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Abstract 

This paper describes two specifications of the leader election protocol from the home audio/ 
video interoperability (HA Vi) architecture. The specifications were written in two concurrent 
specification languages: 11CRL and PROMELA. Two toolsets allowing generation of finite labeled 
transition systems, for 11CRL and PROMELA, respectively, were applied in this case study. 
The results of the state space generation by both tools and some conclusions on the semantical 
differences between PROMELA and pCRL are presented in this paper. © 2002 Elsevier Science 
B.V. All rights reserved. 

I. Introduction 

Currently, in the field of software verification many of the ex1stmg state-of-the
art analysis methods are based on state space representations in the form of finite
state labeled transition systems (FL TS ). It appears that even for completely different 
concurrent languages, FL TSs can be used to describe the behavior of specifications in 
these languages. There are number of tools to manipulate FLTSs, to check different 
kinds of equivalences and preorders, to find deadlocks, to check modal and temporal 
properties, to minimize FL TSs in different ways, etc. It is interesting to study the 
different verification tools supporting concurrent languages, by comparing how fast 
they can generate an FL TS, and how many states and transitions are contained in the 
resulting FLTS. 

In this paper we consider two toolsets that allow state space generation-one for 
the algebraic concurrent language tiCRL [9], and one for the imperative concurrent 
language PROMELA [14]-and compare the state spaces generated by them for one 
particular leader election protocol. 
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The 11CRL toolset [7] has been developed at CWI to support formal reasoning about 
systems specified in µCRL. Its implementation is based on term rewriting [1] and 
linearization techniques [ 1 O]. It allows to generate state spaces, search for deadlocks, 
perform some optimizations on 11CRL specifications, simulate them, and store the 
FL TSs into files readable by certain model checking and minimization tools, like CADP 
[5] developed at INRIA. 

Spin [13] has been developed at Bell Labs and is one of the fastest and most 
widely used tools for protocol verification. It allows formal analysis of PROMELA 
specifications, model checking of LTL formulas [16], generation of state spaces, and 
searching for deadlocks. 

In this case study we consider the leader election protocol from the home audio/video 
interoperability (HAVi) architecture [11]. Previously, this protocol was specified in 
PROMELA and LOTOS, and analyzed formally [17]. Here we take a more abstract 
definition of the protocol, to keep the specification relatively simple and free of many 
implementation details. In [17] several incorrect behaviors of the HA Vi leader election 
protocol were found. We found an incorrect behavior of a similar kind in our model 
of the protocol using simulation of the µCRL specification. 

As the first step, the leader election protocol was modeled in µCRL. After that 
we made a model in PROMELA which closely resembles the behavior of the µCRL 
model. To this end, we deliberately did not use some elements of PROMELA, as us
ing these elements would give rise to semantical differences between the /tCRL and 
the PROMELA models. For example, unlike µCRL, PROMELA has asynchronous 
communication built in. 1 As a result of not using such PROMELA features, the 
PROMELA model is quite different from what a straight formalization of the informal 
description of the protocol could be. However, it is semantically close to the model in 
µCRL, which enables a clear comparison between the state spaces of the two models. 
Finally, we generated the FL TSs for both models and checked them for the absence 
of deadlocks. 

The structure of this paper is as follows. First, we describe the leader election 
protocol informally (Section 2). Then we present the specification in µCRL (Section 3) 
and some details about its specification in PROMELA (Section 4 ). We conclude with 
results of state space generation by the tools (Section 5). We assume a basic familiarity 
of the reader with µCRL and PROMELA; Section 3.1 contains an overview of the 
µCRL syntax that can also be found for instance in [8], and Section 4 contains an 
overview of PROMELA; the language definition of PROMELA can be found on the 
Spin WWW page [14]. For a more systematic introduction to µCRL see [6]. For a 
systematic treatment of ACP style process algebra, which is the basis of µCRL, see 
[2,3]. 

1 Asynchronous communication in PROMELA does not allow one to clean the communication buffer, 
which is needed in the µCRL model of the HA Vi leader election protocol. 
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2. Informal description 

The informal description of the HA Vi leader election protocol appears on pages 
160-162 of [11]. We try to stay as close to the description in [11] as possible; how
ever, our description differs in the places where abstractions from some implementation 
details were made in the µCRL and PROMELA models of the protocol. We put the 
emphasis on behavioral and communicational aspects and abstracted from the exact data 
definitions used in the protocol. This was done to reduce the sizes of the specifications 
and to make the case study applicable to the toolsets. 

The system consists of a number of Device Control Module Managers (DCMM). 
Each DCMM has its own input buffer, from which it gets incoming messages that were 
sent to it by other DCMMs via the bus. The environment may influence the system 
by flipping (i.e. switching on or off) DCMMs, and it may observe that a DCMM has 
finished the election procedure. In both the PROMELA and the µCRL specification all 
of these components are modeled as processes which communicate synchronously. 

The structure of the system is presented in Fig. 1. The communication between two 
DCMMs is done via the buffer of the receiving DCMM. We did not implement the 
communication via the bus, as this would make the specification of the bus more in
volved, and would not add much because communication via the buffer is asynchronous 
anyway. The environment flips the DCMMs synchronously and the bus observes that 
a DCMM was flipped in a synchronous manner as well. 

Each DCMM has its unique ID number by which it can be addressed. If the environ
ment flips a DCMM, the bus observes this change in the network by communicating 
with the DCMM in question. The bus informs all working DCMM processes about the 
changes in the network via their buffers, by first cleaning a buffer and then delivering 
a network reset message into this buffer. 

The leader election is performed among the DCMMs that are "on" in the following 
way. After receiving a NetworkReset(nst) message, a DCMM starts to perform the 

Env 

on,oll 

Fig. 1. Processes and communications in the system. 
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election procedure. It gets the status information about the network from the parameter 
nst. This status information says which DCMMs are currently on in the network. The 
function il(N, nst) is then used to determine the ID of the initial leader. By comparing 
this ID with its own ID, the DCMM can decide whether it is the initial leader or an 
initial follower. The initial leader behaves as follows. 

• From each initial follower m it awaits a DMCapabilityDeclaration(m, URL) mes
sage, from which it learns whether the DCMM m has the URL capability (has 
access to the Internet). 

• Upon reception of the message from each initial follower that is on, the initial 
leader uses the function .fi(N,nst, URLs) to determine the ID of the final leader. 

• It sends a DMLeaderDeclaration(m,fi, URLs) message to each initial follower m, 
thus informing it about the final leader. The final leader is the last one to which 
this message is sent. 

• Finally, it communicates with the environment by a leader action, indicating what 
it regards to be the final leader. 

Each initial follower m behaves as follows: 

• It keeps sending a DMCapabilityDeclaration(m, URL) message to the initial leader 
until it receives a DMLeaderDeclaration(m,fi, URLs) message from it. 

• Finally, it communicates with the environment by a leader action, indicating what 
it regards to be the final leader. 

It is important to realize that at any moment of the election any DCMM may be 
flipped, or may receive a NetworkReset message. In case a DCMM is switched on, it 
awaits for a NetworkReset message. In case of receiving a NetworkReset message, it 
(re )starts the election procedure. The DCMMs ignore any unexpected messages. The 
goal of the election procedure is to elect a final leader. This means that when no 
network resets occur any longer, each DCMM will eventually get information about 
the final leader, and this information will be the same for each DCMM. 

3. Specification in µCRL 

The complete ~iCRL specification can be found in Appendix A or obtained from the 
www. 2 

3.1. Overview of the µCRL syntax 

Starting from a set Act of actions that can be parameterized with data, processes are 
defined by means of guarded recursive equations (these are explained at the end of 
this section) and the following µCRL operators. 

2From http://www.cvi.nl;-ysu/sources/HAVi or by contacting the author. 
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First, there is a constant D (D 1: Act) that cannot perform any activity and is called 
deadlock or inaction. 

Next, there are the sequential composition operator · and the alternative composi
tion operator +. The process x · y first behaves as x and if x terminates successfully, 
continues to behave as y. The process x + y can either behave as x or as y. 

Interleaving parallelism is modeled by the operator [[. The process x JI y is the result 
of interleaving actions of x and y, except that actions from x and y may also synchro
nize to a communication action, when this is explicitly allowed by a communication 
function. This is a partial, commutative and associative function }' : Act x Act-+ Act 
that describes how actions can communicate; parameterized actions a(d) and b(d') 

communicate to }'(a, b )( d), provided d = d'. 

To enforce that actions in processes x and y synchronize, we can prevent actions 
from happening on their own, using the encapsulation operator an. The process as(x) 
can perform all actions of x except that actions in the set H ~ Act are blocked. So, 
assuming y( a, b) = c, in a {a, b} (x II y) the actions a and b are forced to synchronize 
to c. 

We assume the existence of a special action 't ('t ~Act) that is internal and cannot 
be observed directly. The hiding operator •1 renames the actions in the set I~ Act to 't. 

By hiding all internal communications of a process, only the external actions remain 
observable. 

