i for i < j.

The Cauchy representation is equivalent to the standard representation ρ. An alternative approximation
representation of R which is equivalent to ρ is that by alternating sequences (xi) satisfying x2i < x2i+2 <
x2i+3 < x2i+1 for all i.

22

An approximation representation equivalent to the standard representation ρn of Rn is given by taking
strongly convergent sequences, where ||x − xi|| < 2−ii for all i. Here, the most natural norm to take is
the sup-norm || · ||∞.

From an approximation representation, we often wish to derive a single approximation to the represented
element. We can specify an approximation by giving an approximating denotable element, and specifying
the type of approximation.

Definition 5.3 (Approximation). An approximation type is a function e : range(ξ) → τ . An approxi-
mation to an element x ∈ X is a pair (x̃, e), where x̃ is a denotable element, and e is an approximation
type, such that x ∈ e(x̃). We say that x̃ is an e-approximation to x.

A lower approximation of a real number is specified by the approximation type e<(x̃) = (x̃,∞), since x̃
is a lower approximation to x if x̃ < x, which is equivalent to x ∈ (x̃,∞). An upper approximation is
specified by e>(x̃) = (−∞, x̃). An ε-approximation is specified by eε(x̃) = (x̃−ε, x̃+ε). ε-approximations
can be extracted from effective Cauchy sequences, since if (xi) is an effective Cauchy sequence converging
to x, then |x− xi| 6 εi for all i.

The concept of lower approximation generalises to any partially ordered topological space, and that of
ε-approximation to any metric space. For general topological spaces, we can define approximations in
terms of an open cover. A U-approximation is specified by eU (x̃) =

⋃
{U ∈ U : x̃ ∈ U}, so x̃ is a

U-approximation to x if there exists U ∈ U such that x, x̃ ∈ U .

5.2 Approximations of sets

We now consider approximation representations of closed and compact sets. Let (X, τ, β, ν) be a com-
putable Hausdorff space. Then the topological spaces (A(X), τA), (O(X), τO) and (K(X), τK) are second-
countable Hausdorff spaces. An appropriate notion of a denotable set is one which can be written as a
finite union of basic (open or closed) sets of X .

Definition 5.4 (Denotable set).

1. A closed set A is denotable if there are finitely many basic closed sets I1, . . . , Ik such that A =⋃k

i=1 I i. The function ν̂ :⊂ Σ∗ → A(X) defined by

ν̂〈w1, . . . , wk〉 :=
⋃k

i=1 ν(wi) = cl(ν̃〈w1, . . . , wk〉). (31)

is a notation for the denotable closed sets.

2. An open set U is denotable if there are finitely many basic open sets J1, . . . , Jk such that U =⋃k

i=1 Ji. The function ν̃ :⊂ Σ∗ → O(X) defined by

ν̃〈w1, . . . , wk〉 :=
⋃k

i=1 ν(wi) (32)

is a notation for the denotable open sets.

3. Since the denotable closed sets are compact, compact set C is denotable if it is a denotable closed
set, C =

⋃k

i=1 I i.

There are a number of useful approximation representations of open, closed and compact sets, each based
on a type of sequence.

Definition 5.5 (Monotonic sequences). A sequence of open sets (Ui) is increasing if Ui ⊂ Uj whenever
i < j, and strictly increasing if cl(Ui) ⊂ Uj . A sequence of compact sets (Ci) is decreasing if Cj ⊂ Ci

whenever i < j, and strictly decreasing if Cj ⊂ int(Ci).

23

Since a closed set A may have nonempty interior, we cannot in general find an increasing sequences of
denotable closed sets converging to A. Instead, we consider approximations by Cauchy sequences. For
the rest of this section, we suppose X is a metric space with metric d. Recall that if A is a closed set,
the ε-neighbourhood of A is Nε(A) := {x : d(x,A) < ε}. We also fix a strictly decreasing sequence of
rationals (εi) converging to 0.

Definition 5.6 (Cauchy sequences).

