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Capturing the intricate multiscale features of turbulent flows remains a fundamental challenge due to 
the limited resolution of experimental data and the computational cost of high-fidelity simulations. 
In many practical scenarios only coarse representations of the flows are feasible, leaving crucial fine-
scale dynamics unresolved. This study addresses that limitation by leveraging generative models to 
perform super-resolution of velocity fields and reconstruct the unresolved scales from low-resolution 
conditionals. In particular, the recently formalized stochastic interpolants are employed to super-
resolve a case study of two-dimensional turbulence. Key to our approach is the iterative application 
of stochastic interpolants over local patches of the flow field, that enables efficient reconstruction 
without the need to process the full domain simultaneously. The patch-wise strategy is shown to 
yield physically consistent super-resolved flow snapshots, and key statistical quantities – such as the 
kinetic energy spectrum – are accurately recovered. Moreover, the patch-wise approach is observed to 
produce super-resolutions of a quality comparable to those produced using a full field approach, and, 
in general, stochastic interpolants are observed to outperform contesting generative models across a 
range of metrics. Although only demonstrated for a 2D case study, these results highlight the potential 
of using stochastic interpolants to super-resolve turbulent flows.

Super-resolution of turbulent flows is essential for bridging the gap between the limited resolution of 
experimental measurements or low-resolution simulations and the rich, multiscale dynamics inherent to 
turbulence. Many practical simulations, such as Large Eddy Simulations (LES) or low-cost numerical models, 
cannot afford to resolve all relevant scales due to computational constraints1. Super-resolution techniques enable 
the reconstruction of fine-scale structures from low-resolution data, enhancing physical fidelity and enabling 
accurate analysis of quantities like energy spectra, vorticity, and dissipation. This is particularly valuable for data-
driven modeling, control, and diagnostics of complex fluid systems2.

In parallel with the growing influence of machine learning in imaging and language modeling, deep learning 
techniques have been increasingly adopted for super-resolving turbulent flows, with studies reporting significant 
performance gains over conventional methods3. Among these, deterministically trained convolutional neural 
networks (CNNs) are widely used due to their strong capabilities in feature extraction. Pioneering this approach 
in the field of turbulence, Fukami et al.4,5 applied deep CNNs to reconstruct various two-dimensional flows. While 
their model recovered flow statistics, such as the kinetic energy spectrum, fairly well, it exhibited non-physical 
artifacts and struggled to capture small-scale structures. To address these limitations, Liu et al.6 incorporated 
temporal information as a conditional input to the model. This extension yielded improved results, but the 
model continued to face challenges in regions dominated by viscous effects. Zhou et al.7 further enhanced the 
model by coupling it with an approximate deconvolution method8, and extended the analysis to a case study of 
three-dimensional turbulence.

Although deterministic methods, such as the aforementioned, have shown promise in super-resolving 
turbulent flows, recent efforts have increasingly focused on the application of generative models. Generative 
models constitute a class of algorithms designed to approximate the probability distribution underlying a given 
dataset. Once this, potentially conditional, distribution is learned, the model can synthesize new realizations by 
sampling from the learned distribution, yielding ensembles that are statistically consistent with the original data. 
Due to the stochastic nature of the sampling procedure, generative models are inherently non-deterministic. 
Among the most widely used generative frameworks are generative adversarial networks (GANs)9, and 
diffusion models (DMs)10. In the context of super-resolution, generative models produce high-resolution fields 
conditioned on corresponding low-resolution inputs.
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Inspired by the work of Ledig et al.11, Deng et al.12 applied GANs to super-resolve benchmark cases of two-
dimensional velocity fields. Subsequently, Subramaniam et al.13 extended this methodology to reconstruct both 
pressure and velocity fields in three-dimensional homogeneous isotropic turbulence, enhancing the resolution 
from 163 to 643. Later, Kim et al.14 used GANs to super-resolve slices of three-dimensional turbulent flow 
fields. Their results demonstrated a marked improvement in statistical accuracy relative to comparable CNN 
architectures. More recently, DMs have been shown to outperform GANs in augmenting incomplete or corrupted 
measurements of two-dimensional snapshots from three-dimensional turbulent flows15. Furthermore, an 
expanding body of work has successfully employed DMs to predict and super-resolve turbulent flows under a 
variety of configurations16–18.

In this study, we employ stochastic interpolants (SIs)19 to perform super-resolution of the velocity field in 
a two-dimensional case study of the Kolmogorov flow. Compared to DMs, SIs offer a more direct mapping 
between two distributions, as their inference process is initialized with an observed data point rather than 
Gaussian noise. Although stochastic interpolants remain a relatively recent development, especially within the 
context of fluid dynamics, they have been applied in a few studies to forecast and super-resolve canonical two-
dimensional flows20,21 and to recover state variables from sparse and noisy observations22.

