
ELSEVIER Science of Computer Programming 43 (2002) 1-33

Science of
Computer
Programming

www.elsevier.com/locate/scico

State space generation for the HA Vi leader election
protocol

Yaroslav S. Usenko
CW!, P. 0. Box 94079, 1090 GB Amsterdam, Netherlands

Received 18 June 1999; received in revised form 9 March 200 l

Abstract

This paper describes two specifications of the leader election protocol from the home audio/
video interoperability (HA Vi) architecture. The specifications were written in two concurrent
specification languages: 11CRL and PROMELA. Two toolsets allowing generation of finite labeled
transition systems, for 11CRL and PROMELA, respectively, were applied in this case study.
The results of the state space generation by both tools and some conclusions on the semantical
differences between PROMELA and pCRL are presented in this paper. © 2002 Elsevier Science
B.V. All rights reserved.

I. Introduction

Currently, in the field of software verification many of the ex1stmg state-of-the
art analysis methods are based on state space representations in the form of finite
state labeled transition systems (FL TS). It appears that even for completely different
concurrent languages, FL TSs can be used to describe the behavior of specifications in
these languages. There are number of tools to manipulate FLTSs, to check different
kinds of equivalences and preorders, to find deadlocks, to check modal and temporal
properties, to minimize FL TSs in different ways, etc. It is interesting to study the
different verification tools supporting concurrent languages, by comparing how fast
they can generate an FL TS, and how many states and transitions are contained in the
resulting FLTS.

In this paper we consider two toolsets that allow state space generation-one for
the algebraic concurrent language tiCRL [9], and one for the imperative concurrent
language PROMELA [14]-and compare the state spaces generated by them for one
particular leader election protocol.

E-mail address: yaroslav.usenko@cwi.nl (Y.S. Usenko).

0167-6423/02/$- see front matter © 2002 Elsevier Science B.V. All rights reserved.
PU: SO 167-6423(01)00018-1

2 Y.S. Usenkol Science of Computer Programming 43 (2002) 1-33

The 11CRL toolset [7] has been developed at CWI to support formal reasoning about
systems specified in µCRL. Its implementation is based on term rewriting [1] and
linearization techniques [1 O]. It allows to generate state spaces, search for deadlocks,
perform some optimizations on 11CRL specifications, simulate them, and store the
FL TSs into files readable by certain model checking and minimization tools, like CADP
[5] developed at INRIA.

Spin [13] has been developed at Bell Labs and is one of the fastest and most
widely used tools for protocol verification. It allows formal analysis of PROMELA
specifications, model checking of LTL formulas [16], generation of state spaces, and
searching for deadlocks.

In this case study we consider the leader election protocol from the home audio/video
interoperability (HAVi) architecture [11]. Previously, this protocol was specified in
PROMELA and LOTOS, and analyzed formally [17]. Here we take a more abstract
definition of the protocol, to keep the specification relatively simple and free of many
implementation details. In [17] several incorrect behaviors of the HA Vi leader election
protocol were found. We found an incorrect behavior of a similar kind in our model
of the protocol using simulation of the µCRL specification.

As the first step, the leader election protocol was modeled in µCRL. After that
we made a model in PROMELA which closely resembles the behavior of the µCRL
model. To this end, we deliberately did not use some elements of PROMELA, as us
ing these elements would give rise to semantical differences between the /tCRL and
the PROMELA models. For example, unlike µCRL, PROMELA has asynchronous
communication built in. 1 As a result of not using such PROMELA features, the
PROMELA model is quite different from what a straight formalization of the informal
description of the protocol could be. However, it is semantically close to the model in
µCRL, which enables a clear comparison between the state spaces of the two models.
Finally, we generated the FL TSs for both models and checked them for the absence
of deadlocks.

The structure of this paper is as follows. First, we describe the leader election
protocol informally (Section 2). Then we present the specification in µCRL (Section 3)
and some details about its specification in PROMELA (Section 4). We conclude with
results of state space generation by the tools (Section 5). We assume a basic familiarity
of the reader with µCRL and PROMELA; Section 3.1 contains an overview of the
µCRL syntax that can also be found for instance in [8], and Section 4 contains an
overview of PROMELA; the language definition of PROMELA can be found on the
Spin WWW page [14]. For a more systematic introduction to µCRL see [6]. For a
systematic treatment of ACP style process algebra, which is the basis of µCRL, see
[2,3].

1 Asynchronous communication in PROMELA does not allow one to clean the communication buffer,
which is needed in the µCRL model of the HA Vi leader election protocol.

Y.S. Usenko!Science of Computer Programming 43 (2002) 1-33 3

2. Informal description

The informal description of the HA Vi leader election protocol appears on pages
160-162 of [11]. We try to stay as close to the description in [11] as possible; how
ever, our description differs in the places where abstractions from some implementation
details were made in the µCRL and PROMELA models of the protocol. We put the
emphasis on behavioral and communicational aspects and abstracted from the exact data
definitions used in the protocol. This was done to reduce the sizes of the specifications
and to make the case study applicable to the toolsets.

The system consists of a number of Device Control Module Managers (DCMM).
Each DCMM has its own input buffer, from which it gets incoming messages that were
sent to it by other DCMMs via the bus. The environment may influence the system
by flipping (i.e. switching on or off) DCMMs, and it may observe that a DCMM has
finished the election procedure. In both the PROMELA and the µCRL specification all
of these components are modeled as processes which communicate synchronously.

The structure of the system is presented in Fig. 1. The communication between two
DCMMs is done via the buffer of the receiving DCMM. We did not implement the
communication via the bus, as this would make the specification of the bus more in
volved, and would not add much because communication via the buffer is asynchronous
anyway. The environment flips the DCMMs synchronously and the bus observes that
a DCMM was flipped in a synchronous manner as well.

Each DCMM has its unique ID number by which it can be addressed. If the environ
ment flips a DCMM, the bus observes this change in the network by communicating
with the DCMM in question. The bus informs all working DCMM processes about the
changes in the network via their buffers, by first cleaning a buffer and then delivering
a network reset message into this buffer.

The leader election is performed among the DCMMs that are "on" in the following
way. After receiving a NetworkReset(nst) message, a DCMM starts to perform the

Env

on,oll

Fig. 1. Processes and communications in the system.

4 YS. Usenko/Science of Computer Programming 43 (2002) 1-33

election procedure. It gets the status information about the network from the parameter
nst. This status information says which DCMMs are currently on in the network. The
function il(N, nst) is then used to determine the ID of the initial leader. By comparing
this ID with its own ID, the DCMM can decide whether it is the initial leader or an
initial follower. The initial leader behaves as follows.

• From each initial follower m it awaits a DMCapabilityDeclaration(m, URL) mes
sage, from which it learns whether the DCMM m has the URL capability (has
access to the Internet).

• Upon reception of the message from each initial follower that is on, the initial
leader uses the function .fi(N,nst, URLs) to determine the ID of the final leader.

• It sends a DMLeaderDeclaration(m,fi, URLs) message to each initial follower m,
thus informing it about the final leader. The final leader is the last one to which
this message is sent.

• Finally, it communicates with the environment by a leader action, indicating what
it regards to be the final leader.

Each initial follower m behaves as follows:

• It keeps sending a DMCapabilityDeclaration(m, URL) message to the initial leader
until it receives a DMLeaderDeclaration(m,fi, URLs) message from it.

• Finally, it communicates with the environment by a leader action, indicating what
it regards to be the final leader.

It is important to realize that at any moment of the election any DCMM may be
flipped, or may receive a NetworkReset message. In case a DCMM is switched on, it
awaits for a NetworkReset message. In case of receiving a NetworkReset message, it
(re)starts the election procedure. The DCMMs ignore any unexpected messages. The
goal of the election procedure is to elect a final leader. This means that when no
network resets occur any longer, each DCMM will eventually get information about
the final leader, and this information will be the same for each DCMM.

3. Specification in µCRL

The complete ~iCRL specification can be found in Appendix A or obtained from the
www. 2

3.1. Overview of the µCRL syntax

Starting from a set Act of actions that can be parameterized with data, processes are
defined by means of guarded recursive equations (these are explained at the end of
this section) and the following µCRL operators.

2From http://www.cvi.nl;-ysu/sources/HAVi or by contacting the author.

YS. Usenko/ Science of Computer Programming 43 (2002) 1-33 5

First, there is a constant D (D 1: Act) that cannot perform any activity and is called
deadlock or inaction.

Next, there are the sequential composition operator · and the alternative composi
tion operator +. The process x · y first behaves as x and if x terminates successfully,
continues to behave as y. The process x + y can either behave as x or as y.

Interleaving parallelism is modeled by the operator [[. The process x JI y is the result
of interleaving actions of x and y, except that actions from x and y may also synchro
nize to a communication action, when this is explicitly allowed by a communication
function. This is a partial, commutative and associative function }' : Act x Act-+ Act
that describes how actions can communicate; parameterized actions a(d) and b(d')

communicate to }'(a, b)(d), provided d = d'.

To enforce that actions in processes x and y synchronize, we can prevent actions
from happening on their own, using the encapsulation operator an. The process as(x)
can perform all actions of x except that actions in the set H ~ Act are blocked. So,
assuming y(a, b) = c, in a {a, b} (x II y) the actions a and b are forced to synchronize
to c.

