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Generative super-resolution of
turbulent flows via stochastic
interpolants

Martin Schiedt'™, Nikolaj T. Miicke? & Clara M. Velte*

Capturing the intricate multiscale features of turbulent flows remains a fundamental challenge due to
the limited resolution of experimental data and the computational cost of high-fidelity simulations.

In many practical scenarios only coarse representations of the flows are feasible, leaving crucial fine-
scale dynamics unresolved. This study addresses that limitation by leveraging generative models to
perform super-resolution of velocity fields and reconstruct the unresolved scales from low-resolution
conditionals. In particular, the recently formalized stochastic interpolants are employed to super-
resolve a case study of two-dimensional turbulence. Key to our approach is the iterative application
of stochastic interpolants over local patches of the flow field, that enables efficient reconstruction
without the need to process the full domain simultaneously. The patch-wise strategy is shown to

yield physically consistent super-resolved flow snapshots, and key statistical quantities — such as the
kinetic energy spectrum — are accurately recovered. Moreover, the patch-wise approach is observed to
produce super-resolutions of a quality comparable to those produced using a full field approach, and,
in general, stochastic interpolants are observed to outperform contesting generative models across a
range of metrics. Although only demonstrated for a 2D case study, these results highlight the potential
of using stochastic interpolants to super-resolve turbulent flows.

Super-resolution of turbulent flows is essential for bridging the gap between the limited resolution of
experimental measurements or low-resolution simulations and the rich, multiscale dynamics inherent to
turbulence. Many practical simulations, such as Large Eddy Simulations (LES) or low-cost numerical models,
cannot afford to resolve all relevant scales due to computational constraints'. Super-resolution techniques enable
the reconstruction of fine-scale structures from low-resolution data, enhancing physical fidelity and enabling
accurate analysis of quantities like energy spectra, vorticity, and dissipation. This is particularly valuable for data-
driven modeling, control, and diagnostics of complex fluid systems?.

In parallel with the growing influence of machine learning in imaging and language modeling, deep learning
techniques have been increasingly adopted for super-resolving turbulent flows, with studies reporting significant
performance gains over conventional methods®. Among these, deterministically trained convolutional neural
networks (CNNs) are widely used due to their strong capabilities in feature extraction. Pioneering this approach
in the field of turbulence, Fukami et al.** applied deep CNNs to reconstruct various two-dimensional flows. While
their model recovered flow statistics, such as the kinetic energy spectrum, fairly well, it exhibited non-physical
artifacts and struggled to capture small-scale structures. To address these limitations, Liu et al.® incorporated
temporal information as a conditional input to the model. This extension yielded improved results, but the
model continued to face challenges in regions dominated by viscous effects. Zhou et al.” further enhanced the
model by coupling it with an approximate deconvolution method®, and extended the analysis to a case study of
three-dimensional turbulence.

Although deterministic methods, such as the aforementioned, have shown promise in super-resolving
turbulent flows, recent efforts have increasingly focused on the application of generative models. Generative
models constitute a class of algorithms designed to approximate the probability distribution underlying a given
dataset. Once this, potentially conditional, distribution is learned, the model can synthesize new realizations by
sampling from the learned distribution, yielding ensembles that are statistically consistent with the original data.
Due to the stochastic nature of the sampling procedure, generative models are inherently non-deterministic.
Among the most widely used generative frameworks are generative adversarial networks (GANs)®, and
diffusion models (DMs)'’. In the context of super-resolution, generative models produce high-resolution fields
conditioned on corresponding low-resolution inputs.
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Inspired by the work of Ledig et al.!!, Deng et al.!? applied GANS to super-resolve benchmark cases of two-
dimensional velocity fields. Subsequently, Subramaniam et al.! extended this methodology to reconstruct both
pressure and velocity fields in three-dimensional homogeneous isotropic turbulence, enhancing the resolution
from 16° to 643. Later, Kim et al.'* used GANs to super-resolve slices of three-dimensional turbulent flow
fields. Their results demonstrated a marked improvement in statistical accuracy relative to comparable CNN
architectures. More recently, DMs have been shown to outperform GANs in augmenting incomplete or corrupted
measurements of two-dimensional snapshots from three-dimensional turbulent flows!®. Furthermore, an
expanding body of work has successfully employed DMs to predict and super-resolve turbulent flows under a
variety of configurations!®~18.

In this study, we employ stochastic interpolants (SIs)!® to perform super-resolution of the velocity field in
a two-dimensional case study of the Kolmogorov flow. Compared to DMs, SIs offer a more direct mapping
between two distributions, as their inference process is initialized with an observed data point rather than
Gaussian noise. Although stochastic interpolants remain a relatively recent development, especially within the
context of fluid dynamics, they have been applied in a few studies to forecast and super-resolve canonical two-
dimensional flows?*?! and to recover state variables from sparse and noisy observations?.