We hypothesize that SIs provide improved performance over DMs due to their direct way of connecting 
two arbitrary distributions. This hypothesis is empirically supported for the 2D case study presented in this 
work, where we train a SI to map low-resolution samples to corresponding high-resolution samples. Moreover, 
with the potential to extend the applicability of SIs to more complex settings – specifically, three-dimensional 
turbulence – we introduce a patch-wise strategy that iteratively super-resolves localized subdomains of the full 
flow field. This localized approach effectively mitigates the computational burden associated with the increased 
input dimensionality that arises from finer grid resolutions, a challenge that becomes particularly acute in three-
dimensional applications.

The paper is structured as follows: section Preliminaries presents the problem setting, provides 
a brief overview of the fundamentals of SIs, and details the simulation of training and test data. Our main 
contribution is introduced in section  Methodology: Stochastic interpolants for turbulence super-resolution, 
namely the full-field and patch-wise super-resolution methods using SIs. In section Results & discussion, we 
evaluate our methodology and compare it with alternative approaches, including diffusion models and flow-
matching. We examine both individual super-resolution snapshots and overall statistical performance. Finally, 
section Conclusion summarizes our findings and conclusions.

Preliminaries
This section presents the governing equations of motion for the case study considered in the current work. It 
provides a brief introduction to the stochastic interpolant framework, and describes the simulation methodology. 
Moreover, the procedure for generating the datasets used to train and evaluate the developed models is detailed.

Problem setting
Super-resolution via SIs is demonstrated on a two-dimensional Kolmogorov flow case study. The flow dynamics 
are governed by the incompressible Navier–Stokes equations: 

	
∂u

∂t
+ (u · ∇)u = −∇p + 1

Re
∇2u + f , � (1a)

	 ∇ · u = 0, � (1b)

 where u(x, t) is the velocity field, p(x, t) the pressure and f(u) the external forcing, specified as

	
f(u) =

6∑
k=4

sin(ky)
[1
0
]

− 0.1u.� (2)

Adopting the definition of the Reynolds number used by Lucas & Kerswell23 for the two-dimensional Kolmogorov 
flow, we have

	
Re :=

√
χ

ν

(
Ly

2π

)3/2
,� (3)

where χ ≈ 3 denotes the forcing amplitude, ν the kinematic viscosity, and Ly  the extent of the domain in 
the y-direction. The velocity field u obtained through direct numerical simulation (DNS) of 1 serves as the 
reference target for training and evaluating the data-driven models developed in this study. These models aim 
to reconstruct the statistical features of u from a filtered counterpart, ũ, which retains only the large-scale 
flow structures. Although presented here in two dimensions as a proof of concept, the SI approach detailed 
in the following sections is formulated with the aim of generalization to three-dimensional flows. Indeed, this 
extension is a key perspective of the present study.

Stochastic interpolants
Here, we briefly outline the stochastic interpolant method, as presented in20. The method was originally 
presented in19 and expanded in20,24.
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The SI framework provides an approach for sampling from a conditional distribution by constructing a 
generative model that transports a point mass to a sample from a target distribution. We aim to generate samples 
from the conditional distribution,

	
ρ(x1 |x0 ) = ρ(x0, x1)

ρ(x0) ,� (4)

where ρ(x0) is the marginal distribution of x0 and ρ(x0, x1) represents the joint distribution of x0 and x1. x0 
samples are referred to as base samples and x1 samples are referred to as target samples.

The core of the method relies on the stochastic interpolant Iτ , defined as

	 Iτ = ατ x0 + βτ x1 + στ W τ , τ ∈ [0, 1],� (5)

where τ  is denoted pseudo-time. W τ  is a standard Wiener process independent of (x0, x1), and ατ , βτ , 
στ ∈ C1([0, 1]) are pseudo-time-dependent coefficients satisfying temporal boundary conditions:

	 α0 = β1 = 1, α1 = β0 = σ1 = 0.� (6)

These boundary conditions ensure that I0 = x0 and I1 = x1, creating a bridge between the point mass at x0 
and the conditional distribution ρ(x1|x0). The key insight is that there exists a drift term, bτ , such that the 
conditional distribution of Iτ  given x0 can be generated by solving the stochastic differential equation (SDE):

	 dXτ = bτ (Xτ , x0)dτ + στ dW τ , τ ∈ [0, 1], Xτ=0 = x0.� (7)

In particular, samples from the distribution ρ(I1 |x0 ) correspond to samples from the target distribution 
ρ(x1 |x0 ) owing to the construction of the interpolant.

