
I -
ELSEVIER Science of Computer Programming 39 (2001) 215-247

Science of
Computer
Programming

www.elsevier.nl/locate/scico

Analysis of three hybrid systems in timed µCRL

Jan Friso Grootea,b, *, Jos van Wamela
"CWI. P.O. Box 94079. 1090 GB Amsterdam, Netherlands

b Department of Mathematics and Computing Science, Eindhoven University of Technology,
P. 0. Box 513. 5600 MB Eindhoven, Netherlands

Received 1 June 1999; received in revised form 5 January 2000; accepted 9 February 2000

Abstract

We study three simple hybrid control systems in timed µCRL [6]. A temperature regulation
system, a bottle filling system and a railway gate control system are specified component-wise
and expanded to linear process equations. Some basic properties of the systems are analysed and
a few correctness requirements are proven to be satisfied. Although not designed for this purpose,
timed µCRL seems to allow detailed analysis and verification of hybrid systems. The operators
for parallelism and encapsulation are handled using some basic results from [10]. It turns out
that the expansion and encapsulation of a parallel composition of processes generally leads to
a considerable number of potential time deadlocks, which generally tum out to be harmless.
Also inherent to parallelism are the multiple time dependencies between the summands of the
separate components. As a consequence, expansions tend to lead to large numbers of terms.
Various techniques, such as the use of invariants [5], have to be employed to master these
complications. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

In order to deal with systems that use explicit time references in a process algebraic
way, serious efforts have been made in the past. We recall, for instance, the formalisms
defined in [3] (real-time process algebra), and [4] (discrete-time process algebra). As
relevant formalisms with time from other lineages we mention [l, 14-17].

A recent development is timed µCRL [6], which forms an extension of the language
µCRL [7]. The reason why timed µCRL was developed, while already two related
formalisms existed, was that timed µCRL appears to have certain advantages over the
existing formalisms.

For instance, µCRL provides a variable binding construct, conditionals, and all fa­

cilities for reasoning with processes parameterised with data terms [8]. Therefore, not

•Corresponding author. Tel.: +31-20-5924232; fax: +31-20-5924199.
E-mail addresses: jfg@cwi.nl (J.F. Groote), jos@cwi.nl (J. van Warne!).

0167-6423/011$-see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-6423(00)00010-l

216 J.F Groote. J. van Wamel/ Science of Computer Programming 39 (2001) 215-247

much additional theory was needed and time could be incorporated in 11CRL as an
abstract data type. Basically, one new operator had to be added: the binary at operator
('). The expression x't stands for process x, where the initial actions happen at time t.
The expressiveness of timed ,uCRL seems to be at least as big as that of comparable
fonnalisms.

Many verifications have been made in ,uCRL, so that much experience and techniques
are already available. Much of this is expected to generalise easily to the timed variant.
One reason to believe that this will be the case is that timed ,uCRL was designed
in such a way that a specification without references to time has the same intuitive
meaning as a similar specification in the untimed case. Actually, we experienced that
the calculations in this paper have the same 'look and feel' as many studies in untimed
,uCRL. The underlying principles, however, are much more intricate, and require a
deeper understanding of the formalism.

Therefore, the first serious exercises in timed ,uCRL appeared separately in a recent
paper [10]. In that paper various basic results were derived, such as theorems for basic
forms, the expansion of terms with operators for parallelism, elimination of parallelism,
and commutativity of the merge and communication merge (the operators II and I). In
this paper, associativity of both these operators is included in the fonn of axioms. The
results in [10] are directly applicable to the linear process expressions we use in this
paper. We included a brief summary of useful data on timed ,uCRL, mainly from [l O],
in Appendices A and B.

This paper contains the first case studies in timed ,uCRL, and, considering the pop­
ularity and relevance of the subject, we choose to study three hybrid control systems
of quite different kinds.

Hybrid control systems are classified as systems that combine the control of dis­
crete event sequences with the control of continuous processes. Discrete events are,
for instance, switches, incoming and outgoing message sequences, all kinds of human
interaction with a system, etc. Continuous control usually concerns the control of pro­
cesses governed by physical laws through differential equations, describing continuous
relations between physical parameters such as time, place, temperature, voltage, pres­
sure, electro magnetical field strength, etc. In practice, hybrid system theory can be
said to comprise the study of the discrete control of continuous processes.

The first example we provide is about a temperature regulation system. It consists of
a single process, so no parallelism is involved yet. This example, borrowed from [12],
simply serves as a 'warming up'. In contrast with the analysis in [12], where modal
formulas on the system behaviour are checked, we are able to analyse the system
exactly.

The second example concerns a bottle filling system, consisting of two components:
a conveyor belt with bottles and a container with liquid. The parallel composition is
expanded to a single linear process, and the behaviour of the total bottle filling system,
including the performance, is analysed in detail.

In the third example we study a railroad gate control system from [2]. Three pro­
cesses are involved: A process which describes the passing trains, a controller, and

J.F. Groote. J. van Warnell Science of Computer Programming 39 (2001) 215-247 217

x = 21 tv.m_off

on x=3 off
1::::; x:::; 3 1:::; x:::; 3

::i; = -x+5 tum_on ::i:= -x

-X-1

Fig. I. The thennostat automaton.

gates. Again various correctness requirements are proven to be satisfied, for instance,
that a train can never pass when the gates are open. In essence, we apply the same
techniques as in the preceding example, although the analysis is considerably more
involved.

For linearisation in the latter two examples we simply have to apply the Expansion
Theorem from [10], and for the application of encapsulation to linear processes we
have a general result in Appendix B. It turns out that encapsulation generally produces a
number of time deadlocks, which are often redundant, but not always; they may reveal
relevant system errors. In our examples, various techniques have to be employed to
get rid of them, the most effective of which are invariants [5].

Our railroad example lies in the line of research described in [11], where a
generalised railroad crossing is defined, specified and verified in the formalism of
timed automata. As far as a comparison is reasonable, we do not think that we may
claim a substantially easier or shorter way of analysing processes like the railroad gate
controller. We do think, however, that in principle, our approach is more mechanical,
which is due to the algebraic character of the analysis. We therefore expect that µCRL1

will become more significant for the analysis of timed systems as soon as more tools
become available.

2. A thermostat

A small standard example of a hybrid system is given in (12]. It models a simple
thermostat that keeps the temperature between 1° and 3°. In Fig. 1 the automaton is
depicted.

The thermostat behaves as follows. Initially, the temperature is 2° and the heating
is on. The temperature x in the room changes according to the differential equation
i = -x+5. So it will go up. When the temperature has reached 3°, the turn_off action
will take place, switching the heating off. The temperature will now drop according to
the differential equation i = -x. If the temperature has reached 1° the heater will turn

on again, which is represented by the turn_on action.
In [12] it is shown how the HvTEcH tool can be used to check modal formulas.

The authors show, for instance, that their tool can prove a formula stating that the
heating is on for less than 2/3 of the total time. Using timed µCRL, the exact ratio
In 2/ln 6 (~ 0.387) easily follows from the system equation.

218 J.F GroO!e. J. van Wamell Science of Computer Programming 39 (2001) 215-247

The behaviour of the thermostat is specified below in timed pCRL. The system has

two states; on and off, described by the data type OnOff. The variable t describes the

time at which the system enters one of these states, and x describes the temperature at

that instant. If the system is in state on, we want to have a turn_off action at some time

u as soon as the temperature equals 3°, modelled by j(u) = 3, where the function f
describes the variation of the temperature in time.

It is typical for the description of the thermostat that f is only described by a

property, namely that the derivative off equals -f + 5. Therefore, we use the sum

operator to express that we are interested in any function f that satisfies this differential

equation and the side condition f(t) = x.
In order to avoid confusion between bound and free variables, we assume a dif­

ferential operator on functions, written as an accent, and use lambda notation. So,

f' = lct. - f(t) + 5 expresses what is written in Fig. l as i = -x + 5.

Similarly, the system should do a turn_on action when s =off and the temperature

has dropped to 1 °, where the temperature fall is described by the differential equation

i = -x. Note that the invariant condition 1~x~3 is not described in process Th

below, because it is satisfied implicitly.

proc Th(t:Time,x:IR,s:OnOff) =

:z=f:flmc,u:Time turn_off"u Th(u, 3, off)
<ls= on/\ f' =).t. - f(t) + 5 /\ f(t) = x /\ /(u) = 3 t> <5'0 +

l:f:Func.u:Time turn_On'U Th(u, 1, on)
<ls= off/\ f' =At. - f(t) /\ f(t) = X /\ f(u) = 1 t> i)cO

where l:f:Fimc,u:Time abbreviates l:f:Func :Z:u:Time·

We want to understand this description better, and therefore we simplify it by apply­

ing the Sum Elimination Theorem (Appendix A. l). By standard mathematical analysis

we know that there is a unique function f satisfying f' =At. - f(t) + 5 and f(t) =
x. Without going into details on finding the solution, we state that f is given by

f(u) = (x - 5jef-u + 5. Similarly, the function f satisfying f' = At. - f(t) and

f(t) = x is f(u) = xe1-u. Using the Sum Elimination Theorem we may simplify the
previous equation to:

proc Th(t:Time,x:IR,s:OnOff) =

Lu:Time turn_off 'u Th(u, 3, off)
<ls= on/\ (x - 5)e1-u = -2 t> i)cO +

:Z:u:Time turn_oncu Th(u, 1, on)
<ls= off/\ xe1-u = 1 t> b'O

For the first summand of the previous equation, we can derive that

u = t + ln((5 - x)/2). For the second summand it follows that u = t + lnx. Ap­
plying the Sum Elimination Theorem again, we obtain

J.F. Groote, J. van Wamel/Science of Computer Programming 39 (2001) 215-247 219

ln 9

ln 3/2 ln 9/2 ln 27
time

Fig. 2. Temperature versus time.

proc Th(t:Time,x:Rs:OnOff) =

turn_off '(t + ln (5;-x)) Th(t + ln (5 2'), 3, qff) <ls = on l> b'O +
turn_onc(t + ln x) Th(t + ln x, 1, on) <J s = qff 1> b'O

Process Th(O, 2, on) describes the thermostat starting at time 0, at temperature 2,

with the heating on.