The following two operators combine data with processes. The sum operator 
:Ea:D p(d) describes the process that can execute the process p(d) for any value d 

selected from the data domain D. The process x <l b C> y (where b is a boolean) has the 
behavior of x if b is true and the behavior of y if b is false. Combining these two 
operations we get, for instance, that :Ea:D (a(d) <l d = 0 [> 8) can only perform a(O). 

We apply the convention that · binds stronger than :E. followed by _ <L C>.., the 
parallel operators, and + binds weakest. 

A set of recursion variables with data parameters is used to define processes recur
sively. A recursive equation is an equation defining a recursion variable as being equal 
to a process term that contains µCRL operators and recursion variables. For example, 
X(n:Nat)=a(n)·X(n + 1) is a recursive equation defining the recursive variable X 
which carries a data parameter that ranges over the natural numbers. For each natural 
number m, X(m) performs an infinite sequence of actions a(m) · a(m + 1) · a(m + 2 )· .... 
A recursive equation is completely guarded if all occurrences of recursion variables in 
it are always preceded by an action, and a recursive equation is guarded if there is an 
equivalent equation which is completely guarded. For example, the recursive equation 
in the example above is guarded, while X = X is not. 

3.2. Data types 

The sorts Boo! and Nat represent booleans and natural numbers, respectively. Sort 
ABI is a boolean array with natural indices. It is implemented by keeping the list of 
indices of elements that are true in ascending order. Sorts Message and Status are 
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described below. Finally, the sort Queue is a FIFO queue with elements of the sort 
Message. It is used in the Buffer process definition. 

3.2.J. Constants 
The initial parameters of the protocol are defined as constants. The value of nB 

determines the capacity of the buffers. We have to limit the capacity, because other
wise the state space would become infinite. The value of initNDCMM is the number 
of DCMM processes in the system. The value of initNst is the boolean array of size 
initNDCMM, representing the initial network status (which processes are "on" ini
tially). The value of initURLs contains the information on URL capabilities of the 
DCMM processes. The function ii is defined as the minimal ID of a process that is 
"on". The function .ft is the minimal ID of a URL capable process that is "on", or the 
minimal ID of a process that is "on" if all of the URL capable processes are "off'. 

map 
nB :--+Nat 
initNDCMM :--+Nat 
initNst ;-t ABI 
initVRLs :--+ ABI 

rew 
nB=2 
initNDCMM=3 
initNst = seton(0-0, 0) 
initURLs = seton(O_O, 1) 

map 
ii : Nat x ABI --+ Nat 
.ft : Nat x ABI x ABI --+ Nat 

var 
N:Nat 
nst, VRLs: ABI 

rew 
il(N,nst) = if(eq(nst, O_O), 0, min_on(nst)) 
.fi(N, nst, VRLs) = if(eq(nst, 0_0), 0, 

if(eq( VRLs, O_O),min_on(nst),min_on( URLs))) 

Here O_O is the constant of the sort ABI representing a boolean array in which all of 
the values are "false". The function seton(abi, i) sets the ith element of the array abi 
to "true". 

3.2.2. Messages 
The sort Message is used to define all the messages that DCMM processes can 

receive. The use of abstract data types allows us to define messages having different 
parameters. 
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NetworkReset : ABI -+ Message 

DMCapabilityDeclaration: Nat x Boo!-+ Message 

DMLeaderDeclaration : Nat x ABI -+ Message 

map 
eq : A-fessage x !Yfessage-+ Boo! 

3.2.3. Status 

7 

The sort Status is a simple enumerated type used to represent the statuses in which 
a DCMM process can be. We could use different 1iCRL processes for each status, but 
in this case the two alternatives that are enabled in each status would be repeated in 
each such process. This could be avoided if we had a disrupt mechanism in µCRL. 

The drawback of our approach of having just one process is that we have a lot of 
parameters in each recursive call, most of which are not used in each state of the 
DCMM process. 

The definition of the sort Status is a common way to represent enumerated types 
in µCRL. One could also use the sort Nat directly and the constructors !NIT, etc., as 
maps to the corresponding naturals. However, such an approach leads to rewriting of 
the symbolic infonnation to natural numbers, decreasing the readability of the output 
generated by the tools. 

sort Status 
func 

INIT,LE,LEIF,LEIL,LEILS,AOS,AO :-+Status 
map 

n : Status -+ Nat 
eq : Status x Status -+ Boo! 

rew 
n(INIT)=O n(LE)=l n(LEIF)=2 n(LEIL)=3 

n(LEILS)=4 n(AOS)=5 n(A0)=6 
var a, b : Status 
rew eq(a, b) = eq(n(a), n(b)) 

The meaning of each status abbreviation is explained below in the description of the 
processes. 

3.3. Actions and communication fimction 

The following actions are used in the specification. The names of the actions have 
the following intuition. The actions with underscores correspond to "send" actions, the 
actions without underscores to "read" actions, and the actions with double underscores 
to "communication" actions. The communication function is defined according to this 
intuition. 
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_flip, flip_on, flip_off, __ flip : Nat 
_on, _off, on, off, __ on, __ off : Nat 
_send,send,_rcv,rcv,_send,_rcv: Nat x Message 
_reset, reset, __ reset : Nat x ABI 
_reset_off, reset_off, __ reset_off : Nat 
_leader : Nat x Nat 
j 

comm 
_flip Jflip_on = __ flip 
_flip Jflip_off = __ flip 
_on Jon =_on 
_off loff =_off 

_send jsend = _..send 
_rev I rev = __ rev 

_reset I reset = _reset 
_reset_off I reseLoff = _reseLoff 

3.4. Processes 

3.4.1. DCMM process 
The parameters of the process have the following meaning: St is the status of the 

process; URL is true if the DCMM has URL capabilities; n is the ID of the process; N 
is the total number of processes in the system, nst is the current network status; wait 
is the array of processes from which a message is awaited, or the array of processes 
to which a message still has to be sent; URLs is the array of URL capabilities of 
other processes, collected by the process; il and ft are the initial and final leader IDs, 
respectively; and anLon is true iff the process is on. 

DCMM( St: Status, U RL:Bool, n:N at, N :Nat, nst:ABI, 

wait:ABI, URLs:ABl, il:Nat,fi:Nat, am_on:Bool) = 

The following alternatives are enabled for any status of the DCMM process. It can 
be switched on, if it was off. In this case it communicates with the Bus process by 
an on action, and its status becomes INIT (Initial status). If the DCMM process is 
on, it can receive a NetworkReset(nstl) message and change its status to LE (Leader 
Election). Alternatively, it can be flipped off, communicate with the Bus process by 
off, and change its status to INIT. 

+ 

+ 

+ 

flip_on(n) · _on(n) · DCMM(JNIT, URL,n,N, O_O, 0_0,0_0,0,0, t) <J -iam_on l> o 

E rcv(n, NetworkReset(nstl)) 
1rstl:ABl 

· DCMM(LE, URL,n,N,nstJ,0_0,0_0,0,0,t) <J am_on l> o 

flip_off(n) · _off(n) · DCMM(JNIT, URL,n,N,o_o,o_o,o_o,o,o,f) <J am_on l> o 

If the status of the DCMM process is LE, the following alternatives may be enabled. 
In case the DCMM process is the only process in the network that is "on", it declares 
itself to be the final leader, informs the environment about it, and goes to autonomous 
operation. In case the DCMM process is not the initial leader, it sends its capabilities 
to the initial leader, and its status becomes LEIF (Leader Election Initial Follower). 
In case none of the two above applies, the DCMM process can receive a capability 
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declaration from a process m and then, depending on whether it still has to wait 
for messages from other processes, its status becomes either LEIL (Leader Election 
Initial Leader) or LE/LS (Leader Election Initial Leader Sending). Finally, the DCMM 
process ignores any leader declaration messages in this status. 