We hypothesize that SIs provide improved performance over DMs due to their direct way of connecting
two arbitrary distributions. This hypothesis is empirically supported for the 2D case study presented in this
work, where we train a SI to map low-resolution samples to corresponding high-resolution samples. Moreover,
with the potential to extend the applicability of SIs to more complex settings — specifically, three-dimensional
turbulence - we introduce a patch-wise strategy that iteratively super-resolves localized subdomains of the full
flow field. This localized approach effectively mitigates the computational burden associated with the increased
input dimensionality that arises from finer grid resolutions, a challenge that becomes particularly acute in three-
dimensional applications.

The paper is structured as follows: section Preliminaries presents the problem setting, provides
a brief overview of the fundamentals of SIs, and details the simulation of training and test data. Our main
contribution is introduced in section Methodology: Stochastic interpolants for turbulence super-resolution,
namely the full-field and patch-wise super-resolution methods using SIs. In section Results & discussion, we
evaluate our methodology and compare it with alternative approaches, including diffusion models and flow-
matching. We examine both individual super-resolution snapshots and overall statistical performance. Finally,
section Conclusion summarizes our findings and conclusions.

Preliminaries

This section presents the governing equations of motion for the case study considered in the current work. It
provides a brief introduction to the stochastic interpolant framework, and describes the simulation methodology.
Moreover, the procedure for generating the datasets used to train and evaluate the developed models is detailed.

Problem setting
Super-resolution via SIs is demonstrated on a two-dimensional Kolmogorov flow case study. The flow dynamics
are governed by the incompressible Navier-Stokes equations:

ou B 1 _o
E—&—(iﬁV)u——Vp—l—%V u+ f, (1a)
V-u=0, (1b)

where u(x, t) is the velocity field, p(z, t) the pressure and f(u) the external forcing, specified as
: 1
flu) = Zsin(ky) [O} —0.1u. (2)
k=4

Adopting the definition of the Reynolds number used by Lucas & Kerswell?? for the two-dimensional Kolmogorov
flow, we have

v

2

Re = VX (Ly)m, 3)

where x =~ 3 denotes the forcing amplitude, v the kinematic viscosity, and L, the extent of the domain in
the y-direction. The velocity field u obtained through direct numerical simulation (DNS) of 1 serves as the
reference target for training and evaluating the data-driven models developed in this study. These models aim
to reconstruct the statistical features of w from a filtered counterpart, @, which retains only the large-scale
flow structures. Although presented here in two dimensions as a proof of concept, the SI approach detailed
in the following sections is formulated with the aim of generalization to three-dimensional flows. Indeed, this
extension is a key perspective of the present study.

Stochastic interpolants
Here, we briefly outline the stochastic interpolant method, as presented in?’. The method was originally
presented in'? and expanded in?%,
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The SI framework provides an approach for sampling from a conditional distribution by constructing a
generative model that transports a point mass to a sample from a target distribution. We aim to generate samples
from the conditional distribution,

p(xo, 1)

o) W

plx1|zo) =

where p(xo) is the marginal distribution of o and p(xo, 1) represents the joint distribution of x¢ and x1. xo
samples are referred to as base samples and 1 samples are referred to as target samples.
The core of the method relies on the stochastic interpolant I, defined as

IT :a7w0+ﬂ7m1+UTW‘F7 T E [0, 1], (5)

where 7 is denoted pseudo-time. W, is a standard Wiener process independent of (xo, 1), and a-, 87,
a- € C'([0,1]) are pseudo-time-dependent coefficients satisfying temporal boundary conditions:

ag=p1 =1, a1=pFo=01=0. (6)

These boundary conditions ensure that Ip = xo and I1 = @1, creating a bridge between the point mass at xg
and the conditional distribution p(21|xo). The key insight is that there exists a drift term, b, such that the
conditional distribution of I+ given xo can be generated by solving the stochastic differential equation (SDE):

dX, =b(X-,x0)d7 +0,dW,, 7€[0,1], X,—0=xo. (7)

In particular, samples from the distribution p(I:1 |xo) correspond to samples from the target distribution
p(x1 |zo ) owing to the construction of the interpolant.
It can be shown that the drift term that provides the desired property is the unique minimizer of the objective:

1
argrr;inﬁ(bf) = / E [||bT(IT,m0) - RTHQ] dr, (8)
T 0

with R, = &-xo0 + Brx1 + 0> W .. This objective can be estimated empirically using samples from the joint
distribution, making the drift learnable using standard regression techniques with neural networks. Therefore,
we parameterize the drift term as a neural network, by with weights # and minimize an approximation of Eq. 8
with respect to 6:

N7 Ntrain
1 .
i - L 7 (|12 J— J J 4 J J 5
argmin L) = NN g E [|bo(I7,, 20, ) — Ry, I3, = ar®) + Br,x] + 0, Wr,, R = an@)+ re] +6:,Wo,  (9)
i=1 j=1

where (), 2]) ~ p(xo,®1), Nirain is the number of training samples, and N; is the number of discrete
pseudo-time points. For more details on training stochastic interpolants, see?4.