Now let

proc !nit = turn_off 'In~ Th' (In~)

Th'(t:Time) = turn_on'(t + ln3) turn_off'(t + ln6) Th'(t + ln6)

Using the Recursive Specification Principle from process algebra (Appendix A.4)

it easily follows that Th(O, 2, on)=!nit. So our final specification of the thermostat

automaton exactly describes the moments where it switches between the states on

and off. From the specification it is obvious that, eventually, the heater is on for a

fraction ln 2/ln 6 of the time. Fig. 2 shows the relation between the temperature and

the time.

3. A bottle filling system

3.1. Specification

We describe a bottle filling system with a buffer container as depicted in Fig. 3.

Ten litre bottles are on a conveyor belt, above which there is an m litre container with

some kind of liquid. When a bottle is under the container a tap is opened, and the

liquid pours from the container into the bottles at a rate of 3 l/s. If a bottle is full the

tap is closed and the conveyor belt starts moving. The next bottle takes 1 s to arrive.

The container is filled at a constant rate of r (2 ~ r < 3) litres per second.

The major question to be answered about this system, is under which conditions the

container will overflow or get empty, when the system starts with a half full container

at some time t.

220 J.F. Groote, J. van Warnell Science of Computer Programming 39 (2001) 215-247

l r l/s

m 1

h 1

ls
01 101

Fig. 3. The bottle filling system.

For a description in timed µCRL we have chosen for two parallel processes. One,
described by a recursive equation defining the process CB, describes the conveyor belt
with the bottles. The other, described by Con, describes the behaviour of the container.

We first describe the behaviour of CB in the various states of sort CBState ~
{move, n.fill, sfill} in detail:

I. CB(tb, !, move) denotes the state of the conveyor belt where one bottle has just been
filled, and the next bottle starts moving towards the tap. At time tb + 1 it has reached
the tap, and it indicates by an action startb that the (normal) filling starts. After
this it behaves as CB(tb + 1,0,nfill), i.e., the conveyor belt at time th +I in state
nfill. The bottle under the tap is empty (! = 0).

2. The term CB(tb, !, nfill) represents the process where a bottle is being filled from
time th off at 31/s. If the bottle is full, which takes place at a time t for which
3(t - tb) = 10, a stopb action indicates that the filling should stop. It could also
be that the container becomes empty before the bottle is full, and this is indicated
by an emp!Jb action. From this moment the bottle is being filled at only r litres
per second. Note that in state n.fill the CB process contains some non-determinism:
At time tb + 1i the CB process may generate a stoPb action, or it may receive an
emptyb signal from the container.

3. CB(tb, l,sfill) describes the conveyor belt with a bottle that is (slowly) being filled
at r litres per second, where tb is the moment when the container became empty,
and I the liquid level in the bottle at that moment. Clearly, a stoPb action must take
place when the bottle is full. The moment t when this should happen is described
by l + r(t - tb) = 10.

proc CB(tb:Time, l:~,sh:CBState) =

(CBI) startb'(tb + l) CB(tb + 1,0,nfill)
<I Sb = move I> (i•O +

(CB2)

(CB3)

(CB4)

J.F Groote, J. van Wamel!Science of Computer Programming 39 (2001) 215-247 221

stop h '(th + lf-) CB(th + lf-, 0, move)

<Jsh = nfill r:> b,0 +
'L,1:Time emptyh 'f CB(t, 3(t - th), sfill)

<JSh = nfil/ /\ 3(t - tb) ~ 10 r:> c)c0 +
stoph'(tb+ 10,:-')CB(tb+ 10; 1,0,move)

<J Sb = sfill r:> c)cO

We now describe the behaviour of the container in the various container states

specified by sort CState ~ {inc,dec,dry}:

1. The process Con(tc, h, inc) represents the state of the container with the tap closed,

from time t,. onwards. Parameter h denotes the container contents at time tc. Clearly,

at time u satisfying h + r(u - (.) = m, where m is the capacity of the container, the

container starts to run over. (In the specification below, m is treated as a constant.)

As this is a 'dramatic' action, the behaviour of the system is not further described,

but characterised with a time deadlock. In correct operation, of course, the tap will

have to be opened in time by a startc action.

2. Con(tc, h, dee) describes the non-empty container with the tap open. The parameter

h again represents the contents of the container at time tc. The container may either

become empty at time u, where u satisfies h + r(u - tc) - 3(u - tc) = 0, or stop

filling a bottle before that moment.
3. Con(t", h, dry) describes the container when it is empty while the tap is open. The

liquid that pours in immediately pours out again, until it is indicated that the tap

should close. Closing the tap brings the container back to state Con(tc, 0, inc).

We introduce two constants:

• 1 1 ~ (m - h)/r, which is the number of seconds before a container with a closed

filling tap is full, and

• re ~- h/(3 - r), which is the number of seconds before a container with an open

filling tap is empty.

proc Con(tc:Time,h:IR,sc:CState) =

(Cl) 'L,u:Time startc'U Con(u,h + r(u - tc), dee)

<lSc = ine /\ h + r(u - tc)<m r:> c)cO +
(C2) overj/ow'(t" + rr)c5'(tc + 1/)

<lSc = ine r:> c)cO +

(C3) 'L,u:Time stopc'u Con(u, h - (3 - r)(u - t,.), inc)

<J Sc = dee /\ U < 1:e + le r:> c)cO +

222 J.F Groote, J. van Wamel/Science of Computer Programming 39 (2001) 215-247

(C4) emptyc'Uc +re) Con(tc +re, 0, dry)

<I Sc =dee I> (jc0 +

(C5) I:u:Time stop c 'U Con(u, 0, inc)

<I Sc = dry I> (jcO

The total system can be described by the parallel composition of the conveyor belt
and container processes, where the synchronisation between these components is en­
forced by the ilwoperator.

proc BFS(th :Time, /: IR, sh: CBState, tc :Time, h: IR, Sc: CState)

= OH(CB(tb,l,sh)ll Con(tc,h,sc))

The variables tb and le refer to the local time in CB and Con, respectively, H ~
{startb,start,., stopb,stopc,emptyb,empty"}, and communications are defined by

comm startb I startc = start
stoPb I stopc =stop
emptyb I emptyc = empty

3.2. A linearised variant

In Appendix B general equations are provided for the expansion of the parallel
composition of two processes in linear format to another linear equation. In the same
appendix it is shown how encapsulation may be applied to the resulting process. For
the purpose of combined linearisation and encapsulation it is convenient to consider
each pair of subterms from CB and Con separately.

When the processes CB and Con are put in parallel, each pair of summands CBi, Cj
generates a transformation of the state variables Sb and Sc, e.g., CBI and Cl may
communicate and transform Sb, Sc from move, inc to nfill,dec, respectively. In general,
also additional constraints should be satisfied in order for the transition to take place.
In our analysis this kind of state information, in conjunction with an invariant turns
out to be very useful.

For proving an invariant of BFS(tb, I, sb, tc, h,sc) correct it suffices to only consider
the non-J summands. This is because the b-surnmands do not lead to new states. It turns
out that if we start from states that satisfy Sb=move /\ sc=inc the system can possibly
only reach states that satisfy sh=move /\sc=inc, Sb=nfill /\sc=dec or sb=sfill /\sc=dry,
which corresponds to our intuition.

As invariant we may take the disjunction of the above 3 states. Analysis learns
that this invariant is vital for the cancellation of many (b-)sumrnands. In this bottle
filling example, a full expansion would yield 46 terms, whereas an expansion using
the invariant leads to only 18 terms!

J.F. Groote, J. van Warne!/ Science of Computer Programming 39 (2001) 215-247 223

Given that the invariant holds, process BFS(th, /, sh, 1,., h, Sc) may be characterised by
the following summands:

CBl,Cl.

c-surnmand:

(1)* start'(lb+ 1) BFS(th + 1, 0, nfill, lb + 1, h + r(tb - tc + 1), dee)

<I Sb = move /\Sc = inc /\ lb - tc <'I - 1 I> 8c0

8cB-summand:

(2) 8'(1b + 1) <I Sb= move/\ Sc= inc /\ tb - tc <Tf - 1 t> O'O (~ term 1)

8 Con-summand:

(3) I:u:Time 8<u <I sh = move /\Sc = inc /\ u

~ tb + 1 /\ u < tc + 'I t> 8<0 (~ 1 + 4)

CB1,C2.

autonomous Con-summand:

(4)* overflow'(tc + 'I) OH(CB(tb, l, Sb) II Uc + T f) ~ b'(tc + T f))

<I Sb =move/\ Sc = inc /\ tc - lb~ 1 - 'Cf I> b'O

bcB-summand:

(5) 8'(lh + 1) <I Sb = move /\Sc = inc /\ lb - le~ 'Cf - 1 I> 8<0 (~ 1 + 4)

CB2,C3.

c-summand:

(6)* slop'(tb + lf-)BFS(tb + lf-,0,move,

lb + ~, h - (3 - r)(tb - le + ~), inc)

<I Sb = nfill /\.Sc = dee/\ lb - fc. <Te - lf- t> b'O

8cB-summand:

(7) o'(lb + lf-) <I Sb= nfil/ /\Sc= dee/\ lb - lc<Te - ~I> 8<0 (~ 6)

c5c0 n-summand:

(8) "'""T' O'U<ISb=n.;;ll/\sc=dec/\u Wu: 1me '.J'

~th + lf- /\ u<lc + 'Ce t> b<O (~ 6 + 13)

CB2,C4.

bcs-summand:

(9) b'(tb + ~) <ISh = nfill /\Sc= dee/\ lb - lc~Te - ~I> 8<0 (~ 6 + 13)

c5 Con-summand:

(10) b'(/c + 'Ce) <I Sb = nfill /\Sc = dee /\ tc - lb~ 1j - 'Ce t> '5<0 (~ 13)

224 J.F Groote, J. l'an Wamel I Science of Computer Programming 39 (2001) 215-247

CB3,C3.