It can be shown that the drift term that provides the desired property is the unique minimizer of the objective:

	
arg min

bτ

L(bτ ) =
ˆ 1

0
E

[
||bτ (Iτ , x0) − Rτ ||2

]
dτ,� (8)

with Rτ = α̇τ x0 + β̇τ x1 + σ̇τ W τ . This objective can be estimated empirically using samples from the joint 
distribution, making the drift learnable using standard regression techniques with neural networks. Therefore, 
we parameterize the drift term as a neural network, bθ  with weights θ and minimize an approximation of Eq. 8 
with respect to θ:

	
arg min

θ
L(θ) = 1

Nτ Ntrain

Nτ∑
i=1

Ntrain∑
j=1

||bθ(Ij
τi

, xj
0, τi) − Rj

τ ||2, Ij
τi

= ατi xj
0 + βτi xj

1 + στi W τi , Rj
τi

= α̇τi xj
0 + β̇τi xj

1 + σ̇τi W τi ,� (9)

where (xj
0, xj

1) ∼ ρ(x0, x1), Ntrain is the number of training samples, and Nτ  is the number of discrete 
pseudo-time points. For more details on training stochastic interpolants, see20,24.

The architecture of bθ , as well as the coefficients ατ , βτ , στ , which together define our stochastic interpolant 
will be detailed in section Methodology: Stochastic interpolants for turbulence super-resolution.

Generating training and test sets
In this work, stochastic interpolants are trained to reconstruct simulated velocity fields, u, by super-resolving 
the filtered counterpart ũ, which represents the corresponding low-resolution field. Thus, training and test sets 
are produced to consist of pairs (x0, x1) = (ũ, u). In the current study we generate 2,000 sample pairs of u and 
ũ for training our models. An additional 400 sample pairs are generated for evaluating model performance. We 
do not create a separate validation set, as we do not perform hyperparameter tuning; instead, we adopt fixed, 
prior-chosen hyperparameter values throughout. The target and base samples are simulated via the procedure 
detailed in the following subsections.

Numerical simulation
To produce u we first convert 1 to its vorticity–streamfunction formulation25 and solve the governing equations 
on a fully periodic domain (x, y) ∈ Ω = [0, 2π]2 using the Fourier Galerkin method26. Here, all fields are 
represented as truncated Fourier series, and spatial derivatives are computed exactly in spectral space due to the 
periodic boundary conditions.

The non-linear convective term, typically expressed in vorticity form as u · ∇ω is evaluated pseudospectrally. 
This is done by transforming the gradient of the vorticity ∇ω and the velocity components u = (u, v) from 
spectral space to physical space using an inverse Fourier transform. The non-linear product u · ∇ω is then 
computed pointwise in physical space, and the result is transformed back to spectral space using a forward 
Fourier transform. This approach avoids the expensive convolution sums that would arise from computing the 
non-linear product directly in spectral space26. To suppress aliasing errors in the non-linear term, a dealiasing 
technique, namely the 2/3-rule, is employed, where the highest one-third of wavenumbers are zeroed out after 
transforming back to spectral space27. This ensures numerical stability and accuracy in the pseudospectral 
evaluation.

The simulation is initialized with a random seed in spectral space, where Hermitian symmetry is enforced. 
After evolving the simulation to a statistically steady state, the velocity field u is sampled on a uniform 128×128 
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grid at temporally decorrelated intervals, determined via the autocorrelation function. The Reynolds number 
is set to Re = 1000, and time integration is performed using a fourth-order Runge–Kutta scheme with a fixed 
timestep δt = 0.025. For further details of the simulation, we refer to our code repository which is available 
online.

Note that the specific choice of numerical solver is not crucial for the presented methodology as it is only a 
means to produce training data. Thus, the only requirement is that the numerical simulation provides accurate 
training data with respect to the quantities of interest. E.g. the method described above would not be suitable for 
a 3D case with non-periodic boundary conditions.

Producing low-resolution samples
To generate the filtered state ũ from u, a series of steps are applied. First, we apply a lowpass filter to u with 
a cutoff frequency of kcutoff = 8. This operation retains only the low-frequency modes of the velocity field, 
effectively removing small-scale variations. The filtering is defined by the Fourier coefficients:

	
ˆ̃ui,kℓ =

{
ûi,kℓ, for |k|, |ℓ| ≤ kcutoff
0, otherwise, � (10)

where κ = [k ℓ]T  is the spectral wavenumber and subscript i = {1, 2} denotes the velocity field components 
u and v. Following the filtering, the field is downsampled onto a 16×16 grid by retaining every 8th grid point in 
both the x− and y−coordinates, discarding the remaining points. In essence, the velocity field on the 16×16 
grid represents the limited resolution data available within a low-resolution simulation.

Methodology: Stochastic interpolants for turbulence super-resolution
This section develops two complementary models for turbulent flow super-resolution using stochastic 
interpolants: SIfull, which processes the entire velocity field simultaneously, and SIpatch, which employs a 
patch-wise strategy designed for computational scalability. Our objective is to construct a framework that 
allows reconstruction of high-fidelity velocity fields from limited experimental measurements or low-resolution 
simulation data. The SI models are trained to approximate the conditional distribution ρ(u |ũ ), enabling 
generation of statistically consistent high-fidelity samples from coarse inputs.

