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Abstract

The paper deals with the realization theory of linear switched systems.

First, it presents a procedure for constructing a minimal realization from

a given linear switched system. Second, it gives necessary and sufficient

conditions for an input-output map to be realizable by a linear switched

system. The proof of the sufficiency also yields a procedure for construct-

ing a minimal representation of the input-output map.

1 Introduction

Linear switched systems are one of the best studied subclasses of hybrid sys-
tems. A vast literature is available on various issues concerning linear switched
systems, for a comprehensive survey see [5]. Yet, to the author’s knowledge, no
literature exists on the realization theory of linear switched systems.

This paper tries to fill the gap by presenting results on the realization theory
of linear switched systems. More specifically, the paper tries to answer the
following two questions.

• Does there exist an algorithm, which, given a linear switched system Σ,
constructs a minimal linear switched system Σ

′

such that Σ and Σ
′

are
input-output equivalent.

• Given an input-output map y, what are the necessary and sufficient con-
ditions for the existence of a linear switched system realizing the map
y. Does there exist a procedure to construct a minimal linear switched
system which realizes y.

The paper presents a procedure for constructing a minimal (with the state-space
of the smallest possible dimension, observable and controllable) linear switched
system from a given linear switched system. The minimal linear switched system
constructed by the procedure is equivalent as a realization to the original system.
The procedure also gives a Kalman-like decomposition of the matrices of the
original system. It is also proven that all minimal systems are algebraically
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similar, meaning that they are defined on vector spaces of the same dimension
and their matrices can be transformed to each other by a basis transformation.

The paper also deals with the inverse problem i.e., consider an input-output
function and formulate necessary and sufficient conditions for the existence of
a linear switched system which is a realization of the given input-output map.
The paper presents a set of conditions which are necessary and sufficient for
the existence of such a realization. The proof of the sufficiency of these condi-
tions also gives a procedure for constructing a minimal realization of the given
input-output map. The necessary and sufficient conditions include a finite-rank
condition which is reminiscent of the Hankel-matrix rank condition for linear
systems. In fact, the classical conditions for the realizability of an input-output
map by a linear system and the classical construction of the minimal linear
system realizing the given input-output map are a special case of the results
presented in the paper.

In order to develop realization theory for linear switched systems, abstract
realization theory for initialized systems ( see [7] ) has been used. In fact, even
the definition of minimality for linear switched systems isn’t that obvious. The
approach taken in this paper is to treat switched systems as a subclass of ab-
stract initialized systems and use the concepts developed for abstract initialized
systems.

Although the results on the realization theory of linear switched systems
bear a certain resemblance to those of finite-dimensional linear systems, the
former is by no means a straightforward extension of the latter. As the results
of this and other papers demonstrate, the approach ”apply the well-known linear
system theory to each continuous system and combine the results in a smart
way” doesn’t always work. Reachability, observability and the realization theory
of linear switched systems belong to the class of problems, for which classical
linear system theory can’t be applied. This also shows up on the results. For
example, if a linear switched system is reachable, it doesn’t mean that any of
the linear systems constituting the switched system has to be reachable, nor
does it imply that any point of the continuous state space can be reached by
some continuous component. The same holds for the observability ( in sense
of indistinguishability ) of linear switched systems. The reader who wishes
to verify these statements is encouraged to consult [8]. In the light of these
remarks it is not that surprising that a minimal linear switched system may
have non-minimal continuous components. That is, if a linear switched system
is minimal, it does not imply that any of its continuous components is minimal.
On the other hand, the approach to the realization theory taken in the paper
bears a certain resemblance with the works on realization theory for nonlinear
systems presented in [3, 4, 1]. In some sense linear switched systems have more
in common with non-linear than with linear systems.

The outline of the paper is the following. The first section, Section 2 sets
up some notation which will be used throughout the paper. Section 3 describes
some properties and concepts related to linear switched systems which are used
in the rest of the paper. Section 4 presents the minimization procedure and
the Kalman-decomposition for linear switched systems. The construction of the
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minimal linear switched system realizing a given input-output map can be found
in Section 5

2 Preliminaries

The section sets up the notation and some terminology which will be used in
the paper. Denote by R+ the set [0,+∞) ⊆ R. Denote by N the set of natural
numbers {0, 1, 2, . . .} For A = [a, b], a, b ∈ R ∪ {+∞,−∞} and B ⊆ R

p denote
by PC(A,B) the class of piecewise-continuous mappings from A to B. That
is, f ∈ PC(A,B) if and only if on each compact interval f has finitely many
points of discontinuity and at each point of discontinuity f has finite left and
right limits.

For a set A denote by A+ the set of finite strings of elements of A, ex-
cluding the empty string. Denote by A∗ the set of strings over A including
the empty string, i.e. A∗ = A+ ∪ {ε}, where ε denotes the empty string. For
w = a1a2 · · · ak ∈ A+ the length of w is denoted by |w|, i.e. |w| = k > 0. Let
|ε| = 0. Note that in our setting |w| > 0 for all w ∈ A+.

The set of all partial mappings from set A to set B will be denoted by BA.
Let f : [T0, T ] → B. Then the function Shiftσ(f) : [σ+T0, T +σ] → B is defined
by Shiftσ(f)(t) = f(t − σ) for σ + T0 ≤ t ≤ T + σ. Let A,B be sets. Then the
projection πA : A×B → A is defined by πA(a, b) = a for (a, b) ∈ A×B.

Let S ⊆ R
n i.e. S is an arbitrary subset of R

n and f : S → R
k. The

function f is said to be analytic if there exists an open set U ⊆ R
n and a

function g : U → R
k such that S ⊆ U , g is analytic in the usual sense and

g|S = f .
Let Q be a set, T be a subset of R+. For each w = (q1, t1)(q2, t2) · · · (qk, tk) ∈

(Q × T )∗ define the function w̃ ∈ QT in the following way. Let dom(w̃) =

[0,
∑k

1 ti]. Let ∀t ∈ [
∑j

1 ti,
∑j+1

1 ti) : w̃(t) = qj+1, j = 0, . . . , k − 1 and

w̃(
∑k

1 ti) = qk. That is, the function w̃ is a piecewise-constant function, such
that its ”i-th constant piece” has value qi and the ”duration” of the ”i-th con-
stant piece” is ti. The reason for introducing this function is the following.
Consider the relation ∼ on (Q× T )+ defined by

(q1, t1)(q2, t2) · · · (qi−1, ti−1)(q, t)(q, t
′

)(qi, ti) · · · (qk, tk) ∼

(q1, t1)(q2, t2) · · · · · · (qi−1, ti−1)(q, t+ t
′

)(qi, ti) · · · (qk, tk)

and w(q, 0)v ∼ wv. Denote the reflexive transitive closure of ∼ by ∼∗. Then
w ∼∗ u if and only if ũ = w̃ for each u,w ∈ (Q× T )+.

Let A, B be two finite sets. The set {(u, v) ∈ A+ × B+ | |u| = |v|} will be
identified with the set (A×B)+. No distinction will be made between these two
sets. For example, (aa, bb) and (a, b)(a, b) will be considered to be the same.
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3 Linear switched systems: basic definition and

properties

The section is divided into several subsections. Subsection 3.1 contains the
definition of switched systems along with the reformulation of some important
system theoretic concepts for switched systems. This subsection also describes
some basic properties of the input-output behavior induced by switched systems.
Subsection 3.2 deals with the definition and basic properties of minimal switched
systems. Subsection 3.3 introduces linear switched systems and gives a brief
overview of those properties of linear switched systems which are relevant for
the realization theory.

3.1 Switched systems

The notion of switched system considered in the paper is the standard one ([5]).
That is, a switched system has a continuous state space, but its input space
contains both continuous and discrete components. In other words, the sequence
of discrete components is determined externally, the evolution of the system
does not influence which discrete component will be chosen at a certain point
of time. More precisely, the state evolution is described by a finite collection of
differential equations. The collection of differential equations is indexed by the
discrete component of the input space. The right hand-side of each differential
equation also depends on the continuous input component. The differential
equations are assumed to have solution on the whole time-axis. The sequence of
application of the differential equations is determined externally, the evolution
of the system does not influence which differential equation will be chosen at a
certain point of time. Therefore the sequences of discrete components, which
are indices of the differential equations, will be regarded as inputs. The allowed
continuous input functions are assumed to be bounded on any bounded interval.
The allowed discrete input is assumed to be piecewise-constant. Notice that
switched systems can also be viewed as systems with a state-space given by
direct product of a discrete and continuous component. The input space is
continuous in this case. The resulting system is a non-deterministic one. In
this paper we want to avoid this case, exactly because realization theory of non-
deterministic systems is full of complications even in the most simple setting.
For example, even for systems on sets, reachability and observability doesn’t
guarantee minimality nor uniqueness up to isomorphism. The interested reader
is referred to [2, 6, 7] for more information on realization theory of abstract
control systems. Notice that the class of switched system defined in this paper
is a subclass of nonlinear systems.