Dcs-summand:

(11) L11:Time Lr:Time b'I

<J S1> = nfill /\ s, = dee /\ t ~ u /\ t

~th+ ~/\u < tc+TeC>b'O (i;;;6+ 13)

bcon-summand:

(12) L1:Time Lu:Time b<u
<l sh = nfill /\Sc= dee/\ u ~t /\ t

:(th + ~ /\ U < fc + Te [> {j<O (i;;; 6 + 13)

CB3,C4.

c-summand:

(13)* empty'(tc + Te)BFS(tc + Te,3Uc - th + 1e),sfil/,fc + 1e,O,dry)

<lSfl = nfill /\Sc= dee/\(. - th ~ ~ - Te t> (j<O

c5cs-summand:

(14) " T. b't<l Sh = n;;ll /\Sc= dee/\ t~th + .L..3° /\ t L..tr: 1me J'

~ t, + Te I> b'O (~ 6 + 13)

bcon-summand:

(15) <5'(t, + Te) <J Sh = nfill /\Sc = dee /\ tc - th :(~ - Te t> 0'0 (i;;; 13)

CB4,C5.

c-summand:

(16)* stoP'Ub+ 10,~ 1)BFS(th+ 101~ 1 ,0,move,tb+ 10; 1,0,inc)
<J sh = sjill /\ s,. = dry C> b'O

C>cs-summand:

(17) o'(th + 10; 1) <J Sb= sjill /\Sc= dry C> (ic0 (~ 16)

(18) c)'(th + 10,~ 1) <J sh = sjill /\Sc = dry I> (jcO (~ 16)

Some elementary calculations show that only the summands marked with * remain;
the others can be eliminated. Behind the non-marked summands it is indicated by
which marked summands they are absorbed. The resulting expression may be simplified
further:

1. The time parameters tb and le take on the same value in each non-vanishing
summand. Therefore, the system can be characterised with a single time parameter
t, which follows by an application of RSP.

J.F Groote, J. van Warnell Science of Computer Programming 39 (200/) 215-247 225

2. The states Sh = move/\ Sc = inc, Sb = nfill I\ Sc = dee and sh = sfill I\ Sc = dry

may be characterised by the natural numbers I, 2 and 3, respectively.

3. Process aH(CB(tb, l,sh) II (t, + Tf) ~ 13'(tc + T 1)) in summand (4) is easily proven

equal to 13'(tc + TI).

Consider the following process specification:

proc BFS'(t:Time,s:N,l:IR,h:IR) =

(l') start'(t+ I)BFS'(t+ 1,2,0,h+r)

<J s = 1 /\ 1 < Tf t> o'O +
(4') overfiow'(t+T1)o'(t+T1)

<J s = 1 /\ rr ~ 1 t> b'O +
(61) stoP'(t + ~)BFS'(t + ~, l, O,h - ~(3 - r))

<J s = 2 /\ .!.Q < 1: C> 13,0 + 3 e

(13') emptyc(t +Te) BFS' (t + Te, 3, 3Te, 0)

<JS = 2 /\ 're~ ~ C> 0'0 +
(161) stop'(t+ 10;-~· 1)BFS'(t+ 10,:- 1,1,0,0)

<Js = 3 C> <:')cO

It follows by RSP that, provided that the invariant holds, BFS(t, /,move, t, h, inc)

= BFS' (t, 1, /, h).

3.3. Behaviour of the bottle filling system

We study the bottle filling system starting on time t, in state 1, with a half-full

container. The capacity m of the container is chosen large enough (say m > 10) to

guarantee normal behaviour, at least for some time. Process BFS'(t,I,l,m/2) can be

analysed in detail, following three possible scenarios.

3.3.1. Optimal filling conditions

The ideal and most simple situation occurs when the contents h of the container

always fluctuates around the same level (m/2). It is easily found that this is the

case when r = ~. The bottle filling system then behaves according to the following

equation:

BFS' (t, 1, l, I)= start'(t + 1) stop'(t + lf) BFS'(t + lf-, 1, 0, I).

Using RSP this system can be simplified to

BFS 1 (t) = start'(t + 1) stoP'(t + lf-) BFS1 (t + lf-),

where BFS'(t, 1, /,m/2) = BFS1(t).

226 J.F. Groote, J. van Wamel/Science of Computer Programming 39 (2001) 215-247

Note that it would even be possible to use a much smaller container and still have a
well functioning bottle filling system. From the conditions in summands (l') and (6')
of BFS' it follows easily that the ideal system works fine for all m > 2r = ~.

3.3.2. Container overflow
Overflow occurs when r > ~. First, we have the equation which describes how the

container is getting fuller, until a moment just before overflow occurs. Note that it is
quite similar to the equation for ideal behaviour.

For h < m - r (this means that 1 < "t"f) no overflow occurs yet:

BFS'(t, 1, l,h) = start<(t + 1)stor(t + 1f-)BFS'(t + lf-, 1, 0, h + lf-<r - f¥)).
We see, as r > ~' that this system is not stable: The container contents h increases

in time, and as long as h' = h + Jf-(r - ~) < m - r no overfow occurs yet.
However, as soon as h ~ m - r an overflow occurs and the system blocks:

BFS' (t, 1.1, h) = overflow'(/+ 'f) b'(t + 'I).

Using RSP we can easily prove that BFS'(t, 1, l,h) equals

proc BFS2(t,h) =

start'(t + l)stop'(t + Jf) BFS2(t + lf-,h + Jf-(r - ~)) <l l < 'I I> b'O +
overflow'(t + 'f) b'(/ + rr) <l 'f ~ 1 1> b'O

3.3.3. Container under_fiow
Underflow occurs when r < ~· First, we have the equation which describes

how the container is getting emptier (a), until a moment just before it gets totally
empty (b).

• For h > 10 - lf-r (this means that 1j! < "t"e) we have that

(a) BFS'(t, I, l,h)=start'(t + l)stop'(t + lf-)BFS'(t+ lf-, 1,0,h- Jf-(~ -r)).

Here we see that the container contents decreases in time. The following steps -
specified by (a), (b) or (c) - depend on the value of h' = h- Jf-<f¥ - r).

• For h ~ 10 - lf-r it follows that

(b) BFS'(t,l,l,h) =

Finally, let

start'(t + I)empty'(t + 3 ~r + "t"e)stor(t + 1f}- + "t"e(l - ~))
BFS'(t + 1f}- + "t"e(l - ~), 1, 0, 0).

proc BFS3(t:Time) = start'(t + 1) empty'(t + 3 ~,.)stop'(t + lf}-) BFS3(t + 1?-)
Using RSP it easily follows that

(c) BFS'(t,1,0,0)=BFS3(t).

J.F Groote, J. van Warne! I Science of Computer Programming 39 (2001) 215-247 227

Tr(ains)
G (ate)

X:;::x'

Fig. 4. The components of the railroad gate controller.

We see that the process under (a), the most general case, converges to (b), which
in tum evolves to (c). During the filling of each bottle the container gets empty, so
that the filling process slows down. Note that when r gets closer to t¥, the moments
on which the empty and stop actions happen both move closer to t + !f.

4. A railroad gate controller

4. 1. Specification

The following example is about a hybrid control system for a railroad crossing.
It originates from [2]. Three processes are involved: Tr(ains), G(ate) and Control.
Schematically, the processes can be represented as in Fig. 4.

The figure is taken from [2]. State transitions of components are denoted by arrows
from one state to another. In the picture of the G(ate) process transitions between boxes
denote transitions to and from all states in the boxes concerned. E.g., the action lowery
changes the states with down and closed to themselves. The components communicate
by the subscripted actions. Moreover, there are two different autonomous transitions,
i.e., the passing of the train (pass) and the completion of opening and closing the gate

(ready).

228 J.F Groote, J. van Wame/!Science of Computer Programming 39 (2001) 215-247

The Tr process is specified by the equation below:

proc Tr(t1:Time,s1:TState) =

(Trl) L:f:Func,r:Time app/t Tr(t, near)
<IS1 =far /\f (t1) ~ -1400 /\f(t) = -1000 /\ 'rft' .48 ~ f'(t1) ~ 52 C> c5<0 +

(Tr2) L:f:Func,t:TimePaSS't Tr(t,past)
<IS1 = near/\ f(tr) = -1000 /\ f(t) = 0 /\ 'rft'.40 ~ f'(t') ~ 521> £5c0 +

(Tr3) L:f:Func,t:Time exit1't Tr(t,far)
<IS1 =past/\ f(tr) = 0 /\ J(t) = 100 /\ 'rft'.40 ~f'(t')~52 t> c5c0

When a train approaches the gate from a great distance (~ - 1 OOO m) it has a
velocity 48 ~i ~ 52 m/s. As soon as it passes a detector placed at -1 OOO m a signal
app1 is sent to the controller (Trl). The train may now slow down according to the
inequality 40~i~52m/s, and pass the gate (Tr2). After lOOm another detector signals
exit1 to the controller (Tr3). A new train may come after the current one has passed
the second detector, but only at a distance ~ 1500 m.