A key constraint of the stochastic interpolant framework is that the base and target samples (x0 and x1) must 
reside in the same vector space20. To satisfy this requirement, we upsample ũ prior to training. Specifically, we 
learn to sample from ρ(u |ũ ) = ρ(u |Up(ũ) ). Note that the equality holds due to the deterministic nature of 
the chosen upsampling operator, Up. We employ cubic interpolation to transform the filtered and downsampled 
velocity field from the 16×16 grid back to the original 128×128 resolution, though alternative interpolation 
schemes (e.g., linear) are equally viable.

In the following subsections, we detail the implementation of SIfull and SIpatch for sampling from ρ(u |ũ ).

Full field super-resolution
The full field model, SIfull, directly super-resolves the entire velocity field in a single forward integration of the 
governing SDE (7). We define the stochastic interpolant with base samples x0 = ū = Up(ũ) and target samples 
x1 = u.

While conceptually straightforward, this approach faces computational limitations as grid resolution 
increases. The SDE integration required for sample generation scales poorly with domain size, which becomes 
particularly problematic for three-dimensional applications where memory and computational requirements are 
prohibitive. These scalability constraints motivate the development of the patch-wise strategy described below.

Patch-wise super-resolution
The patch-wise approach, SIpatch, addresses the computational limitations of SIfull by decomposing the super-
resolution task into smaller, manageable subproblems. Rather than processing the entire domain simultaneously, 
SIpatch is applied iteratively to super-resolve localized patches of the velocity field, enabling application to high-
resolution three-dimensional flows where the full field method becomes computationally intractable. Thus, 
where SIfull is applied to reconstruct u from ū, SIpatch is applied to reconstruct any subfield uj  from ūj , where

	 uj(t, x, y) = u(t, x, y), ūj(t, x, y) = ū(t, x, y), for (x, y) ∈ Ωj ,� (11)

and the subdomain, Ωj , is defined through the partition

	 Ω = ∪jΩj , Ωi ∩ Ωj = ∅ for i ̸= j,� (12)

with Ω denoting the full spatial domain. Although applying SIpatch iteratively across Ω generates statistically 
consistent super-resolved velocity fields, initial implementations exhibited shortcomings at patch boundaries. 
Specifically, non-physical discontinuities were observed at patch interfaces, a behavior that was especially 
pronounced in spatial-gradient fields, such as the vorticity computed from the generated velocity field. To 
address this issue we expand our model to consist of two separately trained patch models when seeking the 
generation of a full velocity field. The first patch model, which we term the free-generator, can be applied to 
super-resolve the field at any arbitrary patch, Ωj , using the low-resolution neighboring patches as conditionals. 
The second patch model, which we term the cond-generator (conditional generator), may be applied to super-
resolve patches, where the neighboring patches have been super-resolved using the free-generator.
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With these distinct submodules of SIpatch, the process of super-resolving the full velocity field can be divided 
into two stages:

•	 Stage 1: The free-generator is applied to super-resolve patches arranged in a checkerboard pattern, condition-
ing each patch on neighboring low-resolution patches. This yields a velocity field that is partially super-re-
solved (see top and middle rows of Fig. 1);

•	 Stage 2: The cond-generator super-resolves the remaining patches conditioning on the high-resolution 
patches generated in Stage 1 (see middle and bottom rows of Fig. 1). Crucially, during training, this model 
uses neighbor patches from x1 rather than x0, emulating the process of using super-resolved data from the 
free-generator as boundary conditions for the cond-generator.

In principle, the two-stage approach defines a sequential algorithm for super-resolving a given velocity field. 
However, because the patches processed within each stage are independent of one another, the super-resolution 
procedure can be carried out in parallel across patches in both stages, only requiring synchronization between 
the two stages.

The two-stage approach was observed to generate more physically consistent super-resolutions than when only 
the free-generator was used across Ω. Together, the free-generator and cond-generator thus define SIpatch, where 
boundary artifacts have effectively been mitigated while maintaining the same statistical objectives as SIfull, 
but with superior computational scalability. For the current work we choose a patch size of 32×32, signifying 
that the full velocity field may be reconstructed by super-resolving 16 separate patches. The patch edge length, 
ℓpatch = π/2, relates to the flow characteristic length scale ℓflow = Ly/2π = 123 by ℓpatch/ℓflow = π/2. 
Hence, the chosen patch size should adequately resolve all relevant flow scales. A systematic assessment of how 
patch size influences the efficiency of the patch-wise method is left for future work.

Configuration of stochastic interpolants
Inspired by the results of20, we choose, for both models, the interpolant coefficients

	 ατ = 1 − τ, βτ = τ2, στ = 0.1(1 − τ),� (13)

such that they satisfy (6).