( Jeader(n,n)· 

+ 

+ 

+ 

+ 

DCMM(AO, URL,n,N,nst,O_O,upd(O_O,n, URL),O,n,t) <l n_on(nst) = l l> o 

_send(il(N,nst),DMCapabilityDeclaration(n, URL)) 
·DCMM(LEIF, URL,n,N,nst,O_O,O_O,il(N,nst),0,t) <l il(N,nst) =/: n l> o 

c~atd:~ol 
rcv(n, D M Capability Declaration(m, d)) 

· DCMM(LEILS, URL,n,N,nst,setoff(nst,n),upd(upd(O_O),n, URL),m,d), 
O,jf.(N,nst, upd(upd(nst,n, URL),m,d)), t) 

<J 11_on(nst) = 2 l> 
rcv(n, DMCapabilityDeclaration(m, d)) 

· DCMM(LEIL, URL, n, N,nst, setojf(setojf (nst, n ), m ), 
upd(upd(O_O,n, URL),m,d),O,O, t) 

) <l il(N, nst) = n A n_on(nst) =f. 1 l> o 

( L:; L:; rcv(n,DMLeaderDeclaration(m, URLsl))) 
m:Nat URLsl:ABl 

. DCMM(LE, URL,n,N,nst,o_o,o_o,o,o, t) 

) <l St = LE l> o 

If the status of the DCMM process is LEIF, it behaves as an initial follower. This 
means that it can send its capabilities to the initial leader, receive a leader declaration, 
and ignore any capability declaration messages: 

( _send(il,DMCapabilityDeclaration(n, URL)) 
· DCMM(LEIF, URL, n, N, nst, O_O, O_O, ii, 0, t) 

+ 
L:; L:; rcv(n,DMLeaderDeclaration(m, URLsl)) 

m:Nat URLsl:ABl 

· DCMM(AOS, URL,n,N,nst,O_O, URLsl,O,m, t) 

+ 
( L:; L:; rcv(n,DMCapabilityDeclaration(m,dl))) 

m:Natdl:Bool 

· DCMM(LEIF, URL,n,N,nst,0_0,0_0,il,O,t) 

) <:J St = LEIF t> o 
+ 
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If the status of the DCMM process is LEIL, it behaves as initial leader. This meant 
that it can receive a capability declaration from process m and then, depending on if 
this was the last message it was waiting for, its status becomes LEIL or LEILS. The 
DCMM process ignores any leader declarations in this state. 

c~atd:fvo/ 

+ 

+ 

rcv(n, DMCapabilityDec/aration (m, d)) 
· DCMM(LEILS, URL,n,N,nst,setojf(nst,n),upd(URLs,m,d), 

O,fi(N, nst, upd( URLs,m, d)), t) 
<JfLOn(wait) = 1 A wait[m]l> 
rev( n, D M Capability Dec/aration(m, d)) 

· DCMM(LEIL, URL,n,N,nst,setoff(wait,m), upd( URLs,m,d), 0,0, t) 

( I: I: rcv(n,DMLeaderDeclaration(m, URLsl))) 
m:Nat URLsl:ABI 

· DCMM(LEIL, URL,n,N,nst, wait, URLs,0,0, t) 
) <J St = LEIL l> o 

If the status of the DCMM process is LEILS, it informs the initial followers about the 
final leader. If the final leader has to be informed, it is informed last. All messages 
are ignored by the process in this state. After informing the last initial follower, the 
status of the process becomes AOS (Autonomous Operation Sending). 

c~at 

+ 

+ 

+ 

( ..send(m,DMLeaderDeclaration(fi, URLs)) 

+ 

· DCMM(LEILS, URL,n,N,nst,setoff(wait,m), URLs,O,jl,t) 
<Jm -/=ft A n_on( wait) > I l> o 

..send( m, D M Leader Declaration(fi, U RLs)) 
· DCMM(AOS, URL, n,N, nst, Q_O, URLs, O,fi, t) 

<Jn_on( wait) = 1 l> o 
) <J wait[m] l> b 

( I: I: rcv(n,DMLeaderDeclaration(m, URLsl))) 
m:Nat URLsl:ABI 

· DCMM(LEILS, URL, n, N, nst, wait, URLs, O,fi, t) 

( I: I: rcv(n,DMCapabilityDeclaration(m,dI))) 
m:Natdl:Boo/ 

· DCMM(LEILS, URL,n,N,nst, wait, URLs,0,fi, t) 
) <J St = LEILS l> b 
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If the status of the DCMM process is AOS, it informs the environment about the result 
of the election, and its status becomes AO (Autonomous Operation). If the status of the 
DCMM process is AO, it performs a j loop. This is an abstraction of the autonomous 
behavior of the process. 

Jeader(n,fi) · DCMM(AO, URL,n,N,nst,O_O, URLs,O,fi,t) <l St= AOS I> o 
+ 

j · DCMM{AO, URL,n,N,nst,O_O, URLs,0,fi,t) <l St= AO I> o 

3.4.2. Environment 
In µCRL it is not necessary to specify the environment explicitly. The reactive 

system is described by its interaction with the environment. Everything else within 
the system may be abstracted from. However, for verification or testing purposes 
some assumptions about the environment have to be made. This can be done by 
specifying the assumed environment as a process, and putting it in parallel with the 
system. 

In our particular case, the environment may flip DCMM processes in the system any 
number of times, and then stop. But it cannot stop when all of the DCMM processes 
are "off''. 

Env(N:Nat,nst:ABI) = 2::: 
m:Nar 

_flip(m) · Env(N, reverse(nst, m)) 
+_flip(ml · o <l ri_on(reverse(nst,m)) > 0 1> o 
)<lN>m1>0 

3.4.3. Bus 
The bus can observe changes in the network configuration and inform the active 

processes about these changes. It is specified with the help of two processes. The 
process Bus can communicate with a DCMM process by an action on or off to observe 
that this process was flipped. The process Bus1 is used to reset the buffers of all active 
processes in no particular order. 

Bus(N:Nat,nstat:ABI) = 

+ 
I: on(m) · Bus1(N,seton(nstat,m),seton(nstat,m)) 

m:Nat 

I: off( m) · _reseLoff( m) 
m:Nar 

· (Bus(N, setojf(nstat, m )) <l n..on(nstat) = 11> 
Bus1(N, setoff (nstat, m ),setoff (nstat, m))) 

Bus1(N:Nat,nstat:ABI, wait:ABI) = 
I: _reset(m,nstat) · (Bus(N,nstat) <l n_on(wait) = 11> 

m:Nar 
Bus1(N,nstat,setoff(wait,m))) <l wait[m] I> o 
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3.4.4. Buffer 

The process Buffer is a FIFO queue of capacity nB. The FIFO queue can receive a 
message if it is not full, or send a message if it is not empty. By communicating with 
the Bus, the Buffer can be reset in two different ways: by an action reset or reseLoff. 
In the first case it clears its message queue, and puts the network reset message into 
this queue. In the second case it just clears the queue. 

Buffer(N:Nat,n:Nat,q:QMes) = 

+ 

+ 

+ 

( :E send(n,mes) · Buffer(N,n,add(q,mes))) <l nB > size(q) C> o 
mes: Message 

_rcv(n,first(q)) · Buffer(N,n,remjirst(q)) <J-iis_empty(q) C> o 

:E reset(n,nstl) · Buffer(N,n,add((),NetworkReset(nstl))) 
nstl:ABI 

reset_off(n) · Buffer( N, n, ()) 

3.5. System 

The whole system consists of several processes in parallel. First, three pairs of 
DCMM and Buffer processes are composed. Then they are merged together, and merged 
with the Bus process. Finally the Env is merged with the system. 

SYSTEMDCMM(N:Nat,nstat:ABI, URLs:ABI) = 

0 {_flip,flip_on,flip_off} ( 
r {j, __ o n,_off,_reset,_reseLoff} 0 0 {-O n,o n,_off.off,_reset, reset_reseLoff, reseLoff} ( 

r{ __ send} 0 a{_send,send}( 
r{_rcv} o D{_rcv,rcv}( 
DCMM(INIT, URLs[O], O,N, o_o, o_o, o_o, 0, O,nstat[O]) II Buffer(N, 0, () )) 

llr{_rcv} o 8pcv,rcv}( 
DCMM(INIT, URLs[I], 1,N, o_o, o_o, o_o, 0, O,nstat[1]) II Buffer(N, I,())) 

llr{_rcv} o 8pcv,rcv}( 
DCMM(INIT, u RLs[2], 2, N, o_o, o_o, o_o, 0, 0, nstat[2]) II Buffer(N, 2, ())) 

) II Bus(N,nstat) 
) II Env(N, nstat) 

The system is initialized in the following way. 

init SYSTEMDCMM(initNDCMM, initNst, initURLs) 



Y.S. Usenkol Science of Computer Programming 43 (2002) 1-33 13 

4. From µCRL to PROMELA 

PROMELA-the underlying language of SPIN-is a C-like imperative concurrent 
nondeterministic language. It has no explicit parallel operator, but has a process cre
ation mechanism. Communication can happen via explicitly defined channels. It may 
either be synchronous or asynchronous. It is possible to pass data values during the 
communication. There are loops and goto statements. Nondeterminism is modeled by 
the following construction: 

if 

fi 

<alternative 1> 
<alternative 2> 

<alternative n> 

If an alternative starts with a blocking statement, then it is disabled. The blocking 
statements are send and read statements in cases when synchronous communication is 
not possible, and any expression with value 0. Each process may have local variables. 
Shared variables are also allowed. To minimize the state space and interleavings, spe
cial constructions like atomic{ <block>} and d_step{ <block>} are allowed. Atomic 
sequences do not interleave with other processes executions. Sequences within d_step 
are considered to be one statement, meaning that no transfers of control to or from 
d_step are allowed, nor communications with d_step. 