The architecture of by, as well as the coefficients o, 8-, o+, which together define our stochastic interpolant
will be detailed in section Methodology: Stochastic interpolants for turbulence super-resolution.

Generating training and test sets

In this work, stochastic interpolants are trained to reconstruct simulated velocity fields, u, by super-resolving
the filtered counterpart @, which represents the corresponding low-resolution field. Thus, training and test sets
are produced to consist of pairs (o, 1) = (@&, w). In the current study we generate 2,000 sample pairs of u and
@ for training our models. An additional 400 sample pairs are generated for evaluating model performance. We
do not create a separate validation set, as we do not perform hyperparameter tuning; instead, we adopt fixed,
prior-chosen hyperparameter values throughout. The target and base samples are simulated via the procedure
detailed in the following subsections.

Numerical simulation

To produce u we first convert 1 to its vorticity-streamfunction formulation®® and solve the governing equations
on a fully periodic domain (z,y) € Q = [0, 27]? using the Fourier Galerkin method?®. Here, all fields are
represented as truncated Fourier series, and spatial derivatives are computed exactly in spectral space due to the
periodic boundary conditions.

The non-linear convective term, typically expressed in vorticity form as u - Vw is evaluated pseudospectrally.
This is done by transforming the gradient of the vorticity Vw and the velocity components u = (u, v) from
spectral space to physical space using an inverse Fourier transform. The non-linear product w - Vw is then
computed pointwise in physical space, and the result is transformed back to spectral space using a forward
Fourier transform. This approach avoids the expensive convolution sums that would arise from computing the
non-linear product directly in spectral space?. To suppress aliasing errors in the non-linear term, a dealiasing
technique, namely the 2/3-rule, is employed, where the highest one-third of wavenumbers are zeroed out after
transforming back to spectral space’”. This ensures numerical stability and accuracy in the pseudospectral
evaluation.

The simulation is initialized with a random seed in spectral space, where Hermitian symmetry is enforced.
After evolving the simulation to a statistically steady state, the velocity field w is sampled on a uniform 128x128
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grid at temporally decorrelated intervals, determined via the autocorrelation function. The Reynolds number
is set to Re = 1000, and time integration is performed using a fourth-order Runge-Kutta scheme with a fixed
timestep d¢ = 0.025. For further details of the simulation, we refer to our code repository which is available
online.

Note that the specific choice of numerical solver is not crucial for the presented methodology as it is only a
means to produce training data. Thus, the only requirement is that the numerical simulation provides accurate
training data with respect to the quantities of interest. E.g. the method described above would not be suitable for
a 3D case with non-periodic boundary conditions.

Producing low-resolution samples

To generate the filtered state @ from w, a series of steps are applied. First, we apply a lowpass filter to u with
a cutoff frequency of kcutors = 8. This operation retains only the low-frequency modes of the velocity field,
effectively removing small-scale variations. The filtering is defined by the Fourier coefficients:

2 _ ﬁ/i,kéa for ‘k"v w‘ S kcutoff
Wikt = { 0, otherwise, (10)
where k = [k £]" is the spectral wavenumber and subscript i = {1, 2} denotes the velocity field components
u and v. Following the filtering, the field is downsampled onto a 16X 16 grid by retaining every 8 grid point in
both the x— and y—coordinates, discarding the remaining points. In essence, the velocity field on the 16x16
grid represents the limited resolution data available within a low-resolution simulation.

Methodology: Stochastic interpolants for turbulence super-resolution

This section develops two complementary models for turbulent flow super-resolution using stochastic
interpolants: SIf.;;, which processes the entire velocity field simultaneously, and SIpatcn, which employs a
patch-wise strategy designed for computational scalability. Our objective is to construct a framework that
allows reconstruction of high-fidelity velocity fields from limited experimental measurements or low-resolution
simulation data. The SI models are trained to approximate the conditional distribution p(w |@ ), enabling
generation of statistically consistent high-fidelity samples from coarse inputs.

A key constraint of the stochastic interpolant framework is that the base and target samples (xo and 1) must
reside in the same vector space?. To satisfy this requirement, we upsample 4 prior to training. Specifically, we
learn to sample from p(u|@) = p(u |Up(@) ). Note that the equality holds due to the deterministic nature of
the chosen upsampling operator, Up. We employ cubic interpolation to transform the filtered and downsampled
velocity field from the 1616 grid back to the original 128128 resolution, though alternative interpolation
schemes (e.g., linear) are equally viable.