Definition 3.1 ( Switched systems ). A switched ( control ) system is a
tuple

Σ = (T,X ,U ,Y , Q, {fσ | σ ∈ Q, u ∈ U}, {hσ|σ ∈ Q}, x0)

where
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• T = [0,K] ⊆ R+ is the time index, K > 0

• X = R
n is the state-space

• Y = R
p is the output-space

• U = R
m is the input-space

• Q is the finite set of discrete modes

• for each σ ∈ Q the map fσ : X × U → X is such that for each u(.) ∈

PC(T,U) the differential equation
·
x (t) = fσ(x(t), u(t)) with initial con-

dition x(t0) = x0 has a unique solution on the whole T

• hσ : X → Y is smooth map for each σ ∈ Q

• x0 ∈ X is the initial state

In the sequel we will always assume that T = R+. Using the notation above,
for a given switched system Σ define the mapping xΣ : X × PC(T,U) × (Q ×
T )+ → X T in the following way. For each xinit ∈ X , u(.) ∈ PC(T,U) and
w = (q1, t1), ...., (qk, tk) ∈ (Q × T )+ let dom(xΣ(xinit, u(.), w)) = dom(w̃). By
the assumption of the Definition 3.1 for each q ∈ Q and u(.) ∈ PC(T,U) the
differential equation d

dt
x(τ) = fq(x(τ), u(τ)), x(τ0) = x0 has a unique solution

on T . For t ∈ [0, t1] define xΣ(xinit, u(.), w)(t) by xΣ(xinit, u(.), w)(t) = x(t),
where x : T → X is the unique solution of the differential equation

d

dt
x(t) = fq1

(x(t), u(t)), x(0) = xinit

For i = 1, . . . , k − 1 and for t ∈ (
∑i

1 tj ,
∑i+1

1 tj ] let xΣ(xinit, u(.), w)(t) = x(t)
where x : T → X is the unique solution of the differential equation

d

dt
x(t) = fqi+1

(x(t), u(t)), x(

i∑

1

tj) = xΣ(xinit, u(.), w)(

i∑

1

tj)

The definition of xΣ(xinit, u(.), w) can be given a concise form by requiring
xΣ(xinit, u(.), w) to be continuous and satisfy the following equations

∀t ∈
(∑i

1 tj ,
∑i+1

1 tj

)
:

d

dt
xΣ(xinit, u(.), w)(t) = fqi

(xΣ(xinit, u(.), w)(t), u(t)) (1)

and xΣ(xinit, u(.), w)(0) = xinit. Formula (1) implies that xΣ(xinit, u(.), w) in

fact depends on the piecewise-constant function w̃ : [0,
∑k

1 ti] → Q, i.e. w̃1 =
w̃2 =⇒ xΣ(xinit, u(.), w1) = xΣ(xinit, u(.), w2) holds. Define the mapping yΣ :
X ×PC(T,U)×(Q×T )+ → YT in the following way. For each xinit ∈ X , u(.) ∈

5



PC(T,U) and w = (q1, t1), ..., (qk, tk) ∈ (Q × T )+ let dom(y(xinit, w, u(.)) =
dom(w̃) and

∀t ∈
[∑i

1 tj ,
∑i+1

1 tj

)
: yΣ(xinit, u(.), w)(t) = hqi

(xΣ(xinit, u(.), w)(t)) (2)

Define yΣ(xinit, u(.), w)(
∑k

1 ti) being equal to hqk
(xΣ(xinit, u(.), w)(

∑k
1 ti)).

From the definition of the map yΣ it follows that w̃1 = w̃2 =⇒ yΣ(xinit, u(.), w1)
= yΣ(xinit, u(.), w2). That is, xΣ(xinit, u(.), w) and yΣ(xinit, u(.), w) depend on
w̃ rather than on w.

Recall the notion of initialized system from [7]. In the sequel, we will identify
switched systems with initialized systems. More precisely, with a given switched
system Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}, x0) we associate
the initialized system Σinit = (T,X ,Y ,U×Q,φ, h, x0) where φ and h are defined
in the following way. The domain Dφ of the state-transition map is defined as
the set of tuples (τ, σ, x, ω) ∈ T × T × X × (U × Q)[σ,τ) such that πQ ◦ ω
is piecewise constant. The mapping φ : Dφ → X is defined as φ(τ, σ, xi, ω) =
xΣ(xi, Shift−σ(πU ◦ω), w)(τ−σ) where w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q×T )+

is any sequence such that w̃ = πQ ◦ ω holds. Since xΣ(x0, u(.), w) depends on
w̃ rather than on w, the mapping φ above is well defined. The readout map
h : U ×Q× T ×X → Y is defined as h(u, q, t, x) = hq(x). It is easy to see that
the initialized system corresponding to a switched system is time-invariant and
complete. In the sequel whenever the term ”initialized system” is used, we will
mean time-invariant complete initialized system.

Note that in the definition of initialized systems in [7] the readout map
depends on the time and state only. However it is easy to see that the whole
theory also holds if one allows readout maps which depend on the input. For
more on this see Chapter 2, Section 2.12 of [7].

The identification of switched systems with the initialized systems allows us
to use the terminology and results of [7]. In particular, notions such as input-
output behavior, system morphism, response (input-output) map of a system
from a state, the reachable set, reachability, observability ( indistinguishability),
canonical systems, system equivalence, minimal system, minimal representation,
of an input-output map are well defined for initialized systems. Since switched
systems form a subclass of initialized systems, these definitions can be directly
applied to switched systems. However, for the sake of completeness these rele-
vant notions will be repeated specifically for switched systems.

Let Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}, x0) be a switched
system. The map

yΣ : PC(T,U) × (Q× T )+ → YT

defined by yΣ(u(.), w) = yΣ(x0, u(.), w) (u(.) ∈ PC(T,U), w ∈ (Q × T )+)
is called the input-output map (or the input-output behavior) induced by Σ.
The switched system Σ is said to be a realization of an input-output map ψ :
PC(T,U) × (Q× T )+ → YT if yΣ = ψ, i.e. the input-output behavior induced
by Σ is identical to ψ. A system morphism φ : Σ1 → Σ2 between switched
systems
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Σ1 = (T,X1,U ,Y , Q, {f
1
q | q ∈ Q, u ∈ U}, {h1

q | q ∈ Q}, x1
0)

and
Σ2 = (T,X2,U ,Y , Q, {f

2
q | q ∈ Q, u ∈ U}, {h2

q | q ∈ Q}, x2
0)

is a mapping φ : X1 → X2 such that

• φ(x1
0) = x2

0

• for each x ∈ X1, u(.) ∈ PC(T,U), w ∈ (Q× T )+ and t ∈ dom(w̃) it holds
that φ(xΣ1

(x, u(.), w)(t)) = xΣ2
(φ(x), u(.), w)(t)

• for each q ∈ Q and x ∈ X1 it holds that h1
q(x) = h2

q(φ(x))

An immediate consequence of the characterization above is that whenever φ :
Σ1 → Σ2 is a system morphism then it holds that yΣ1

(x, u(.), w) =
= yΣ2

(φ(x), u(.), w) for each x ∈ X1, u(.) ∈ PC(T,U) and w ∈ (Q× T )+. Thus
the switched systems Σ1 and Σ2 above induce the same input-output behavior.
Two switched systems

Σ1 = (T,X1,U ,Y , Q, {f
1
q | q ∈ Q, u ∈ U}, {h1

q | q ∈ Q}, x1
0)

and
Σ2 = (T,X2,U ,Y , Q, {f

2
q | q ∈ Q, u ∈ U}, {h2

q | q ∈ Q}, x2
0)

are called (input-output) equivalent if they induce the same input-output be-
havior, i.e. yΣ1

= yΣ2
holds.

Consequently, if two switched systems are related by a system morphism,
then they are input-output equivalent. A system morphism is called isomor-
phism whenever it is bijective as a mapping between the state spaces. Two
systems are called an isomorphic if there exists an isomorphism between them.

A switched system Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}, x0)
is reachable if

Reach(Σ) = {xΣ(x0, u(.), w)(t) | u(.) ∈ PC(T,U),

w ∈ (Q× T )+, t ∈ dom(w̃)} = X

A switched system Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}, x0)
is called observable if for each x1, x2 ∈ X the equality ∀w ∈ (Q × T )+, u(.) ∈
PC(T,U) : yΣ(x1, u(.), w) = yΣ(x2, u(.), w) implies x1 = x2. A reachable and
observable switched system is called canonical.