The gate's signals lower9 and raise9 are driven by the controller. The gate lowers
from 90° to 0° at a constant rate of 20° /s, and it raises from 0° to 90° at the same
rate. The gate must always accept controller commands.

proc G(ty:Time,s11 :GState, r:IR) =
(Gal) I:u:Time lowery'U G(u, down, 90)

<I Sy = open I> ()cO +
(Ga2) Lu:Time lowerg'U G(u, closed, 0)

<I Sg = closed I> c)cO +
(Ga3) LJ:Func,u:Time lower0 <u G(u, down,f(u))

<ISg = up/\f(tg) = r /\f(u)~90/\ 'r/t.f'(t) = 201> c5<0 +
(Ga4) L:.r:Func,u:Time lower g'U G(u, down, f(u))

<ls9 =down/\ f(tg) = r /\ 0 ~f(u) /\ 'r/t.f'(t) = -20 I> c)cO +
(Ga5) L:f:Func,u:Time ready•u G(u, closed, 0)

<!Sy = down/\ f(t11) = r /\ 0 = f(u) /\ 'r/t.f' (t) = -20 1> c)cO +
(Ga6) :l::u:Time raisey'U G(u, up, 0)

<1s9 = closed I> c)cO +
(Ga7) I:u:Time raise1/u G(u, open, 90)

<I Sy = open I> c5<0 +
(Ga8) L:f:Func,u:Time raisey'U G(u, up,f(u))

<ISg =up /\f(t9) = r /\f(u)~90 /\ 'r/t.f'(t) = 20 I> c)cQ +
(Ga9) L:f:Func,u:Time raiseg'U G(u, up,f(u))

<ls9 =down/\ f(t9) = r /\ 0 ~f(u) /\ 'r/t.f'(t) = -201> c)cO +
(Gal 0) L f:Func,u:Time readycu G(u, open, 90)

<lsy = up/\f(t0) = r /\f(u) = 90 /\ 'r/t.f'(t) = 201> c)cO

J.F. Groote, J. van Wamel/Science of Computer Programming 39 (2001) 215-247 229

The controller is driven by train detector signals app1 and exit1, and it should be able
to receive these at any time. After an app1 signal has been issued, it takes the controller
at most 5 s to send the command lower" to the gate. After receiving an exit1 signals
it takes at most 5 s to send a raisec signal to the gate.

Fault tolerance considerations prescribe that exit1 signals should always be ignored
if the gate is about to be lowered, and that app1 signals always should cause the gate
to go down. The controller process uses delay d:Time to keep track of how long it
has been preparing already for sending a message. State go..up denotes the state where
the controller is bound to send a raise" signal, and in go..down the controller is bound
to send a lower c signal.

proc Control(tc:Time,sc:CState,d:Time) =
(Cl) :Ev:Time appc'v Control(v, go..down,d + v - le)

<ISc = go_down /\ lc~V~tc + 5 - dr> 0'0 +
(C2) :Ezi:Time app/V Control(v, go_down, 0)

<I Sc= go_up /\le ~V~lc + 5 - d r> c5c0 +
(C3) :Ev:Time appc 'V Control(v, go_down, 0)

<I Sc = idle/\ le~ V r> 0'0 +
(C4) :E,,:Time exifc'V Control(v, go_up, d + v - le)

<I Sc= go_up /\ lc~V~tc + 5 - d r> c5c0 +
(CS) :Ev:Time exitc'V Control(v, go_up, 0)

<I Sc = idle /\ fc ~ V r> 0'0 +
(C6) :E,,:Time exifc'v Control(v, go..down,d + v - tc)

<I Sc= go_down /\ fc ~v~tc + 5 - d r> c5c0 +
(C7) :Ev:Time raisec'V Control(v, idle, 0)

<I Sc = go _up /\ tc ~ V ~ tc + 5 - d r> JcO +
(C8) :E,.:Time lowerc'V Control(v, idle, 0)

<I Sc = go_down /\ tc ~ V ~tc + 5 - d r> JcO

4.2. Simplification of the components

The conditions in the Tr and G processes may be simplified, because upper and
lower bounds for the values of the time parameters t and u, respectively, can be
derived. After some elementary manipulations we obtain the process Trains: (We will

not go into the details of the calculations.)

proc

(TI)

(T2)

(T3)

Trains(t1:Time,s1:TState) =

:Er·T' e app/t Trains(t,near)
.un 400 ~

<I s1 =far /\ fr + 52 ~ t r> u'O +
:E ·T' pass't Trains(t,past)

t. ime 1000 ~ 0
<1s1 =near/\ tr + 52 ~t~t1+25 r> u' +

:E ·T' exit1'f Trains(t,far)
t. une 100 10 ~ 0

<1s1 =past/\ t1 + 52 ~t~t1 + 4 r> u'

230 J.F. Groote, J. van Warnell Science of Computer Programming 39 (2001) 215-247

In a similar way, a reduced specification for the gate process can be derived:

proc Gate(t9 :Time,s9 :GState,r:IR) =

(G 1) Lu:Time lower g'U Gate(u, down, 90)
<lSg =open t> o'O +

(G2) Lu:Time lower9 'u Gate(u,closed,O)
<ls g = closed 1> o'O +

(G3) Lu:Time lowerg'U Gate(u,down,20(u - t(1) + r)
90-r ~ 0 + <lSy =up/\ u~tg + 20 t> u'

(G4) Lu:Time lowerf/U Gate(u, down, 20(tg - u) + r)
<Js9 =down/\ u~tg +fa 1> 0'0 +

(GS) readp(tg + fo)Gate(t0 + fo,closed,O)
<1s11 =down 1> 0'0 +

(G6) Lu:Time raise9'u Gate(u, up, 0)
<1s11 =closed 1> O'O +

(G7) Lu:Time raise9'u Gate(u, open, 90)
<lsg =open 1> O'O +

(G8) Lu:Time raise9°u Gate(u, up, 20(u - t9) + r)
90-r ;; 0 <lSy=Up/\u~t9 +20t>u' +

(G9) Lu:Time raisey'U Gate(u, up, 20(t9 - u) + r)
<l s9 = down /\ u ~ fy + :fo 1> 0°0 +

(GlO) ready(t9 + 9~0r)Gate(t11 + 9~0r,open,90)
<lSg =Up I> 0'0

Let

H d<l{ . . } 1 = appl' appc, exzt1, ex1tc
H def { . . l l } 2 = razseg, rarsec, ower9 , owerc

and communications be defined by

comm app1 J appc == app
exitr I exitc = exit
raisey I raisec = raise
lower 9 I lower c = lower

In order to make a modular analysis of the complete system, we split the specification
in two parts. One module contains the trains process and the controller, and the other
module contains the first module together with the gate process. The total system can
now be described by

proc TC(t1:Time,s1:TState,tc:Time,sc:CState,d:Time)

= aH,(Trains(t1,S1) II Control(tc,Sc,d))

J.F. Groote, J. van Warnell Science of Computer Programming 39 (2001) 215-247 231

RGC(t1:Time,s1:TState, tc:Time,sc: CState, d:Time, tg:Time,s9 :GState, r:~)

= aH2(TC(t1,S1,tc,Sc,d)ll Gate(tg,Sg,r))

4.3. Expansion and analysis of process TC

The first step in the linearisation of the railroad gate controller process is the
linearisation of the system module aH1 (Trains(t1. St) II Control(tc,Sc,d)).

4.3. 1. Encapsulation
In a similar way as in Section 3 .2 we have to start by expanding and encapsulating

the equation for TC, according to Theorem B.2. For this purpose, we identify p with
Trains and q with Control. Five different L'.1-summands are distinguished.

First, we only consider the non-b summands, namely ..11, L'.12, Ll3:
..11 consists of the c-summands (communications between Trains and Control):

aH1 en I c1), aH1CTI I c2),aH,(TI I C3),aH1CT3 I C4), aH1 cn 1 cs), aH1CT3 I C6);
..12 consists of the autonomous Trains-summands:

aH1 (T2L Cl), ... , aH1 (T2 L C8);
L'.13 consists of the autonomous Control-summands:

aH1 (C7LTI), aH, (C7LT2), aH1(C7LT3), aH1 c csLTI), aH1 ccs~r2), aH1 c cs LT3).
Expansion of the various terms is straightforward. It leads to the following set of

terms:

C-summands:
Tl,Cl.

(TC 1) Lr:Time app't TC(t, near, t, go_down, d + t - le)

<Js1 =far/\ Sc = go_down /\ max(t1 + ~o~ ,tc) ~ t ~tc + 5 - d r:> b<O
Tl,C2.

(TC2) Lr:Time app't TC(t, near, t, go_down, 0)

<IS1 =far /\sc = go_up /\max(t1 +~02°,tc)~t~tc+5 - d r:> £5c0
Tl,C3.

(TC3) Lt:Time app't TC(t, near, t, go_down, 0)

<1 St =far /\Sc = idle /\ max(t1 + ~o~, tc) ~ t r:> b<O

T3,C4.

(TC4) Li:Time exit't TC(t,far, t, go_up, d + t - tc)

T3,C5.

<I St =past /\Sc = go_up /\ max(t1 + 15°2°, tc) ~ t

~min(tt + lj.tc + 5 - d)b<O

(TC5) Li:Time exit<t TC(t,far, t, go_up, 0)

<Js1 =past/\ Sc = idle/\ max(t1 + 15°~, tc) ~t ~t1 + .!j r:> b<O

232 J.F Groote. J. van Wamel/ Science of Computer Programming 39 (2001) 215-247

T3,C6.

(TC6) Lr:Time exiN TC(t,far, t, go_down, d + t - tc)

<l s 1 =past /\Sc = go_down /\ max(t1 + 15°~, tc) ~ t
~min(t1 + 3;f ,tc + 5 - d) r> b<O

Autonomous Trains-summands:
T2,C{3,5}.