In the following subsections, we detail the implementation of SI ¢, and SIpascn for sampling from p(u |@).

Full field super-resolution

The full field model, SI ., directly super-resolves the entire velocity field in a single forward integration of the
governing SDE (7). We define the stochastic interpolant with base samples o = @ = Up(@) and target samples
L1 = U.

While conceptually straightforward, this approach faces computational limitations as grid resolution
increases. The SDE integration required for sample generation scales poorly with domain size, which becomes
particularly problematic for three-dimensional applications where memory and computational requirements are
prohibitive. These scalability constraints motivate the development of the patch-wise strategy described below.

Patch-wise super-resolution

The patch-wise approach, SI,q¢ch, addresses the computational limitations of SI ¢, by decomposing the super-
resolution task into smaller, manageable subproblems. Rather than processing the entire domain simultaneously,
Slpatcn is applied iteratively to super-resolve localized patches of the velocity field, enabling application to high-
resolution three-dimensional flows where the full field method becomes computationally intractable. Thus,
where SI ¢, is applied to reconstruct w from @, S,q¢ch is applied to reconstruct any subfield w; from u;, where

u;(t,z,y) =ult,z,y), u;j(t,zy)=1ultzy), for(z,y)e€Q,, (11)

and the subdomain, €2;, is defined through the partition
Q:U]‘Qj, QiﬂQj = fOI"i?éj, (12)

with Q denoting the full spatial domain. Although applying SI,a:cn iteratively across €2 generates statistically
consistent super-resolved velocity fields, initial implementations exhibited shortcomings at patch boundaries.
Specifically, non-physical discontinuities were observed at patch interfaces, a behavior that was especially
pronounced in spatial-gradient fields, such as the vorticity computed from the generated velocity field. To
address this issue we expand our model to consist of two separately trained patch models when seeking the
generation of a full velocity field. The first patch model, which we term the free-generator, can be applied to
super-resolve the field at any arbitrary patch, €2;, using the low-resolution neighboring patches as conditionals.
The second patch model, which we term the cond-generator (conditional generator), may be applied to super-
resolve patches, where the neighboring patches have been super-resolved using the free-generator.
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With these distinct submodules of SIj,q¢ch, the process of super-resolving the full velocity field can be divided
into two stages:

« Stage 1: The free-generator is applied to super-resolve patches arranged in a checkerboard pattern, condition-
ing each patch on neighboring low-resolution patches. This yields a velocity field that is partially super-re-
solved (see top and middle rows of Fig. 1);

o Stage 2: The cond-generator super-resolves the remaining patches conditioning on the high-resolution
patches generated in Stage 1 (see middle and bottom rows of Fig. 1). Crucially, during training, this model
uses neighbor patches from x; rather than xo, emulating the process of using super-resolved data from the
free-generator as boundary conditions for the cond-generator.

In principle, the two-stage approach defines a sequential algorithm for super-resolving a given velocity field.
However, because the patches processed within each stage are independent of one another, the super-resolution
procedure can be carried out in parallel across patches in both stages, only requiring synchronization between
the two stages.

The two-stage approach was observed to generate more physically consistent super-resolutions than when only
the free-generator was used across 2. Together, the free-generator and cond-generator thus define SI,q¢cn, where
boundary artifacts have effectively been mitigated while maintaining the same statistical objectives as SI ¢,
but with superior computational scalability. For the current work we choose a patch size of 32x 32, signifying
that the full velocity field may be reconstructed by super-resolving 16 separate patches. The patch edge length,
Lpaten = /2, relates to the flow characteristic length scale €100 = Ly /27 = 12 by Lpaten/Liiow = 7/2.
Hence, the chosen patch size should adequately resolve all relevant flow scales. A systematic assessment of how
patch size influences the efficiency of the patch-wise method is left for future work.

Configuration of stochastic interpolants
Inspired by the results of2, we choose, for both models, the interpolant coeflicients

ar=1—1, B.=72, o,=01(1-7), (13)
such that they satisfy (6).

Network architecture

To parameterize by each model employs a UNet architecture, which was originally introduced by Ronneberger
et al?®. Our UNet architecture ((Fig. 2), largely based on the approach presented in?!, is composed of a series of
convolutional and ConvNeXt?® layers. The UNets of Sl and Slya¢cn differ solely in the state conditioning,

b".i:
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Compute super resolution

.5 g
L R~ g

Y ) ﬂ 41
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Repeat for all non-shaded patches
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Init condition Terminal state
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Stage 2
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conditioned on
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-

Compute super resolution of
remaining coarse grid patches
using stochastic interpolant

Fig. 1. Visualization of the two stages in SIpa¢ch. Note that the states are visualized with a single channel for
visual clarity. The actual data used consists of two channels - velocity in the horizontal and vertical direction.
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Fig. 2. Visualization of the UNet architecture within the free- and cond-generators of SIpatch.