We assume the existence of a special action 't ('t ~Act) that is internal and cannot
be observed directly. The hiding operator •1 renames the actions in the set I~ Act to 't.

By hiding all internal communications of a process, only the external actions remain
observable.

The following two operators combine data with processes. The sum operator
:Ea:D p(d) describes the process that can execute the process p(d) for any value d

selected from the data domain D. The process x <l b C> y (where b is a boolean) has the
behavior of x if b is true and the behavior of y if b is false. Combining these two
operations we get, for instance, that :Ea:D (a(d) <l d = 0 [> 8) can only perform a(O).

We apply the convention that · binds stronger than :E. followed by _ <L C>.., the
parallel operators, and + binds weakest.

A set of recursion variables with data parameters is used to define processes recur
sively. A recursive equation is an equation defining a recursion variable as being equal
to a process term that contains µCRL operators and recursion variables. For example,
X(n:Nat)=a(n)·X(n + 1) is a recursive equation defining the recursive variable X
which carries a data parameter that ranges over the natural numbers. For each natural
number m, X(m) performs an infinite sequence of actions a(m) · a(m + 1) · a(m + 2)·
A recursive equation is completely guarded if all occurrences of recursion variables in
it are always preceded by an action, and a recursive equation is guarded if there is an
equivalent equation which is completely guarded. For example, the recursive equation
in the example above is guarded, while X = X is not.

3.2. Data types

The sorts Boo! and Nat represent booleans and natural numbers, respectively. Sort
ABI is a boolean array with natural indices. It is implemented by keeping the list of
indices of elements that are true in ascending order. Sorts Message and Status are

6 Y. S. Usenko I Science of Computer Programming 43 (2002} 1-33

described below. Finally, the sort Queue is a FIFO queue with elements of the sort
Message. It is used in the Buffer process definition.

3.2.J. Constants
The initial parameters of the protocol are defined as constants. The value of nB

determines the capacity of the buffers. We have to limit the capacity, because other
wise the state space would become infinite. The value of initNDCMM is the number
of DCMM processes in the system. The value of initNst is the boolean array of size
initNDCMM, representing the initial network status (which processes are "on" ini
tially). The value of initURLs contains the information on URL capabilities of the
DCMM processes. The function ii is defined as the minimal ID of a process that is
"on". The function .ft is the minimal ID of a URL capable process that is "on", or the
minimal ID of a process that is "on" if all of the URL capable processes are "off'.

map
nB :--+Nat
initNDCMM :--+Nat
initNst ;-t ABI
initVRLs :--+ ABI

rew
nB=2
initNDCMM=3
initNst = seton(0-0, 0)
initURLs = seton(O_O, 1)

map
ii : Nat x ABI --+ Nat
.ft : Nat x ABI x ABI --+ Nat

var
N:Nat
nst, VRLs: ABI

rew
il(N,nst) = if(eq(nst, O_O), 0, min_on(nst))
.fi(N, nst, VRLs) = if(eq(nst, 0_0), 0,

if(eq(VRLs, O_O),min_on(nst),min_on(URLs)))

Here O_O is the constant of the sort ABI representing a boolean array in which all of
the values are "false". The function seton(abi, i) sets the ith element of the array abi
to "true".

3.2.2. Messages
The sort Message is used to define all the messages that DCMM processes can

receive. The use of abstract data types allows us to define messages having different
parameters.

sort Message
func

YS. Usenko/ Science of Computer Programming 43 (2002) J-33

NetworkReset : ABI -+ Message

DMCapabilityDeclaration: Nat x Boo!-+ Message

DMLeaderDeclaration : Nat x ABI -+ Message

map
eq : A-fessage x !Yfessage-+ Boo!

3.2.3. Status

7

The sort Status is a simple enumerated type used to represent the statuses in which
a DCMM process can be. We could use different 1iCRL processes for each status, but
in this case the two alternatives that are enabled in each status would be repeated in
each such process. This could be avoided if we had a disrupt mechanism in µCRL.

The drawback of our approach of having just one process is that we have a lot of
parameters in each recursive call, most of which are not used in each state of the
DCMM process.

The definition of the sort Status is a common way to represent enumerated types
in µCRL. One could also use the sort Nat directly and the constructors !NIT, etc., as
maps to the corresponding naturals. However, such an approach leads to rewriting of
the symbolic infonnation to natural numbers, decreasing the readability of the output
generated by the tools.

sort Status
func

INIT,LE,LEIF,LEIL,LEILS,AOS,AO :-+Status
map

n : Status -+ Nat
eq : Status x Status -+ Boo!

rew
n(INIT)=O n(LE)=l n(LEIF)=2 n(LEIL)=3

n(LEILS)=4 n(AOS)=5 n(A0)=6
var a, b : Status
rew eq(a, b) = eq(n(a), n(b))

The meaning of each status abbreviation is explained below in the description of the
processes.

3.3. Actions and communication fimction

The following actions are used in the specification. The names of the actions have
the following intuition. The actions with underscores correspond to "send" actions, the
actions without underscores to "read" actions, and the actions with double underscores
to "communication" actions. The communication function is defined according to this
intuition.

8

act

Y.S. Usenko/ Science of Computer Programming 43 (2002) 1-33

_flip, flip_on, flip_off, __ flip : Nat
_on, _off, on, off, __ on, __ off : Nat
_send,send,_rcv,rcv,_send,_rcv: Nat x Message
_reset, reset, __ reset : Nat x ABI
_reset_off, reset_off, __ reset_off : Nat
_leader : Nat x Nat
j

comm
_flip Jflip_on = __ flip
_flip Jflip_off = __ flip
_on Jon =_on
_off loff =_off

_send jsend = _..send
_rev I rev = __ rev

_reset I reset = _reset
_reset_off I reseLoff = _reseLoff

3.4. Processes

3.4.1. DCMM process
The parameters of the process have the following meaning: St is the status of the

process; URL is true if the DCMM has URL capabilities; n is the ID of the process; N
is the total number of processes in the system, nst is the current network status; wait
is the array of processes from which a message is awaited, or the array of processes
to which a message still has to be sent; URLs is the array of URL capabilities of
other processes, collected by the process; il and ft are the initial and final leader IDs,
respectively; and anLon is true iff the process is on.

DCMM(St: Status, U RL:Bool, n:N at, N :Nat, nst:ABI,

wait:ABI, URLs:ABl, il:Nat,fi:Nat, am_on:Bool) =

The following alternatives are enabled for any status of the DCMM process. It can
be switched on, if it was off. In this case it communicates with the Bus process by
an on action, and its status becomes INIT (Initial status). If the DCMM process is
on, it can receive a NetworkReset(nstl) message and change its status to LE (Leader
Election). Alternatively, it can be flipped off, communicate with the Bus process by
off, and change its status to INIT.

+

+

+

flip_on(n) · _on(n) · DCMM(JNIT, URL,n,N, O_O, 0_0,0_0,0,0, t) <J -iam_on l> o

E rcv(n, NetworkReset(nstl))
1rstl:ABl

· DCMM(LE, URL,n,N,nstJ,0_0,0_0,0,0,t) <J am_on l> o

flip_off(n) · _off(n) · DCMM(JNIT, URL,n,N,o_o,o_o,o_o,o,o,f) <J am_on l> o

If the status of the DCMM process is LE, the following alternatives may be enabled.
In case the DCMM process is the only process in the network that is "on", it declares
itself to be the final leader, informs the environment about it, and goes to autonomous
operation. In case the DCMM process is not the initial leader, it sends its capabilities
to the initial leader, and its status becomes LEIF (Leader Election Initial Follower).
In case none of the two above applies, the DCMM process can receive a capability

Y.S. Usenko/ Science of Computer Programming 43 (2002) 1-33 9

declaration from a process m and then, depending on whether it still has to wait
for messages from other processes, its status becomes either LEIL (Leader Election
Initial Leader) or LE/LS (Leader Election Initial Leader Sending). Finally, the DCMM
process ignores any leader declaration messages in this status.