1. A sequence of closed sets (Ai) is a lower Cauchy sequence if Ai ⊂ Nεi
(Aj) whenever i < j.

2. A sequence of compact sets (Ci) is an upper Cauchy sequence if Cj ⊂ Nεi
(Ci) whenever i < j.

3. A sequence of compact sets (Ci) is a decreasing Cauchy sequence if Cj ⊂ Ci ⊂ Nεi
(Cj) whenever

i < j, and a strictly decreasing Cauchy sequence if Cj ⊂ int(Ci) and Ci ⊂ Nεi
(Cj) whenever i < j.

(a) (b) (c)

Figure 5: Convergence of lower Cauchy sequences. The sets illustrated in (a), (b) and (c) form
three terms of a lower Cauchy approximation representation.

We can use monotone and Cauchy sequences to define approximation representations

Definition 5.7 (Approximation representations).

1. The approximation representation of open sets by increasing sequences sequences is the inner
approximation representation, θapprox

< .

2. The approximation representation of closed sets by lower Cauchy sequences is the lower Cauchy
approximation representation, ψapprox

< .

3. The approximation representation of compact sets by decreasing sequences is the outer approxi-
mation representation κapprox

> .

4. The approximation representation of compact sets by decreasing Cauchy sequences is the outer
Cauchy approximation representation κapprox.

These approximation representations are equivalent to the standard representations.

Theorem 5.8 (Approximation representations).

1. The inner approximation representation θapprox
< and the standard representation θ< are equivalent.

2. The lower approximation representation ψapprox
< and the standard representation ψ< are equivalent.

3. The outer approximation representation κapprox
> and the standard representation κ> are equivalent.

4. The outer Cauchy approximation representation κapprox and the standard representation κ are
equivalent.

24

(sketch).

1. Let (I1, I2, . . .) encode a θ<-name for an open set U . Then the sequence (Ui) defined by Ui :=
⋃k

i=1

is an increasing sequence converging to U .

Conversely, given an increasing sequence of denotable sets (Ui) converging to U , we output I if
I ⊂ U (covering).

2. Let (J1, J2, . . .) encode a ψ<-name for a closed set A. For simplicity, we only consider the case
where A is compact. We let Aj,k = cl(

⋃
{Jm : m 6 k and diam(Jm) < εj}). We take the jth

approximation Aj = Aj,k whenever Ai,k ⊂ Nεi
(Aj,k) for all i < j. The resulting sequence is a

lower Cauchy sequence converging to A.

Conversely, given a lower Cauchy sequence (Ai) converging to A, we have that Ai ⊂ cl(Nεi
(A)) for

all i. Hence if J contains a basic closed set I such that I ∩ Ai 6= ∅ and cl(Nεi
(I)) ⊂ J for some i,

then J ∩ A 6= ∅. If J ∩ A 6= ∅, then there exists I with I ⊂ J , and I ∩ A 6= ∅. There exists i such
that I ∩ Ai 6= ∅ (by convergence) and cl(Nεi

(I)) ⊂ J . Hence J is output.

3. We use the representation κcv
> . Given a sequence of all open covers Ui of containing C, we can take

(Ci) to be a subsequence of
⋃
{I : I ∈ Ui}. Given a decreasing sequence (Ci) converging to C, we

can take all open covers of the Ci to obtain all open covers of C.

4. For any i, we compute Ci such that C ⊂ int(Ci) and Ci ⊂ Nεi
(C). The construction is that of [23,

page 127]. Then if i < j, we have Cj ⊂ Nεi
(C) ⊂ Nεi

(Cj). By taking a subsequence if necessary,
we obtain Cj ⊂ Ci for i < j.

As usual, the approximating sequences give rise to approximation concepts. A ε-lower approximation to
a closed set A is a denotable closed set Ã such that Ã ⊂ Nε(A). An outer approximation to a compact

set C is a denotable compact set C̃ such that C ⊂ C̃ , and a strict outer approximation is a denotable
compact set C̃ such that C ⊂ int(C̃). An outer ε-approximation to a compact set C is a denotable

compact set C̃ such that C ⊂ C̃ ⊂ Nε(C).