0.10
— Sl g
—— free-generator = 0.08
10 cond-generator -E
9]
. £0.06
2
el
Q
=
- Z0.04
102 !
a 0402 SI_/U”
bbb — SLyten
i
i 0.00
0 500 1000 1500 2000 2500 3000 3500 4000 0 7“ 2m
Epoch x

(@) Training loss (b) Cross-sample standard deviation.

Fig. 3. (a) Training loss (9) evaluated at every epoch, illustrating convergence of each SI model. (b) Standard
deviation of the velocity v at y = 7, computed over 400 super-resolved samples generated from the same low-
resolution input of a representative snapshot, indicating the models’ ability to produce a diverse set of states.

where STy, takes the full &g € R*2¥*128%2 g5 conditional input, whereas ST,q¢ch takes only 5 field-patches,
each of size 32 x 32 x 2, as conditional input.

Throughout the network, we employ the GELU activation function®®. The pseudo-time variable 7 is
embedded using a sinusoidal positional encoding, which is then processed by a shallow neural network. This
time embedding is incorporated as a conditioning input at each ConvNeXt layer as a bias within the UNet.

Divergence-free projection
As each model is unlikely to produce a divergence free field, the output x,—; is filtered using the Helmholtz-
Hodge decomposition®!. For any field F the method returns

Fdiv:() =F - v¢a (14)
where ¢ solves
Vi¢=V.F (15)

Since our velocity field is periodic, Eqs. (14)-(15) are solved in spectral space. In other flows, the decomposition
may not be as effective, and other methods to remove non-zero divergence may be needed. We refer to?! for a
discussion of alternative projection methods.

Training

Each stochastic interpolant is trained over 4000 epochs using a batch size of 40 (2% of the training set). We
employ an AdamW optimizer®?, and apply a linear warm-up learning rate scheduler for 50 epochs. The warm-
up is succeeded by a cosine annealing learning rate scheduler®, with a restart period of 30 epochs. Figure 3a
displays the training loss pr. epoch for the SIf,;; model and the free- and cond-generators separately. Each
model is observed to converge within 4000 epochs. Figure 3b shows the standard deviation of the velocity v at
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y =, z € [0, 27|, computed over 400 super-resolved samples generated from the same low-resolution input
of a representative snapshot. The non-zero standard deviation demonstrates that the trained models are able to
generate an ensemble of plausible states from a given input. For additional implementation details, please refer
to the GitHub repository linked in this work.

Results & discussion

This section presents the results of applying SIf.; and Slyaicn to super-resolve the velocity field in the
Kolmogorov flow case study. To represent the full field super-resolution of a snapshot we use the notation
and @} for respectively SIf,; and Slpaicn. The trained models are evaluated on a test set consisting of 400
decorrelated flow snapshots. We first demonstrate that the models produce reasonable super-resolved versions
of individual snapshots, followed by an analysis of statistical performance over the full test set.

Snapshot evaluation

For a given snapshot, the super-resolved velocity field is inferred by forward-integrating the SDE in Eq. (7)
using the Heun SDE integrator®*, with 100 pseudo-timesteps and o = @ = Up() as the initial condition. The
resulting high-resolution velocity field for a representative snapshot is shown in Fig. 4a. While the models Sy
and SIpa¢cn are not designed to exactly reproduce a1, they are observed to produce super-resolutions that match
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(a) Velocity field.
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(c) Dissipation rate field.

Fig. 4. Representative snapshot showing: (a) the velocity field, (b) the vorticity field, and (c) the dissipation
rate field. In all panels, from left to right, the images display the low-resolution base field, the high-resolution
target field, the SIf,y super-resolution, and the SIpq¢ch super-resolution.
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the target field fairly well. Moreover, close inspection shows that the fine-scale structures seen in x; are better
matched by the SI super-resolutions, than the cubicly upscaled field xo.

The distinction becomes more apparent when examining the vorticity field, w = V X u (4b). While xo
exhibits smooth, low-detail contours, both & and the super-resolved fields produced by the SI models display
finer-scale structures. Notably, the patch-based model avoids introducing sharp discontinuities at patch
boundaries (see the patch mask in Fig. 1), indicating that the cond-generator in SIpq4¢cn produces super-resolved
patches that are consistent with those from the free-generator. Such consistency is particularly important at patch
boundaries, where discontinuities in spatial gradients might otherwise arise. Fortunately, the model maintains
coherent transitions across patches.