Consider a switched system Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq |
q ∈ Q}, x0). The input-output behavior induced by Σ is a map y : PC(T,U) ×
(Q× T )+ → YT . For each map y : PC(T,U)× (Q× T )+ → YT we shall define
a map ỹ : (U × Q × T )+ → Y such that Σ is a realization of y if and only
if Σ is a realization of ỹ in the sense defined below. Denote by PCconst(T,U)
the set of piecewise-constant input functions. It is well-known that for each
u(.) ∈ PC(T,U) there exists a sequence un(.) ∈ PCconst(T,U), n ∈ N such
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that limn→+∞ un(.) = u(.). Given a switched system Σ, by the continuity of
the solutions of differential equations we get that limn→+∞ xΣ(x, un(.), w)(t) =
xΣ(x, u(.), w)(t) and limn→+∞ yΣ(x, un(.), w)(t) = yΣ(x, u(.), w)(t). It is also
easy to see that for any u(.) ∈ PCconst(T,U) and for any w ∈ (Q × T )+ there
exists a sequence z = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q× T )+ such that w̃ = z̃ and
u|[

∑
i
1 ti,

∑i+1
1 ti)

is constant for i = 0, . . . , k − 1. This, of course, implies that

xΣ(x, u(.), w) = xΣ(x, u(.), z) and yΣ(x, u(.), w) = yΣ(x, u(.), z). This simple
fact lies in the heart of the proof of Proposition 3.1.

Let φ : PC(T,U) × (Q× T )+ → YT . Define φ̃ : (U ×Q× T )+ → Y as

φ̃((u1, q1, t1)(u2, q2, t2) · · · (uk, qk, tk)) = φ(ṽ, (q1, t1)(q2, t2) · · · (qk, tk),
k∑

1

ti)

where v = (u1, t1)(u2, t2) · · · (uk, tk) ∈ (U×T )+. Define the realization of a map
ψ : (U ×Q× T )+ → Y in the following way

Definition 3.2. Consider a function ψ : (U × Q × T )+ → Y and a switched
system

Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}, x0)

The switched system Σ is a realization of ψ if ỹΣ = ψ.

The following proposition, proof of which is straightforward, gives the justi-
fication of the concept introduced in Definition 3.2

Proposition 3.1. Consider a function y : PC(T,U) × (Q× T )+ → YT . If the
input-output map y has a realization by a switched system then the following
conditions hold

1. For each w, z ∈ (Q × T )+, u ∈ PC(T,U) it holds that dom(y(u(.), w)) =
dom(w̃) and z̃ = w̃ =⇒ y(u(.), w) = y(u(.), z).

2. For each w ∈ (Q× T )+ and un, u(.) ∈ PC(T,U):

lim
n→∞

un(.) = u(.) =⇒ lim
n→∞

y(un(.), w)(t) = y(u(.), w)(t), (∀t ∈ dom(w̃)).

If y is an arbitrary map which satisfies conditions 1 and 2, then a switched
system Σ is a realization of y if and only if it is a realization of ỹ in the sense
of Definition 3.2

3.2 Definition of minimal switched systems

For linear systems the definition of minimality is clear, but for more general
systems there is no standard definition of minimality. The definition of min-
imality used in this paper is analogous to that of abstract system theory, see
[6, 2]. We first define minimality for initialized systems. In the sequel we will
use the terminology of [7]. Let Θ be any subclass of initialized systems. An
initialized system Σ ∈ Θ is called Θ–minimal, if for each reachable initialized

8



system Σ
′

∈ Θ such that Σ
′

and Σ induce the same input-output behavior,
there exists a unique surjective system morphism φ : Σ

′

→ Σ. It is an easy
consequence of the definition that all Θ–minimal systems realizing the same
input-output behavior are isomorphic. Denote by Ω the whole class of initial
systems. It follows from Section 6.8, Theorem 30 of [7] that each canonical
initialized system is Ω–minimal. It also follows from Section 6.8 of [7] that for
each input-output map realizable by initialized systems there exists a canonical
realization of that input-output map. Thus we get that for each input-output
map realizable by initialized systems there exist a Ω–minimal initialized sys-
tem realizing it. Since all minimal systems are isomorphic and reachability and
observability are preserved by isomorphisms, we get that an initial system is
Ω–minimal if and only if it is canonical, i.e. reachable and observable. Notice
that existence of a minimal system realizing an input-output map is a property
of the input-output map. Moreover, if an input-output map has a realization
by an initialized system belonging to a certain class Θ ( for example it has a
realization by a switched system), then the input-output map need not have a
Θ–minimal realization. It is easy to see that if Θ

′

⊆ Θ then each Θ–minimal
system belonging to Θ

′

is Θ
′

–minimal. In particular, each canonical system
Σ ∈ Θ is Θ–minimal.

Let Ωsw be the class of switched systems, let Ω
′

⊆ Ωsw be a subclass of
switched systems. The subclass Ω

′

can be considered as a subclass of initialized
systems. A switched system Σ ∈ Ω

′

is called minimal if Σ is Ω
′

–minimal when
considered as an initialized system. As a consequence any canonical switched
system Σ ∈ Ω

′

is Ω
′

–minimal. Later we will show that for linear switched
systems (to be defined later) each minimal linear switched system has a state
space of the smallest dimension among all linear switched systems realizing the
same behavior.

3.3 Linear switched systems

In this paper we will be concerned with linear switched systems. Consider a
switched system Σ = (T,X,U ,Y , Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}, x0). The
switched system Σ is called linear switched system if

• x0 = 0

• For each q ∈ Q there exist linear mappings

Aq : X → X Bq : U → X Cq : X → Y

such that

fq(x, u) = Aqx+Bqu and hq(x) = Cqx.

To make the notation simpler, linear switched system will be denoted by Σ =
(X ,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q}) Notice that for linear switched systems the
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initial state is taken to be 0, so there is no need to indicate the initial state in
the shorthand notation. Consider two linear switched systems

Σ1 = (X1,U ,Y , Q, {(Aq,1, Bq,1, Cq,1) | q ∈ Q})

and
Σ2 = (X2,U ,Y , Q, {(Aq,2, Bq,2, Cq,2) | q ∈ Q})

Systems Σ1 and Σ2 are said to be algebraically similar if there exists a bijective
linear map S : X1 → X2 such that for all q ∈ Q it holds that Aq,2 = SAq,1S

−1,
Bq,2 = SBq,1 and Cq,2 = Cq,1S

−1.
Notice that the mapping S doesn’t depend on q ∈ Q. In fact, it is easy

to see that S defines a system isomorphism. In our model system morphisms
do not depend on q ∈ Q. This choice is implied by our perception of discrete
modes as inputs. Since in our model the discrete modes are regarded as inputs,
dependence of system morphisms on discrete modes would be equivalent to the
dependence of system morphisms on input. If the mapping S was allowed to
depend on q, the mapping S would not only cease to be an isomorphism of
system, but it would also be possible to have algebraically similar systems with
different input-output behavior. Indeed, consider the following example.

Example Consider the following two linear switched systems Σ1 and Σ2,
with two discrete modes q1 and q2 each. The continuous state space is R

2, the
continuous input space is R, the output space is R. The system
Σ1 = (R2,R,R, {q1, q2}, {(A1

q, B
1
q , C

1
q ) | q ∈ {q1, q2}}) is of the form.

A1
q1

=

[
0 1
0 0

]
, B1

q1
=

[
0
1

]
, C1

q1
=

[
1 1

]

A1
q2

=

[
0 1
0 0

]
, B1

q2
=

[
0
1

]
, C1

q2
=

[
1 1

]

The switched system Σ2 = (R2,R,R, {q1, q2}, {(A2
q, B

2
q , C

2
q ) | q ∈ {q1, q2}}) is of

the form

A2
q1

=

[
0 0
1 0

]
, B2

q1
=

[
1
0

]
, C2

q1
=

[
1 1

]

A2
q2

=

[
0 1
0 0

]
, B2

q2
=

[
0
1

]
, C2

q2
=

[
1 1

]

Now, consider the following mappings

fq1
=

[
0 1
1 0

]
, fq2

=

[
1 0
0 1

]

Now, A2
q = fqA

1
qf

−1
q , B2

q = fqB
1
q and C2

q = C1
q f

−1
q for q = q1, q2. So, if in the

definition of algebraic similarity we allowed the linear transformations depend
on q, then Σ1 and Σ2 would be algebraically similar. But Σ1 and Σ2 are not

10



input-output equivalent. To see this, compute yΣ1
(u(.), (q1, t1)(q2, t2))(t1 + t2)

and yΣ2
(u(.), (q1, t1)(q2, t2))(t1 + t2) for

u(t) =

{
v ∈ R t ∈ [0, t1)
0 t ∈ [t1, t2]

Then one can see that

yΣ1
(u(.), (q1, t1)(q2, t2))(t1 + t2) = 0.5t21v + t2t1v + t1v

and
yΣ2

(u(.), (q1, t1)(q2, t2))(t1 + t2) = t1v + 0.5t21t2v + 0.5t21v

So, we get that

yΣ1
(u(.), (q1, t1)(q2, t2))(t1 + t2) 6= yΣ2

(u(.), (q2, t2)(q1, t1))(t1 + t2)

which contradicts to the assumption that Σ1 and Σ2 are input-output equivalent.