The PROMELA specification of the HA Vi leader election protocol discussed in this 
paper was written based on the µCRL model, in order to preserve the semantics of this 
model as much as possible. The aim was to obtain the same behavior in the PROMELA 
model as in the µCRL model. This was achieved by a simulation of the behavior of 
µCRL constructions in PROMELA. Another approach would have been to use features 
of PROMELA for which there are no counterparts in µCRL. This would have lead to 
a more elegant PROMELA specification, which however would have differed from the 
µCRL model, thus obstructing a clear comparison between the state spaces of the two 
models. 

Some crucial details of the implementation of µCRL constructions in PROMELA are 
described below. The source code of the PROMELA specification of the HA Vi leader 
election protocol can be found in Appendix B or can be obtained from WWW. 3 

4.1. Abstract data types 

There is no support for abstract data type specification in PROMELA. There is built
in support for arrays, structures and enumerated data types though. Operations on data 
types can be encoded as macro definitions or as in-line functions. Computations may 

3 From http: I 1~. cwi.nl;-ysu/ sources/HA Vi, or by contacting the author. 
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be done within d_step blocks, allowing to consider long deterministic computations 
as one step. 

4.2. Conditions and nondeterminism 

The semantics of the conditional operator in PROMELA is slightly different from 
the semantics of conditions in ,HCRL. In PROMELA conditions are statements as in 
imperative languages, meaning that their execution causes a transition from one state to 
the other. In pCRL conditions are not transitions to other states, but restrictions under 
which such transitions are possible. 

Therefore, we cannot simply translate a pCRL expression of the form 

X(d:N) = _a(d) · X(d) <J d < 5 !>- 6 + 
_b(d) · X(d) <J d < 7 !>- 6 

to 

X: 
if 

fi; 

d<5 -> a!d; goto X; 
d<7 -> b!d; goto X; 

beeause this would lead to different semantic behavior. For instance, if d < 5 and there 
is another process Y willing to communicate with our process X via channel b, then one 
of the possible executions of the PROMELA specification above leads to a deadlock. 
Namely, since the condition d < 5 is evaluated to true, X starts waiting for commu
nication via a, while Y is waiting for communication via b. By contrast, the pCRL 
specification above does not contain a deadlock under these circumstances. 

A semantically sound translation of the pCRL specification above is: 

X: 
if 

fi; 

d<5 -> if 

fi; 

a!d; goto X; 

b!d; goto X; 

(d<7)&&! (d<5) -> b!d; goto X; 

In the general case to coITectly translate a pCRL expression with a choice of several 
conditions to PROMELA, we first need to make these conditions disjoint. Disjointness 
means that at most one condition can be true for any set of parameter values. It is 
always possible to make all conditions disjoint in this case; however, instead of n 
conditions in the original fiCRL expression we may end up with 2n - I conditions in 
the resulting PROMELA expression. 
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4.3. Value-passin?J communication 

In the value-passing communication style of µCRL, read and send actions are dual. 

This is due to commutativity of the communication function ''/. The value-passing 

mechanism in pCRL is based on matching parameter values: a(e1) I b(e2 ) = ·r(a, b)(e1) 
if eq( e1, e2 ). That is why both read and send actions can be parameterized by ar

bitrary expressions. The standard value-passing communication is modeled in pCRL 

in the following way: one process perfonns a send action, e.g. _a(5); and the other 

process perfonns a receive action for an arbitra1y value of the data domain, e.g. 

L,11 :Nar a(n ). By putting the two processes in parallel, and forcing them to commu
nicate, we get 

3{-•,a} (-a(5)ll:La(n)) = __ a(5), 
n:1Vat 

which is an action __ a saying that the synchronous communication happened, and 

that the value 5 was passed during this communication. However, this value-passing 

mechanism allows to express more: for instance, the second process may decide to 

receive only naturals that are less than 10 and refuse to communicate (and thus 

receive) other values. This can be expressed as L,n:Nat( a( n) <J n < 10 t> 8 ), which 
will communicate with _a( 5 ), but not with _a(l 5 ), leading to a deadlock in the latter 

case. 
In PROMELA value-passing communication is perfom1ed differently. Send statement 

a!e1 means that the value of e1 is put into the channel a. Read statement a?m means 

that a value is read from the channel a and assigned to the variable m. 
For the case of a read action a, the translation is performed in the following way: 

X(d:D) = L a(n, d) · X(g(n, d)) <J b(d) C> 8 
n:N 

becomes 

X: 
b(d) -> a[d]?n; atomic{d_step{g(n,d)}; goto X} 

Here we assume that a is an array of channels indexed by elements of D, and that the 

corresponding send statements take the form a [d] ! e, not a! d, e. If D is an infinite 

set, then we cannot define such an array in PROMELA, and we need to consider the 

subset of elements of D for which b is true. If this subset is finite, we can make 

the array a to be indexed by those elements only. 4 A remedy to this lack of expres

siveness in PROMELA can be found in [15]. We note, however, that the approach 

described there requires tripling of the communication channels, and the use of shared 

memory. 

4 Actually, this solution only works if the boolean b does not depend on the value that is being received. 
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4.4. Parameterized nondeterminism 

Another pCRL construction is nonbounded and parameterized nondeterminism 
for actions that are not meant to be receive actions. Consider the following process 
equation: 

X(d:N) = 2::::: _a(n,d) · X(g(n,d)) <] /1 ~ d l> b. 
nN 

Here the set of possible alternatives depends on the value of d. Assuming that _a is 
not a read action, we can translate this process equation to PROMELA in the following 
way: 

X: 
n=O; 

TEMP: 
if 

fi 

n<=d -> a!n,d; atomic{d_step{g(n,d)}; goto X;} 
n<d -> atomic{n=n+1; goto TEMP} 

In this case we again have an increase of the state space; this time it is linear in the 
number of alternatives in a state of the ;1CRL process. 

5. State space generation 

Spin and the ;1CRL toolsct were used to generate the entire state spaces of specifi
cations of the HA Vi leader election protocol in PROMELA and pCRL, respectively, 
and to search for deadlocks in these specifications. 

The process of state space generation in Spin is described in Chapter 13 of [ 12]. 
The basic idea is to generate an action/effect matrix for each statement of each process 
type, and to explore the state space step by step by allowing each process to perform 
a transition and adding the resulting state to the discovered state space. 

State space generation for /tCRL is described in [ 4 ]. First the specification is trans
formed into a linear fom1, which is a symbolic representation of a labelled transition 
system, and then the explicit labelled transition system is generated by the pCRL 
instantiator. 

Unfortunately, it is not possible to get the state space as an output of Spin. Therefore, 
it is not possible to compare the generated state spaces. The following results were 
obtained by considering systems with two or three DCMMs and different buffer sizes. 
State spaces for four DCMMs could not be generated by either toolset. In the case 
with three DCMMs and buffer size two we could not get the state space analyzed by 
Spin. The results of state space generation are presented in Table 1. 
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Table I 
Results of state space generation 

2 DCMMs 
Buffer 
size 2 

2 DCMMs 
Buffer 
size 5 

3 DCMMs 
Buffer 
size 1 

3 DCMMs 
Buffer 
size 2 

Table 2 
Command line arguments 

Spin 

Spin 

States: 128.803 
Transitions: 187.339 
Elapsed time: 3.5 s 
Memory: 6.2 MB 

States: 208,215 
Transitions: 301.590 
Elapsed time: 6.3 s 
Memory: 8.7 MB 

States: 107,486,000 
Transitions: 188.381.000 
Elapsed time: 47 h: 01 min 
Memory: 8.35 GB 

States: > 265, 798, OOO 
Transitions: >449,935,000 
Elapsed time: > 190 h 
Memory: > 15.6 GB 

pCRL 

µCRL 

States: 3842 
Transitions: 13,460 
Elapsed time: 7.6 s 
Memory: 6.8 MB 

States: 7292 
Transitions: 26.048 
Elapsed time: 12. 9 s 
Memory: 7.1 MB 

States: 576, 120 
Transitions: 3,290,223 
Elapsed time: 25 min : 20 s 
Memory used: 25 MB 

States: 3,136.289 
Transitions: 18,248,754 
Elapsed time: 2 h: 10 min 
Memory used: 155 MB 

> spin -av HAVi.spin 
> cc -03 -64 -w -o pan 

-DYOSIX..SOURCE -DMEMCNT=35 

> mcrl -regular -tbfile HAVi.mcrl 
> instantiator HAVi 

-DSAFETY -DNOFAIR -DCOLLAPSE 
-g pan.c 

> ./pan -m <depth> 

17 

In order to enable the reader to reproduce our results, the precise command line 
arguments for both tools are given in Table 2. The invocation of Spin with the para
meter -av generates a verifier in pan.c, which is used for the state space generation. 
The verifier is compiled using a C compiler with the maximal optimization (-03 option) 
to run on a 64 bit architecture (-64 option). The option -DMEMCNT=35 sets an upper 
bound on the amount of memory that can be allocated for a maximum of 235 bytes. The 
option -DSAFETY optimizes the verifier for the case where no cycle detection is needed. 
The option -DNOFAIR disables the code for weak-fairness, and the option -DCOLLAPSE 

enables a state vector compression mode. The run-time option -m<depth> of pan sets 
the maximal search depth to <depth> steps. The value of <depth> we used was 
30, OOO for systems with two DCMMs, and 50, OOO, OOO for three DCMMs. In the 
case of the µCRL toolset, first the linearizer was invoked with the option -regular, 

which does not allow the linearizer to introduce infinite data types, and -tbfile, to 
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generate the machine readable linear specification. Next, we use the instantiatior 
to generate the state space. 