5.3 Approximations on grids

A natural way of approximating a compact set in Euclidean space is to construct a grid of closed cuboids
with disjoint interiors, and to take denotable sets which are a union of finitely many cuboids, as shown
previously in Figure 4. This notion generalises to arbitrary computable Hausdorff spaces.

Definition 5.9 (Grid). A grid is a collection G of basic closed sets I such that X =
⋃
G and I ∩ J = ∅

whenever I, J ∈ G.

Similarly to refinements of open covers, we can consider refinements of grids. However, refinements of
grids are more restricted, since we require that each element of the larger grid be a union of elements of
the refinement.

Definition 5.10 (Proper refinement). A proper refinement of a grid G1 is a grid G2 such that for every
I2 ∈ G2, there exists I1 ∈ G1 such that I2 ⊂ I1, and for every I1 ∈ G1, we have I1 =

⋃
{I2 ∈ G2 : I2 ⊂ I1}.

We would like to construct approximations to a compact set C as finite unions of grid elements. Clearly
the best such outer approximation on a given grid is C̃G :=

⋃
{I ∈ G : I ∩ C 6= ∅}. Unfortunately this

concept cannot be directly effectivised, since although we can use ψ< to show I ∩C 6= ∅, and κ> to show
I ∩ C = ∅, we cannot effectively decide whether C intersects the boundary of I .

To overcome this difficulty, we consider a neighbourhood N(I) for each grid element I . Assuming that
N(I) is a basic open set for every grid element I , we define a function

η :⊂ Σ∗ → Σ∗, ν(η(w)) := N(ν(w)), (33)

25

(a) (b)

Figure 6: One box neighbourhoods. (a) A cuboidal grid, and (b) a simplicial grid.

so that η(w) is a name for N(I) if w is a name for I . The natural neighbourhoods to consider are the
one-box neighbourhoods, defined as follows:

Definition 5.11 (One-box neighbourhood). The one-box neighbourhood of I is the set

N(I) := X \
⋃
{J ∈ G : J ∩ I = ∅}. (34)

Examples of one-box neighbourhoods for cubical and simplicial grids are shown in Figure 6. Note that
the one-box neighbourhoods for a simplicial grid are not simplexes.

Given a ψ<-name of C, we can eventually find all grid elements I ∈ G such that N(I)∩C 6= ∅. Hence we

can build up a sequence of sets C̃i such that C̃i ⊂ C̃j ⊂ Nε(C), for all i < j, where ε = sup{diam(I) : I ∈
G}. Given a κ>-name of C, we can eventually find all grid elements I ∈ G such that I ∩ C = ∅. Hence

we can construct a sequence of sets C̃i such that C ⊂ C̃j ⊂ C̃i for all j < i.

Now for each grid element I ∈ G, we either have N(I) ∩ C 6= ∅ or I ∩ C = ∅, or both. Hence, given a κ-

name of C, we can compute, in finite time, a finite set of grid elements {I1, . . . , Ik} such that C̃ :=
⋃k

i=1 I i

satisfies C ⊂ int(C̃) and C̃ ⊂ Nε(C), as described in Weihrauch [23, Figure 5.2].

The above discussion has focused on a single grid. We now consider the construction of lower approxi-
mating sequences and outer approximating sequences on a sequence of grids (Gi), where Gj is a proper
refinement of Gi for i < j.

Definition 5.12. Let G1 and G2 be grids, where G2 is a proper refinement of G1, and let L1 and L2

be finite sets of basic closed sets of G1 and G2, respectively. We say L2 < L1 if for all L2 ∈ L2, there
exists L1 ∈ L1 such that L2 ⊂ L1. We say L1 ≺ L2 if for all L1 ∈ L1, there exists L2 ∈ L2 such that
N(L2) ⊂ N(L1), and L1 - L2 if for all L1 ∈ L1, there exists L2 ∈ L2 such that L2 ∩N(L1) 6= ∅.