(Jeader(n,n)·

+

+

+

+

DCMM(AO, URL,n,N,nst,O_O,upd(O_O,n, URL),O,n,t) <l n_on(nst) = l l> o

_send(il(N,nst),DMCapabilityDeclaration(n, URL))
·DCMM(LEIF, URL,n,N,nst,O_O,O_O,il(N,nst),0,t) <l il(N,nst) =/: n l> o

c~atd:~ol
rcv(n, D M Capability Declaration(m, d))

· DCMM(LEILS, URL,n,N,nst,setoff(nst,n),upd(upd(O_O),n, URL),m,d),
O,jf.(N,nst, upd(upd(nst,n, URL),m,d)), t)

<J 11_on(nst) = 2 l>
rcv(n, DMCapabilityDeclaration(m, d))

· DCMM(LEIL, URL, n, N,nst, setojf(setojf (nst, n), m),
upd(upd(O_O,n, URL),m,d),O,O, t)

) <l il(N, nst) = n A n_on(nst) =f. 1 l> o

(L:; L:; rcv(n,DMLeaderDeclaration(m, URLsl)))
m:Nat URLsl:ABl

. DCMM(LE, URL,n,N,nst,o_o,o_o,o,o, t)

) <l St = LE l> o

If the status of the DCMM process is LEIF, it behaves as an initial follower. This
means that it can send its capabilities to the initial leader, receive a leader declaration,
and ignore any capability declaration messages:

(_send(il,DMCapabilityDeclaration(n, URL))
· DCMM(LEIF, URL, n, N, nst, O_O, O_O, ii, 0, t)

+
L:; L:; rcv(n,DMLeaderDeclaration(m, URLsl))

m:Nat URLsl:ABl

· DCMM(AOS, URL,n,N,nst,O_O, URLsl,O,m, t)

+
(L:; L:; rcv(n,DMCapabilityDeclaration(m,dl)))

m:Natdl:Bool

· DCMM(LEIF, URL,n,N,nst,0_0,0_0,il,O,t)

) <:J St = LEIF t> o
+

10 Y. S. Usenko I Science of Computer Programming 43 (WfX!) 1-33

If the status of the DCMM process is LEIL, it behaves as initial leader. This meant
that it can receive a capability declaration from process m and then, depending on if
this was the last message it was waiting for, its status becomes LEIL or LEILS. The
DCMM process ignores any leader declarations in this state.

c~atd:fvo/

+

+

rcv(n, DMCapabilityDec/aration (m, d))
· DCMM(LEILS, URL,n,N,nst,setojf(nst,n),upd(URLs,m,d),

O,fi(N, nst, upd(URLs,m, d)), t)
<JfLOn(wait) = 1 A wait[m]l>
rev(n, D M Capability Dec/aration(m, d))

· DCMM(LEIL, URL,n,N,nst,setoff(wait,m), upd(URLs,m,d), 0,0, t)

(I: I: rcv(n,DMLeaderDeclaration(m, URLsl)))
m:Nat URLsl:ABI

· DCMM(LEIL, URL,n,N,nst, wait, URLs,0,0, t)
) <J St = LEIL l> o

If the status of the DCMM process is LEILS, it informs the initial followers about the
final leader. If the final leader has to be informed, it is informed last. All messages
are ignored by the process in this state. After informing the last initial follower, the
status of the process becomes AOS (Autonomous Operation Sending).

c~at

+

+

+

(..send(m,DMLeaderDeclaration(fi, URLs))

+

· DCMM(LEILS, URL,n,N,nst,setoff(wait,m), URLs,O,jl,t)
<Jm -/=ft A n_on(wait) > I l> o

..send(m, D M Leader Declaration(fi, U RLs))
· DCMM(AOS, URL, n,N, nst, Q_O, URLs, O,fi, t)

<Jn_on(wait) = 1 l> o
) <J wait[m] l> b

(I: I: rcv(n,DMLeaderDeclaration(m, URLsl)))
m:Nat URLsl:ABI

· DCMM(LEILS, URL, n, N, nst, wait, URLs, O,fi, t)

(I: I: rcv(n,DMCapabilityDeclaration(m,dI)))
m:Natdl:Boo/

· DCMM(LEILS, URL,n,N,nst, wait, URLs,0,fi, t)
) <J St = LEILS l> b

Y. S. Usenko I Science of Computer Programming 43 (2002) 1-33 11

If the status of the DCMM process is AOS, it informs the environment about the result
of the election, and its status becomes AO (Autonomous Operation). If the status of the
DCMM process is AO, it performs a j loop. This is an abstraction of the autonomous
behavior of the process.

Jeader(n,fi) · DCMM(AO, URL,n,N,nst,O_O, URLs,O,fi,t) <l St= AOS I> o
+

j · DCMM{AO, URL,n,N,nst,O_O, URLs,0,fi,t) <l St= AO I> o

3.4.2. Environment
In µCRL it is not necessary to specify the environment explicitly. The reactive

system is described by its interaction with the environment. Everything else within
the system may be abstracted from. However, for verification or testing purposes
some assumptions about the environment have to be made. This can be done by
specifying the assumed environment as a process, and putting it in parallel with the
system.

In our particular case, the environment may flip DCMM processes in the system any
number of times, and then stop. But it cannot stop when all of the DCMM processes
are "off''.

Env(N:Nat,nst:ABI) = 2:::
m:Nar

_flip(m) · Env(N, reverse(nst, m))
+_flip(ml · o <l ri_on(reverse(nst,m)) > 0 1> o
)<lN>m1>0

3.4.3. Bus
The bus can observe changes in the network configuration and inform the active

processes about these changes. It is specified with the help of two processes. The
process Bus can communicate with a DCMM process by an action on or off to observe
that this process was flipped. The process Bus1 is used to reset the buffers of all active
processes in no particular order.

Bus(N:Nat,nstat:ABI) =

+
I: on(m) · Bus1(N,seton(nstat,m),seton(nstat,m))

m:Nat

I: off(m) · _reseLoff(m)
m:Nar

· (Bus(N, setojf(nstat, m)) <l n..on(nstat) = 11>
Bus1(N, setoff (nstat, m),setoff (nstat, m)))

Bus1(N:Nat,nstat:ABI, wait:ABI) =
I: _reset(m,nstat) · (Bus(N,nstat) <l n_on(wait) = 11>

m:Nar
Bus1(N,nstat,setoff(wait,m))) <l wait[m] I> o

12 Y S. Usenko I Science of Computer Programming 43 (2002 J 1-33

3.4.4. Buffer

The process Buffer is a FIFO queue of capacity nB. The FIFO queue can receive a
message if it is not full, or send a message if it is not empty. By communicating with
the Bus, the Buffer can be reset in two different ways: by an action reset or reseLoff.
In the first case it clears its message queue, and puts the network reset message into
this queue. In the second case it just clears the queue.

Buffer(N:Nat,n:Nat,q:QMes) =

+

+

+

(:E send(n,mes) · Buffer(N,n,add(q,mes))) <l nB > size(q) C> o
mes: Message

_rcv(n,first(q)) · Buffer(N,n,remjirst(q)) <J-iis_empty(q) C> o

:E reset(n,nstl) · Buffer(N,n,add((),NetworkReset(nstl)))
nstl:ABI

reset_off(n) · Buffer(N, n, ())

3.5. System

The whole system consists of several processes in parallel. First, three pairs of
DCMM and Buffer processes are composed. Then they are merged together, and merged
with the Bus process. Finally the Env is merged with the system.

SYSTEMDCMM(N:Nat,nstat:ABI, URLs:ABI) =

0 {_flip,flip_on,flip_off} (
r {j, __ o n,_off,_reset,_reseLoff} 0 0 {-O n,o n,_off.off,_reset, reset_reseLoff, reseLoff} (

r{ __ send} 0 a{_send,send}(
r{_rcv} o D{_rcv,rcv}(
DCMM(INIT, URLs[O], O,N, o_o, o_o, o_o, 0, O,nstat[O]) II Buffer(N, 0, ()))

llr{_rcv} o 8pcv,rcv}(
DCMM(INIT, URLs[I], 1,N, o_o, o_o, o_o, 0, O,nstat[1]) II Buffer(N, I,()))

llr{_rcv} o 8pcv,rcv}(
DCMM(INIT, u RLs[2], 2, N, o_o, o_o, o_o, 0, 0, nstat[2]) II Buffer(N, 2, ()))

) II Bus(N,nstat)
) II Env(N, nstat)

The system is initialized in the following way.

init SYSTEMDCMM(initNDCMM, initNst, initURLs)

Y.S. Usenkol Science of Computer Programming 43 (2002) 1-33 13

4. From µCRL to PROMELA

PROMELA-the underlying language of SPIN-is a C-like imperative concurrent
nondeterministic language. It has no explicit parallel operator, but has a process cre
ation mechanism. Communication can happen via explicitly defined channels. It may
either be synchronous or asynchronous. It is possible to pass data values during the
communication. There are loops and goto statements. Nondeterminism is modeled by
the following construction:

if

fi

<alternative 1>
<alternative 2>

<alternative n>

If an alternative starts with a blocking statement, then it is disabled. The blocking
statements are send and read statements in cases when synchronous communication is
not possible, and any expression with value 0. Each process may have local variables.
Shared variables are also allowed. To minimize the state space and interleavings, spe
cial constructions like atomic{ <block>} and d_step{ <block>} are allowed. Atomic
sequences do not interleave with other processes executions. Sequences within d_step
are considered to be one statement, meaning that no transfers of control to or from
d_step are allowed, nor communications with d_step.

The PROMELA specification of the HA Vi leader election protocol discussed in this
paper was written based on the µCRL model, in order to preserve the semantics of this
model as much as possible. The aim was to obtain the same behavior in the PROMELA
model as in the µCRL model. This was achieved by a simulation of the behavior of
µCRL constructions in PROMELA. Another approach would have been to use features
of PROMELA for which there are no counterparts in µCRL. This would have lead to
a more elegant PROMELA specification, which however would have differed from the
µCRL model, thus obstructing a clear comparison between the state spaces of the two
models.

Some crucial details of the implementation of µCRL constructions in PROMELA are
described below. The source code of the PROMELA specification of the HA Vi leader
election protocol can be found in Appendix B or can be obtained from WWW. 3

4.1. Abstract data types

There is no support for abstract data type specification in PROMELA. There is built
in support for arrays, structures and enumerated data types though. Operations on data
types can be encoded as macro definitions or as in-line functions. Computations may

3 From http: I 1~. cwi.nl;-ysu/ sources/HA Vi, or by contacting the author.

14 YS. Usenko I Science of Compuler Programming 43 (2002 ! 1-33

be done within d_step blocks, allowing to consider long deterministic computations
as one step.