From Table I we can conclude that Spin generates more states per second, but the 
resulting state space is much larger than the one generated by the µCRL toolset. 

The results shown above cannot be interpreted as a direct comparison of state space 
generation capabilities of Spin and the µCRL toolset, due to the differences in the un
derlying languages. Namely, the PROMELA code was derived from µCRL code instead 
of being written directly from the informal description. The PROMELA specification 
was optimized to use some of the PROMELA features that do not exist in µCRL. 
On the other hand, some of such features were not deployed for several reasons. The 
unless statement has unclear semantics when used in combination with synchronous 
communication. An attempt to use channels with nonzero capacity as storage instead 
of arrays lead to 250% increase of the state space. 

We note that a native PROMELA specification of the same protocol was analyzed 
in [17]. That model is quite different from ours, as it employs most of the PROMELA 
communication primitives and contains more implementation details. The sizes of the 
state spaces of the PROMELA specification in [17] are comparable to the sizes of the 
state spaces of the PROMELA specification presented here. In [17] several incorrect 
behaviors of the HAVi leader election protocol were found. We found an incorrect 
behavior of a similar kind in our model of the protocol using simulation of the µCRL 
specification. This error is due to the fact that a node can be reset in the middle of 
the leader election as a result of a network change, and there can be a delay before 
another node may be reset. In this interval the second node can send a message to the 
first one, and the first one can declare the second one to be the leader, based on the 
information contained in this message. However, the second node is reset after this, in 
which case it will attempt to elect a new leader, while the first node will not participate 
in this election, as it is confident that the leader has already been elected. 

It is interesting to note that although both Spin and the µCRL toolset use a similar 
approach to state space generation, namely exploitation of the reachable state space by 
analyzing the conditions under which the transitions from a given state are possible, the 
sizes of the resulting state spaces differ substantially on our specification of the HA Vi 
leader election protocol. Two reasons for such differences are in the preprocessing that 
is done before the actual state space generation, and in the exact implementations of 
the algorithms in the toolsets. We believe that in order to uncover the exact differences 
in the state space generation algorithms of the two toolsets, one needs to have a close 
look at the source code of the implementations, and try out some small and specifically 
tailored examples. 
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Appendix A. JLCRL source 5 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!.% 
2 %'/.'/. Constants, Parameters '/.%'/. 
3 %%%%%%%%%%%%!.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
4 map 
5 nB:->NAT 
6 initNDCMM:->NAT 
7 initNst:->ABI 
8 initURLS:->ABI 
9 rew 

JO nB=2 
11 initNDCMM=3 
12 initNst=seton(O_O,O) 

% Limit for Buffer capasity 
'/. Initial Number of processes 
'/. Initial Network status 
'/. Initial URL processes status 

13 initURLs=seton(0_0,1) 
14 map 
15 il: NAT#ABI->NAT 
16 fl: NAT#ABI#ABI->NAT 
17 var 
18 N: NAT 
19 nst,UR.Ls: ABI 
20 rew 
21 il(N,nst)=if(eq(nst,0_0) ,0,min_on(nst)) i".Minimal on 
22 fl(N,nst,URLs)=if(eq(nst,0_0),0, '/.Minimal URL on or minimal 
23 if(eq(URLs,0_0) ,min_on(nst), '/.on if there is no URL. 
24 min_on(URLs))) 
25 
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
27 '/.'/.'/. Bool '/.%% 
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
29 sort Bool 
30 func 

T,F: -> Bool 
map 

and: Bool#Bool -> Bool 
or: Bool#Bool -> Bool 
not: Bool -> Bool 

31 
32 
33 
34 
35 
36 
37 
38 

if: Bool#Bool#Bool -> Bool 
eq: Bool#Bool 

var 
39 b,b1,b2: Bool 
40 rew 
41 
42 

and(T,b)=b 
and(b,F)=F 

-> Bool 

and(b,T)=b 
and(F,b)=F 

5 Note that the source code can also be obtained from http://www. cwi. nl;-ysu/sources/HAVi or by 
contacting the author. 
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43 
44 

45 
46 
47 
48 
49 

or(T,b)=T 
or(b,F)=b 
not(F)=T 
if(T,b1,b2)=b1 
eq(F,F)=T 
eq(T,F)=F 

or(b,T)=T 
or(F,b)=b 
not(T)=F 
if(F,b1,b2)=b2 
eq(F, T)=F 
eq(T,T)=T 

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
51 %%% NAT %%% 
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
53 sort NAT 
54 func 
55 0: -> NAT 
56 x2pl: NAT -> NAT 
57 ..x2p0: NAT-> NAT 
58 map 
59 x2p0: NAT -> NAT 
60 
61 
62 
63 
64 

eq: NAT#NAT -> Bool 
1,2,3,4,5,6: -> NAT 
succ: NAT -> NAT 
gt: NAT#NAT -> Bool 
if: Bool#NAT#NAT-> NAT 

65 var 
66 n,m: NAT 
67 reli' 
68 x2p0(0)=0 
69 x2pO(x2p1(n))=_x2pO(x2p1(n)) 
70 x2pO(..x2pO(n) )=_x2pO(_x2pO(n)) 
71 
72 eq(O,O)=T 
73 eq(x2p1(n),O)=F 
74 eq(O,x2p1(n))=F 
75 eq(_x2p0(n),O)=F 
76 eq(O,_x2pO(n))=F 
77 eq(x2p1(n),_x2pO(m))=F 
78 eq(_x2pO(n),x2p1(m))=F 
79 eq(_x2pO(n),_x2pO(m)=eq(n,m) 
80 eq (x2p1 (n) ,x2p1 (m)) =eq(n,m) 
81 
82 1=x2p1(0) 2=_x2p0(1) 
83 3=x2p1(1) 4=_x2p0(2) 
84 5=x2p1(2) 6=_x2p0(3) 
85 
86 succ(O)=x2p1(0) 
87 succ(x2p1(n))=_x2pO(succ(n)) 
88 succ(_x2pO(n))=x2pl(n) 
89 
90 gt(O,n)=F gt(x2p1(n),O)=T gt(_x2p0(n),O)=T 
91 
92 gt(x2p1(n),_x2p0(m))=not(gt(m,n)) 
93 gt(_x2p0(n),x2p1(m)=gt(n,m) 
94 
95 gt(x2pl(n),x2p1(m))=gt(n,m) 
96 gt(_x2pO(n),_x2pO(m))=gt(n,m) 
97 



Y S. Usenko I Science of Compwer Programming 43 (2002) 1-33 

98 if(T,n,m)=n if (F,n,m)=m 
99 

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
101 %%% ABI(Bool array with NAT indices) %%% 
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
103 sort ABI 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

func 

map 

var 

rew 

o_o ->ABI 
add ABI#NAT ->ABI 

rem ABI#NAT ->ABI 
upd ABI# NAT#Bool->ABI 
n_on ABI ->NAT 
min_on ABI ->NAT 
set off ABI#NAT ->ABI 
set on ABI#NAT ->ABI 
reverse: ABI#NAT ->ABI 
ace ABI#NAT ->Bool 
eq ABI#ABI ->Bool 
if Bool#ABI#ABI ->ABI 

n,m:NAT 
abi,abil:ABI 
b1,b2:Bool 

123 rem(O_O ,n) =O_Q 

21 

124 rem(add(abi,m),n)=if(gt(m,n),add(abi,m),if(eq(n,m),abi,add(rem(abi,n),m))) 

125 
126 upd(O_O,n,F)=o_o 
127 upd(O_O,n,T)=add(O_O,n) 
128 upd(add(abi,m),n,F)=rem(add(abi,m),n) 
129 upd(add(abi,m),n,T)=if(gt(m,n),add(add(abi,m),n), 
130 if(eq(n,m),add(abi,m),add(upd(abi,n,T),m))) 

131 
132 n_on(O_O)=O n_on(add(abi,n))=succ(n_on(abi)) 

133 
134 min_on(O_O)=O min_on(add(abi,n))=n 

135 
136 seton(abi ,n)=upd(abi,n, T) setoff (abi ,n)=upd(abi ,n,F) 
137 
138 reverse(abi,n)=upd(abi,n,not(acc(abi,n))) 
139 
140 acc(O_O,n)=F 
141 acc(add(abi,m),n)=if(gt(m,n),F,if(eq(m,n),T,acc(abi,n))) 
142 
143 eq(O_O,O_O)=T eq(O_O,add(abi,n))=F eq(add(abi,n) ,O_O)=F 