If L2 < L1, then
⋃
L2 ⊂

⋃
L1, and if L1 - L2, then

⋃
L1 ⊂ Nε1(

⋃
L2). The relation L1 ≺ L2 is stronger

than L1 - L2. The relations < and ≺ are partial orders.

The relations ≺ and - can be used to compute lower approximating sequences to C. Given a ψ<-name
of C as a list (J1, J2, . . .) of basic open sets intersecting C, we let Lj,k := {I ∈ Gj : N(I) ∈ J1, . . . , Jk}.
We take Lj = Lj,k if k > j and Li,k - Lj,k for all i < j. This is guaranteed to terminate, since if
x ∈ N(I i) ∩ C, then x ∈ Ij for some Ij ∈ Gj , so N(Ij ∩ C 6= ∅ and Ij ∩N(I i) 6= ∅. The sets Cj :=

⋃
Lj

are then a lower approximating sequence to C.

If the open covers Ui := {N(I) : I ∈ Gi} are proper refinements of each other, then whenever i < j and
N(I i) ∩ C 6= ∅ for some I ∈ Gi, then there exists Ij ∈ Gj such that N(Ij) ⊂ N(I i) and N(Ij) ∩ C 6= ∅.
We can then find a sequence (Li) such that Li ⊂ Gi and Li ≺ Lj whenever i < j.

The relation < can be used to define an outer approximating sequence to C. Given a κ>-name of
C as an open cover J1, . . . , Jk of C and a list of basic closed sets (K1,K2, . . .) disjoint from C, we

26

construct finite subsets Lj,k ⊂ Gj as follows. We start by taking Lj,0 such that
⋃j

i=1 Ji ⊂
⋃
Lj0 , and

take Lj,k = Lj,0 \ {I1, . . . , Ik} for k > 0. We take Lj = Lj,k if j > k and Lj,k < Li,k for all i < j. The
sets Cj :=

⋃
Lj are then a decreasing approximating sequence to C.

5.4 Approximation of functions

Semicontinuous multivalued functions can be described in terms of their graphs. In particular, a lower-
semicontinuous, open-valued function has an open graph, and an upper-semicontinuous, closed-valued
functions has a closed graph. We can define classes of denotable function as follows.

Definition 5.13 (Denotable function). A lower-semicontinuous, compact-valued function F : X ⇒ Y

is denotable if Graph(F) =
⋃k

i=1 Ii ×J i, where Ii ∈ βX and Ji ∈ βY for i = 1, . . . , k. Denotable functions
in USCK, LSCO and USCO are defined similarly.

A notation for LSCK is given by the function (ν×ν) given by

Graph(F) = (ν×ν)
〈
〈v1, w1〉, . . . , 〈vk , wk〉

〉
:=

⋃k

i=1 ν(vi) × ν(wi). (35)

Similarly, we can give notations ν×ν, ν×ν and ν×ν denote elements of USCK, LSCO and USCO,
respectively. It is clear that if S is a denotable (open or closed) set and F is a denotable function, then
F (S), F−1(S) and F⇐(S) are all denotable sets.

We have seen that a word p = 〈u1, . . . , uk〉 is a name for both a denotable open set ν̃〈u1, . . . , uk〉 and a
denotable compact set ν̂〈u1, . . . , uk〉. Similarly, we think of a word q =

〈
〈v1, w1〉, . . . , 〈vl, wl〉

〉
may denote

lower-semicontinuous open-valued or closed-valued functions. If the elements ν(ui), ν(vj) and ν(wj) lie
in some common grid G, we can describe q by a finite graph on the elements of G. Thinking of p as
abstractly denoting a set, and q as an abstract function, we can define an abstract image r = q(p) by

w � r ⇐⇒ ∃v ∈ Σ∗, v � p and 〈v, w〉 � q. (36)

The abstract image is particularly useful when working with outer approximations. Since an upper-
semicontinuous compact-valued map with compact domain has a compact graph, we can use the approx-
imation representation of Graph(F) as an outer approximation of F . Given a strict outer approximation
p = 〈u1, . . . ul〉 for a compact set set C, and a strict outer approximation q =