4.2. Conditions and nondeterminism

The semantics of the conditional operator in PROMELA is slightly different from
the semantics of conditions in ,HCRL. In PROMELA conditions are statements as in
imperative languages, meaning that their execution causes a transition from one state to
the other. In pCRL conditions are not transitions to other states, but restrictions under
which such transitions are possible.

Therefore, we cannot simply translate a pCRL expression of the form

X(d:N) = _a(d) · X(d) <J d < 5 !>- 6 +
_b(d) · X(d) <J d < 7 !>- 6

to

X:
if

fi;

d<5 -> a!d; goto X;
d<7 -> b!d; goto X;

beeause this would lead to different semantic behavior. For instance, if d < 5 and there
is another process Y willing to communicate with our process X via channel b, then one
of the possible executions of the PROMELA specification above leads to a deadlock.
Namely, since the condition d < 5 is evaluated to true, X starts waiting for commu
nication via a, while Y is waiting for communication via b. By contrast, the pCRL
specification above does not contain a deadlock under these circumstances.

A semantically sound translation of the pCRL specification above is:

X:
if

fi;

d<5 -> if

fi;

a!d; goto X;

b!d; goto X;

(d<7)&&! (d<5) -> b!d; goto X;

In the general case to coITectly translate a pCRL expression with a choice of several
conditions to PROMELA, we first need to make these conditions disjoint. Disjointness
means that at most one condition can be true for any set of parameter values. It is
always possible to make all conditions disjoint in this case; however, instead of n
conditions in the original fiCRL expression we may end up with 2n - I conditions in
the resulting PROMELA expression.

}'.S. Usenko I Science of Cmnputer Programming 43 I 200]) 1-33 15

4.3. Value-passin?J communication

In the value-passing communication style of µCRL, read and send actions are dual.

This is due to commutativity of the communication function ''/. The value-passing

mechanism in pCRL is based on matching parameter values: a(e1) I b(e2) = ·r(a, b)(e1)
if eq(e1, e2). That is why both read and send actions can be parameterized by ar

bitrary expressions. The standard value-passing communication is modeled in pCRL

in the following way: one process perfonns a send action, e.g. _a(5); and the other

process perfonns a receive action for an arbitra1y value of the data domain, e.g.

L,11 :Nar a(n). By putting the two processes in parallel, and forcing them to commu
nicate, we get

3{-•,a} (-a(5)ll:La(n)) = __ a(5),
n:1Vat

which is an action __ a saying that the synchronous communication happened, and

that the value 5 was passed during this communication. However, this value-passing

mechanism allows to express more: for instance, the second process may decide to

receive only naturals that are less than 10 and refuse to communicate (and thus

receive) other values. This can be expressed as L,n:Nat(a(n) <J n < 10 t> 8), which
will communicate with _a(5), but not with _a(l 5), leading to a deadlock in the latter

case.
In PROMELA value-passing communication is perfom1ed differently. Send statement

a!e1 means that the value of e1 is put into the channel a. Read statement a?m means

that a value is read from the channel a and assigned to the variable m.
For the case of a read action a, the translation is performed in the following way:

X(d:D) = L a(n, d) · X(g(n, d)) <J b(d) C> 8
n:N

becomes

X:
b(d) -> a[d]?n; atomic{d_step{g(n,d)}; goto X}

Here we assume that a is an array of channels indexed by elements of D, and that the

corresponding send statements take the form a [d] ! e, not a! d, e. If D is an infinite

set, then we cannot define such an array in PROMELA, and we need to consider the

subset of elements of D for which b is true. If this subset is finite, we can make

the array a to be indexed by those elements only. 4 A remedy to this lack of expres

siveness in PROMELA can be found in [15]. We note, however, that the approach

described there requires tripling of the communication channels, and the use of shared

memory.

4 Actually, this solution only works if the boolean b does not depend on the value that is being received.

16 Y. S. Usenko I Science of Computer Prowammin11 43 (1002) 1--33

4.4. Parameterized nondeterminism

Another pCRL construction is nonbounded and parameterized nondeterminism
for actions that are not meant to be receive actions. Consider the following process
equation:

X(d:N) = 2::::: _a(n,d) · X(g(n,d)) <] /1 ~ d l> b.
nN

Here the set of possible alternatives depends on the value of d. Assuming that _a is
not a read action, we can translate this process equation to PROMELA in the following
way:

X:
n=O;

TEMP:
if

fi

n<=d -> a!n,d; atomic{d_step{g(n,d)}; goto X;}
n<d -> atomic{n=n+1; goto TEMP}

In this case we again have an increase of the state space; this time it is linear in the
number of alternatives in a state of the ;1CRL process.

5. State space generation

Spin and the ;1CRL toolsct were used to generate the entire state spaces of specifi
cations of the HA Vi leader election protocol in PROMELA and pCRL, respectively,
and to search for deadlocks in these specifications.

The process of state space generation in Spin is described in Chapter 13 of [12].
The basic idea is to generate an action/effect matrix for each statement of each process
type, and to explore the state space step by step by allowing each process to perform
a transition and adding the resulting state to the discovered state space.

State space generation for /tCRL is described in [4]. First the specification is trans
formed into a linear fom1, which is a symbolic representation of a labelled transition
system, and then the explicit labelled transition system is generated by the pCRL
instantiator.

Unfortunately, it is not possible to get the state space as an output of Spin. Therefore,
it is not possible to compare the generated state spaces. The following results were
obtained by considering systems with two or three DCMMs and different buffer sizes.
State spaces for four DCMMs could not be generated by either toolset. In the case
with three DCMMs and buffer size two we could not get the state space analyzed by
Spin. The results of state space generation are presented in Table 1.

Y.S. Usenko!Science of Computer Programming 43 (2002) 1-33

Table I
Results of state space generation

2 DCMMs
Buffer
size 2

2 DCMMs
Buffer
size 5

3 DCMMs
Buffer
size 1

3 DCMMs
Buffer
size 2

Table 2
Command line arguments

Spin

Spin

States: 128.803
Transitions: 187.339
Elapsed time: 3.5 s
Memory: 6.2 MB

States: 208,215
Transitions: 301.590
Elapsed time: 6.3 s
Memory: 8.7 MB

States: 107,486,000
Transitions: 188.381.000
Elapsed time: 47 h: 01 min
Memory: 8.35 GB

States: > 265, 798, OOO
Transitions: >449,935,000
Elapsed time: > 190 h
Memory: > 15.6 GB

pCRL

µCRL

States: 3842
Transitions: 13,460
Elapsed time: 7.6 s
Memory: 6.8 MB

States: 7292
Transitions: 26.048
Elapsed time: 12. 9 s
Memory: 7.1 MB

States: 576, 120
Transitions: 3,290,223
Elapsed time: 25 min : 20 s
Memory used: 25 MB

States: 3,136.289
Transitions: 18,248,754
Elapsed time: 2 h: 10 min
Memory used: 155 MB

> spin -av HAVi.spin
> cc -03 -64 -w -o pan

-DYOSIX..SOURCE -DMEMCNT=35

> mcrl -regular -tbfile HAVi.mcrl
> instantiator HAVi

-DSAFETY -DNOFAIR -DCOLLAPSE
-g pan.c

> ./pan -m <depth>

17

In order to enable the reader to reproduce our results, the precise command line
arguments for both tools are given in Table 2. The invocation of Spin with the para
meter -av generates a verifier in pan.c, which is used for the state space generation.
The verifier is compiled using a C compiler with the maximal optimization (-03 option)
to run on a 64 bit architecture (-64 option). The option -DMEMCNT=35 sets an upper
bound on the amount of memory that can be allocated for a maximum of 235 bytes. The
option -DSAFETY optimizes the verifier for the case where no cycle detection is needed.
The option -DNOFAIR disables the code for weak-fairness, and the option -DCOLLAPSE

enables a state vector compression mode. The run-time option -m<depth> of pan sets
the maximal search depth to <depth> steps. The value of <depth> we used was
30, OOO for systems with two DCMMs, and 50, OOO, OOO for three DCMMs. In the
case of the µCRL toolset, first the linearizer was invoked with the option -regular,

which does not allow the linearizer to introduce infinite data types, and -tbfile, to

18 Y.S. Usenko/ Science of Computer Programming 43 (2002) J-33

generate the machine readable linear specification. Next, we use the instantiatior
to generate the state space.

From Table I we can conclude that Spin generates more states per second, but the
resulting state space is much larger than the one generated by the µCRL toolset.

The results shown above cannot be interpreted as a direct comparison of state space
generation capabilities of Spin and the µCRL toolset, due to the differences in the un
derlying languages. Namely, the PROMELA code was derived from µCRL code instead
of being written directly from the informal description. The PROMELA specification
was optimized to use some of the PROMELA features that do not exist in µCRL.
On the other hand, some of such features were not deployed for several reasons. The
unless statement has unclear semantics when used in combination with synchronous
communication. An attempt to use channels with nonzero capacity as storage instead
of arrays lead to 250% increase of the state space.