The dissipation rate field (Fig. 4c), which also depends on spatial gradients, likewise shows no discontinuities
at patch boundaries. The dissipation rate is evaluated at each spatial point by computing

ou;  Ou, o
€ = 2usijSij,  Sij = (8:1:- + 8;) , 4,5 €{1,2}. (16)
J 1

Since we solve the non-dimensionalized Navier-Stokes equations, we simply set t = 1/2 to ease the computation
of e. Consistent with the behavior seen in the velocity and vorticity fields, the SI super-resolved dissipation rate
fields show qualitative features that more closely match 1 than xo.

Statistical performance
We have seen that the models generate reasonable super-resolutions for a representative snapshot. We now
evaluate the statistical performance over the full test set.

Figure 5a and Fig. 5b display respectively the radially averaged spectra of energy, E, and enstrophy, Z, of
the base (xo) and target (x1) sets, and compares them to the corresponding spectra of the Sz, and Slpaich
super-resolved fields. A close alignment between the model and target spectra is observed, particularly at low
to intermediate wavenumbers, highlighting a marked improvement compared to the base spectrum. At high
wavenumbers the energy spectra diverge, however, the associated energy at these scales is minimal relative to
the system energy, and the impact on overall statistical measures is therefore considered negligible. Overall, both
models recover the target spectrum of energy and enstrophy well. Related studies, that apply generative models
for super-resolution, such as the work byls, which uses DMs for full-field reconstruction, observe similarly
shaped spectra for their Kolmogorov flow, and also report a divergence at high wavenumbers.

In Fig. 5¢, the flatness of vorticity increments, Fy,, is shown as a function of the physical separation £ € (0, 7).
The flatness is evaluated as

4
Fu() = 0 ) =

(Ge)?)? (W +4,y) +w(z,y+ ) — 2w(=,y)], (17)

1
2
where (-) denotes the spatial average. For the target field, the flatness profile exhibits a clear scale dependence.
At small separations ¢, the flatness takes values of ~ 5, indicating non-Gaussian statistics and intermittency
associated with sharp vorticity gradients and coherent structures. As ¢ increases, the flatness decreases and
approaches values =~ 4, reflecting partial Gaussianization due to spatial averaging. However, the persistence
of flatness values above the Gaussian value of 3 at large scales indicates that large-scale vorticity fluctuations
remain correlated and influenced by coherent flow structures. While deviations between the model and target
flatness profiles are observed, the target statistic is nevertheless reasonably well recovered from the base field,
which exhibits larger discrepancies that can be directly attributed to the filtering, subsampling, and interpolation
procedure described in section Preliminaries.

The probability density functions shown in Fig. 6 are estimated using a Gaussian kernel density estimator
They describe the distributions of the kinetic energy, vorticity, and the dissipation rate of the base, the target,
SIfuu, and Slpaicn fields. For every realization in the test set, each quantity is computed at all grid points, and
the density functions are estimated over the entire test set. The kinetic energy is computed as

35,36
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(a) Kinetic energy spectra. (b) Enstrophy spectra. (c) Vorticity flatness.
Fig. 5. Radially averaged spectra of (a) kinetic energy and (b) enstrophy. Each spectrum is computed as the
average over the test set, and the base and target spectra are compared to the corresponding spectra of the
SIfui and SIpatcn super-resolved fields. Figure (c) similarly shows the flatness of vorticity increments.
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Fig. 6. Probability density functions of the (a) kinetic energy (b) vorticity and (c) dissipation rate, computed
pointwise over the entire test set, and estimated using a Gaussian kernel density estimator. The plots compare
the densities of STy and Slpaicn with those of the base, xo, and the target, .

KL divergence | Wasserstein-1 distance
+
E w € E w €
xo 0.0121 | 0.0998 |0.1470 |1.1046 | 3.1063 | 9.8719

DMyuu [0.0011 |0.0068 |0.0063 | 0.2057 |0.7321 | 1.6198

DMpateh | 0.0006 |0.0182 |0.0153 |0.1880 | 1.2716 | 3.1738

FMyuu  [0.0015 | 0.0073 | 0.0062 | 0.4024 |0.7250 | 1.7037

FMypateh |0.0009 |0.0173 | 0.0140 |0.1951 | 1.2142 | 2.9304

Slfuu 0.0003 | 0.0011 | 0.0006 | 0.0528 | 0.1875 | 0.6181

Slpatch 0.0007 | 0.0049 |0.0011 |0.0803 | 0.4779 | 0.5889

Table 1. Comparison of Kullback-Leibler divergence and Wasserstein-1 distance between the target
distribution and the distributions of o, DM i1, DMpatch, FM fuii, FMpatch, SLpun and Slpaicn, evaluated
for the probability densities of kinetic energy, vorticity, and dissipation rate. For easier readability, the distances
computed for E have been scaled by a factor 10%, whereas those computed for w and ¢ have been scaled by a
factor 10. A downward-pointing arrow signifies that lower values are better. The best and second-best results
are highlighted in boldface and italics, respectively.