(TC7) Lr:TimepasS't TC(t,past, (.,idle, d)

<ls 1 = near /\ Sc = idle /\ max(t1 + 1 ~~o, tc) ~ t ~ t1 + 25 r> b'O
T2,C{l,2,4,6, 7,8}.

(TC8) Lt:Timepass't TC(t,past, (.,Sc, d)

<lS1 =near!\ Sc =f. idle/\ max(tr + 1 ~~0 , tc) ~ t
~ min(t1 + 25, le + 5 d) r> b'O

Autonomous Control-summands:
Tl,C7.

(TC9) L!':Time raisec'V TC(t1,Jar, v, idle,O)

<Js1 =far/\ Sc= go_up /\ tc ~v~tc + 5 - d r> b<O
T2,C7.

(TCIO) L!':Time raisec'V TC(t1, near, v, idle, 0)

<lS1 =near!\ Sc = go_up /\le~ v ~min(l1 + 25, (. + 5 - d) r> b'O
T3,C7.

(TC 11) L!':Time raisec'V TC(t1,pasl, v, idle, 0)

<l s1 =past/\ Sc = go_up /\ tc ~ v ~min(l1 + .!j, tc + 5 - d) r> 6<0
Tl,C8.

(TC12) L!':Time lowerc'V TC(l1,far, v, idle, 0)

<l s1 =far /\Sc = go_down /\ tc ~ v ~le + 5 - d r> 0'0
T2,C8.

(TCl3) Lt':Time lower,'v TC(lt>near, v, idle, 0)

<lS1 = near/\ Sc = go_down /\le~ v ~min(t1 + 25, le + 5 - d) r> b<O
T3,C8.

(TC14) Lr·Time lower,'v TC(tt>past, v, idle,O)

<lS1 =past/\ Sc = go_down /\le~ v~min(t1 + .!j, te + 5 - d) r> O<O

Note that we already made two more steps:

I. All eight autonomous Trains-summands are combined in only two summands;
2. The conditions of the autonomous surnmands are simplified.

These manipulations are quite elementary, and therefore not treated in detail.

J.F Groote, J. van Wamel I Science of Computer Programming 39 (2001) 215-247 233

The proof is still not complete yet, since the Encapsulation Theorem shows that

there are two more main summands to be dealt with: L14 and L15.
L14 consists of the brra;11•1-summands:

LIS consists of the bconrra/-summands:

OH,(C;~Ij), where i E {1,2,3,4,5,6}, j E {l,2,3}.

Now all these tenns can be eliminated from TC. The way to do so, is in principle

based on the identity a't x + b't = a't x, which can easily be derived from the axioms

of µCRLr. So elimination of a tenn with time deadlocks, such as the terms mentioned

above, boils down to a proof that it is included in an autonomous or c-summand. This

job (note that there are 34 such terms) would be quite trying if there was no easier

way to get rid of most of them. Fortunately, the elimination of time deadlocks turns
out to be much easier using an invariant.

4.3.2. An invariant

Starting from the assumption that initially the train is far away and the gates are
open, it is not difficult to formulate an invariant.

Let hc(si, Sc, tr, fc) be defined by

(sr =far/\ Sc = go_up /\ t, = tc) V (st =far/\ s1 =idle/\ tc ~ft+ 5 - d)

V(s1 =past /\Sc = idle /\ tc ~ t1) V (s1 = near /\Sc = idle /\ (. ~ t1 + 5 - d)

V(s1 = near/\ Sc = go_down /\ft = tc).

It is easily verified that Ire is an invariant for TC. Note that for a correctness proof

of the invariant we do not have to take Ll4 and L'.15 into account: Deadlocks do not

represent actions, and therefore do not cause any state transitions.

Now that we have this invariant at our disposal, the majority of the time deadlocks

from Ll4 and LI 5 may be eliminated, because, provided that the invariant holds, the

conditions belonging to most of the time deadlocks considered never become true.

After this reduction, only a handful of time deadlocks are left to eliminate in the

(equational) way sketched above.
So, provided that this invariant holds, TC consists of the terms TC1-TC14. But,

using the invariant, TC may even be reduced further: The summands TC{ 1, 2, 4, 6, 8, 10,

11, 12, 14} are cancelled, and the remaining summands may be rewritten using the

corresponding inequalities in the invariant. Now we can also observe that parameter tc

plays no role any more in conditions or in time labels attached to actions. Therefore

it may be eliminated.
The resulting system is given by

234 J. F. Groote, J. van Wamel I Science of Computer Programming 39 (2001) 215-247

where

proc TC' (t,:Time,s,: TState, sc:CState, d:Time) =

(TC3') "L.r:Time app't TC' (t, near, go_down, 0)

<l s1 =far/\ Sc = idle /\ t1 + 4s°2° ;(t 1> b'O+

(TC51) "L.r:Time exit't TC1 (t,far, go_up, 0)

<l St =past /\Sc = idle /\ f1 + 15~0 ;(t ;(t1 + lj I> b'O+

(TC7') Lt:TimepasS't TC' (t,past, idle, d)
<l St = near /\Sc = idle /\ ft + 1 ~~0 ~ t ;(f1 + 25 I> b'O+

(TC9') Lv:Time raisec'V TC' (ft,far, idle, 0)
<lS1 =far/\ Sc = go_up /\ft~ v ~ t1 + 5 - d I> 6<0+

(TC 13') Lv:Time lower c'V TC' (t1, near, idle, 0)
<1 s1 = near /\Sc = go_down /\ ft;(v ;(ft + 5 - d I> 3,0

4.4. A linearised variant of the railroad gate controller

The following step in the analysis of the railroad gate controller is to expand and
analyse the process RGC(tt,S1,tc,Sc,d,f9 ,s9 ,r) = 0H2(TC(t1,s1,tc,Sc,d)[[Gate(tg,sg,r)),
as specified in Section 4.2, using the equation for process Gate and the linear expression
just derived for TC.

4. 4.1. Encapsulation
In order to provide the reader with a good understanding of the complexity of

the analysis, we first give the various L1-summands a straightforward application of
Theorem B.2 would yield. We identify p with TC' and q with Gate.

Again, five different L1-summands are distinguished:

L11 consists of the c-summands (communications between TC' and Gate):

0H2(TC9' [G;), where i E {6, 7,8,9},

0H2(TC13 1 [Gi), where i E {l,2,3,4};
L12 consists of the autonomous TC' -summands:

0H2(TCaGi), where i E {3,5,7}, j E {1, ... ,10};
L13 consists of the autonomous Gate-summands:

oH2(G;lTCj), where i E {5, 10}, j E {3,5, 7,9, 13};
L14 consists of the byc-summands:

0H2(Tca Gj), where i E {9, 13}, J E {l, ... , 10};
L15 consists of the bcaie-summands:

oH,(G; l TCj), where i E { 1,2, 3, 4, 6, 7, 8, 9}, j E {3, 5, 7, 9, 13}.

So in principle, there are 108 main terms to analyse, 60 of which consist of time
deadlocks. Fortunately, there are quite easy ways to get rid of a lot of irrelevant terms.

J.F Groote, J. van Warne! I Science of Computer Programming 39 (2001) 215-247 235

4.4.2. A reachability analysis using a simple invariant
In order to simplify our analysis, we combine the state variables s1,sc and s,1 in a

tuple s = (s1, sc, s0). As a first step in the analysis we may regard each possible .action
of RGC as a transformation of tuple (s1,snsy) to a tuple (s/,sc',s/), and discard the
other conditions. All possible transformations between tuples can be combined in a
directed graph that has tuples as nodes and actions as transition labels.

Starting from initial state (far, idle, open) we come - via the autonomous TC1- and
Gate-summands and communications - across the following states:

0-1 : (far, idle, open)

0-2 : (near, go_down, open)

a3 : (near, idle, down)

0'4 : (near, idle, closed)

a5 : (past, idle, closed)

a6 : (far, go_up, closed)

a7 : (far, idle, up)

a8 : (near,go_down,up)

a9 : (past, idle, down)

0-10 : (far,go_up, down)

We can use this knowledge for a formal approach; provided that the condition
Vi=L.!Os = o-; holds (and, of course, hc(s1,snt1,tc)), process RGC is equal to RGC',
where RGC' satisfies the recursion equation below. Without proof we state that the
6-summands (L14 and L15) are all cancelled right away. Thirty time deadlocks may be
cancelled using Vi=L.lo s = o-;. The other 30 have to be considered separately.