The example above also demonstrates that for linear switched systems the
Markov parameters of the continuous components don’t determine the input-
output behavior of the whole switched system. In the above example the Markov
parameters of the continuous components of both systems are 1, 1, 0, 0, . . .. That
is, the Markov parameters are the same, but the input-output behaviors of the
two systems are different. In Section 5 a generalization of Markov-parameters
will be presented, so that the input-output behavior of linear switched system
is uniquely determined by those parameters.

The following result on reachability and observability of linear switched sys-
tems is an easy reformulation of the results in [8] 1 .

Proposition 3.2. Consider a linear switched system

Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q})

(1) For each w = (q1, t1)(q2, t2) · · · (qk, tk), u ∈ PC(T,U) the following holds

xΣ(x0, u, w) = exp(Aqk
tk) exp(Aqk−1

tk−1) · · · exp(Aq1
t1)x0+

+

∫ tk

0

exp(Aqk
(tk − s))Bqk

u(s+

k−1∑

1

ti)ds+

+ exp(Aqk
tk)

∫ tk−1

0

exp(Aqk−1
(tk−1 − s))Bqk−1

u(s+

k−2∑

1

ti)ds

· · ·

+ exp(Aqk
tk) exp(Aqk−1

tk−1) · · ·

· · · exp(Aq2
t2)

∫ t1

0

exp(Aq1
(t1 − s))Bq1

u(s)ds

1The results on reachability and observability from [8] can be proven in a rather different
way than the one used in [8] As an alternative the author used geometric theory of nonlinear
systems. These results however won’t be discussed here.
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yΣ(x0, u, w) = Cqk
exp(Aqk

tk) exp(Aqk−1
tk−1) · · · exp(Aq1

t1)x0+

+

∫ tk

0

Cqk
exp(Aqk

(tk − s))Bqk
u(s+

k−1∑

1

ti)ds+

+Cqk
exp(Aqk

tk)

∫ tk−1

0

exp(Aqk−1
(tk−1 − s))Bqk−1

u(s+

k−2∑

1

ti)ds

· · ·

+Cqk
exp(Aqk

tk) exp(Aqk−1
tk−1) · · ·

· · · exp(Aq2
t2)

∫ t1

0

exp(Aq1
(t1 − s))Bq1

u(s)ds

(2) The structure of the reachable set is the following

Reach(Σ) = Span{Aj1
q1
Aj2

q2
· · ·Ajk

qk
Bzu |

q1, q2, . . . , qk, z ∈ Q, j1, j2, . . . , jk ≥ 0, u ∈ U}

Moreover, there exists w = (q1, t1)(q2, t2), . . . , (qk, tk) such that

Reach(Σ) = {xΣ(0, w, u(.), tk) | u(.) ∈ PCconst(T,U)}

(3) For each x1, x2 ∈ X the states x1 and x2 are indistinguishable if and only
if

x1 − x2 ∈
⋂

q1,q2,...,qk,z∈Q,j1,j2,...jk≥0

kerCzA
j1
q1
Aj2

q2
· · ·Ajk

qk

Remark Notice that if a linear switched system is reachable, the linear
systems making up the switched systems need not be reachable . Moreover,
the reachable set of the switched system may be bigger than the union of the
reachable sets of the linear components. Indeed, consider the following switched
system Σ = (R3,R,R, {q1, q2}, {(Aq, Bq, Cq) | q = q1, q2})

Aq1
=




0 1 0
0 0 0
0 0 0


 , Bq1

=




0
1
0


 , Cq1

=
[
1 1 1

]

Aq2
=




0 0 0
0 0 0
0 1 0


 , Bq2

=




0
0
0


 , Cq2

=
[
1 1 1

]

Since Aq1
Bq1

= [1, 0, 0]T , Aq2
Bq1

= [0, 0, 1]T , we get that

R
3 = Span{Bq1

, Aq1
Bq1

, Aq2
Bq1

} ⊆ Reach(Σ)

So Reach(Σ) = R
3, i.e. the system is reachable. Yet, neither (Aq1

, Bq1
) nor

(Aq2
, Bq2

) are reachable, moreover Reach(Aq1
, Bq1

) = R
2, Reach(Aq2

, Bq2
) = 0,

so Reach(Aq1
, Bq1

) ⊕Reach(Aq2
, Bq2

) 6= Reach(Σ).
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4 Minimization of linear switched systems

This section gives a procedure to construct a minimal linear switched system
equivalent to a given linear switched system. Also a Kalman-like decomposition
for linear switched systems will be presented. It will also be shown that two
equivalent minimal linear switched systems are algebraically similar, and that
a minimal linear switched system has a state space of smaller dimension than
any other linear switched system realizing the same input-output map.

For a given linear switched system we will construct an equivalent canonical
system. The steps of the construction are similar to the construction of the
canonical initialized system equivalent to a given one. In its full generality the
procedure is described in Section 6.8 of [7]. The challenge is to show that at
each step of the general procedure we get a linear switched system. This will
be done below.

Theorem 4.1. Let Σ̃ be an arbitrary linear switched system. Then there exists
a canonical linear switched system Σ̃can equivalent to Σ̃.

Proof. First, given a linear switched system Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq)|q ∈
Q}), we take the restriction of Σ to its reachable set by defining the system

Σr = (Reach(Σ),U ,Y , Q, {(Ar
q, B

r
q , C

r
q ) | q ∈ Q})

where for each q ∈ Q the map Ar
q = Aq|Reach(Σ) : Reach(Σ) → Reach(Σ) is the

restriction of Aq to Reach(Σ), Br
q = Bq : U → Reach(Σ) and Cr

q = Cq|Reach(Σ) :
Reach(Σ) → Y is the restriction of Cq to Reach(Σ). It is easy to see that Σr is
a well-defined linear switched system, it is reachable and it is equivalent to Σ.
Indeed, by Proposition 3.2 for each q ∈ Q it holds that Im(Bq) ⊆ Reach(Σ). So
Br

q is well defined for each q ∈ Q. Again from Proposition 3.2 it follows that to

see that Ar
q is well defined it is enough to show that Ar

q(Aj1
q1
Aj2

q2
· · ·Ajk

qk
Bzu) ∈

Reach(Σ) for all q1, q2, . . . qk, z ∈ Q, u ∈ U , j1, j2, . . . , jk ≥ 0. But Ar
qx = Aqx

for all x ∈ Reach(Σ), so we get

Ar
q(Aj1

q1
Aj2

q2
· · ·Ajk

qk
Bzu) = AqA

j1
q1
Aj2

q2
· · ·Ajk

qk
Bzu ∈ Reach(Σ)

So, for each q ∈ Q the map Ar
q is well defined. The map Cr

q is trivially well
defined. Notice that the construction of Σr goes along the same lines as the
construction of the reachable initialized system equivalent to a given one, as it
is described in [7].

The next step is to construct an observable linear switched system from
a reachable linear switched system in such a way that the new reachable and
observable system is equivalent to the original one.

Let Σ = (X ,U ,Y , , Q, {(Aq, Bq, Cq) | q ∈ Q}) be a linear switched system.
Define OΣ =

⋂
q1,q2,...,qk,z∈Q,j1,j2,...,jk≥0 kerCzA

j1
q1
Aj2

q2
· · ·Ajk

qk
. Let W = O⊥

Σ be
the orthogonal complement of OΣ. Assume that Σ is reachable. Consider the
system Σo = (W,U ,Y , Q, {(Ao

q, B
o
q , C

o
q ) | q ∈ Q}) where Ao

q = Ãq|W : W → W ,

and Ãq is defined by z = Ãqx⇐⇒ Aqx = z + z
′

, z ∈W, z
′

∈ OΣ.
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Co
q = Cq|W : W → Y , and Bo

q : U → W is given by the rule Bo
qu = z ⇔ Bqu =

z + z
′

such that z ∈ W, z
′

∈ OΣ. Then the system Σo is well-defined, it is
reachable and observable (i.e. canonical) and equivalent to Σ. The construction
of Σo is a slight modification of the construction of the canonical initialized
system presented in Section 6.8 of [7]. Note that W is isomorphic to X/OΣ. In
fact, a linear switched system can be defined on X/OΣ in such a way, that it will
be isomorphic to Σo. This linear switched system defined on X/OΣ corresponds
to the canonical initialized system described in Section 6.8 of [7].

Using the notation above define Σ̃can to be (Σ̃r)o. Then Σ̃can is indeed

canonical and equivalent to Σ̃.

Denote by Ωlin the class of linear switched systems considered as a subclass
of initialized systems. From Subsection 3.2 it follows that any canonical linear
switched system is Ωlin-minimal. We will show that any linear switched system
Σ which is Ωlin–minimal has state-space of the smallest dimension among all
linear switched systems equivalent to it.