E:u2+v2, (18)

Each quantity captures a distinct aspect of the flow. As shown in Fig. 6a, both models accurately recover the
probability density function of the kinetic energy. This outcome is expected, since the models are trained to
super-resolve the velocity fields, which are directly related to the kinetic energy. The densities of the vorticity
(Fig. 6b) and dissipation rate (Fig. 6¢) fields show that these quantities are also well recovered, although ST a¢cn
exhibits a slight deviation from the target in both cases. The authors note in particular the recovery of the
dissipation rate as a significant result, as € is a key quantity commonly used to characterize turbulent flows®’.
Moreover, it is a notoriously difficult parameter to experimentally measure’®, and if future measurements or
low-resolution simulations can apply generative models to recover dissipation accurately, it would represent a
meaningful advancement.

To quantify the deviations observed in Fig. 6, we utilize the Kullback-Leibler (KL) divergence® and the
Wasserstein-1 distance?’. The KL divergence is defined as

Dict(plla) = / p(z) 1og’q%dx, 19)

where p denotes the reference distribution, and g is the distribution being compared or approximated. The
Wasserstein-1 distance is defined as

Wl(p7 q) = inf ]E(z,y)fwﬂ' [Hl‘ - ym (20)

mEL(p,q)

where I'(p, q) is the set of all joint distributions with marginals p and g.

Table 1 reports the KL divergence and W distance for the densities of E, w and €. In each case, the SI
models show an evident improvement over the base, with accuracy gains of approximately one to two orders of
magnitude. Sl is observed to outperform Slpq:ch across all but one of the evaluated metrics, for which the
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Fig. 7. Convergence of the Wasserstein-1 distance of the density of () as a function of the number of pseudo-
timesteps used to infer super-resolutions. The SI-models are observed to converge for a lower number of
pseudo-timesteps compared to their contesting counterparts. For the FM- and DM-models, the W -value

10? is used as a placeholder, as the models failed to produce meaningful solutions when limited to only 10
timesteps during the inference stage.

two models show comparable performance. This finding aligns with the intuition that the model with access to
full-domain information has an advantage over the one that receives only partial information. However, SIpatcn
performs largely on par with the full field model for reconstructing the considered densities, demonstrating
Slpatch as a scalable alternative to the full-field method.

The table also compares the performance of the SI-models to equivalent flow-matching (FM) and diffusion
(DM) models (see Appendix A for details). For the current configuration of using 100 pseudo-timesteps to
produce super-resolutions within each model, the SI-models are observed to outperform the contesting methods
in the considered metrics. This suggests that stochastic interpolants are indeed the better option for super-
resolving 2D Kolmogorov turbulent flows. The conclusion is further supported as we consider the convergence
of the W, distance for the density of (€) in Fig. 7. Here (-) denotes the spatial average, and (€) is computed
for each snapshot in the test set, after which the corresponding probability density functions are estimated as
before, over the whole test set, with the W1 distance denoting the distance to the target density. Convergence is
displayed as a function of the number of pseudo-timesteps used to infer super-resolutions. It is evident that the
SI-models require significantly fewer timesteps to reasonably reproduce the flow statistic. Thus the SI framework
is favored as the inference time decreases proportionally to the number of pseudo-timesteps. The primary reason
for this is the fact that the SI model initiates the reconstruction from the low-resolution state, while the DM
and FM start from a Gaussian sample. As a result, the SI base sample is already close to the target field, making
the required transformation simpler and allowing the model to converge with fewer SDE steps. Furthermore,
it is worth noting that the FM generates via an ODE while the SI generates via an SDE. Extensive comparisons
between SDE- and ODE-based generation are performed in Ma et al.*! showing that SDE-based sampling
generally yields better results.

Extending the framework

The statistics presented in the previous section demonstrate that stochastic interpolants provide a viable approach
for super-resolving the 2D Kolmogorov flow. While these results are promising, the framework still needs to
be evaluated in three-dimensional turbulence and across a broad range of flow configurations, such as wall-
bounded turbulence, to establish its applicability in more practical settings. Extending the framework to three-
dimensional turbulence is non-trivial, and given its computational demands, the full-field approach is unlikely
to be practical in this setting. For this reason, we focus on how the patch-wise strategy may be generalized to
3D flows.