144 eq(add(abi,n) ,add(abil,m))=and(eq(n,m),eq(abi,abil)) 
145 
146 if(T,abi,abil)=abi if(F,abi,abil)=abil 
147 
148 %%%%%%%%%%/.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
149 %%% Messages %%% 
150 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
151 sort Message 
152 func 
153 NetworkReset ABI -> Message 
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154 
155 
156 map 
157 
158 var 

Y S. U.w:nko I Science of Compurer Programming 43 ( 2002) 1-33 

DMCapabilityDeclaration: NAT#Bool ->Message 
DMLeaderDeclaration NAT#ABI -> Message 

eq:Message#Message->Bool 

159 n,m:NAT 
160 abi,abil:ABI 
161 b1,b2:Bool 
162 reY 
163 eq(NetYorkReset(abi) ,NetYorkReset(abil))=eq(abi,abil) 
164 eq(DMCapabilityDeclaration(n,b1),DMCapabilityDeclaration(m,b2)) 
165 =and(eq(n,m),eq(b1,b2)) 
166 eq(DMLeaderDeclaration(n,abi),DMLeaderDeclaration(m,abil)) 
167 =and(eq(n,m),eq(abi,abil)) 
168 eq(NetYorkReset(abi) ,DMCapabilityDeclaration(n,bl))=F 
169 eq(NetYorkReset(abi) ,DMLeaderDeclaration(n,abil))=F 
170 eq(DMCapabilityDeclaration(n,bl),NetYorkReset(abi))=F 
171 eq(DMCapabilityDeclaration(n,bl),DMLeaderDeclaration(m,abi))=F 
172 eq(DMLeaderDeclaration(n,abi),NetYorkReset(abil))=F 
173 eq(DMLeaderDeclaration(n,abi),DMCapabilityDeclaration(m,bl))=F 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 

198 
199 
200 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Status %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sort Status 
func 

INIT,LE,LEIF,LEIL,LEILS,AOS,AO:->Status 
map 

n:Status->NAT 
eq:Status#Status->Bool 

reY 
n(INIT)=O n(LE)=l n(LEIF)=2 n(LEIL)=3 n(LEILS)=4 n(AOS)=5 n(A0)=6 

var a,b:Status 
reY eq(a,b)=eq(n(a),n(b)) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Actions %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!.%% 
act 
_flip, flip_on, flip_off ,_Jlip:NAT 
_on, _off, on, off, __ on, __ off :NAT 
_send, send, ..rev, rev, __ send, ....rcv:NAT#Message 
..reset, reset, _..reset:NAT#ABI 
..reset_off, reset_off, _reset_off:NAT 
_leader: NAT#NAT 
j 

201 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/.%%%%%%%%%%%%% 
202 %%% Communication Function %%% 
203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
204 comm 
205 _flip I flip_on=_flip 
206 Jlip I flip_off=_Jlip 
207 _on I on=_on 
208 _off I off=_off 
209 _send I send= __ send 
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210 ..rcvircv=_..rcv 
211 ..reset I reset=__reset 
212 ..reset_offireset_off=__reset_off 
213 
214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
215 %%% DCMM Process %%% 
216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
217 proc 
218 DCMM(St:Status, URL:Bool, n:NAT, N:NAT, nst:ABI, wait:ABI, URLs:ABI, 
219 il:NAT, fu:NAT, am_on:Bool)= 
220 flip_on(n)._on(n).DCMM(INIT,URL,n,N,0_0,0_0,0_0,0,0,T) 
221 <I not (am_on) I >delta 
222 + 
223 sum(nst1:ABI,rcv(n,Network:Reset(nst1)) .DCMM(LE,URL,n,N,nst1,0_0,0_0,0,0,T)) 
224 <I am_onl >delta 
225 + 
226 flip_off(n) ._off(n).DCMM(INIT,URL,n,N,0_0,0_0,0_0,0,0,F) 
227 <Jam_onl>delta 
228 + 
229 
230 _leader(n,n) .DCMM(AO,URL,n,N,nst,0_0,upd(O_O,n,URL),O,n,T) 
231 <I eq(n_on(nst), 1) I> delta 
232 + 
233 _send(il(N,nst) ,DMCapabilityDeclaration(n,URL)) 
234 ·DCMM(LEIF,URL,n,N,nst,0_0,0_0,il(N,nst),0,T) 
235 <lnot(eq(il(N,nst) ,n))i> delta 
236 + 
237 sum(m:NAT,sum(d:Bool, ( 
238 rcv(n,DMCapabilityDeclaration(m,d)) 
239 ·DCMM(LEILS,URL,n,N,nst,setoff(nst,n),upd(upd(O_O,n,URL),m,d),O, 
240 fl(N,nst,upd(upd(nst,n,URL) ,m,d)),T) 
241 <leq(n_on(nst) ,2) I> 
242 rcv(n,DMCapabilityDeclaration(m,d)) 
243 ·DCMM(LEIL,URL,n,N,nst,setoff(setoff(nst,n),m), 
244 upd(upd(O_O ,n, URL) ,m,d)O,O, T)))) 
245 )<iand(eq(il(N,nst),n),not(eq(n_on(nst),1))) !>delta 
246 + 
247 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1)))) 
248 ·DCMM(LE,URL,n,N,nst,0_0,0_0,0,0,T) 
249 )<ieq(St,LE) !>delta 
250 + 
251 
252 _send(il,DMCapabilityDecalaration(n,URL)) 
253 ·DCMM(LEIF,URL,n,N,nst,0_0,0_0,il,0,T) 
254 + 
255 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1)) 
256 ·DCMM(AOS,URL,n,N,nst,O_O,URLs1,0,m,T))) 
257 + 
258 sum(m:NAT,sum(d1:Bool,rcv(n,DMCapabilityDeclaration(m,d1)))) 
259 ·DCMM(LEIF,URL,n,N,nst,o_o,o_O,il,O,T) 
260 )<leq(St,LEIF) !>delta 
261 + 
262 
263 sum(m:NAT,sum(d:Bool,( 
264 rcv(n,DMCapabilityDeclaration(m,d)) 

23 
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265 ·DCMM(LEILS,URL,n,N,nst,setoff(nst,n) ,upd(URLS,m,d),0, 
fl(N,nst,upd(URLs,m,d)) ,T) 

266 <[and(eq(n_on(wait),1),acc(wait,m))[> 
267 rcv(n,DMCapabilityDeclaration(m,d)) 
268 ·DCMM(LEIL,URL,n,N,nst,setoff(wait,m) ,upd(URLS,m,d),0,0,T)))) 
269 + 

270 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1)))) 
271 ·DCMM(LEIL,URL,n,N,nst,wait,URLs,0,0,T) 
272 )<Jeq(St,LEIL)[>delta 
273 + 
274 
275 sum(m:NAT,( 
276 _send(m,DMLeaderDeclaration(fl,URLs)) 
277 ·DCMM(LEILS,URL,n,N,nst,setoff(wait,m),URLs,0,fl,T) 
278 <[and(not(eq(m,fl)),gt(n_on(wait) ,1))1> delta 
279 + 
280 _send(m,DMLeaderDeclaration(fl,URLs)) 
281 ·DCMM(AOS,URL,n,N,nst,O_O,URLs,O,fl,T) 
282 <[eq(n_on(wait),1) I> delta 
283 )<[acc(wait,m)[>delta) 
284 + 

285 sum(m:NAT,sum(URLs1:ABI,rcv(n,DMLeaderDeclaration(m,URLs1)))) 
286 ·DCMM(LEILS,URL,n,N,nst,wait,URLs,O,fl,T) 
287 + 

288 sum(m:NAT,sum(d1:Bool,rcv(n,DMCapabilityDeclaration(m,d1)))) 
289 ·DCMM(LEILS,URL,n,N,nst,wait,URLs,O,fl,T) 
290 )<Jeq(St,LEILS) J>delta 
291 + 
292 -1eader(n,fl).DCMM(AO,URL,n,N,nst,O_O,URLs,0,fl,T) 
293 <Jeq(St,AOS)J>delta 
294 + 