Lemma 4.1. Consider two linear switched systems

Σ1 = (X1,U ,Y , Q, {(A1
q, B

1
q , C

1
q ) | q ∈ Q})

Σ2 = (X2,U ,Y , Q, {(A2
q, B

2
q , C

2
q ) | q ∈ Q})

Assume that Σ1 is reachable. Then for any system morphism φ : Σ1 → Σ2 the
corresponding map φ : X1 → X2 is linear.

Proof. The fact that φ is a system morphism means that the following holds.
∀u ∈ PC(T,U), ∀w ∈ (Q × T )∗, ∀t ∈ dom(w̃), ∀x ∈ X1 : φ(xΣ1

(x, u(.), w)(t)) =
xΣ2

(φ(x), u(.), w)(t), φ(0) = 0 and C1
qx = C2

qφ(x). Now, we shall prove that φ
is a linear map. Notice that by [8] there exists a w = (q1, t1)(q2, t2) · · · (qk, tk) ∈
(Q× T )+ such that Rw = {xΣ1

(0, u(.), w)(tk) | u(.) ∈ PC(T,U)} = Reach(Σ1)
= X1. Then for each x1, x2 ∈ X1 we have that

φ(αx1 + βx2) = φ(xΣ1
(0, αu1(.) + βu2(.), w)(tk)) = xΣ2

(0, αu1(.)+

βu2(.), w)(tk) = αxΣ2
(0, u1(.), w)(tk) + βxΣ2

(0, u2(.), w)(tk)

So, φ is indeed a linear map.

An important consequence of this lemma is the following theorem

Theorem 4.2. Let Σmin = (Xmin,U ,Y , Q, {(Amin
q , Bmin

q , Cmin
q ) | q ∈ Q}) be a

linear switched system. Then Σmin is a minimal linear switched system if and
only if for any linear switched system Σ = (X,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q})
such that Σ is equivalent to Σmin the following holds

dimXmin ≤ dimX (3)
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Proof. "only if" part

Consider the linear switched system Σr, i.e. the restriction of Σ to Reach(Σ).
Clearly dimReach(Σ) ≤ dimX . The system Σr is reachable and equivalent
to Σ, hence it is equivalent to Σmin. By definition of Ωlin–minimality there
exists a surjective system morphism φ : Σr → Σmin. By Lemma 4.1 the map
φ : Reach(Σ) → Xmin is linear, and by the surjectivity of the system morphism
it is surjective. That is,

dimXmin = dim Im(φ) ≤ dimReach(Σ) ≤ dimX

"if" part

Assume Σmin has the property (3). Then Σmin must be reachable. Assume the
opposite. The restriction of Σmin to its reachable set would give a system equiva-
lent to Σmin with state space Reach(Σmin). But dimReach(Σmin) < dimXmin,
which contradicts to (3). Let Σcan = (Xcan,U ,Y , Q, {(Acan

q , Bcan
q , Ccan

q ) | q ∈
Q}) be a canonical linear switched system equivalent to Σmin. Such a sys-
tem always exists by Theorem 4.1. The system Σcan is minimal, so there ex-
ists a surjective system morphism φ : Σmin → Σcan. Then φ is a surjective
linear map, so we get that dimXcan ≤ dimXmin. But by (3) we have that
dimXcan ≥ dimXmin. It implies that dimXcan = dimXmin, that is, φ is an
isomorphism. Since Σcan is minimal and Σmin is isomorphic to it, we get that
Σmin is minimal too.

For reachable linear switched systems, isomorphism of systems is equivalent
to algebraic similarity.

Theorem 4.3. Two reachable linear switched systems

Σ1 = (X1,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q})

Σ2 = (X2,U ,Y , Q, {(A
′

q, B
′

q, C
′

q) | q ∈ Q})

are isomorphic if and only if they are algebraically similar

Proof. It is clear that if Σ1 and Σ2 are algebraically similar then Σ1 and Σ2

are isomorphic. Assume that φ : Σ1 → Σ2 is an isomorphism of systems. From
Lemma 4.1 it follows that φ : X1 → X2 is a linear map. Since φ is isomorphism,
we have that the linear map φ : X1 → X2 is bijective. We get that φ−1 is a
linear bijective map too.

What we need to show is that for each q ∈ Q the following holds.

A
′

q = φAqφ
−1, B

′

q = φBq , C
′

q = Cqφ
−1

It follows immediately from the fact that φ is a bijective system morphism that
C

′

qφ = Cq, which implies C
′

q = Cqφ
−1.

We show that A
′

q = φAqφ
−1 for all q ∈ Q. For each q ∈ Q,

xΣ1
(x, 0, (q, t))(t) = exp(Aqt)x and xΣ2

(φ(x), 0, (q, t))(t) = exp(A
′

qt)φ(x). So

we get that φ(exp(Aqt)x) = exp(A
′

qt)φ(x) for all t > 0. Taking the derivative of
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t at 0 we get that for all x ∈ X1 it holds that φ(Aqx) = A
′

qφ(x), which implies

A
′

q = φAqφ
−1 for all q ∈ Q.

It is left to show that B
′

q = φBq. Denote the constant function taking

the value u ∈ U by constu. Then φ(xΣ1
(0, constu, (q, t)))(t) = φ(

∫ t

0
exp(Aq(t−

s))Bqu ds) = xΣ2
(0, constu, (q, t))(t) =

∫ t

0
exp(A

′

q(t−s))B
′

qu ds for all t > 0, u ∈

U . Again, after taking derivatives by t at t = 0 we get φBqu = B
′

qu. That is,

we get B
′

q = φBq. So, Σ1 and Σ2 are indeed algebraically similar.

Since all equivalent minimal linear switched systems are isomorphic, one gets
the following result.

Corollary 4.1. All minimal equivalent linear switched systems are algebraically
similar.

The following theorem sums up the results of the discussion above.

Theorem 4.4 (Existence and uniqueness of minimal realization ). For
linear switched systems the following statements hold.

1. Given a linear switched system Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q})
there exists a system Σmin = (Z,U ,Y , {(Amin

q , Bmin
q , Cmin

q ) | q ∈ Q})

such that Σmin is minimal and equivalent to Σ. Such a minimal system
is unique up to algebraic similarity.

2. A linear switched system is minimal if and only if it is canonical.

3. A linear switched system Σmin is minimal if and only if for each equivalent
linear switched system Σ the dimension of the state-space of Σ is not
smaller than the dimension of the state-space of Σmin

Proof. The statement of part 1 follows from Theorem 4.1, the fact that each
canonical linear switched system is minimal ( see Subsection 3.2) and Corollary
4.1.

Let Σ be a minimal linear switched system. By Theorem 4.1 there exists
a canonical system Σcan equivalent to Σ. But by Section 3.2 Σcan is minimal,
therefore Σcan and Σ are isomorphic. Since any isomorphism preserves reach-
ability and observability we get that Σmin is reachable and observable, hence
canonical. So the statement of part 2 is proven.

The statement of part 3 follows directly from Theorem 4.2.

The construction of the minimal representation described above yields the
following Kalman-decomposition of a linear switched system.

Theorem 4.5. Given a linear switched system Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq) |
q ∈ Q}) there exists a basis transformation on X compatible with decomposition
X = Wor ⊕ Wrno ⊕Wonr ⊕Wnonr where Wor ⊕Wrno = Reach(Σ), Wonr ⊕
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Wnonr = OΣ such that in the new basis the matrix representation of maps
Aq, Bq, Cq has the following form

Aq =




A1
q 0 A2

q 0
A3

q A4
q A5

q A6
q

0 0 A7
q 0

0 0 A8
q A9

q


 , Bq =




B1
q

B2
q

0
0


 , Cq =

[
C1

q 0 C2
q 0

]

where

• Σor = (Wor,U ,Y , Q, {(A1
q, B

1
q , C

1
q ) | q ∈ Q}) is minimal and equivalent to

Σ.

• Σrno = (Reach(Σ),U ,Y , Q, {(

[
A1

q 0
A3

q A4
q

]
,

[
B1

q

B2
q

]
,
[
C1

q 0
]
) | q ∈ Q}) is a

reachable system equivalent to Σ.

• Σrno = (O⊥
Σ ,U ,Y , Q, {(

[
A1

q A2
q

0 A7
q

]
,

[
B1

q

0

]
,
[
C1

q C2
q

]
) | q ∈ Q}) is an ob-

servable system equivalent to Σ.

5 Constructing a minimal representation for

input-output maps

Below necessary and sufficient conditions for the existence of realization by a
linear switched system will be presented. Also a procedure will be described to
construct a minimal representation for a realizable input-output map. The well-
known condition for existence of realization by a linear system is a special case
of the condition given here. The construction of a minimal linear representation
of an input-output map is also a particular case of the procedure presented
below. By Proposition 3.1 it is enough to determine conditions for realizability
of input-output maps of the form y : (U ×Q× T )+ → Y .