For clarity, we first give the equation for RGC' only by reference to the main
summands of TC' and Gate:

proc RGC' (s:RState, t1:Time, t11 :Time, d:Time, r:IR) =

(1) 3H2(TC3lGl)+3H/TC3lG7)+

(2) aH,(TC13' I Gl)+

(3) aH2(G5LTC7')+

(4) aH,(TC7l G2) + aH,(TC7'~ G6) +
(5) aH,(TC5lG2)+aH,(TC5lG6)+

(6) aH,(TC9' 1 G6) +
(7) 3H2(GIOLTC3 1) +

(8) aH,(TC3' L G3) + aH,(TC3' ~ G8) + aH,(TC3'L GIO) +

(9) 3H2 (GlO~TCI31)+

236 J.F. Groote. J. van Warnell Science of Computer Programming 39 (2001) 215-247

(10) 0H2(TC13' I G3) +

(11) 3112(TC7l G4) + 3112(TC7l G5) + 0112(TC7l G9) +

(12) 3112 (G5~TC5')+

(13) 3112(TC5lG4) + 3112(TC5lG5) + 011/TC5l G9)+

(14) 0H2 (G5~TC9') +

(15) 0112(TC9' I G9)

After quite some elementary calculations we find an expanded equation for RGC':

proc RGC' (s:RState, t,:Time, t9 :Time, d:Time, r:IR) =

(1) Lr:Time app't RGC' (2, t,t9 , 0, r)

<ls = 1 A ft + 4s°2° ::;;; t 1> c5,0 +

(2) Lu:Time lower'u RGC' (3, t1o u, 0, 90)

<ls = 2 /\ t1 ::;;; u ::;;; t1 + 5 - d f> c5,0 +

(3) readY'(ty + fo) RGC' (4, t1o t11 + fo, d, 0)

<ls = 3 A max(t0 + fo, ft + 1 ~~o) ::;;; t1 + 25 f> c)cO +

(4) Lt:Timepass't RGC'(5,t,tg,d,r)

<ls = 4 A t1 + 1 ~~O ::;;; t::;;; t1 + 25 f> c)cO +

(5) Li:Time exit't RGC' (6, t, t9 , 0, r)

<ls = 5 A t1 + 15°2° ::;;; t::;;; ft + ~ 1> c5,0 +

(6) Lu:Time raise'u RGC' (7, f1, u, 0, 0)

<ls = 6 /\ t1 ::;;; u::;;; t1 + 5 - d 1> c)cO +

(7) ready'(tg + 9~0 ,.) RGC' (1, ft, t9 + 9~0 ,., d, 90)

<ls= 71> c5,0 +

(8) Li:Time app't RGC' (8, f, t9, O,r)

<ls= 7 /\ t1 + ~020 <t<t11 + 9~0,. I> c)cO+

(9) ready(t11 + 9~0') RGC' (2, t[, t9 + 9~0 ,., d, 90)

<ls= 8 /\ max(f1, t9 + 9~0'):<f1 + 5 - d 1> c5<0 +

(10) Lu:Time lowerou RGC' (3, f1, u, 0, 20(u - fg) + r)
<J s = 8 /\ f1 < u::;;; min(t1 + 5 - d, f11 + 9~0') 1> c5,0 +

(11) Lt:Timepass't RGC' (9, t, t9 , d, r)

<ls = 3 /\ft+ 1 ~~0 < t <min(t1 + 25, t9 + fo) f> c5<0 +

(12) ready(f11 + fo)RGC'(5,f1,f9 + fo,d,O)

<ls= 9 /\ max(t9 + fo, ft+ 1
5°2°) <t1 +~I> c)cO +

(13) Li:Time exif't RGC'(IO, t, f9 , 0, r)

<ls = 9 /\ t1 + 15~0 ::;;; t::;;; min(t1 + .!p, ty + fo) I> c)cO +

J.F. Groote, J. van Wamel/Science of Computer Programming 39 (1001) 215-247 237

(14) ready(t11 + fo) RGC' (6, tt> t11 + fo, d, 0)

<1 s = 10 /\ max(t,, ty + fo);::; t1 + 5 - d r:> b'O +

(15) L:u:Timeraise'u RGC1(7,ti,u,0,20(t9 - u) + r)

<1 s = 10 /\ t1 ;::; u;::; min(t1 + 5 - d, ty + fcJ) C> b'O

4.4.3. A detailed invariant

Again, we use an invariant for further reduction of the system equation. Let !Reds. t1,

ty,d,r) be defined by

d = 0 /\ ((s = 1 /\ r = 90) V (s = 2 /\ r = 90)

V (s = 3 /\ ty;::; t1 + 5 /\ r ~ 90) V (s = 4 /\ r = 0)

V(s = 5 /\ r = 0) V (s = 6 /\ r = 0)

V(s = 7 /\ r = 0) V (s = 8 /\ r = 0)).

Note that !Rcc(s,t1,tg,d,r) implies vi=l...IOS = O';, which was a necessary condition

for proving RGC = RGC'.

Using the above invariant, we may reduce the equation for RGC' considerably. Let

proc RGC" (s:RState, t1:Time, ty:Time,r:IR) =

(1') I::i:Time app't RGC" (2, t, lg, 90)

<Is = 1 /\ t, + ~02° ~ t C> c5<0 +

(2') I::u:Time lower'U RGC"(3, t1, u, 90)

<1 s = 2 /\ t1 ~ u ;::; t, + 5 C> D'O +
(3') ready'(t11 + fa) RGC" (4, t1> t?J + fo, 0)

<Is = 3 C> c5<0 +
(4') L:i:TimePGSS't RGC"(S,t,ty,0)

<Is= 4 /\ t1 + 1 ~~o ~t~t1+25 C> b'O+

(5') 'Zi:Time exif't RGC" (6, t, lq, 0)

<Is = 5 /\ t1 + 15°2° ~ t ~ t1 + ~ C> b'O +

(6') I::u:Time raise'u RGC"(7, t1, u, 0)

<Is= 6 /\ t1 ;::;u;::;t1 +5 C> b'O+

(7') ready'(ty + ¥)RGC"(l,t1,t11 + ¥,90)

<1 s = 7 e> b'O +
(8') I::r:Time app't RGC11 (8, t, fy, 0)

<IS= 7 /\ t1 + ~02° ~t~ty + ¥ C> b'O+

(9') ready(t9 + ¥)RGC"(2,tr,t11 + ~,90)

<IS = 8 /\ lg + ¥ ~ t1 + 5 C> £5'0 +

(101) 'Zu:Time lower'u RGC" (3, li, u, 20(u - ly))

<IS= 8 /\ t1 ;::;u ~min(t1 + 5, fy + ¥) C> b'O

238 J.F. Groote, J. ran Warnell Science of Computer Programming 39 (2001) 215-247

1: <far, idle, open> ...,.llllt---------

,~ +
2:<near,go_down,open>

ready app
1111111 8 :<near, go_down, up> i8lll 7 :<far, idle, up>

,_~ ralwt
3 : <near, idle, down>----- 6:<far,go_up,closed>

"'ey +
pass

4:<near,idle,closed>--------------lll-- 5:<past,idle,closed> "'.t
Fig. 5. Schematic transition system of the railroad gate controller.

It holds that

frc(s1, Sc, t1, (.) /\ !Rcc(s, t1, t9 , d, r) -+ RGC(s, t1, ty, d, r) = RGC" (s, t1, ty, r).

If we abstract from the time conditions we may construct a transition system for the
railroad gate controller as in Fig. 5. Each main summand of RGC" corresponds to a
transition. It is easily proved from the specification of RGC11 that all transitions are
possible, so that the corresponding terms are not always b'O.

Consider Fig. 5. We see that after a train has just passed the gates are going up (7).
From that state the gates may either reach the highest position (1) or there may come a
new train (8). Shortly after the detection of a new train the gates may first completely
open and then lower again (2 -+ 3). The gates may also lower immediately, so before
reaching the highest position.

Some important requirements are obviously satisfied: (a) A train can only pass when
the gates are closed (4 -+ 5); (b) After a train has left the track and no new train
has been detected the gates open and the controller becomes idle again (7 -+ I); (c)
As just argued the system adequately reacts when a new train comes shortly after the
previous one.

5. Concluding remarks

We were slightly surprised to find that it was possible to describe and analyse hybrid
systems in timed µCRL. Using standard process algebraic techniques we could simplify,
and hence understand the behaviour of the systems better. Even various correctness and
performance issues could be verified.

J.F. Groote, J. van Wamel/Science of Computer Programming 39 (2001) 215-247 239

In our opinion, the case studies in this paper show that timed µCRL may become
useful as a formalism for the specification and analysis of hybrid systems. It is unclear
to us, however, whether timed µCRL can actually be used to analyse more com­
plex hybrid systems, and to what extent it may provide answers to control theoretic
questions.

At this moment, the complexity of the verifications is a little worrying, which is
mainly due to the large number of time deadlocks that occur as a result of encapsula­
tion. We saw, for example, in the railroad gate controller, that a simple process such
as TC gives rise to a large number of 'main' terms (54 in total, 34 of which consist
of time deadlocks). Reduction yields a very acceptable result of only five such terms,
but handling the results of the preceding blow-up in the number of terms gives a lot of
work. Considering the current 'state of the art' in timed µCRL, the relative simplicity
of the ultimate results may not fully justify the complexity of the analysis.

We saw that with each example the number of system components increased with
one, and that the complexity of mutual interactions grew significantly with the num­
ber of components. In the linearisations of the latter two examples great numbers of
conditions on time parameters had to be taken into account.

For a large class of untimed processes a programme already exists for carrying out
the linearisation fully automatically. For timed processes the linearisation is consid­
erably more complex, because of the multiple mutual interactions between (the time
conditions of) the various summands of the components, but there may be possibilities
to extend the current linearisator.

It should be obvious that our major future tasks w.r.t. timed µCRL are to study
the problems just mentioned. Hopefully, there are more systematic ways to handle the
linearisation of larger multiple-component systems, time conditions and o-summands.

Throughout this paper we worked without abstraction. It is conceivable that in a
setting with abstraction the bottle filling system and the railroad gate controller could be
simplified even further. However, despite impressive work in continuous time process
algebra, see e.g. [13], the question of how abstraction can be combined with time has
not been clarified satisfactorily yet.

Acknowledgements

We thank Paul van de Bosch from Eindhoven University of Technology for providing
the bottle filling example. Michel Reniers, from the same university, is thanked for his
helpful comments.

Appendix A. Timed µCRL

In this appendix we give a brief summary of timed µCRL as presented in [10],
where various basic results are derived. First, the axiom system pCRL1 for pico CRL
with time is presented. The following step is to incorporate operators for parallelism

240 J.F. Groole .. J. van Wamel/ Science of Computer Programming 39 (2001) 215-247

Table I
Core axioms of pCRL,

Al

A2

A3

A4

AS

x+y=y+x

x + (y + z) = (x + y) + z

x+x=x

(x+y)·z=x·z+y·z

(x·y)·z = x-(y·z)

AT6 x+i5'0=x

A7

SUM!

SUM3

SUM4

SUMS

SUMI!