〈
〈v1, w1〉, . . . 〈vk, wk〉

〉
for

a function F , then F (A) ⊂ int(ν̂(r)), where r = q(p) is defined by (36). Since if ν(u), ν(v) ∈ G for some
grid G we have ν(u) ∩ ν(v) 6= ∅ ⇐⇒ u = v, this is equivalent to

w � r ⇐⇒ ∃u, v ∈ Σ∗, u� p, 〈v, w〉 � q and ν(u) ∩ ν(v) 6= ∅. (37)

It is then immediate that r is an outer approximation of F (C).

Hence the abstract image reduces a problem of computing the image of a set to a simple combinatorial
exercise.

6 Conclusions and further research

In this paper, we have considered the computation of reachable sets in the setting of computable analysis
and topology. We have shown that the reachable set is in generally uncomputable in this approximative
setting, but that lower approximations to the reachable set and upper approximations to the chain
reachable set can be computed. Further, in the case that the closure of the reachable set and the chain
reachable set coincide, then the reachable set can be approximated to any specified accuracy. These
computations can be used for the verification of controllability and of safety properties.

The difference between the reachable and the chain reachable sets can be viewed as a measure of the “ro-
bustness” of the system, or its sensitivity to noise. Thus, even when the reachable set is not computable,
we obtain useful information about the system.

27

The type-two effectivity theory used has a number of features which we believe make it the most ap-
propriate theory for the analysis of system properties. It provides a formal model of computation which
can be realised on digital computers, and hence algorithms expressed in this theory can be practically
realised. There is already considerable material on the representation of open, closed and compact sets
and continuous functions in this theory. The theory deals with quite general topological spaces, allowing
computations on manifolds as well as Euclidean spaces, and also allows for the study of semicontinuous
multivalued maps and differential inclusions. As well as providing a framework for representing the stan-
dard objects of topology and analysis, and for computing approximations, it also allows us to deduce that
certain computations are not possible, simply by showing that they attempt to compute a discontinuous
function.

Given the power of the type-two effectivity theory, the results in this paper barely scratch the surface of
what we believe can be achieved. We now give some possible directions for future work.

The results presented here have mostly been developed for discrete-time systems, though we have also
presented results for continuous-time systems. We would like to extend the results further to deal with
hybrid-time systems, in which evolution occurs in both continuous time (differential equations or in-
clusions) and discrete time (reset maps). We expect much greater problems when considering hybrid
systems, since here the evolution may be discontinuous even over finite time intervals.

We have only presented an analysis of reachability problems. Another area of study is that of viability
theory and invariant sets [4]. For a discrete-time multivalued system, a set A is viable if ∀x ∈ A,
F (x) ∩ A 6= ∅. The viability kernel of a set A is the maximal viable subset of A. A set is invariant if
F (A) ⊂ A. The invariance kernel of a set A is the maximal invariant subset of A.

One promising tool for the study of viability problems is the Conley index [19], which computes isolated
invariant sets. The Conley index requires the computation of homology groups related to the system
dynamics. Hence, it is important to study the formal computability properties of homology groups in
the setting of type-two effectivity.

It would also be interesting to develop these ideas further from a computational viewpoint into a “timed
logic of approximation”. In this thesis, fundamental notions of timed logic (e.g. until quantifiers) and
topological notions of approximation, closure and interior, should be combined to give a consistent frame-
work for the approximative study of system properties [18]. Of particular interest is the complementation
operator, which takes closed sets to open sets and vice-versa, and timed unions and intersections (a union
over infinite times takes an open set to an open set, but need not respect closedness).

Acknowledgement. The author gratefully acknowledges the financial support of the European Com-
mission through the project Control and Computation (IST-2001-33520) of the Program Information
Societies and Technologies.

References

[1] Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hybrid systems. In Proceedings of the

Sixteenth Annual IEEE Symposium on Logic in Computer Science. IEEE, 2001.