We note that a native PROMELA specification of the same protocol was analyzed
in [17]. That model is quite different from ours, as it employs most of the PROMELA
communication primitives and contains more implementation details. The sizes of the
state spaces of the PROMELA specification in [17] are comparable to the sizes of the
state spaces of the PROMELA specification presented here. In [17] several incorrect
behaviors of the HAVi leader election protocol were found. We found an incorrect
behavior of a similar kind in our model of the protocol using simulation of the µCRL
specification. This error is due to the fact that a node can be reset in the middle of
the leader election as a result of a network change, and there can be a delay before
another node may be reset. In this interval the second node can send a message to the
first one, and the first one can declare the second one to be the leader, based on the
information contained in this message. However, the second node is reset after this, in
which case it will attempt to elect a new leader, while the first node will not participate
in this election, as it is confident that the leader has already been elected.

It is interesting to note that although both Spin and the µCRL toolset use a similar
approach to state space generation, namely exploitation of the reachable state space by
analyzing the conditions under which the transitions from a given state are possible, the
sizes of the resulting state spaces differ substantially on our specification of the HA Vi
leader election protocol. Two reasons for such differences are in the preprocessing that
is done before the actual state space generation, and in the exact implementations of
the algorithms in the toolsets. We believe that in order to uncover the exact differences
in the state space generation algorithms of the two toolsets, one needs to have a close
look at the source code of the implementations, and try out some small and specifically
tailored examples.

Acknowledgements

Thanks go to Dragan Boshnachki and Judi Romijn for carefully reading and com
menting on the PROMELA specification and the rest of the paper, as well as to Jan

Y S. Usenko I Science of Computer Programming 43 (200:!) 1--33 19

Bergstra, Jan Friso Groote and Andre van Delft for helpful discussions. Many thanks

to the anonymous referees, who helped to improve the structure of the paper, and to

Wan Fokkink, who suggested improvements regarding the use of English and style.

Appendix A. JLCRL source 5

%%!.%
2 %'/.'/. Constants, Parameters '/.%'/.
3 %%%%%%%%%%%%!.%%%
4 map
5 nB:->NAT
6 initNDCMM:->NAT
7 initNst:->ABI
8 initURLS:->ABI
9 rew

JO nB=2
11 initNDCMM=3
12 initNst=seton(O_O,O)

% Limit for Buffer capasity
'/. Initial Number of processes
'/. Initial Network status
'/. Initial URL processes status

13 initURLs=seton(0_0,1)
14 map
15 il: NAT#ABI->NAT
16 fl: NAT#ABI#ABI->NAT
17 var
18 N: NAT
19 nst,UR.Ls: ABI
20 rew
21 il(N,nst)=if(eq(nst,0_0) ,0,min_on(nst)) i".Minimal on
22 fl(N,nst,URLs)=if(eq(nst,0_0),0, '/.Minimal URL on or minimal
23 if(eq(URLs,0_0) ,min_on(nst), '/.on if there is no URL.
24 min_on(URLs)))
25
26 %%
27 '/.'/.'/. Bool '/.%%
28 %%
29 sort Bool
30 func

T,F: -> Bool
map

and: Bool#Bool -> Bool
or: Bool#Bool -> Bool
not: Bool -> Bool

31
32
33
34
35
36
37
38

if: Bool#Bool#Bool -> Bool
eq: Bool#Bool

var
39 b,b1,b2: Bool
40 rew
41
42

and(T,b)=b
and(b,F)=F

-> Bool

and(b,T)=b
and(F,b)=F

5 Note that the source code can also be obtained from http://www. cwi. nl;-ysu/sources/HAVi or by
contacting the author.

20 YS. Usenko I Science of Computer Programming 43 (2002) 1-33

43
44

45
46
47
48
49

or(T,b)=T
or(b,F)=b
not(F)=T
if(T,b1,b2)=b1
eq(F,F)=T
eq(T,F)=F

or(b,T)=T
or(F,b)=b
not(T)=F
if(F,b1,b2)=b2
eq(F, T)=F
eq(T,T)=T

50 %%
51 %%% NAT %%%
52 %%
53 sort NAT
54 func
55 0: -> NAT
56 x2pl: NAT -> NAT
57 ..x2p0: NAT-> NAT
58 map
59 x2p0: NAT -> NAT
60
61
62
63
64

eq: NAT#NAT -> Bool
1,2,3,4,5,6: -> NAT
succ: NAT -> NAT
gt: NAT#NAT -> Bool
if: Bool#NAT#NAT-> NAT

65 var
66 n,m: NAT
67 reli'
68 x2p0(0)=0
69 x2pO(x2p1(n))=_x2pO(x2p1(n))
70 x2pO(..x2pO(n))=_x2pO(_x2pO(n))
71
72 eq(O,O)=T
73 eq(x2p1(n),O)=F
74 eq(O,x2p1(n))=F
75 eq(_x2p0(n),O)=F
76 eq(O,_x2pO(n))=F
77 eq(x2p1(n),_x2pO(m))=F
78 eq(_x2pO(n),x2p1(m))=F
79 eq(_x2pO(n),_x2pO(m)=eq(n,m)
80 eq (x2p1 (n) ,x2p1 (m)) =eq(n,m)
81
82 1=x2p1(0) 2=_x2p0(1)
83 3=x2p1(1) 4=_x2p0(2)
84 5=x2p1(2) 6=_x2p0(3)
85
86 succ(O)=x2p1(0)
87 succ(x2p1(n))=_x2pO(succ(n))
88 succ(_x2pO(n))=x2pl(n)
89
90 gt(O,n)=F gt(x2p1(n),O)=T gt(_x2p0(n),O)=T
91
92 gt(x2p1(n),_x2p0(m))=not(gt(m,n))
93 gt(_x2p0(n),x2p1(m)=gt(n,m)
94
95 gt(x2pl(n),x2p1(m))=gt(n,m)
96 gt(_x2pO(n),_x2pO(m))=gt(n,m)
97

Y S. Usenko I Science of Compwer Programming 43 (2002) 1-33

98 if(T,n,m)=n if (F,n,m)=m
99

100 %%%
101 %%% ABI(Bool array with NAT indices) %%%
102 %%%
103 sort ABI
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

func

map

var

rew

o_o ->ABI
add ABI#NAT ->ABI

rem ABI#NAT ->ABI
upd ABI# NAT#Bool->ABI
n_on ABI ->NAT
min_on ABI ->NAT
set off ABI#NAT ->ABI
set on ABI#NAT ->ABI
reverse: ABI#NAT ->ABI
ace ABI#NAT ->Bool
eq ABI#ABI ->Bool
if Bool#ABI#ABI ->ABI

n,m:NAT
abi,abil:ABI
b1,b2:Bool

123 rem(O_O ,n) =O_Q

21

124 rem(add(abi,m),n)=if(gt(m,n),add(abi,m),if(eq(n,m),abi,add(rem(abi,n),m)))

125
126 upd(O_O,n,F)=o_o
127 upd(O_O,n,T)=add(O_O,n)
128 upd(add(abi,m),n,F)=rem(add(abi,m),n)
129 upd(add(abi,m),n,T)=if(gt(m,n),add(add(abi,m),n),
130 if(eq(n,m),add(abi,m),add(upd(abi,n,T),m)))

131
132 n_on(O_O)=O n_on(add(abi,n))=succ(n_on(abi))

133
134 min_on(O_O)=O min_on(add(abi,n))=n

135
136 seton(abi ,n)=upd(abi,n, T) setoff (abi ,n)=upd(abi ,n,F)
137
138 reverse(abi,n)=upd(abi,n,not(acc(abi,n)))
139
140 acc(O_O,n)=F
141 acc(add(abi,m),n)=if(gt(m,n),F,if(eq(m,n),T,acc(abi,n)))
142
143 eq(O_O,O_O)=T eq(O_O,add(abi,n))=F eq(add(abi,n) ,O_O)=F

144 eq(add(abi,n) ,add(abil,m))=and(eq(n,m),eq(abi,abil))
145
146 if(T,abi,abil)=abi if(F,abi,abil)=abil
147
148 %%%%%%%%%%/.%%
149 %%% Messages %%%
150 %%%
151 sort Message
152 func
153 NetworkReset ABI -> Message

22

154
155
156 map
157
158 var

Y S. U.w:nko I Science of Compurer Programming 43 (2002) 1-33

DMCapabilityDeclaration: NAT#Bool ->Message
DMLeaderDeclaration NAT#ABI -> Message

eq:Message#Message->Bool

159 n,m:NAT
160 abi,abil:ABI
161 b1,b2:Bool
162 reY
163 eq(NetYorkReset(abi) ,NetYorkReset(abil))=eq(abi,abil)
164 eq(DMCapabilityDeclaration(n,b1),DMCapabilityDeclaration(m,b2))
165 =and(eq(n,m),eq(b1,b2))
166 eq(DMLeaderDeclaration(n,abi),DMLeaderDeclaration(m,abil))
167 =and(eq(n,m),eq(abi,abil))
168 eq(NetYorkReset(abi) ,DMCapabilityDeclaration(n,bl))=F
169 eq(NetYorkReset(abi) ,DMLeaderDeclaration(n,abil))=F
170 eq(DMCapabilityDeclaration(n,bl),NetYorkReset(abi))=F
171 eq(DMCapabilityDeclaration(n,bl),DMLeaderDeclaration(m,abi))=F
172 eq(DMLeaderDeclaration(n,abi),NetYorkReset(abil))=F
173 eq(DMLeaderDeclaration(n,abi),DMCapabilityDeclaration(m,bl))=F
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200