Network architecture
To parameterize bθ  each model employs a UNet architecture, which was originally introduced by Ronneberger 
et al.28. Our UNet architecture ((Fig. 2), largely based on the approach presented in21, is composed of a series of 
convolutional and ConvNeXt29 layers. The UNets of SIfull and SIpatch differ solely in the state conditioning, 

Fig. 1.  Visualization of the two stages in SIpatch. Note that the states are visualized with a single channel for 
visual clarity. The actual data used consists of two channels – velocity in the horizontal and vertical direction.
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where SIfull takes the full x0 ∈ R128×128×2 as conditional input, whereas SIpatch takes only 5 field-patches, 
each of size 32 × 32 × 2, as conditional input.

Throughout the network, we employ the GELU activation function30. The pseudo-time variable τ  is 
embedded using a sinusoidal positional encoding, which is then processed by a shallow neural network. This 
time embedding is incorporated as a conditioning input at each ConvNeXt layer as a bias within the UNet.

Divergence-free projection
As each model is unlikely to produce a divergence free field, the output xτ=1 is filtered using the Helmholtz-
Hodge decomposition31. For any field F the method returns

	 Fdiv=0 = F − ∇ϕ,� (14)

where ϕ solves

	 ∇2ϕ = ∇ · F.� (15)

Since our velocity field is periodic, Eqs. (14)-(15) are solved in spectral space. In other flows, the decomposition 
may not be as effective, and other methods to remove non-zero divergence may be needed. We refer to21 for a 
discussion of alternative projection methods.

Training
Each stochastic interpolant is trained over 4000 epochs using a batch size of 40 (2% of the training set). We 
employ an AdamW optimizer32, and apply a linear warm-up learning rate scheduler for 50 epochs. The warm-
up is succeeded by a cosine annealing learning rate scheduler33, with a restart period of 30 epochs. Figure 3a 
displays the training loss pr. epoch for the SIfull model and the free- and cond-generators separately. Each 
model is observed to converge within 4000 epochs. Figure 3b shows the standard deviation of the velocity v at 

Fig. 3.  (a) Training loss (9) evaluated at every epoch, illustrating convergence of each SI model. (b) Standard 
deviation of the velocity v at y = π, computed over 400 super-resolved samples generated from the same low-
resolution input of a representative snapshot, indicating the models’ ability to produce a diverse set of states.

 

Fig. 2.  Visualization of the UNet architecture within the free- and cond-generators of SIpatch.
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y = π, x ∈ [0, 2π], computed over 400 super-resolved samples generated from the same low-resolution input 
of a representative snapshot. The non-zero standard deviation demonstrates that the trained models are able to 
generate an ensemble of plausible states from a given input. For additional implementation details, please refer 
to the GitHub repository linked in this work.

Results & discussion
This section presents the results of applying SIfull and SIpatch to super-resolve the velocity field in the 
Kolmogorov flow case study. To represent the full field super-resolution of a snapshot we use the notation xf

1  
and xp

1  for respectively SIfull and SIpatch. The trained models are evaluated on a test set consisting of 400 
decorrelated flow snapshots. We first demonstrate that the models produce reasonable super-resolved versions 
of individual snapshots, followed by an analysis of statistical performance over the full test set.

Snapshot evaluation
For a given snapshot, the super-resolved velocity field is inferred by forward-integrating the SDE in Eq.  (7) 
using the Heun SDE integrator34, with 100 pseudo-timesteps and x0 = ū = Up(ũ) as the initial condition. The 
resulting high-resolution velocity field for a representative snapshot is shown in Fig. 4a. While the models SIfull 
and SIpatch are not designed to exactly reproduce x1, they are observed to produce super-resolutions that match 

Fig. 4.  Representative snapshot showing: (a) the velocity field, (b) the vorticity field, and (c) the dissipation 
rate field. In all panels, from left to right, the images display the low-resolution base field, the high-resolution 
target field, the SIfull super-resolution, and the SIpatch super-resolution.
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the target field fairly well. Moreover, close inspection shows that the fine-scale structures seen in x1 are better 
matched by the SI super-resolutions, than the cubicly upscaled field x0.

The distinction becomes more apparent when examining the vorticity field, ω = ∇ × u (4b). While x0 
exhibits smooth, low-detail contours, both x1 and the super-resolved fields produced by the SI models display 
finer-scale structures. Notably, the patch-based model avoids introducing sharp discontinuities at patch 
boundaries (see the patch mask in Fig. 1), indicating that the cond-generator in SIpatch produces super-resolved 
patches that are consistent with those from the free-generator. Such consistency is particularly important at patch 
boundaries, where discontinuities in spatial gradients might otherwise arise. Fortunately, the model maintains 
coherent transitions across patches.

The dissipation rate field (Fig. 4c), which also depends on spatial gradients, likewise shows no discontinuities 
at patch boundaries. The dissipation rate is evaluated at each spatial point by computing

	
ϵ = 2µsijsij , sij =

(
∂ui

∂xj
+ ∂uj

∂xi

)
, i, j ∈ {1, 2}.� (16)

Since we solve the non-dimensionalized Navier–Stokes equations, we simply set µ = 1/2 to ease the computation 
of ϵ. Consistent with the behavior seen in the velocity and vorticity fields, the SI super-resolved dissipation rate 
fields show qualitative features that more closely match x1 than x0.