Below conditions on y : (U × Q × T )+ → Y will be given, which will be
proven necessary and sufficient for realizability of y in the sense of Definition
3.2. Before proceeding further some notation has to be introduced. Let u1 =
u11u12 · · ·u1k, u2 = u21u22 · · ·u2k ∈ U+, then αu1+βu2 = (αu11+βu21)(αu12+
βu22) · · · (αu1k + βu2k) ∈ U+ for α, β ∈ R. Let u = u1u2 · · ·uk ∈ U+, w =
w1w2 · · ·wk ∈ Q+, τ = τ1τ2 · · · tk ∈ T+, then y(u,w, τ) is defined as

y(u,w, τ) = y((u1, w1, τ1)(u2, w2, τ2) · · · (uk, wk, τk))

Let φ : R
k+r → R

p. Whenever we want to refer to the arguments of φ
explicitly we will use the notation φ(t1, t2, . . . , tk, s1, s2, . . . , sr), or in vector
notation φ(t, s), where t = (t1, t2, . . . , tk) and s = (s1, s2, . . . , sr) are formal k
and r-tuples respectively. If a ∈ R

k then we use the notation φ(t, s)|t=a for the
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function R
r 3 b 7→ φ(a, b). For any α = (αk, αk−1, · · · , α1) ∈ N

k denote by dα

dtαφ
the partial derivative

dα

dtα
φ =

d

dtαk

k dt
αk−1

k−1 · · · dtα1
1

φ(tk, tk−1, . . . , t1, sr, sr−1, . . . , s1) : R
k+r → R

p

If we want to refer to the components of α ∈ N
k explicitly, we will use the

notation d
(αk,αk−1,··· ,α1)

dt
(αk,αk−1,··· ,α1)φ = dα

dtαφ. If t = (t1, t2, . . . , tk) then denote by tl the

tuple (tl, tl+1, . . . , tk) and by lt the tuple (t1, t2, . . . , tl) for l < k.
For any u ∈ U+, w ∈ Q+ the function y(u,w, τ) : T+ → Y will be identified

with the function T |w| 3 (t1, t2, . . . , tk) 7→ y(u,w, t1t2 · · · tk)
Consider the matrices Aq1

, Aq2
, · · ·Aqk

∈ R
n×n and define the function

expq1q2···qk
: T k → R

n×n by

expqkqk−1···q1
(t1, t2, . . . , tk) = exp(Aqk

tk) exp(Aqk−1
tk−1) · · · exp(Aq1

t1)

Definition 5.1 (Realizability conditions). Consider a map y : (U × Q ×
T )+ → Y. The map y is said to satisfy the realizability conditions if the fol-
lowing properties hold

1. Linearity of the input-output function

For all u1, u2 ∈ U+, w ∈ Q+, τ ∈ T+ such that |u1| = |u2| = |w| = |τ |
and for all α, β ∈ R it holds that

y(αu1 + βu2, w, τ) = αy(u1, w, τ) + βy(u2, w, τ)

2. Zero-time behavior

y(u,w, 00 · · · 0︸ ︷︷ ︸
|w|−times

) = 0

3. Analyticity in switching times

For all w ∈ Q+, u ∈ U+ such that |w| = |u| the function y(u,w, .) : T |w| →
Y defined by (t1, t2, . . . , t|w|) 7→ y(u,w, t1t2 · · · tk) is analytic.

4. Repetition of the same input

For all w1, w2 ∈ Q+, u1, u2 ∈ U+, τ1, τ2 ∈ T ∗ such that |wi| = |ui| =
|τi|, (i = 1, 2) and for all q ∈ Q, u ∈ U , t1, t2 ∈ T it holds that

y(u1uuu2, w1qqw2, τ1t1t2τ2) = y(u1uu2, w1qw2, τ1(t1 + t2)τ2)

The condition is equivalent to stating that for each z, l ∈ (U ×Q× T )+

z̃ = l̃ =⇒ y(z) = y(l)

5. Decomposition of concatenation of inputs

For each w1, w2 ∈ Q+, u1, u2 ∈ U+, τ1, τ2 ∈ T+ such that |wi| = |ui| = |τi|,
(i = 1, 2) it holds that

y(u1u2, w1w2, τ1τ2) = y(u2, w2, τ2) + y(u1 00 · · · 0︸ ︷︷ ︸
|u2|−times

, w1w2, τ1τ2)
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6. Elimination of zero duration

For all w1, w2, v ∈ Q+, τ1, τ2 ∈ T+, u1, u2, u ∈ U+ such that

|ui| = |wi| = |τi| and |v| = |u| it holds that

y(u1uu2, w1vw2, τ1 00 · · · 0︸ ︷︷ ︸
|u|−times

τ2) = y(u1u2, w1w2, τ1τ2)

Proposition 5.1. If a map y : (U × Q × T )+ → Y is realizable by a linear
switched system, then it satisfies the realizability conditions.

Analyticity of the input-output maps allows to rephrase the property that a
linear switched system realizes an input-output map in terms of the high-order
derivatives of the input-output map.

Let Aq, Bq, Cq, (q ∈ Q) be linear maps over suitable spaces and let
j1, j2, . . . , jk ≥ 0. If l = inf{z ∈ N|jz > 0} = −∞, i.e. j1 = j2 = · · · = jk = 0,

then by Cqk
Ajk

qk
A

jk−1
qk−1 · · ·A

jl−1
ql

Bql
we mean simply the identically zero map.

Proposition 5.2. Consider the linear switched system

Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq)|q ∈ Q})

Then for each w = q1q2 · · · qk ∈ Q+, u = u1u2 · · ·uk ∈ U , α = (α1, α2, . . . , αk) ∈
N

k the following holds

dα

dtα
ỹΣ(u,w, t)|t=0 = Cqk

Aαk
qk
Aαk−1

qk−1
· · ·Aαl−1

ql
Bql

ul

where l = min{z|αz > 0}.

Proof. Define the function x̃Σ : (U × Q × T )+ → X in the following way. For
w = w1w2 · · ·wk ∈ Q+, τ = t1t2 · · · tk ∈ T+ and u = u1u2 · · ·uk ∈ U+ define
x̃Σ(u,w, τ) by x̃Σ(u,w, τ) = xΣ(0, ṽ, z)(

∑k

1 ti) where v = (u1, t1)(u2, t2)
· · · (uk, tk) and z = (w1, t1)(w2, t2) · · · (wk, tk). It is easy to see that x̃Σ satisfies
the realizability conditions. We shall use this, the fact that ỹΣ satisfies the real-
izability properties and the following basic property of linear switched systems
(see [8])

ỹΣ(u1u2 · · ·ul 0 · · · 000︸ ︷︷ ︸
k−l−times

, q1q2 · · · qk, t1t2 · · · tk) = Cqk
exp(Aqk

tk)×

exp(Aqk−1
tk−1) · · · exp(Aql+1

tl+1)x̃Σ(u1u2 · · ·ul, q1q2 · · · ql, t1t2 · · · tl)

= Cqk
expqkqk−1···ql+1

(tk, tk−1, . . . , , tl+1)x̃Σ(u1u2 · · ·ul, q1q2 · · · ql, t1t2 · · · tl)

From condition 5 of the realizability conditions one gets

ỹΣ(u1u2 · · ·ulul+1 · · ·uk, q1q2 · · · qlql+1 · · · qk, t1t2 · · · tltl+1 · · · tk) =

ỹΣ(ul+1 · · ·uk, ql+1 · · · qk, tl+1 · · · tk) + ỹΣ(u1 · · ·ul00 · · · 0, w, t1t2 · · · tk)
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where w = q1q2 · · · qk. Combining the two expressions above one gets

dα

dtα
ỹΣ(u,w, t)|t=0 =

dα

dtα
ỹΣ(u1u2 · · ·ul00 · · · 0, w, t)|t=0

=
dα

dtα
(Cqk

expqkqk−1···ql+1
(tl+1)x̃Σ(u1u2 · · ·ul, qlq2 · · · q1,

lt))|t=0

=
dα

dtα
Cqk

expqkqk−1···ql+1
(tl+1) ×

(x̃Σ(ul, ql, tl) + x̃Σ(u1u2 · · ·ul−10, q1q2 · · · ql−1ql,
lt))|t=0

=
d(αk,αk−1,··· ,αl)

dt(αk,αk−1,··· ,αl)
Cqk

expqk,qk−1,···ql+1
(tl+1) ×

(x̃Σ(ul, ql, tl) + exp(Aql
tl)x̃Σ(u1u2 · · ·ul−1, q1q2 · · · ql−1,

lt))|t=0

where l = min{z | αz > 0}. In the derivation above the condition 5 of the
realizability conditions was applied to x̃Σ. Since
x̃Σ(u1u2 · · ·ul−1, q1q2 · · · ql−1, 00 · · · 0) = 0 we get that

dα

dtα
ỹΣ(u,w, t)t=0 =

d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
(Cqk

expqk,qk−1,...,ql+1
(tl+1)x̃Σ(ul, ql, tl)|t=0

=
d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
(Cqk

expqk,qk−1,...,ql+1
(tl+1)

∫ tl

0

exp(Aql
(tl − s))Bql

ul ds)|t=0

= (
d(αk,αk−1,...,αl+1)

dt(αk,αk−1,...,αl+1)
Cqk

expqk,qk−1,...,ql+1
(tl+1) ×

(
d

dtαl−1
l

(exp(Aql
tl)Bql

ul) +

∫ tl

0

d

dtαl

l

exp(Aql
(tl − s))Bql

ul ds)|t=0

=
d(αk,αk−1,...,αl+1)

dt(αk,αk−1,...,αl+1)
(Cqk

exp(Aqk
tk) ×

× exp(Aqk−1
tk−1) · · · exp(Aql+1

tl+1)Aαl−1
ql

Bql
ul)|t=0

= Cqk
Aαk

qk
Aαk−1

qk−1
· · ·Aαl−1

ql
Bql

ul.