%%%
%%% Status %%%
%%%
sort Status
func

INIT,LE,LEIF,LEIL,LEILS,AOS,AO:->Status
map

n:Status->NAT
eq:Status#Status->Bool

reY
n(INIT)=O n(LE)=l n(LEIF)=2 n(LEIL)=3 n(LEILS)=4 n(AOS)=5 n(A0)=6

var a,b:Status
reY eq(a,b)=eq(n(a),n(b))

%%%
%%% Actions %%%
%%!.%%
act
_flip, flip_on, flip_off ,_Jlip:NAT
_on, _off, on, off, __ on, __ off :NAT
_send, send, ..rev, rev, __ send,rcv:NAT#Message
..reset, reset, _..reset:NAT#ABI
..reset_off, reset_off, _reset_off:NAT
_leader: NAT#NAT
j

201 %%%/.%%%%%%%%%%%%%
202 %%% Communication Function %%%
203 %%%
204 comm
205 _flip I flip_on=_flip
206 Jlip I flip_off=_Jlip
207 _on I on=_on
208 _off I off=_off
209 _send I send= __ send

Y.S Usenko I Science of Compurer Programming 43 (:!002) 1-33

210 ..rcvircv=_..rcv
211 ..reset I reset=__reset
212 ..reset_offireset_off=__reset_off
213
214 %%%
215 %%% DCMM Process %%%
216 %%%
217 proc
218 DCMM(St:Status, URL:Bool, n:NAT, N:NAT, nst:ABI, wait:ABI, URLs:ABI,
219 il:NAT, fu:NAT, am_on:Bool)=
220 flip_on(n)._on(n).DCMM(INIT,URL,n,N,0_0,0_0,0_0,0,0,T)
221 <I not (am_on) I >delta
222 +
223 sum(nst1:ABI,rcv(n,Network:Reset(nst1)) .DCMM(LE,URL,n,N,nst1,0_0,0_0,0,0,T))
224 <I am_onl >delta
225 +
226 flip_off(n) ._off(n).DCMM(INIT,URL,n,N,0_0,0_0,0_0,0,0,F)
227 <Jam_onl>delta
228 +
229
230 _leader(n,n) .DCMM(AO,URL,n,N,nst,0_0,upd(O_O,n,URL),O,n,T)
231 <I eq(n_on(nst), 1) I> delta
232 +
233 _send(il(N,nst) ,DMCapabilityDeclaration(n,URL))
234 ·DCMM(LEIF,URL,n,N,nst,0_0,0_0,il(N,nst),0,T)
235 <lnot(eq(il(N,nst) ,n))i> delta
236 +
237 sum(m:NAT,sum(d:Bool, (
238 rcv(n,DMCapabilityDeclaration(m,d))
239 ·DCMM(LEILS,URL,n,N,nst,setoff(nst,n),upd(upd(O_O,n,URL),m,d),O,
240 fl(N,nst,upd(upd(nst,n,URL) ,m,d)),T)
241 <leq(n_on(nst) ,2) I>
242 rcv(n,DMCapabilityDeclaration(m,d))
243 ·DCMM(LEIL,URL,n,N,nst,setoff(setoff(nst,n),m),
244 upd(upd(O_O ,n, URL) ,m,d)O,O, T))))
245)<iand(eq(il(N,nst),n),not(eq(n_on(nst),1))) !>delta
246 +
247 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1))))
248 ·DCMM(LE,URL,n,N,nst,0_0,0_0,0,0,T)
249)<ieq(St,LE) !>delta
250 +
251
252 _send(il,DMCapabilityDecalaration(n,URL))
253 ·DCMM(LEIF,URL,n,N,nst,0_0,0_0,il,0,T)
254 +
255 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1))
256 ·DCMM(AOS,URL,n,N,nst,O_O,URLs1,0,m,T)))
257 +
258 sum(m:NAT,sum(d1:Bool,rcv(n,DMCapabilityDeclaration(m,d1))))
259 ·DCMM(LEIF,URL,n,N,nst,o_o,o_O,il,O,T)
260)<leq(St,LEIF) !>delta
261 +
262
263 sum(m:NAT,sum(d:Bool,(
264 rcv(n,DMCapabilityDeclaration(m,d))

23

24 Y S. Usenko I Science of Compwer Programming 43 (2002 J 1-33

265 ·DCMM(LEILS,URL,n,N,nst,setoff(nst,n) ,upd(URLS,m,d),0,
fl(N,nst,upd(URLs,m,d)) ,T)

266 <[and(eq(n_on(wait),1),acc(wait,m))[>
267 rcv(n,DMCapabilityDeclaration(m,d))
268 ·DCMM(LEIL,URL,n,N,nst,setoff(wait,m) ,upd(URLS,m,d),0,0,T))))
269 +

270 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1))))
271 ·DCMM(LEIL,URL,n,N,nst,wait,URLs,0,0,T)
272)<Jeq(St,LEIL)[>delta
273 +
274
275 sum(m:NAT,(
276 _send(m,DMLeaderDeclaration(fl,URLs))
277 ·DCMM(LEILS,URL,n,N,nst,setoff(wait,m),URLs,0,fl,T)
278 <[and(not(eq(m,fl)),gt(n_on(wait) ,1))1> delta
279 +
280 _send(m,DMLeaderDeclaration(fl,URLs))
281 ·DCMM(AOS,URL,n,N,nst,O_O,URLs,O,fl,T)
282 <[eq(n_on(wait),1) I> delta
283)<[acc(wait,m)[>delta)
284 +

285 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1))))
286 ·DCMM(LEILS,URL,n,N,nst,wait,URLs,O,fl,T)
287 +

288 sum(m:NAT,sum(d1:Bool,rcv(n,DMCapabilityDeclaration(m,d1))))
289 ·DCMM(LEILS,URL,n,N,nst,wait,URLs,O,fl,T)
290)<Jeq(St,LEILS) J>delta
291 +
292 -1eader(n,fl).DCMM(AO,URL,n,N,nst,O_O,URLs,0,fl,T)
293 <Jeq(St,AOS)J>delta
294 +

295 j.DCMM(AO,URL,n,N,nst,0_0,URLs,O,fl,T)
296 <Jeq(St,AO)J>delta
297
298 %%%
299 %%% Env Process %%%
300 %%%
301 Env(N :NAT ,nst :ABI)=sum(m :NAT, (_flip(m) .Env(N ,reverse(nst ,m))
302 +_flip(m).delta<Jgt(n_on(reverse(nst,m)),O) J>delta
303)<[gt(N,m) [>delta)
304
305 %%%!.%%%%%%%%%%%%%%%%%%%%%%%%%
306 %%% Bus Process %%%
307 %%%
308 Bus(N:NAT,nstat:ABI)=
309 sum(m:NAT,on(m) .Bus1(N,seton(nstat,m),seton(nstat,m)))
310 +
311 sum(m:NAT,off(m) . .reset_off(m)
312 · (Bus(N,setoff(nstat,m))<Jeq(n_on(nstat) ,1) [>
313 Bus1(N,setoff(nstat,m),setoff(nstat,m))))
314
315 Bus1(N:NAT,nstat:ABI,wait:ABI)=
316 sum(m:NAT,.reset(m,nstat).(Bus(N,nstat) <Jeq(n_on(wait),1) I>
317 Bus1(N,nstat,setoff(wait,m)))<Jacc(wait,m) l>delta)
318

YS. Usenko I Science ;~(Compwer Programming 43 (2002! 1-33

319 %%%%%%%/.%%%
320 %%% Message Queues %%%
321 %%%
322 sort QMes
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

func

map

var

rew

empty -> QMes
and QMes#Message -> QMes

first QMes -> Message
remfirst: QMes -> QMes
is_empty QMes -> Boal
size QMes -> NAT

mes1,mes2:Message
q: QMes

first(add(empty,mes1))=mes1
first(add(add(q,mes2),mes1))=first(add(q,mes2))
remfirst(add(empty,mes1))=empty
remfirst(add(add(q,mes2),mes1))=add(remfirst(add(q,mes2)),mes1)
is_empty(empty)=T
is_empty(add(q,mes1))=F
size(empty)=O
size(add(q,mes1))=succ(size(q))

343 %%%!.%%%
344 %%% Buffer Process %%%
345 %%%
346 proc
347 Buffer(N:NAT,n:NAT,q:QMes)=