Statistical performance
We have seen that the models generate reasonable super-resolutions for a representative snapshot. We now 
evaluate the statistical performance over the full test set.

Figure 5a and Fig. 5b display respectively the radially averaged spectra of energy, E, and enstrophy, Z, of 
the base (x0) and target (x1) sets, and compares them to the corresponding spectra of the SIfull and SIpatch 
super-resolved fields. A close alignment between the model and target spectra is observed, particularly at low 
to intermediate wavenumbers, highlighting a marked improvement compared to the base spectrum. At high 
wavenumbers the energy spectra diverge, however, the associated energy at these scales is minimal relative to 
the system energy, and the impact on overall statistical measures is therefore considered negligible. Overall, both 
models recover the target spectrum of energy and enstrophy well. Related studies, that apply generative models 
for super-resolution, such as the work by18, which uses DMs for full-field reconstruction, observe similarly 
shaped spectra for their Kolmogorov flow, and also report a divergence at high wavenumbers.

In Fig. 5c, the flatness of vorticity increments, Fω , is shown as a function of the physical separation ℓ ∈ (0, π]. 
The flatness is evaluated as

	
Fω(ℓ) = ⟨(δℓω)4⟩

⟨(δℓω)2⟩2 , δℓω = 1
2 [(ω(x + ℓ, y) + ω(x, y + ℓ) − 2ω(x, y)],� (17)

where ⟨·⟩ denotes the spatial average. For the target field, the flatness profile exhibits a clear scale dependence. 
At small separations ℓ, the flatness takes values of ≈ 5, indicating non-Gaussian statistics and intermittency 
associated with sharp vorticity gradients and coherent structures. As ℓ increases, the flatness decreases and 
approaches values ≈ 4, reflecting partial Gaussianization due to spatial averaging. However, the persistence 
of flatness values above the Gaussian value of 3 at large scales indicates that large-scale vorticity fluctuations 
remain correlated and influenced by coherent flow structures. While deviations between the model and target 
flatness profiles are observed, the target statistic is nevertheless reasonably well recovered from the base field, 
which exhibits larger discrepancies that can be directly attributed to the filtering, subsampling, and interpolation 
procedure described in section Preliminaries.

The probability density functions shown in Fig. 6 are estimated using a Gaussian kernel density estimator35,36. 
They describe the distributions of the kinetic energy, vorticity, and the dissipation rate of the base, the target, 
SIfull, and SIpatch fields. For every realization in the test set, each quantity is computed at all grid points, and 
the density functions are estimated over the entire test set. The kinetic energy is computed as

Fig. 5.  Radially averaged spectra of (a) kinetic energy and (b) enstrophy. Each spectrum is computed as the 
average over the test set, and the base and target spectra are compared to the corresponding spectra of the 
SIfull and SIpatch super-resolved fields. Figure (c) similarly shows the flatness of vorticity increments.
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	 E = u2 + v2,� (18)

Each quantity captures a distinct aspect of the flow. As shown in Fig. 6a, both models accurately recover the 
probability density function of the kinetic energy. This outcome is expected, since the models are trained to 
super-resolve the velocity fields, which are directly related to the kinetic energy. The densities of the vorticity 
(Fig. 6b) and dissipation rate (Fig. 6c) fields show that these quantities are also well recovered, although SIpatch 
exhibits a slight deviation from the target in both cases. The authors note in particular the recovery of the 
dissipation rate as a significant result, as ϵ is a key quantity commonly used to characterize turbulent flows37. 
Moreover, it is a notoriously difficult parameter to experimentally measure38, and if future measurements or 
low-resolution simulations can apply generative models to recover dissipation accurately, it would represent a 
meaningful advancement.

To quantify the deviations observed in Fig.  6, we utilize the Kullback–Leibler (KL) divergence39 and the 
Wasserstein-1 distance40. The KL divergence is defined as

	
DKL(p||q) =

ˆ
p(x) log p(x)

q(x)dx,� (19)

where p denotes the reference distribution, and q is the distribution being compared or approximated. The 
Wasserstein-1 distance is defined as

	
W1(p, q) = inf

π∈Γ(p,q)
E(x,y)∼π [||x − y||]� (20)

where Γ(p, q) is the set of all joint distributions with marginals p and q.
Table  1 reports the KL divergence and W1 distance for the densities of E, ω and ϵ. In each case, the SI 

models show an evident improvement over the base, with accuracy gains of approximately one to two orders of 
magnitude. SIfull is observed to outperform SIpatch across all but one of the evaluated metrics, for which the 