In the last equation the fact was used that d
dtjZ exp(At)L|t=0 = ZAjL holds

for any A,L, Z matrices of compatible dimensions.

Proposition 5.2 , and the fact that ỹΣ(u,w, , t1t2 · · · tl) is analytic in
(t1, t2, · · · , tl) implies the following corollary.

Corollary 5.1. Let Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q}) be a linear
switched system. Consider a map y : (U × Q × T )+ → Y and assume that for
each w ∈ Q+, u ∈ U+, |u| = |w| the map (t1, t2, . . . , t|w|) 7→ y(u,w, t1t2 · · · t|w|)
is analytic. Then Σ is a realization of y if and only if

∀u = u1u2 · · ·uk ∈ U+, ∀w = q1q2 · · · qk ∈ Q+, ∀α ∈ N
k

dα

dtα
y(u,w, t)|t=0 = Cqk

Aαk
qk
Aαk−1

qk−1
· · ·Aαl−1

ql
Bql

ul (4)
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where l = min{z|αz > 0}

The corollary above says that the matrices of the form
Cqk

Aαk
qk
A

αk−1
qk−1 · · ·Aα1

q1
Bz (q1, q2, . . . , qk, z ∈ Q, α ∈ N

k) determine the input-
output behavior of linear switched systems. In fact, for the case of one discrete
mode these matrices are the Markov-parameters of the system. The matrices
(4) can be viewed as a generalization of the concept of Markov parameters.

Now we shall introduce a few concepts, which are needed to formulate the
generalization of the Hankel-matrix for linear switched systems. Let Y = R

p,
T = R+ and Q be an arbitrary finite set. Define the following set

Z = {φ : Q+ → Y T+

| ∀w ∈ Q+ : dom(φ(w)) = T |w|

and φ(w) : T |w| → Y is analytic }

Then Z is a vector space with respect to point-wise addition and multiplication
by scalar, i.e. ∀φ1, φ2 ∈ Z, ∀w ∈ Q+, t ∈ T |w| :

(αφ1 + βφ2)(w, t) := αφ1(w, t) + βφ2(w, t) , α, β ∈ R

Define the set D as follows

D = {f : (Q× N)+ → Y}

It is easy to see that D is a vector space with respect to point-wise addition and
multiplication by real numbers, i.e.

∀f1, f2 ∈ D, ∀w ∈ (Q× N)+ : (αf1 + βf2)(w) := αf1(w) + βf2(w) , α, β ∈ R

Define the mapping F : Z → D in the following way

F (φ)((q1, α1)(q2, α2) · · · (qk, αk)) =
dα

dtα
φ(q1q2 · · · qk)(t)|t=0 (5)

That is, the function F stores the germs of functions from Z in sequences of the
form (Q× N)+ → Y .

For each f ∈ Z and for each sequence w ∈ Q+ the value of F (f) at
(w,α1α2 · · ·α|w|) equals the partial derivative dα

dtα at (0, 0, . . . , 0) ∈ T |w| of the

analytic function f(w) : T |w| → Y . Thus, the proof of the following theorem is
straightforward.

Proposition 5.3. The mapping F : Z → D defined above is an injective vector
space homomorphism.

Now we are ready to define the generalized Hankel-matrix. Consider a map-
ping y : (U × Q × T )+ → Y and assume that it satisfies the realizability con-
ditions. For each (w, u) = (w1, u1)(w2, u2) · · · (wk, uk) ∈ (Q × U)+ and α ∈ N

k

define the mapping dα

dtα y(w,u) : Q+ → Y T+

in the following way. For all v ∈ Q+

let dom( dα

dtα y(w,u)(v)) = T |v|. For each fixed τ ∈ T |v|

dα

dtα
y(w,u)(v)(τ) =

dα

dtα
y(u 00 · · · 0︸ ︷︷ ︸

|v|−times

, wv, tτ)|t=0
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Then by analyticity of y(u00 · · · 0, wv, .) the mapping dα

dtα y(w,u) belongs to Z.
Consider the following subspace of Z

Xy = Span{
dα

dtα
y(w,u) | (w, u) ∈ (Q× U)+, α ∈ N

|w|} (6)

The Hankel-matrix of y can be defined in the following way

Definition 5.2 (Hankel-matrix ). Consider a mapping y : (U×Q×T )+ → Y
such that y satisfies the realizability condition. Using the notation above define
the map Hy = F |Xy

: Xy → D. The map Hy will be called the Hankel-map (or
Hankel-matrix) of the mapping y.

It is easy to see that Hy is a linear mapping, therefore it makes sense to
speak about its rank, rankHy := dim ImHy ∈ N ∪ {∞}.

Lemma 5.1. Consider the mapping y : (U ×Q× T )+ → Y and assume that y
has a realization by a linear switched system. Then y satisfies the realizability
conditions and rankHy < +∞.

Proof. Assume that the linear switched system
Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq)|q ∈ Q}) is a realization of y. Then by Corollary
5.1

Hy(
dα

dtα
y(w,u))((q1, β1)(q2, β2) · · · (ql, βl)) =

=
dβ

dτβ

dα

dtα
y(u00 · · · 0, wq1q2 · · · ql, tτ)|t=0,τ=0

= Cql
Aβl

ql
Aβl−1

ql−1
· · ·Aβ1

q1
Aαk

wk
· · ·Aαb−1

wb
Bwb

ub

where b = min{z|αz > 0}.
Let r = dimReach(Σ) < +∞. Choose a basis e1, e2, . . . , er of Reach(Σ).

Assume that ei = A
α(i,k(i))
q(i)k(i)

A
α(i,k(i)−1)
q(i)k(i)−1

· · ·A
α(i,1)−1
q(i)1

Bq(i)1u(i). For each i =

1, 2, . . . , r define

fi =
d(α(i,k(i)),α(i,k(i)−1),...α(i,1))

dt(α(i,k(i)),α(i,k(i)−1),...α(i,1))
y(q(i)1q(i)2···q(i)k(i),u(i) 00 · · · 0︸ ︷︷ ︸

k(i)−1−times

)

Then we claim that Hy(fi) generates ImHy. Indeed, take an arbitrary f =
dα

dtα y(w,u) Define f̃ = Aαk
wk
A

αk−1
wk−1 · · ·A

αl−1
wl

Bwl
ul where l = min{z|αz > 0}.

Then there exist scalars γi ∈ R such that f̃ =
∑r

z=1 γiei. But for each x =

(q1, d1)(q2, d2) · · · (qe, de) ∈ (Q×N)+ it holds that Hy(f)(x) = Cqe
Ade

qe
· · ·Ad1

q1
f̃ .

Then Hy(fi)(x) = Cqe
Ade

qe
· · ·Ad1

q1
ei, so we get that

(

r∑

j=1

γjHy(fj))(x) =

r∑

j=1

γjCqe
Ade

qe
· · ·Ad1

q1
ej = Cqe

Ade
qe

· · ·Ad1
q1
f̃ = Hy(f)(x)
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so that we get that

Hy(f) =
r∑

j=1

γjHy(fj)

That is, the set {Hy(fi) | i = 1, 2, . . . , r} is a finite generator of ImHy.

Now we are ready to state the main theorem of the section.

Theorem 5.1. Consider a map y : (U ×Q×T )+ → Y. The map y is realizable
by a linear switched system if and only if it satisfies the realizability conditions
and its Hankel-map is of finite rank, i.e. n = rankHy < +∞. If y is realizable,
and rankHy < +∞ then there exists a minimal linear switched system

Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq) | q ∈ Q})

which realizes it and dimX = n = rankHy. This minimal representation is
unique up to algebraic similarity.

Proof. Lemma 5.1 and Proposition 5.1 imply the necessity of the condition.
The last statement of the theorem follows from Corollary 4.1 In order to prove
sufficiency, a minimal linear switched system will be constructed that realizes
y. The proof will be divided into several steps.