25

348 sum(mes:Message,send(n,mes).Buffer(N,n,add(q,mes))) <lgt(nB,size(q)) I> delta
349 +
350 ..rcv(n,first(q)).Buffer(N,n,remfirst(q)) <lnot(is_empty(q)) I> delta
351 +
352 sum(nst1:ABI,reset(n,nst1).Buffer(N,n,add(empty,NetworkReset(nst1))))
353 +
354 reset_off(n).Buffer(N,n,empty)
355
356 %%%!.%%%%%%%%%%%%%%%
357 %%% The Whole System %%%
358 %%%/.%%%
359 SYSTEMDCMM(N:NAT,nstat:ABI,URLs:ABI)=
360 encap({_flip,flip_on,flip_off},
361 hide ({j, _on, __ off ,_reset, _reset_off},
362 encap({_on,on,_off,off,..reset,reset,..reset_off,reset_off},
363 hide({ __ send},encap({_send,send},
364 (hide({__rcv},encap({..rcv,rcv},
365 DCMM(INIT,acc(URLs,O) ,0,N,0_0,0_0,0_0,0,0,acc(nstat,O)) 11
366 Buffer(N,0,empty))))
367 I I
368 (hide({__rcv},encap({..rcv,rcv},
369 DCMM(INIT ,acc(URLs, 1), 1,N ,o_o ,o_o ,o_o, o ,o ,acc(nstat, 1)) 11
370 Buffer(N, 1,empty))))
371 11
372 (hide({__rcv},encap({..rcv,rcv},
373 DCMM(INIT,acc(URLs,2),2,N,0_0,0_0,0_0,0,0,acc(nstat,2))1 I

26 Y.S. Usenko/Science of Computer Programming 43 (2002) 1-33

374 Buffer(N,2,empty))))
375))
376 11
377 Bus(N,nstat)
378))
379 11
380 Env(N,nstat)
381
382
383 init SYSTEMDCMM(initNDCMM,initNst,initURLs)

Appendix B. PROMELA source6

I #define initNDCMM 3
2 #define nB 2
3
4 typedef ABI {bool a[initNDCMM]};
5 mtype = {NetworkReset, DMCapabilityDeclaration, DMLeaderDeclaration};
6 typedef Message {mtype MTYPE; byte NN; bool URL; ABI NST};
7
8 chan on = [O] of {byte};
9 chan off = [O] of {byte};

10 chan send[initNDCMM] = [O] of {Message};
II chan rcv[initNDCMM] = [O] of {Message};
12 chan reset[initNDCMMJ = [OJ of {ABI};
13 chan reset_off[initNDCMMJ = [OJ of {bit};
14 chan flip[initNDCMM] = [O] of {bit};
15 chan leader = [OJ of {byte, byte}
16
17 chan env = [OJ of {ABI}
18 chan bus = [OJ of {ABI} /• Due to the technical restrictions of spin we
19 cannot pass arrays as parameters for processes. So we use these channels to
20 pass nst to Env and Bus •/
21
22 /• inlines use and sideeffect variable _i
23 (assumed that it is defined as byte) •/
24
25 /• copies N first elements of array B
26 to the corresponding elements of A •/
27 inline array_assign(A, B, N)
28 { -i=O; do
29 : : _i<N -> A.a[_iJ=B.a[_iJ; _i•_i+l
30 : : else -> break
31 od; _i=O;}
32
33 /• m :=minimal m s.t. A[mJ.
34 0 if all elements of A are false */
35 inline array_min_true(A, N, m)
36 { _i=O; do
37 : : Ci<N) -> if
38 .. !A.a[_iJ -> _i=_i+l

6Note that the source code can also be obtained fromhttp://www.cwi.nl/-ysu/sources/HAVi or
by contacting the author.

Y.S. Usenko I Science of Computer Programming 43 (2002) 1-33

39 : : else -> break
40 fi;
41 :: else-> break
42 od; m = (_i==N -> 0 : _i); _i=O;}
43
44 /* n_on := number of true elements of A */
45 inline array_n_true(A, N, n_on)
46 { n..on=O; _i=O; do
47 : : Ci<N) -> n_on=(A.aLi]->n_on+1 :n_on) ;_i•_i+1
48 : : else -> break
49 od; _i=O;}
50
51 /* assign false to N first elements of A*/
52 inline array-false(A, N)
53 { -i=O; do
54 : : (_i<N) -> A.a[_i]=false; _i=_i+l
55 ::else-> break
56 od; _i=O;}
57
58 #define NETWORK..RESET_WAIT_URLS rcv[n]?NetvorkReset,_,ib,nst;\
59 atomic{d_step{array..false(vait,N);array..false(URLs,N);\
60 il=O;fl=O;m=O;n_on=O};goto LE}
61
62 #define NETWORK..RESET_URLS rcv[n]?NetvorkReset,_,ib,nst;\
63 atomic{d_step{array-false(URLs,N);\
64 il=O;fl=O;m=O;n_on=O};goto LE}
65
66 #define NETWORK..RESET rcv[n]?NetvorkReset,_,ib,nst;\
67 atomic{d_step{il=O;fl=O;m=O;n_on=O};goto LE}
68
69 #define FLIP_OFF..NST_WAIT_URLS flip[n]?1;off!n;\
70 atomic{d_step{array..false(nst,N);array..false(vait,N);array..false(URLs,N);\
71 il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT}
72
73 #define FLIP_OFF..NST_URLS flip[n]?l;off !n;\
74 atomic{d_step{array..:false(nst,N);array..:false(URLs,N);\
75 il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT}
76
77 #define FLIP_OFF..NST flip[n]?l;off!n;\
78 atomic{d_step{array..:false(nst,N);\
79 il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT}
80
81 #define FLIP-OFF flip[n]?1;off!n;\
82 atomic{d_step{il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT}
83
84 bool ib; hidden ABI iabi;
85
86 /*%%%
87 %%% DCMM Process %%%
88 %%%*/
89 proctype DCMM(bool URL; byte n, N; bool _am_on)
90 { bool am..on; ABI nst, vait, URLs;
91 byte il,fl,m,n_on; bool d; byte _i;
92
93 d..step{ am..on=_am_on; array..:false(nst,N); array..:false(vait,N);
94 array..false(URLs,N); il=O; fl=O; m=O; n_on=O; d=false; _i=O;}

27

28 Y.S. Usenko/Science of Computer Programming 43 (2002) 1-33

95 !NIT:
96 if
97 .. !am_on -> flip(n]?1; on!n; atomic {am..on=true; goto !NIT}
98 . . am_on -> if
99 : : NETWORK..RESET

100 : : FLIP_OFF
101 fi;
102 fi;
103
104 LE:
105 atomic{
106 d_step{array_min_true(nst,N,il);} /* il calculation*/
107 if
108 .. il==n -> d_step{array_assign(Yait,nst,N); Yait.a[n]=false;
109 URLs.a[n]=URL; il=O;} goto LEIL;
110 .. else
Ill fi;}
112
113 LE1:
114 if
115 .. send[il] !DMCapabilityDeclaration(n,URL,iabi); goto LEIF
116 .. rcv[n]?DMLeaderDeclaration,_,ib,iabi; goto LE1;
117 .. rcv[n]?DMCapabilityDeclaration,_,ib,iabi; goto LE1;
118 . . NETWORK..RESET
119 .. FLIP_OFF..NST
120 fi;
121
122 LEIF:
123 if
124 .. send[il] !DMCapabilityDeclaration(n,URL,iabi); goto LEIF
125 .. rcv[n]?DMLeaderDeclaration,fl,ib,URLs; goto AOS
126 .. rcv[n]?DMCapabilityDeclaration,_,ib,iabi; goto LEIF
127 .. NETWORK..RESET
128 .. FLIP_OFF..NST
129 fi;
130
131 LEIL:
132 atomic{d_step{array_n_true(Yait,N,n_on);}
133 LEIL1:
134 if
135 .. n_on==O -> d_step{array_assign(Yait ,nst,N);
136 Yait.a(n]=false;
137
138
139
140
141

array_min_true(nst,N,fl);
array_min_true(URLs,N,m); /*final leader calculation*/
fl=(m==O->fl:m); m=O;}

142 goto LEILS;
143 : : else
144 fi;}
145
146 LEIL2:
147 if
148 .. rcv[n]?DMCapabilityDeclaration,m,d,iabi;
149 atomic{d_step{n_on=(yait.a[m]->n-on-1:n._on);

YS. Usenko/Science of Computer Programming 43 (2002) 1-33

150 wait.a[m]=false; URLs.a[m]=d; m=O; d=false}; goto LEIL1; }
151 .. rcv[n]?DMLeaderDeclaration,_,ib,iabi; goto LEIL2;
152 .. NETWORK..RESELWAILURLS
153 .. FLIP-OFF..NSLWAIVJR.LS
154 fi;
155
156 LEILS:
157 atomic{d..step{m=O; d=true;} /* final leader is informed the last */
158
159 LEILS1:
160 if
161 .. (d && (m==fl I I (m<N && !wait.a[m]))) -> m=m+1; goto LEILS1;
162 .. (m==N) -> d_step{d=false; m=fl} goto LEILS1;
163 .. (m==fl && !d && !wait.a[m]) -> m=O; goto AOS;
164 .. else
165 fi;}
166
167 LEILS2:
168 if
169 .. send[m] !DMLeaderDeclaration(fl,false,URLs);
170 d_step{wait.a[m]=false; m=(m==fl->m:m+1)} goto LEILS1;
171 .. rcv[n]?DMLeaderDeclaration,_,ib,iabi; goto LEILS2;
172 .. rcv[n]?DMCapabilityDeclaration,_,ib,iabi; goto LEILS2;
173 . . NETWORK..RESELWAILURLS
174 . . FLIP _OFF ..NST _WAIT_UR.LS
175 fi;
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

AOS:
if
..
..
..
fi;

AO:
if
..
..
..
fi;