KL divergence ↓ Wasserstein-1 distance 
↓

E ω ϵ E ω ϵ

x0 0.0121 0.0998 0.1470 1.1046 3.1063 9.8719

DMfull 0.0011 0.0068 0.0063 0.2057 0.7321 1.6198

DMpatch 0.0006 0.0182 0.0153 0.1880 1.2716 3.1738

FMfull 0.0015 0.0073 0.0062 0.4024 0.7250 1.7037

FMpatch 0.0009 0.0173 0.0140 0.1951 1.2142 2.9304

SIfull 0.0003 0.0011 0.0006 0.0528 0.1875 0.6181

SIpatch 0.0007 0.0049 0.0011 0.0803 0.4779 0.5889

Table 1.  Comparison of Kullback–Leibler divergence and Wasserstein-1 distance between the target 
distribution and the distributions of x0, DMfull, DMpatch, FMfull, FMpatch, SIfull and SIpatch, evaluated 
for the probability densities of kinetic energy, vorticity, and dissipation rate. For easier readability, the distances 
computed for E have been scaled by a factor 102, whereas those computed for ω and ϵ have been scaled by a 
factor 10. A downward-pointing arrow signifies that lower values are better. The best and second-best results 
are highlighted in boldface and italics, respectively.

 

Fig. 6.  Probability density functions of the (a) kinetic energy (b) vorticity and (c) dissipation rate, computed 
pointwise over the entire test set, and estimated using a Gaussian kernel density estimator. The plots compare 
the densities of SIfull and SIpatch with those of the base, x0, and the target, x1.
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two models show comparable performance. This finding aligns with the intuition that the model with access to 
full-domain information has an advantage over the one that receives only partial information. However, SIpatch 
performs largely on par with the full field model for reconstructing the considered densities, demonstrating 
SIpatch as a scalable alternative to the full-field method.

The table also compares the performance of the SI-models to equivalent flow-matching (FM) and diffusion 
(DM) models (see Appendix A for details). For the current configuration of using 100 pseudo-timesteps to 
produce super-resolutions within each model, the SI-models are observed to outperform the contesting methods 
in the considered metrics. This suggests that stochastic interpolants are indeed the better option for super-
resolving 2D Kolmogorov turbulent flows. The conclusion is further supported as we consider the convergence 
of the W1 distance for the density of ⟨ϵ⟩ in Fig. 7. Here ⟨·⟩ denotes the spatial average, and ⟨ϵ⟩ is computed 
for each snapshot in the test set, after which the corresponding probability density functions are estimated as 
before, over the whole test set, with the W1 distance denoting the distance to the target density. Convergence is 
displayed as a function of the number of pseudo-timesteps used to infer super-resolutions. It is evident that the 
SI-models require significantly fewer timesteps to reasonably reproduce the flow statistic. Thus the SI framework 
is favored as the inference time decreases proportionally to the number of pseudo-timesteps. The primary reason 
for this is the fact that the SI model initiates the reconstruction from the low-resolution state, while the DM 
and FM start from a Gaussian sample. As a result, the SI base sample is already close to the target field, making 
the required transformation simpler and allowing the model to converge with fewer SDE steps. Furthermore, 
it is worth noting that the FM generates via an ODE while the SI generates via an SDE. Extensive comparisons 
between SDE- and ODE-based generation are performed in Ma et al.41 showing that SDE-based sampling 
generally yields better results.

Extending the framework
The statistics presented in the previous section demonstrate that stochastic interpolants provide a viable approach 
for super-resolving the 2D Kolmogorov flow. While these results are promising, the framework still needs to 
be evaluated in three-dimensional turbulence and across a broad range of flow configurations, such as wall-
bounded turbulence, to establish its applicability in more practical settings. Extending the framework to three-
dimensional turbulence is non-trivial, and given its computational demands, the full-field approach is unlikely 
to be practical in this setting. For this reason, we focus on how the patch-wise strategy may be generalized to 
3D flows.

The efficacy of the SI method for turbulent flows depends on the availability of suitable training data. Such 
data may be obtained either through numerical simulation or experimental investigations. Sample datasets 
may be found e.g. in Johns Hopkins Turbulence Database42. While training the full-field method on three-
dimensional snapshots is computationally infeasible, particularly when large batch sizes are required, the patch-
wise approach mitigates this limitation by operating on localized chunks of each snapshot. Once suitable data 
have been obtained, the patch model can be trained. The authors propose two possible strategies: 1. training 
a model tailored to a specific flow type, such as homogeneous isotropic turbulence, where, for instance, the 
Reynolds number can be used as a conditional input to the neural network for broader applicability, or 2. a more 
general model may be developed by training on patches drawn from multiple flow configurations.

With regard to network architecture, retaining a UNet–type model in three dimensions would require 
replacing all two-dimensional convolutional layers with their three-dimensional counterparts (i.e., Conv2D 
→ Conv3D in PyTorch), along with potential adjustments to the network depth and overall parameterization. 
Alternatively, transformer-based models43,44 may offer improved scalability and flexibility in high-dimensional 
settings.