295 j.DCMM(AO,URL,n,N,nst,0_0,URLs,O,fl,T) 
296 <Jeq(St,AO)J>delta 
297 
298 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
299 %%% Env Process %%% 
300 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
301 Env(N :NAT ,nst :ABI)=sum(m :NAT, (_flip(m) .Env(N ,reverse(nst ,m)) 
302 +_flip(m).delta<Jgt(n_on(reverse(nst,m)),O) J>delta 
303 )<[gt(N,m) [>delta) 
304 
305 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!.%%%%%%%%%%%%%%%%%%%%%%%%% 
306 %%% Bus Process %%% 
307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
308 Bus(N:NAT,nstat:ABI)= 
309 sum(m:NAT,on(m) .Bus1(N,seton(nstat,m),seton(nstat,m))) 
310 + 
311 sum(m:NAT,off(m) . .reset_off(m) 
312 · (Bus(N,setoff(nstat,m))<Jeq(n_on(nstat) ,1) [> 
313 Bus1(N,setoff(nstat,m),setoff(nstat,m)))) 
314 
315 Bus1(N:NAT,nstat:ABI,wait:ABI)= 
316 sum(m:NAT,.reset(m,nstat).(Bus(N,nstat) <Jeq(n_on(wait),1) I> 
317 Bus1(N,nstat,setoff(wait,m)))<Jacc(wait,m) l>delta) 
318 
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319 %%%%%%%/.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
320 %%% Message Queues %%% 
321 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
322 sort QMes 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 

func 

map 

var 

rew 

empty -> QMes 
and QMes#Message -> QMes 

first QMes -> Message 
remfirst: QMes -> QMes 
is_empty QMes -> Boal 
size QMes -> NAT 

mes1,mes2:Message 
q: QMes 

first(add(empty,mes1))=mes1 
first(add(add(q,mes2),mes1))=first(add(q,mes2)) 
remfirst(add(empty,mes1))=empty 
remfirst(add(add(q,mes2),mes1))=add(remfirst(add(q,mes2)),mes1) 
is_empty(empty)=T 
is_empty(add(q,mes1))=F 
size(empty)=O 
size(add(q,mes1))=succ(size(q)) 

343 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!.%%% 
344 %%% Buffer Process %%% 
345 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
346 proc 
347 Buffer(N:NAT,n:NAT,q:QMes)= 

25 

348 sum(mes:Message,send(n,mes).Buffer(N,n,add(q,mes))) <lgt(nB,size(q)) I> delta 
349 + 
350 ..rcv(n,first(q)).Buffer(N,n,remfirst(q)) <lnot(is_empty(q)) I> delta 
351 + 
352 sum(nst1:ABI,reset(n,nst1).Buffer(N,n,add(empty,NetworkReset(nst1)))) 
353 + 
354 reset_off(n).Buffer(N,n,empty) 
355 
356 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!.%%%%%%%%%%%%%%% 
357 %%% The Whole System %%% 
358 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/.%%% 
359 SYSTEMDCMM(N:NAT,nstat:ABI,URLs:ABI)= 
360 encap({_flip,flip_on,flip_off}, 
361 hide ( {j, _on, __ off ,_reset, _reset_off}, 
362 encap({_on,on,_off,off,..reset,reset,..reset_off,reset_off}, 
363 hide({ __ send},encap({_send,send}, 
364 (hide({__rcv},encap({..rcv,rcv}, 
365 DCMM(INIT,acc(URLs,O) ,0,N,0_0,0_0,0_0,0,0,acc(nstat,O)) 11 
366 Buffer(N,0,empty)))) 
367 I I 
368 (hide({__rcv},encap({..rcv,rcv}, 
369 DCMM(INIT ,acc(URLs, 1), 1,N ,o_o ,o_o ,o_o, o ,o ,acc(nstat, 1)) 11 
370 Buffer(N, 1,empty)) )) 
371 11 
372 (hide({__rcv},encap({..rcv,rcv}, 
373 DCMM(INIT,acc(URLs,2),2,N,0_0,0_0,0_0,0,0,acc(nstat,2))1 I 
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374 Buffer(N,2,empty)))) 
375 ) ) 
376 11 
377 Bus(N,nstat) 
378 )) 
379 11 
380 Env(N,nstat) 
381 
382 
383 init SYSTEMDCMM(initNDCMM,initNst,initURLs) 

Appendix B. PROMELA source6 

I #define initNDCMM 3 
2 #define nB 2 
3 
4 typedef ABI {bool a[initNDCMM]}; 
5 mtype = {NetworkReset, DMCapabilityDeclaration, DMLeaderDeclaration}; 
6 typedef Message {mtype MTYPE; byte NN; bool URL; ABI NST}; 
7 
8 chan on = [O] of {byte}; 
9 chan off = [O] of {byte}; 

10 chan send[initNDCMM] = [O] of {Message}; 
II chan rcv[initNDCMM] = [O] of {Message}; 
12 chan reset[initNDCMMJ = [OJ of {ABI}; 
13 chan reset_off[initNDCMMJ = [OJ of {bit}; 
14 chan flip[initNDCMM] = [O] of {bit}; 
15 chan leader = [OJ of {byte, byte} 
16 
17 chan env = [OJ of {ABI} 
18 chan bus = [OJ of {ABI} /• Due to the technical restrictions of spin we 
19 cannot pass arrays as parameters for processes. So we use these channels to 
20 pass nst to Env and Bus •/ 
21 
22 /• inlines use and sideeffect variable _i 
23 (assumed that it is defined as byte) •/ 
24 
25 /• copies N first elements of array B 
26 to the corresponding elements of A •/ 
27 inline array_assign(A, B, N) 
28 { -i=O; do 
29 : : _i<N -> A.a[_iJ=B.a[_iJ; _i•_i+l 
30 : : else -> break 
31 od; _i=O;} 
32 
33 /• m :=minimal m s.t. A[mJ. 
34 0 if all elements of A are false */ 
35 inline array_min_true(A, N, m) 
36 { _i=O; do 
37 : : Ci<N) -> if 
38 .. !A.a[_iJ -> _i=_i+l 

6Note that the source code can also be obtained fromhttp://www.cwi.nl/-ysu/sources/HAVi or 
by contacting the author. 
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39 : : else -> break 
40 fi; 
41 :: else-> break 
42 od; m = (_i==N -> 0 : _i); _i=O;} 
43 
44 /* n_on := number of true elements of A */ 
45 inline array_n_true(A, N, n_on) 
46 { n..on=O; _i=O; do 
47 : : Ci<N) -> n_on=(A.aLi]->n_on+1 :n_on) ;_i•_i+1 
48 : : else -> break 
49 od; _i=O;} 
50 
51 /* assign false to N first elements of A*/ 
52 inline array-false(A, N) 
53 { -i=O; do 
54 : : (_i<N) -> A.a[_i]=false; _i=_i+l 
55 ::else-> break 
56 od; _i=O;} 
57 
58 #define NETWORK..RESET_WAIT_URLS rcv[n]?NetvorkReset,_,ib,nst;\ 
59 atomic{d_step{array..false(vait,N);array..false(URLs,N);\ 
60 il=O;fl=O;m=O;n_on=O};goto LE} 
61 
62 #define NETWORK..RESET_URLS rcv[n]?NetvorkReset,_,ib,nst;\ 
63 atomic{d_step{array-false(URLs,N);\ 
64 il=O;fl=O;m=O;n_on=O};goto LE} 
65 
66 #define NETWORK..RESET rcv[n]?NetvorkReset,_,ib,nst;\ 
67 atomic{d_step{il=O;fl=O;m=O;n_on=O};goto LE} 
68 
69 #define FLIP_OFF..NST_WAIT_URLS flip[n]?1;off!n;\ 
70 atomic{d_step{array..false(nst,N);array..false(vait,N);array..false(URLs,N);\ 
71 il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT} 
72 
73 #define FLIP_OFF..NST_URLS flip[n]?l;off !n;\ 
74 atomic{d_step{array..:false(nst,N);array..:false(URLs,N);\ 
75 il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT} 
76 
77 #define FLIP_OFF..NST flip[n]?l;off!n;\ 
78 atomic{d_step{array..:false(nst,N);\ 
79 il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT} 
80 
81 #define FLIP-OFF flip[n]?1;off!n;\ 
82 atomic{d_step{il=O;fl=O;m=O;n_on=O;am_on=false};goto INIT} 
83 
84 bool ib; hidden ABI iabi; 
85 
86 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
87 %%% DCMM Process %%% 
88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ 
89 proctype DCMM(bool URL; byte n, N; bool _am_on) 
90 { bool am..on; ABI nst, vait, URLs; 
91 byte il,fl,m,n_on; bool d; byte _i; 
92 
93 d..step{ am..on=_am_on; array..:false(nst,N); array..:false(vait,N); 
94 array..false(URLs,N); il=O; fl=O; m=O; n_on=O; d=false; _i=O;} 

27 
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95 !NIT: 
96 if 
97 .. !am_on -> flip(n]?1; on!n; atomic {am..on=true; goto !NIT} 
98 . . am_on -> if 
99 : : NETWORK..RESET 