Cl
C2

Ld:Dx =x

:z=x = :z=x+xd

Ei1,v<Xd +Yd)= :z=x +Er

(LX)·x = Ldo(Xd·x)

(WED Xd =Yd)-+ :Ex= 2::: Y

X<lt1>y=x

x<1f1>y=y

and introduce µCRL1• We work in a setting without the silent step r, and without
abstraction or general operators for renaming. We also define a notion of basic forms
and state that all terms over the signature .E(pCRL1) without process variables are
provably equal to basic forms.

A.I. Axioms for pCRL with time

Atomic actions are the building blocks of processes. Therefore, axiom systems in
process algebra have a set of atomic actions A as a parameter. The actions are pa­
rameterised with data, and w.l.o.g. we may assume that all actions have exactly one
such parameter. For process variables we use x, y, z, ... , and for process terms we use
p, q, r, Choice or alternative composition is modelled by +, and sequential compo­
sition by ·, which is often omitted from expressions. (We write · only in the tables of
axioms.) Deadlock is modelled by 8. Symbols a, b, c,. .. are used to denote elements
from A, or elements from A U { 8} (A,1). We always take care that it is clear to which
set they refer.

Basically, Table 1 lists the 'core' axioms of untimed pCRL, with A6 replaced by
AT6. Axioms Al-A5 and A7 are well known from process algebra, and axiom AT6
expresses that a deadlock at time 0 may always be eliminated from an alternative
composition. The E-operator will be explained below.

Data types in µCRL are algebraically specified in the standard way using sorts,
functions and axioms. For data sorts we use D,E, ... , and for data variables of the
respective sorts we used, e, Data types are assumed to be non-empty. Two special
sorts are assumed in µCRL 1: Bool and Time.

Sort Bool contains the constants t ("true") and f ("false"). Typical boolean variables
are a, /3, ... , and the use of booleans in process expressions may become clear from the
axioms Cl and C2 for the conditional construct _ <1 _ 1> _. For sort Bool we assume
connectives •, /\, V,-+ with straightforward interpretations, and for the construction of
proofs we (implicitly) use the proof theory for µCRL [8], which also provides a rule
for structural induction on data terms. For booleans, this implies that we may use the
principle of case distinction in proofs, i.e., if a formula <jJ holds for both a = t and

J.F Groote, J. van Warnell Science of Computer Programming 39 (2001) 215-247 241

Table 2
Time-related axioms of pCRL1, where a E A,1

Time!

Time2

Time3

Time4

Time5

Time6

Time?

Time8

AT Al

ATA2

ATA3

ATBl

ATB2

ATB3

ATB4

if t1 ~t2 /\ ti ,;;,13 = t then t1 ~t3 = t

O,;;,r = t
11 ,;;,12 v t2,;;,t1 = t

if t1 ,;;,t2 /\ t2 ,;;,11 = t 1hen t1 = 12

eq(t1,t2) = t1 ,;;,t2 /\ t2,;;,t1

min(l1, t2) = if (t1 ,;;, t2, !1, 12)

if(t, 11 ,(2) = 11

if(f,l1,t2) = t2

X = E1:Time x't

a'I = (a't + ii'u) <l u,;;,tt> a't

a'l·x = a't-(t~x)

a't'u = (a't <J u,;;,1e> c5't) <J t~u t> ii'u

(x + y)'t = x't + y'I

(x·y)'t = x't·y

<Ed:DXd)'t = Ed:DXd'I

l~x="' T' x'u<it,;;,ut>i'i't L-;u: 1me

f then 4> holds in general. As a consequence, we have to require that for the data
specifications only minimal models are considered.

Sort Time contains a constant 0 ("zero"), which serves as a minimal element for the
total ordering ::S;. Axioms for ::S;, eq (equality, which we often simply express using
"="), min (minimum), and if (if-then-else) are listed in Table 2. A function < is
used to abbreviate terms t ::S; u /\ -ieq(t, u) to t < u, and u ::S; t ::S; v abbreviates u ::S; t /\ t ::S; v.

Typical elements of sort Time are t, u, v, ... , and unless stated explicitly, such as in

axioms with Er:Time' Time is treated as a normal µCRL data type.
An expression of the form p[d0 /d] denotes process p with data term d0 substituted

for variable d. Process-closed terms are terms without process variables, but possibly
with bound and free data variables.

The at operator adds time parameters to processes: p't should be interpreted as p

at time t. Table 2 contains the axioms for the at operator. In pCRL1, we have by
axiom AT Al that 8 = Er:Time 8°t, so b models the process that will never do a step,
terminate or block. Processes 8't do model deadlocks at time t. Therefore we call them
time deadlocks.

In general, for n > 0 finite sums Pt + ... + Pn are abbreviated by EiEI p;, where
I = {l, ... , n }. We define EiE© p = 8'0. In µCRL, a summation construct of the form
Ed:D p is a binder of variable d of data sort D in p. D may be infinite. Finally, the
notation x <; y stands for x + y = y, so x is a summand of y.

242 J.F Groote, J. van Warne/ I Science of Computer Programming 39 (2001) 215-247

Table 3
Time-related axioms of µCRL 1, where a EA,,

ATB6

ATB7

ATB8

ATB9

~1

~2

~3

~4

(xb)'t = x't~y

(x I y)'t = x't I y

(x I .v)'t = x I y't

CIJ(x't) = CH(x)'t

x~a'I = "°"" T' x'u<Ju~t1>x't L...,,11: 1me

x~ (y + z) = x~ y + x~ z

x~y·z =x~y

x~I;x = I:J.ax4.Xd

In axioms SUM< distinction is made between sum operators I: and sum constructs
Ld:D p. The axioms are defined for any sort D. The X in I;X may be instantiated
with functions from some data sort to the sort of processes, such as J..d:D.p, where
variable din p may not become bound by I;. We also have expressions I:d:Dx, where
some term p that is substituted for x may not contain free variable d. Data terms are
considered modulo x-conversion, e.g., the terms I:d:D p(d) and Le:D p(e) are equal.

Axiom ~ l in Table 2 adds no new identities to the theory, and should only be
regarded as a means to simplify certain notations.

We conclude this section with an important identity.

Theorem A.1 (Sum elimination). It holds that

I:d:D p <l d = e I> O'O = p[e/d].

A.2. Addition of time and operators for parallelism

The axioms of pCRL1 are the axioms of pCRL1, combined with the axioms in
Tables 3 and 4. The signature l'(µ.CRL 1) is as l'(pCRL1), extended with the operators
for parallelism and the ~ operator.

For communication we have a binary function y, which is only defined on action
labels. In order for a communication to occur between actions c,c' EA, y(c,c') should
be defined, and the data parameters of the actions should match according to axiom
CF. By definition, the function y is commutative and associative.

Concurrency is basically described by three operators: the merge II, the left merge
~ and the communication merge I· The process p II q symbolises the parallel execution
of p and q. It 'starts' with an action of either p or q, or with a communication, or
synchronisation, between p and q. p ~q is as p II q, but the first action that is performed
comes from p.

For the axiomatisation of the left merge ~ the auxiliary before operator is defined;
p ~q should be interpreted as the process that behaves like p, provided that p can do
a step before or at the moment t0 after which q gets definitively disabled. Otherwise
p ~ q becomes a time deadlock at time t0 .

J.P. Groote, J. van Wamel! Science of Computer Programming 39 (2001) 215-247 243

Table 4

Axioms for parallelism of 11CRL,, where a, b E A,; and c, c' E A

SUM6 (L xax = Ldr/Xd t\") { ;{u')(d) <e~d.c)' 0

SUM7 (LX)lx= Lt1D(Xdlx) CF
d I , if sorts of d and e are equal,

c() c (e) =
and i'(c. c') defined

SUM7' x I (LX) = Lt1:D(x \Xd) b otherwise

SUMS aH(LXl = I:,w aH(Xd)

CMl x II Y = 4.v + y~x + x I y CD! Iii a= b

CM2 a't~x = (a'tqx)·x CD2 al b = b

CM3 a't·xtv = (a'tqy)·(t)'>x II y)

CM4 (x+yaz=x~z+y~z DD CH(o)=S

CMS a·x I b = (a I b)-x

CM6 a I b·x =(a I b)·x DI <lH(c(d)) = c(d) if c if. H

CM7 a·x I h· y = (a I h)·(x II y) D2 CH(c(d)) = S if c EH

CM8 ex + y l I z = x I z + .v I= D3 <1H(X + y) = Cf{(X) + D11(y)

CM9 xl(y+z)=xly+xlz D4 CH(X·y) = CH(X)·t'11(y)

Example A.2. Let a, b, c E A and t1, t2, t3 be closed terms of sort Time. It can be

proved that

a't1~(b't2 + c't3) = a'ti <1!1 :::::;max(t2,t3)t> 8'0 + 8'ti'max(t2,t3).

If t1 :::::;max(t2, t3) then it is easily proved that a'fi +()'ft = a'ti, otherwise the above

process equals b'max(t2, t3).

Process p I q is as p II q, but the first action is a communication between p and q.

Encapsulation operators oH block atomic actions in H by renaming them to 8. They

are used to enforce communication between processes.

In [10] it is proved that the operators II and I are commutative for terms without

process variables. In this paper, however, associativity of the operators II and I is
assumed in the form of axioms. These principles are sound w.r.t. the semantics for

,uCRL1 as provided in [9]. Also equational proofs of associativity of II and I for basic

forms must be feasible, but these tum out to be pretty complex.

The various operators of l'(µCRL1) are listed in order of decreasing binding strength:

Brackets are omitted from expressions according to this convention.

A.3. Basic forms

Here we present some results about the representation of pCRL, terms.

244 J.F Groote, J. van Warnell Science of Computer Programming 39 (2001) 215-247

Definition A.3. A basic form over I'(pCRL1) is a process-closed term of the form

LjEJ Le1,·:E1, ···Le,, :Ef,. Ll':Time b/V <I /3j I> b'O
• j j

where the a; EA and bj E A,1, and the r; are also basic forms.