An additional consideration is the choice of patch size. In three-dimensional turbulence, the patch 
dimensions may need to be aligned with characteristic flow scales, such as the integral length scale, to ensure 
that all dynamically relevant features are adequately represented within each patch. Moreover, the interpolant 

Fig. 7.  Convergence of the Wasserstein-1 distance of the density of ⟨ϵ⟩ as a function of the number of pseudo-
timesteps used to infer super-resolutions. The SI-models are observed to converge for a lower number of 
pseudo-timesteps compared to their contesting counterparts. For the FM- and DM-models, the W1-value 
103 is used as a placeholder, as the models failed to produce meaningful solutions when limited to only 10 
timesteps during the inference stage.
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coefficients used in the present work are not guaranteed to be optimal for all flow configurations. We adopted 
the coefficients proposed by Chen et al.20 without modification, but their generality across different turbulence 
regimes remains uncertain. Identifying optimal hyperparameters, such as those mentioned here, is an important 
topic for future study. Equally crucial is assessing whether the combination of low-resolution simulation and 
super-resolution offers a net computational advantage over direct high-resolution simulation.

Despite the remaining open questions, the results presented here provide motivation to further investigate 
the patch-wise approach in higher-dimensional flow settings.

Conclusion
We have introduced stochastic interpolants as a generative method for super-resolving fluid flows. Designed to 
enhance low-resolution simulations, LES, or experimental data, the approach can be applied either to reconstruct 
the full field in a single pass or to super-resolve smaller patches, enabling iterative recovery of the full domain or 
targeted regions of interest. For both configurations, the method effectively captures key flow statistics in the 2D 
case study, including the energy spectrum and the probability density functions of the kinetic energy, vorticity, 
and dissipation rate.

While the models developed meets the performance requirements within the studied setting, further 
investigation is required to evaluate the applicability to three-dimensional turbulence and generalizability to 
different flow regimes, for instance, how a model trained on one type of flow behaves when applied to another. 
Moreover, a rigorous evaluation of inference cost relative to the computational expense of high-resolution 
simulations is essential to justify the use of stochastic interpolants for fluid flow super-resolution.

Compared to other state-of-the-art generative methods, such as flow-matching and diffusion models, the 
proposed stochastic interpolant models demonstrate superior or at least comparable performance. This highlights 
their potential for turbulent flow super-resolution, and offers a promising perspective for future applications.

Data availability
The code for data generation and setting up the model stochastic interpolants, is available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​
m​a​r​t​​i​n​s​c​h​​i​o​​d​t​/​T​​u​r​b​u​l​e​​n​​c​e​_​S​​t​o​c​h​a​s​​t​i​c​_​I​n​t​e​r​p​o​l​a​n​t​s. The repository also contains scripts for training the models, 
performing super-resolution, conducting analyses, and the implementations of the flow and diffusion models 
used for comparison.

Appendix A Implementation of flow and diffusion model
The flow-matching (FM) and diffusion (DM) models used for comparison in this work are developed according 
to the framework prescribed in45. Here, a flow/diffusion model is defined by the ODE/SDE used for inference 
(super-resolution), i.e.

	 X0 ∼ N (0, 1), dXτ = bθ(Xτ , x0, τ)dt, (Flow model)� (21)

	 X0 ∼ N (0, 1), dXτ = b̃θ(Xτ , x0, τ)dt + στ dW τ . (Diffusion model)� (22)

The architecture of the drift model, bθ , in FMfull is identical to that used in SIfull and equivalently for the 
patch-models. To train bθ  we follow Algorithm 3 in45, where the loss

	 L(θ) = Eτ∈U[0,1],ϵ∈N (0,1)
[
||bθ(xτ , x0, τ) − Rτ ||2

]
,� (23)

is minimized for batch samples of x0 and x1 under the same configurations as detailed in section Methodology: 
Stochastic interpolants for turbulence super-resolution. Here

	 xτ = ατ ϵ + βτ x1,� (24)

and for the noise-schedulers ατ = 1 − τ2, βτ = τ , the target is given by

	 Rτ = −2τϵ + x1.� (25)

After training, the flow model ODE can be solved to produce a FM super-resolution. For this purpose we use 
Heuns method.
For the diffusion model, we set

	
b̃θ(Xτ , x0, τ) = bθ(Xτ , x0, τ) + στ

2 sθ(Xτ , x0, τ),� (26)

where bθ  is the drift from the FM-models, and the score network, sθ , is evaluated directly from bθ  via

	
sθ(Xτ , x0, τ) = βτ bθ(Xτ , x0, τ) − β̇τ Xτ

α2
τ β̇τ − βτ α̇τ ατ

.� (27)

The diffusion coefficient is set to στ = 0.1(1 − τ). With ̃bθ  defined, the diffusion model SDE may be integrated 
forward in time to produce super-resolved velocity fields. For this purpose we use Heuns SDE integrator.
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