100 : : FLIP_OFF 
101 fi; 
102 fi; 
103 
104 LE: 
105 atomic{ 
106 d_step{array_min_true(nst,N,il);} /* il calculation*/ 
107 if 
108 .. il==n -> d_step{array_assign(Yait,nst,N); Yait.a[n]=false; 
109 URLs.a[n]=URL; il=O;} goto LEIL; 
110 .. else 
Ill fi;} 
112 
113 LE1: 
114 if 
115 .. send[il] !DMCapabilityDeclaration(n,URL,iabi); goto LEIF 
116 .. rcv[n]?DMLeaderDeclaration,_,ib,iabi; goto LE1; 
117 .. rcv[n]?DMCapabilityDeclaration,_,ib,iabi; goto LE1; 
118 . . NETWORK..RESET 
119 .. FLIP_OFF..NST 
120 fi; 
121 
122 LEIF: 
123 if 
124 .. send[il] !DMCapabilityDeclaration(n,URL,iabi); goto LEIF 
125 .. rcv[n]?DMLeaderDeclaration,fl,ib,URLs; goto AOS 
126 .. rcv[n]?DMCapabilityDeclaration,_,ib,iabi; goto LEIF 
127 .. NETWORK..RESET 
128 .. FLIP_OFF..NST 
129 fi; 
130 
131 LEIL: 
132 atomic{d_step{array_n_true(Yait,N,n_on);} 
133 LEIL1: 
134 if 
135 .. n_on==O -> d_step{array_assign(Yait ,nst,N); 
136 Yait.a(n]=false; 
137 
138 
139 
140 
141 

array_min_true(nst,N,fl); 
array_min_true(URLs,N,m); /*final leader calculation*/ 
fl=(m==O->fl:m); m=O;} 

142 goto LEILS; 
143 : : else 
144 fi;} 
145 
146 LEIL2: 
147 if 
148 .. rcv[n]?DMCapabilityDeclaration,m,d,iabi; 
149 atomic{d_step{n_on=(yait.a[m]->n-on-1:n._on); 
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150 wait.a[m]=false; URLs.a[m]=d; m=O; d=false}; goto LEIL1; } 
151 .. rcv[n]?DMLeaderDeclaration,_,ib,iabi; goto LEIL2; 
152 .. NETWORK..RESELWAILURLS 
153 .. FLIP-OFF..NSLWAIVJR.LS 
154 fi; 
155 
156 LEILS: 
157 atomic{d..step{m=O; d=true;} /* final leader is informed the last */ 
158 
159 LEILS1: 
160 if 
161 .. (d && (m==fl I I (m<N && !wait.a[m])) ) -> m=m+1; goto LEILS1; 
162 .. (m==N) -> d_step{d=false; m=fl} goto LEILS1; 
163 .. (m==fl && !d && !wait.a[m]) -> m=O; goto AOS; 
164 .. else 
165 fi;} 
166 
167 LEILS2: 
168 if 
169 .. send[m] !DMLeaderDeclaration(fl,false,URLs); 
170 d_step{wait.a[m]=false; m=(m==fl->m:m+1)} goto LEILS1; 
171 .. rcv[n]?DMLeaderDeclaration,_,ib,iabi; goto LEILS2; 
172 .. rcv[n]?DMCapabilityDeclaration,_,ib,iabi; goto LEILS2; 
173 . . NETWORK..RESELWAILURLS 
174 . . FLIP _OFF ..NST _WAIT_UR.LS 
175 fi; 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 

AOS: 
if 
.. 
.. 
.. 
fi; 

AO: 
if 
.. 
.. 
.. 
fi; 

} 

leader!n,fl; goto AO; 
NETWORK..RESET_URLS 
FLIP_OFF..NST_URLS 

NETWORK..RESET _URLS 
FLIP _OFF ..NST _URLS 
goto AO; 

192 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
193 %%% Bus Process %%% 
194 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ 
195 proctype Bus(byte N) 
196 { ABI nst, wait; byte m, n_on, n_on_wait; byte _i; 
197 
198 d_step{array...false(nst,N); array...false(wait,N); m=O; n._on=O; _i=O;} 
199 bus?nst; 
200 d_step{array_n_true(nst,N,n_on);} 
201 
202 Bus_: 
203 if 
204 :: n_on==O -> on?m; atomic{d..step{nst.a[m]=true; m=O; n_on=1;} goto Busi} 

29 
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205 .. else-> 
206 if 
207 .. on?m; atomic{d_step{nst.a[m]=true; m=O; n_on=n..on+1;} goto Busl} 
208 .. off?m; reset_off[m]!l; 
209 atomic{d_step{nst.a[m]=false; m=O; n_on=n..on-1;} goto Bus1} 
210 fi; 
211 fi; 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 

Bus1: 
atomic{ 

if 

} 

(m==N) -> m=O; goto Bus_; 
(m<N && !nst.a[m]) -> m=m+1; goto Busl; 

.. else 
fi;} 

reset[m] !nst; atomic{m=m+1; goto Busl}; 

#define BUFFER...RESET reset[n]?nst;atomic{d_step{queue_clean(nin);\ 
queue[O] .MTYPE=NetworkReset;array_assign(queue[O] .NST,nst,N);\ 
array..:false(nst,N);n!n=1}; goto Buffer_} 

228 #define BUFFER...RESET_OFF reset_off[n]?1;\ 
229 atomic{d_step(queue_clean(nin); nin=O}; goto Buffer_} 
230 
231 /* inlines below use and sideeffect variable _j 
232 (assumed that it is defined as byte) */ 
233 
234 /*shifts queue[1 .. nin-1] to queue[O .. nin-2] 
235 (if nin<=1 does nothing) */ 
236 inline queue_shift() 
237 { _j=1; do 
238 ::_j<nin-> queue[_j-1].MTYPE=queue[_j] .MTYPE; 
239 queue(_j-1] .NN=queue[_j] .NN; 
240 queue[_j-1] .URL=queue[_j] .URL; 
241 array..assign(queue[_j-1] .NST,queue[_j] .NST,N); 
242 _j=-j+1 
243 : :else-> break 
244 od; _j=O;} 
245 
246 /* assignes default values to queue elements */ 
247 inline queue_clean(NNN) 
248 { _j=O; do 
249 : : -j <NNN -> queue_clean_element Lj) ; _j =-j +1 
250 : : else -> break 
251 od; _j=O;} 
252 
253 /* assignes default value to an element •/ 
254 inline queue_clean_element(el) 
255 { queue[el] .MTYPE=NetworkReset; 
256 queue[el] .NN=O; 
257 queue[el] .URL=false; 
258 array..:false(queue[el] .NST,N);} 
259 



YS. Usenkof Science of Complller Programming 43 (2002) 1-33 

260 /*'l.'1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
261 %%% Buffer Process %%% 
262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!.%%%%%*/ 
263 proctype Buffer(byte n, N) 
264 {byte nin,_i,_j; Message queue[nB]; ABI nst; 
265 
266 d_step(nin=O; array-false(nst,N); queue_clean(nB); _i=O; _j=O;} 

267 
268 Buffer_: 
269 if 
270 .. (nin<nB && nln>O) -> 
271 if 

272 
273 
274 
275 
276 
277 
278 

send[n]?queue[nin]; 
atomic{nln=nin+l; goto Buffer_}; 
rcv[n] !queue[O]; 
atomic{d_step{queue_shift(); nln=nin-1; 

queue_clean_element(nln);} goto Buffer_} 
BUFFER..RESET 
BUFFER..RESET_OFF 

279 fi; 
280 . . (nln==nB) -> if 
28 I . . rev [n] ! queue [O] ; 

282 atomic{d_step{queue_sbift(); nln=nln-1; 
283 queue_clean_element (nin);} goto Buffer_} 
284 . . BUFFER..RESET 
285 . . BUFFER..RESELOFF 
286 fi; 
287 .. (n!n==O) ->if 
288 .. send[n]?queue[nin]; atomic{nin=1; goto Buffer_} 
289 .. BUFFER...RESET 
290 . . BUFFERJlESELOFF 
291 f i; 

292 fi; 
293 } 
294 
295 /*'l.'1.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
296 %%'!. Env Process %%% 
297 %%%%%%%%%%%%%%%%%%%%%%%%%%/.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ 
298 proctype Env(byte N) 
299 { ABI nst; byte n_on,j; byte _i; 
300 
301 d_step{j=O; n_on=O; array_false(nst,N);_i=O} 
302 env?nst; 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 

Env_: 
if 

314 fi; 

flip[j] !1; 
atomic{ d_step{nst. a [j] = ! nst. a [j] ; j =O; array _n_true (nst, N ,n_on) ; } 

if 

fi; 
} 

(n_on) -> d_step{n_on=O; array_false(nst,N) ;} goto Env_End; 
(true) -> n_on=O; goto Env_; 

leader?_,_; atomic{j=O; goto Env_;} 
(j<(N-1)) -> atomic{j=j+1; goto Env_;} 

315 Env..End: 

31 
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316 leader?_,_; goto Env..End; 
317 } 
318 
319 /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
320 %%% !nit %%% 
321 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ 
322 
323 init 
324 { ABI nst, URLs; byte j; byte _i; 
325 atomic{ 
326 d_step{ array..false(nst,initNDCMM); array..false(URLs,initNDCMM); 
327 nst.a[O]=true; URLs.a[1]=true; j=O;} 
328 do 
329 .. j<initNDCMM ->run DCMM(URLs.a[j],j,initNDCMM,nst.a[j]); 
330 run Buffer(j,initNDCMM); j=j+1; 
331 
332 
333 
334 
335 
336 } 

.. else -> break; 
od; j=O; 
run Bus(initNDCMM); run Env(initNDCMM); 

} 

bus!nst; env!nst; 
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