}

leader!n,fl; goto AO;
NETWORK..RESET_URLS
FLIP_OFF..NST_URLS

NETWORK..RESET _URLS
FLIP _OFF ..NST _URLS
goto AO;

192 /*%%%
193 %%% Bus Process %%%
194 %%%*/
195 proctype Bus(byte N)
196 { ABI nst, wait; byte m, n_on, n_on_wait; byte _i;
197
198 d_step{array...false(nst,N); array...false(wait,N); m=O; n._on=O; _i=O;}
199 bus?nst;
200 d_step{array_n_true(nst,N,n_on);}
201
202 Bus_:
203 if
204 :: n_on==O -> on?m; atomic{d..step{nst.a[m]=true; m=O; n_on=1;} goto Busi}

29

30 Y. S. Usenko I Science of Computer Progranuning 43 / 2002) 1-33

205 .. else->
206 if
207 .. on?m; atomic{d_step{nst.a[m]=true; m=O; n_on=n..on+1;} goto Busl}
208 .. off?m; reset_off[m]!l;
209 atomic{d_step{nst.a[m]=false; m=O; n_on=n..on-1;} goto Bus1}
210 fi;
211 fi;
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

Bus1:
atomic{

if

}

(m==N) -> m=O; goto Bus_;
(m<N && !nst.a[m]) -> m=m+1; goto Busl;

.. else
fi;}

reset[m] !nst; atomic{m=m+1; goto Busl};

#define BUFFER...RESET reset[n]?nst;atomic{d_step{queue_clean(nin);\
queue[O] .MTYPE=NetworkReset;array_assign(queue[O] .NST,nst,N);\
array..:false(nst,N);n!n=1}; goto Buffer_}

228 #define BUFFER...RESET_OFF reset_off[n]?1;\
229 atomic{d_step(queue_clean(nin); nin=O}; goto Buffer_}
230
231 /* inlines below use and sideeffect variable _j
232 (assumed that it is defined as byte) */
233
234 /*shifts queue[1 .. nin-1] to queue[O .. nin-2]
235 (if nin<=1 does nothing) */
236 inline queue_shift()
237 { _j=1; do
238 ::_j<nin-> queue[_j-1].MTYPE=queue[_j] .MTYPE;
239 queue(_j-1] .NN=queue[_j] .NN;
240 queue[_j-1] .URL=queue[_j] .URL;
241 array..assign(queue[_j-1] .NST,queue[_j] .NST,N);
242 _j=-j+1
243 : :else-> break
244 od; _j=O;}
245
246 /* assignes default values to queue elements */
247 inline queue_clean(NNN)
248 { _j=O; do
249 : : -j <NNN -> queue_clean_element Lj) ; _j =-j +1
250 : : else -> break
251 od; _j=O;}
252
253 /* assignes default value to an element •/
254 inline queue_clean_element(el)
255 { queue[el] .MTYPE=NetworkReset;
256 queue[el] .NN=O;
257 queue[el] .URL=false;
258 array..:false(queue[el] .NST,N);}
259

YS. Usenkof Science of Complller Programming 43 (2002) 1-33

260 /*'l.'1.%%%
261 %%% Buffer Process %%%
262 %%%!.%%%%%*/
263 proctype Buffer(byte n, N)
264 {byte nin,_i,_j; Message queue[nB]; ABI nst;
265
266 d_step(nin=O; array-false(nst,N); queue_clean(nB); _i=O; _j=O;}

267
268 Buffer_:
269 if
270 .. (nin<nB && nln>O) ->
271 if

272
273
274
275
276
277
278

send[n]?queue[nin];
atomic{nln=nin+l; goto Buffer_};
rcv[n] !queue[O];
atomic{d_step{queue_shift(); nln=nin-1;

queue_clean_element(nln);} goto Buffer_}
BUFFER..RESET
BUFFER..RESET_OFF

279 fi;
280 . . (nln==nB) -> if
28 I . . rev [n] ! queue [O] ;

282 atomic{d_step{queue_sbift(); nln=nln-1;
283 queue_clean_element (nin);} goto Buffer_}
284 . . BUFFER..RESET
285 . . BUFFER..RESELOFF
286 fi;
287 .. (n!n==O) ->if
288 .. send[n]?queue[nin]; atomic{nin=1; goto Buffer_}
289 .. BUFFER...RESET
290 . . BUFFERJlESELOFF
291 f i;

292 fi;
293 }
294
295 /*'l.'1.%%
296 %%'!. Env Process %%%
297 %%%%%%%%%%%%%%%%%%%%%%%%%%/.%%%*/
298 proctype Env(byte N)
299 { ABI nst; byte n_on,j; byte _i;
300
301 d_step{j=O; n_on=O; array_false(nst,N);_i=O}
302 env?nst;
303
304
305
306
307
308
309
310
311
312
313

Env_:
if

314 fi;

flip[j] !1;
atomic{ d_step{nst. a [j] = ! nst. a [j] ; j =O; array _n_true (nst, N ,n_on) ; }

if

fi;
}

(n_on) -> d_step{n_on=O; array_false(nst,N) ;} goto Env_End;
(true) -> n_on=O; goto Env_;

leader?_,_; atomic{j=O; goto Env_;}
(j<(N-1)) -> atomic{j=j+1; goto Env_;}

315 Env..End:

31

32 Y.S. Usenko/ Science of Computer Programming 43 (2002) 1-33

316 leader?_,_; goto Env..End;
317 }
318
319 /*%%
320 %%% !nit %%%
321 %%*/
322
323 init
324 { ABI nst, URLs; byte j; byte _i;
325 atomic{
326 d_step{ array..false(nst,initNDCMM); array..false(URLs,initNDCMM);
327 nst.a[O]=true; URLs.a[1]=true; j=O;}
328 do
329 .. j<initNDCMM ->run DCMM(URLs.a[j],j,initNDCMM,nst.a[j]);
330 run Buffer(j,initNDCMM); j=j+1;
331
332
333
334
335
336 }

.. else -> break;
od; j=O;
run Bus(initNDCMM); run Env(initNDCMM);

}

bus!nst; env!nst;

References

[1] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, August
1999.

[2] J.C.M. Baeten, C. Verhoef, Concrete process algebra, in: S. Abramsky, D. Gabbay, T.S.E. Maibaum
(Eds.), Handbook of Logic in Computer Science, Vol. 4, Chap. 2, Oxford University Press, Oxford,
1994.

[3] J.C.M. Baeten, W.P. Weijland, in: Process Algebra, Cambridge Tracts in Theoretical Computer Science,
Vol. 18, Cambridge University Press. Cambridge, 1990.

[4] D. Dams, J.F. Groote, Specification and implementation of components of a µCRL toolbox, Logic Group
Preprint Series 152, Department of Philosophy, Utrecht University, December 1995. Under revision for
FAC.

[5] J.-C. Fernandez, H. Garavel, R. Mateescu, A. Kerbrat, L. Mounier, M. Sighireanu, CADP: a protocol
validation and verification toolbox, Proc. 8th Conf. on Computer-Aided Verification, New Brunswick,
NJ, USA, August 1996, pp. 437-440.

[6] J.F. Groote, The syntax and semantics of timed µCRL, Tech. Report SEN-R9709, CWI, Amsterdam,
June 1997.

[7] J.F. Groote, B. Lisser, Tutorial and Reference Guide for the µCRL toolset version 1.0, CWI, Amsterdam,
1999. Available from URL http://www.cwi.nl/"mcrl/mutool.html.

[8] J.F. Groote, F. Monin, J. Springintveld, A computer checked algebraic verification of a distributed
summation algorithm, Tech. Report 97-14. Department of Mathematics and Computing Science,
Eindhoven University of Technology, October 1997.

[9] J.F. Groote, A. Ponse, The syntax and semantics of µCRL. in: A. Ponse, C. Verhoef, S.F.M. van
Vlijmen (Eds.), Algebra of Communicating Processes 1994, Workshop in Computing Series, Springer,
Berlin, 1995, pp. 26-62.

[10] J.F. Groote, A. Ponse, Y.S. Usenko, Linearization in Parallel pCRL. Tech. Report SEN-R0019, CWI,
July 2000. Accepted by JLAP.

[11] Grundig, Hitachi, Matsushita, Philips, Sharp, Sony, Thomson, Toshiba, Specification of the Home
Audio/Video Interoperability (HA Vi) Architecture, November 19 1998. Version l.Obeta.

[12] G.J. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall, Englewood Cliffs, NJ,
1991.

Y.S. Usenko/ Science of Computer Programming 43 (2002) 1-33 33

(13] G.J. Holzmann, The model checker SPIN. IEEE Trans. Software Eng. 23 (5) (1997) 279-295.
(14] Bell Labs, Spin version 3.3: language reference. WWW page. http://cm.bell-labs.com/cm/

cs/what/spin/Man/promela.html.
(15] Bell Labs, Spin newsletter. http:/ /netlib.bell-labs.com/netlib/spin/news/news5.html#C, May 1995.

No. 5.
(16] A. Pnueli, The temporal logic of programs, Proc. I 8th IEEE Symp. on Foundation of Computer Science,

1977, pp. 46-57.
(17] J.M.T. Romijn, Model checking the HA Vi leader election protocol, Tech. Report SEN-R9915, CWI,

Amsterdam, 1999. Under revision for FAC.