[2] Eugene Asarin, Theo Dang, and Oded Maler. d/dt: A verification tool for hybrid systems. In Proceedings

of the 40th IEEE Conference on Decision and Control, New York, 2001. IEEE Press.

[3] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical systems having piecewise-
constant derivatives. Theoret. Comput. Sci., 138(1):35—65, 1995.

[4] Jean-Pierre Aubin. Viability theory. Systems & Control: Foundations & Applications. Birkhäuser, Boston,
1991.

[5] Jean-Pierre Aubin and Hélène Frankowska. Set-valued analysis. Systems & Control: Foundations & Appli-
cations. Birkhäuser, Boston, 1990.

[6] Errett Bishop and Douglas Bridges. Constructive analysis. Number 279 in Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985.

[7] Vasco Brattka. Computability over topological structures. In S. Barry Cooper and Sergei S. Goncharov,
editors, Computability and models, Univ. Ser. Math., page 375. Kluwer/Plenum, New York, 2003.

28

[8] Vasco Brattka and Gero Presser. Computability on subsets of metric spaces. Theoretical Comp. Sci., 305:43–
76, 2003.

[9] Pierre Cardaliaguet, Marc Quincampoix, and Patrick Saint-Pierre. Set-valued numerical analysis for optimal
control and differential games. In Stochastic and differential games, number 4 in Ann. Internat. Soc. Dynam.
Games, pages 177–247. Birkhäuser, Boston, 1999.

[10] Charles Conley. Isolated Invariant Sets and the Morse Index, volume 38 of CBMS Regional Conference Series

in Mathematics. American Mathematical Society, Providence, Rhode Island, 1978.

[11] Michael Dellnitz, Gary Froyland, and Oliver Junge. The algorithms behind GAIO-set oriented numerical
methods for dynamical systems. In Bernold Fiedler, editor, Ergodic theory, analysis, and efficient simulation

of dynamical systems, pages 145–174, 805–807. Springer, Berlin, 2001.

[12] Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of states. In J. Flum
and M. Rodriguez-Artalejo, editors, Computer Science Logic, number 1683 in Lecture Notes in Computer
Science, Berlin Heidelberg New York, 1999. Springer-Verlag.

[13] Martin Fränzle. What will be eventually true of polynomial hybrid automata. In N. Kobayashi and B. C.
Pierce, editors, Theoretical Aspects of Computer Software, number 2215 in Lecture Notes in Computer
Science, pages 340–359, Berlin Heidelberg New York, 2001. Springer-Verlag.

[14] Erwin Klein and Anthony C. Thompson. Theory of correspondences. Including applications to mathematical

economics. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons,
New York, 1984.

[15] Alexander B. Kurzhanski and István Vályi. Ellipsoidal calculus for estimation and control. Systems &
Control: Foundations & Applications. Birkhäuser, Boston, MA, 1997.

[16] Alexander B. Kurzhanski and Pravin Varaiya. On ellipsoidal techniques for reachability analysis. I. External
approximations. Optim. Methods Softw., 17(2):177–206, 2002.

[17] Alexander B. Kurzhanski and Pravin Varaiya. On ellipsoidal techniques for reachability analysis. II. Internal
approximations box-valued constraints. Optim. Methods Softw., 17(2):207–237, 2002.

[18] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems. Specification. Springer-
Verlag, New York, 1992.

[19] Konstantin Mischaikow and Marian Mrozek. Conley index. In Handbook of dynamical systems, volume 2,
pages 393–460. North-Holland, Amsterdam, 2002.

[20] James R. Munkres. Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

[21] Anuj Puri, Pravin Varaiya, and Vivek Borkar. Epsilon-approximation of differential inclusions. In Rajeev
Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, volume 1066 of LNCS,
pages 362–376, Berlin, 1996. Springer.

[22] Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete Contin.

Dyn. Syst. Ser. B, 3(3):361–382, 2003.

[23] Klaus Weihrauch. Computable analysis - An introduction. Texts in Theoretical Computer Science. Springer-
Verlag, Berlin, 2000.

29