In the sequel, we will often write Ld,, .. ·""' x for Ld, :D, ... Ld,,,:D,,, x, and d,,, for
d 1,. •• , d,,,. By convention "L,;z; x = x, and it can be proved that the order of the d k

in Ld," x may be changed arbitrarily. So, for example, Lc1,.c12 x = Ldi.di x. (We take
care that no confusion can arise w.r.t. the sorts of the dk.) For example, if we treat
L;EJ and LjEJ as formal summations we may abbreviate r in the above definition to

'°'. ~ a 'Ur <I IX I> b'O + '°'. ~ b 'V <I /3 I> ()'0. L-t1,d'mi.u I l I '-'.1,e1,1,,t' J J

An even more general format for representing basic forms is provided below.

Lemma A.4 (Representation). Basic form r given in Definition A.3 can be repre­
sented by

L, - a;'U r; <l IX; 1> J<O + L, .- b "V <l /3 1> b'O, 1,d111 ,u j.e11 ,l' l J

where the sequence d 1, ... , d m contains afl data variables from UiE/ { dj, ... , d~, 1 }, and
e1,. . .,en contains alf data variables from UjEJ{e{,. . .,e;;J.

Theorem A.5 (Basic forms). If q is a process-closed term over I'(pCRL1) then there
is a basic form p such that {tCRL1f- p = q.

A. 4. Recursion and RSP

µCRL allows the specification of recursive processes, such as X(n:N,o::Bool) =
a(n)X(S(n), •1X)b(1X), where a,b EA. Recursive processes are usually represented in
capitals. The Recursive Specification Principle (RSP) states that every guarded spec­
ification has a unique solution, i.e., that if two processes satisfy the same system of
guarded recursion equations, they must be the same. Consider, for example, process
Y(n:l\l) = a(n) Y(S(n)). RSP can be used for proving that X(n) = Y(n), so that IX

actually is a redundant variable, and b(IX) can never be performed. For a formal treat­
ment of RSP and more elaborate examples we refer to the literature.

Appendix B. Expansion and encapsulation in timed µCRL

In this appendix we consider timed µCRL processes p and q of the following form:

def - -
p = '°'.d- 1a;'t p; <1rx;1> o'O; ~l.[,

J.F Groote, J. van Warnell Science of Computer Programming 39 (2001) 215-247 245

We require that p and q are not equal to b'O. If p is of the form X (ei, ... , em) and

the p; are all of the form X(e1;, ••• ,e~), where the ek are data terms with sort(eD =

sort(ek) (k = l, .. .,m), then we call pa linear process expression.

From [l O] we have the following Expansion Theorem for p II q.

Theorem B.1 (Expansion). It holds that

Pllq = I: a;'t(t~p;llq)<lt~uf\o:;l\/$jl>b'O+
iJ·,<T,,em,u,t

I: b1'u(u'J>q1 II p) <l u~t (\Cl.;(\ P1 I> b'O+
iJ.l;,e111 ,t,u

I: (a; I b;)'t (p; II qi[t/u]) <let.; I\ f3j[t/u] I> (5'0.
i \j,cT,,em ,t

Encapsulation can be used to enforce synchronisation between two processes. If

actions a and b from different system components are meant to synchronously corpmu­

nicate to c, then a and bare put in encapsulation set H, and OH is applied to the system

equation. In case the system equation equals p II q as provided above, we may use the

equation below, which allows a more straightforward application of encapsulation.

Let

h1 ~ {i I i EI & a; EH} JH ~- {J I j E J & b1 E H}

Ih ~- {i I i EI & a; 5l H} Jh ~ {J I j E J & bj t;t H}

:=: ~- {(i,j) Ii E IH &j E JH & communication between a; and b1 is defined}

For any pair of indices ~ E :=: we define ~ 1 and ~2 as the first and second projection

of~- If communication between a~, and b~, is defined, we define a~, I b~, = c~, where

c~ 5lH.

Theorem B.2 (Encapsulation). If p and q communicate synchronously then

OH(P II q) = I: C(t oH(P~' llq~2[t/u]) <10:~1 /\ Pdt/u] I> b'O+ (,11)

~.a/,em.r

I: a;' 'fa H (t '!>Pi' II q) <1 t ~ u (\ O:;' (\ fJ i I> (j<O +
h h Ii .

(Ll2)

i;J·.J;;;Im,u,t

I: b;;,'u0H(u~q1;, II p) <l u~t /\a;/\ [J1;, I> 8'0+ (Ll3)

iJ;,,J;,em,t,u

I: b't <1 t ~ u (\ O:;h /\ fJ1 I> 8,0 + (.14)

i'JiJ,,ft,em,u,t

I: b'u <l u ~ t I\ a; /\ P1i. r> o'O (.15)

iJ11,t/;lmJ,ll

246 J.F Groote, J. van Wamel I Science of Computer Programming 39 (2001) 215-247

We classify the 5 main terms and introduce some additional terminology:

d I: Summands originating from communication between p and q,
or (·-sumrnands;

d2: Summands originating from non-encapsulated actions from p,
or autonomous p-summands;

d3: Summands originating from non-encapsulated actions from q,
or autonomous q-summands;

d4: Time deadlocks originating from encapsulated actions from p,
or c5 p-summands;

d5: Time deadlocks originating from encapsulated actions from q,
or bq-summands.

In general, the {;-summands cannot be removed. A simple example may demonstrate
the meaning of these time deadlocks.

Example B.3. Let H ~· {a, b}, a I b ~ c, and

P ~ Li: Time a<t p' <I 1 :::;; t:::;; 2 V 4:::;; t:::;; 5 I> Cl'O;

def '"' b / 3 - 0 q = L...,u:Time 'Uq <I u::;; I> (Jc ·

p can be split into a process p 1 that can do an a-step at 1 :::;; t:::;; 2, and a process
p2 that can do an a-step at 4:::;; t :::;; 5. So p 1 and q can communicate between times
1 and 2. However, process p2 cannot do any step before q can do one, and as a
consequence of the definition of the ~-operator, a time deadlock occurs as soon as
q gets definitively disabled: At time 3. Without proof we state that aH(P II q)
L1Time C'f (p' II q'[t/u]) <I 1 :::;; t ::;;2 I> ()cO + (jc3.

References

[I] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (1994) 183-235.
[2] R. Alur, T.A. Benzinger, P.-H. Ho, Automatic symbolic verification of embedded systems, IEEE Trans.

Software Engng. 22 (1996) 181-201.
(3] J.C.M. Baeten, J.A. Bergstra, Real time process algebra, J. Formal Aspects Comput. Sci. 3 (2) (1991)

142-188.
(4] J.C.M. Baeten, J.A. Bergstra, Discrete time process algebra, Formal Aspects Comput. 8 (2) (1996)

188-208.
[5) M.A. Bezem, J.F. Groote, Invariants in process algebra with data, in: B. Jonsson, J. Parrow (Eds.),

Proc. of Concur '94, Lecture Notes in Computer Science, 836, Springer, Berlin, 1994, pp. 401-416.
[6] J.F. Groote, The syntax and semantics of timed µCRL, Technical Report SEN-R9709, CWI, 1997.
[7] J.F. Groote, A. Ponse, The syntax and semantics of µCRL, in: A. Ponse, C. Verhoef, S.F.M. van

Vlijmen (Eds.), Algebra of Communicating Processes, Workshops in Computing, Springer, Berlin, 1994,
pp. 26-62.

(8] J.F. Groote, A. Ponse, Proof theory for µCRL: a language for processes with data, in: D.J. Andrews,
J.F. Groote, C.A. Middelburg (Eds.), Proc. Intemat. Workshop on Semantics of Specification Languages,
Workshops in Computing, Springer, Berlin, 1994, pp. 232-251.

[9] J.F. Groote, M.A. Reniers, J.J. van Warne!, M.B. van der Zwaag, A theoretical basis for µCRL with
time, to appear as Technical Report, CWI, Amsterdam, 2000.

J.F Groote, J. van Wamel/Science of Computer Programming 39 (2001) 215--247 247

[10] J.F. Groote, J.J. van Warne!, Basic theorems for parallel processes in timed pCRL, Revised version

of Technical Report SEN-R9808, CW!, 1999. Available at http://www.cwi.nl/}fg/publicationsl.html.

Communicated at the WDS '99 workshop in la~i. Romania, 1999.

[11] C. Heitmeyer, N.A. Lynch, The generalized railroad crossing - a case study in formal verification

of real-time systems, Proc. 15th IEEE Real-Time Systems Symp., San Juan, Puerto Rico, 1994,

pp. 120-131.
[12] T.A. Henzinger, P.-H. Ho, H. Wong-Toi, HYTECH: a model checker for hybrid systems, Software Tools

Technol. Transfer 1 (1997) 110-122.

(13] A.S. Klusener, Models and axioms for a fragment of real time process algebra, Ph.D. Thesis. Eindhoven

University of Technology, 1993.
(14] L. Leonard, G. Leduc, An introduction to ET-LOTOS for the description of time-sensitive systems,

Comput. Networks ISDN Syst. 29 (1997) 271-292.

[15] X. Nicollin, J. Sifakis, ATP: theory and application, Inform. Comput. 114 (1994) 131-178.

[16] J. Quemada, C. Miguel, D. de Frutos, L. Liana, A Timed LOTOS extension, in: T. Rus, C. Rattray

(Eds.), Theories and Experiences for Real-Time System Development, AMAST Series in Computing,

1994, pp. 239-263.
(17] G.M. Reed, A.W. Roscoe, A timed model for communicating sequential processes, Theor. Comput. Sci.

58 (1988) 249-261.