(1) Consider H = ImHy. For each q ∈ Q define the following linear maps
Aq : H → H, Cq : H → Y and Bq : U → H as follows

∀(q1, j1)(q2, j2) · · · (qk, jk) :

(Aqφ)((q1, j1)(q2, j2) · · · (qk, jk)) := φ((q, 1)(q1, j1)(q2, j2) · · · (qk, jk))

Bqu := Hy(
d

dt
y(q,u)), Cqφ := φ((q, 0))

It is clear that Bq and Cq are well defined linear mappings. It is left to show
that Aq is well defined. It is clear that Aq : H → D is linear. We need to show
that Aq(H) ⊆ H. In fact, the following is true: for all f = dα

dtα y(w,u) ∈ Xy it
holds that

Aq(Hy(f)) = Hy(
d(1,α)

dt(1,α)
y(wq,u0)) (7)

Indeed, denote by φ the right-hand side of (7). Then

φ((q1, β1)(q2, β2) · · · (qz, βz)) =

=
dβ

dτβ

d(1,α)

dt(1,α)
y(u0 00 · · · 0︸ ︷︷ ︸

z−times

, wqq1q2 · · · qz , t1t2 · · · tktk+1τ1τ2 · · · τz)|t=0,τ=0

=
d(β,1)

dτ (β,1)

dα

dtα
y(u000 · · · 0, wqq1q2 · · · qz , t1t2 · · · tkτ1τ2τ2 · · · τz+1)|t=0,τ=0

= Hy(f)((q, 1)(q1, β1)(q2, β2) · · · (qz, βz))
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(2) For each q1q2 · · · qk, z ∈ Q+, α ∈ N
k and u ∈ U the following holds

Aαk
qk

· · · Aα1
q1
Bzu = Hy(

d(α,1)

dt(α,1)
y(zq1q2···qk,u 00 · · · 0︸ ︷︷ ︸

k−times

)) (8)

It is easy to see that d(1,α)

dt(1,α) y(wqq,vu0) = d(αm+1,αm−1,...,α1)

dt(αm+1,αm−1,...,α1) y(wq,vu), m = |wq|.

The correctness of (8) follows now from the repeated application of (7). We also
get the following equalities.

Aαk
qk

Aαk−1
qk−1

· · · Aα1−1
q1

Bq1
u1 = Hy(

dα

dtα
y(q1q2···qk,u1 00 · · · 0︸ ︷︷ ︸

k−1−times

)) (9)

CqA
αk
qk
Aαk−1

qk−1
· · · Aα1−1

q1
Bq1

u1 =
dα

dtα
y(q1q2 · · · qkq, u1 00 · · · 0︸ ︷︷ ︸

k−times

, ts)|t=0,s=0 (10)

where α1 > 0.
(3) Using condition 5 of realizability conditions one gets for any k ≥ l ∈ N

dα

dtα
y(q1q2···qk,u1u2···uk)(v)(τ) =

=
dα

dtα
y(q1q2 · · · qkv, u1u2 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tτ)|t=0

=
dα

dtα
(y(ql+1ql+2 · · · qkv, ul+1 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tl+1τ) +

+y(qlql+1 · · · qkv, ul 00 · · · 0︸ ︷︷ ︸
|v|+k−l−times

, tlτ))

+y(q1q2 · · · qkv, u1u2 · · ·ul−10 0 · · · 00︸ ︷︷ ︸
|v|+k−l−times

, tτ))|t=0

=
dα

dtα
y(ql+1ql+2 · · · qkv, ul+1 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tl+1τ)

+
d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
y(qlql+1···qk,ul 00 · · · 0︸ ︷︷ ︸

k−l−times

)(v)(τ)

+
dα

dtα
y(q1q2···qk,u1u2···ul−10 00 · · · 0︸ ︷︷ ︸

k−l−times

)(v)(τ)

Assume that l = min{z|αz > 0}. Now, since the function

y(ql+1ql+2 · · · qkv, ul+1ul+2 · · ·uk 0 · · · 00︸ ︷︷ ︸
|v|−times

, tl+1tl+2 · · · tkτ)

doesn’t depend on tl, we get that

dα

dtα
(y(ql+1ql+2 · · · qkv, ul+1 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tτ)|t=0 = 0
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For the third term of the sum

∀w = w1w2 · · ·wz ∈ Q+, τ = τ1τ2 · · · τz ∈ T z :

dα

dtα
y(q1q2···qk,u1u2···ul−10 00 · · · 0︸ ︷︷ ︸

k−l−times

)(w)(τ)

=
dα

dtα
y(u1u2 · · ·ul−10 00 · · · 0︸ ︷︷ ︸

k−l−times

00 · · · 0︸ ︷︷ ︸
z−times

, q1q2 · · · qkw1w2 · · ·wz, tτ)|t=0

=
d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
y(0 00 · · · 0︸ ︷︷ ︸

k−l−times

00 · · · 0︸ ︷︷ ︸
z−times

, ql · · · qkw1w2 · · ·wz, tτ)|t=0 = 0

In the last two steps the condition 6 of the realizability conditions and the
equality y(00 · · · 0, w, τ) = 0 were applied. So, we get that the following holds:

dα

dtα
y(q1q2···qk,u1u2···uk) =

d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
y(qlql+1···qk,ul 00 · · · 0︸ ︷︷ ︸

k−l−times

)

Taking into account equalities (9) and (10) one immediately gets

Hy(
dα

dtα
y(q1q2···qk,u1u2···uk)) = Aαk

qk
Aαk−1

qk−1
· · · Aαl−1

ql
Bql

ul (11)

and

dα

dtα
y(q1q2 · · · qk, u1u2 · · ·uk, t)|t=0 = Cqk

Aαk
qk

Aαk−1
qk−1

· · · Aαl−1
ql

Bql
ul (12)

(4) Consider vector spaces

W = Span{Aαk
qk

Aαk−1
qk−1

· · · Aα1
q1
Bzu | u ∈ U , q1, q2, . . . qk, z ∈ Q,α ∈ N

k}

and
O =

⋂

q1,q2,...,qk,z∈Q,α∈Nk

ker CzA
αk
qk

Aαk−1
qk−1

· · · Aα1
q1

From (8) and (11) it follows that H = Hy(Xy) = W . We will show that O = {0}.
Let f = dα

dtα y(x,v) ∈ Xy. Then

Cwz
Aβz

wz
Aβz−1

wz−1
· · · Aβ1

w1
Hyf = Cwz

Hy(
dβ

dτβ

dα

dtα
y(xw,v 0 · · · 0︸ ︷︷ ︸

z−times

))

= Hy(f)((w1, β1)(w2, β2) · · · (wz, βz))

For each z ∈ O there exist f1, f2, . . . fr and αi ∈ R, i = 1, 2, . . . r such that fi =
d(α(i,k(i)),α(i,k(i)−1),...,α(i,1))

dt(α(i,k(i)),α(i,k(i)−1),...,α(i,1)) y(wi,ui) and z =
∑r

i=1 γiHy(fi). For each (w, β) =
(w1, β1)(w2, β2) · · · (wk, βk) ∈ (Q× N)+ it holds that
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Cwk
Aβk

wk
A

βk−1
wk−1 · · · A

β1
z1
z = 0. But

Cwk
Aβk

wk
Aβk−1

wk−1
· · · Aβ1

z1

r∑

i=1

γiHyfi =

r∑

i=1

γiCwk
Aβk

wk
Aβk−1

wk−1
· · · Aβ1

z1
Hy(fi)

=

r∑

i=1

γiHy(fi)((w, β)) = z(w, h)

So for each (w, β) ∈ (Q× N)+ we get that z((w, β)) = 0, that is, z = 0.
(5) Since n = dimH there is a T : H → R

n vector space isomorphism. Define
on R

n the following linear switched system Σ = (Rn,U ,Y , Q, {(Aq, Bq, Cq)|q ∈
Q}) where

Aq = TAqT
−1, Bq = TBq, Cq = CqT

−1

Then for each q1, q2, . . . qk ∈ Q, u ∈ U , α ∈ N
k we get that

Cqk
Aαk

qk
· · ·Aα1−1

q1
Bq1

u = Cqk
Aαk

qk
· · · Aα1−1

q1
Bq1

u

This and (12) together with Corollary 5.1 imply that Σ is indeed a realization
of y. Also, we get that Reach(Σ) = TW = TH = R

n, so Σ is reachable. Again,
TO = OΣ = {0}, so Σ is observable. That is, Σ is a minimal linear switched
system that realizes y and its state space is of dimension n.

As a consequence of the theorem we get the following corollary

Corollary 5.2. Let Σ = (X ,U ,Y , Q, {(Aq, Bq, Cq)|q ∈ Q}) be a linear switched
system. Let y := ỹΣ. Then rankHy ≤ dimX . The system Σ is minimal if and
only it holds that rankHy = n = dimX .

6 Conclusions

Procedures for minimization of linear switched systems and construction of a
minimal linear switched system representation of an input/output map were
described in the paper. Future research is directed towards extension of the
results for the case when not all switching sequences are admissible. Another
task of future research is to make the connection between the nonlinear realiza-
tion theory presented in [3, 4, 1] and the approach of the current paper more
transparent.
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