The efficacy of the SI method for turbulent flows depends on the availability of suitable training data. Such
data may be obtained either through numerical simulation or experimental investigations. Sample datasets
may be found e.g. in Johns Hopkins Turbulence Database*?. While training the full-field method on three-
dimensional snapshots is computationally infeasible, particularly when large batch sizes are required, the patch-
wise approach mitigates this limitation by operating on localized chunks of each snapshot. Once suitable data
have been obtained, the patch model can be trained. The authors propose two possible strategies: 1. training
a model tailored to a specific flow type, such as homogeneous isotropic turbulence, where, for instance, the
Reynolds number can be used as a conditional input to the neural network for broader applicability, or 2. a more
general model may be developed by training on patches drawn from multiple flow configurations.

With regard to network architecture, retaining a UNet-type model in three dimensions would require
replacing all two-dimensional convolutional layers with their three-dimensional counterparts (i.e., Conv2D
— Conv3D in PyTorch), along with potential adjustments to the network depth and overall parameterization.
Alternatively, transformer-based models*>** may offer improved scalability and flexibility in high-dimensional
settings.

An additional consideration is the choice of patch size. In three-dimensional turbulence, the patch
dimensions may need to be aligned with characteristic flow scales, such as the integral length scale, to ensure
that all dynamically relevant features are adequately represented within each patch. Moreover, the interpolant
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coeflicients used in the present work are not guaranteed to be optimal for all flow configurations. We adopted
the coefficients proposed by Chen et al.*° without modification, but their generality across different turbulence
regimes remains uncertain. Identifying optimal hyperparameters, such as those mentioned here, is an important
topic for future study. Equally crucial is assessing whether the combination of low-resolution simulation and
super-resolution offers a net computational advantage over direct high-resolution simulation.

Despite the remaining open questions, the results presented here provide motivation to further investigate
the patch-wise approach in higher-dimensional flow settings.

Conclusion

We have introduced stochastic interpolants as a generative method for super-resolving fluid flows. Designed to
enhance low-resolution simulations, LES, or experimental data, the approach can be applied either to reconstruct
the full field in a single pass or to super-resolve smaller patches, enabling iterative recovery of the full domain or
targeted regions of interest. For both configurations, the method effectively captures key flow statistics in the 2D
case study, including the energy spectrum and the probability density functions of the kinetic energy, vorticity,
and dissipation rate.

While the models developed meets the performance requirements within the studied setting, further
investigation is required to evaluate the applicability to three-dimensional turbulence and generalizability to
different flow regimes, for instance, how a model trained on one type of flow behaves when applied to another.
Moreover, a rigorous evaluation of inference cost relative to the computational expense of high-resolution
simulations is essential to justify the use of stochastic interpolants for fluid flow super-resolution.

Compared to other state-of-the-art generative methods, such as flow-matching and diffusion models, the
proposed stochastic interpolant models demonstrate superior or atleast comparable performance. This highlights
their potential for turbulent flow super-resolution, and offers a promising perspective for future applications.

Data availability
The code for data generation and setting up the model stochastic interpolants, is available at https://github.com/
martinschiodt/Turbulence_Stochastic_Interpolants. The repository also contains scripts for training the models,
performing super-resolution, conducting analyses, and the implementations of the flow and diffusion models
used for comparison.

Appendix A Implementation of flow and diffusion model

The flow-matching (FM) and diffusion (DM) models used for comparison in this work are developed according
to the framework prescribed in*>. Here, a flow/diffusion model is defined by the ODE/SDE used for inference
(super-resolution), i.e.

Xo~N(0,1), dX,=bg(X-,xzo,7)dt, (Flow model) (21)

Xo~N(0,1), dX,="be(X-, xo,7)dt + o, dW .. (Diffusion model) (22)

The architecture of the drift model, bs, in FM y.; is identical to that used in SIy.y; and equivalently for the
patch-models. To train by we follow Algorithm 3 in*>, where the loss

2

[’(9) = ETGU[UJ],&EN(O,I) |:||b9($7—, Zo, T) - RTH ] ’ (23)

is minimized for batch samples of o and «1 under the same configurations as detailed in section Methodology:
Stochastic interpolants for turbulence super-resolution. Here

Tr = are+ Brx, (24)

and for the noise-schedulers o, = 1 — 72, Br = T, the target is given by

R, = —27¢+ 2. (25)

After training, the flow model ODE can be solved to produce a FM super-resolution. For this purpose we use
Heuns method.
For the diffusion model, we set

bo(Xr, @0, 7) = bo(X -, @0,7) + F-s0(X -, 20, 7), (26)

where by is the drift from the FM-models, and the score network, sg, is evaluated directly from by via

_ 67b9(X77$077_) — BTXT

052‘57' - ﬂ‘rd‘ra‘r (27)

SG(X‘NmU:T)

The diffusion coefficient is set to o, = 0.1(1 — 7). With by defined, the diffusion model SDE may be integrated
forward in time to produce super-resolved velocity fields. For this purpose we use Heuns SDE integrator.
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