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Samenvatting van de lezing

Voor het begrijpen of zelfs voorspellen van allerlei
complexe fysische systemen, waaronder atmosfeer-
en oceaanstromingen, zijn computers al vele jaren
onmisbaar. Ook al zijn de onderliggende fysische
wetmatigheden van zulke systemen bekend, met
alleen pen en papier doorrekenen hoe die wet-
matigheden leiden tot het complexe gedrag dat we
waarnemen, is zelden mogelijk. Een belangrijke
reden daarvoor is het zogeheten ‘multischaalkarak-
ter’'van veel fysische systemen, gekenmerkt door de
gecompliceerde interactie tussen microscopische
(kleinschalige) en macroscopische (grootschalige)
processen. Naast pen en papier maken onderzoe-
kers daarom intensief gebruik van computersimula-
ties. Die simulaties zijn traditioneel gebaseerd op
fysische wetmatigheden die aan de hand van wis-
kundige methoden worden omgezet naar bereke-
ningen die een computer kan uitvoeren. Een nieuwe
ontwikkeling is het gebruik van Al (artificiéle intelli-
gentie) in aanvulling op, of zelfs ter vervanging van,
de fysisch-gebaseerde computermodellen. De inzet
van Al-technieken in dit domein is veelbelovend
maar werpt tegelijkertijd nieuwe wiskundige vra-
gen op.

Inleiding

Achter het voorspellen van het weer en het simule-
ren van het klimaat gaat een wereld aan wiskunde
schuil. De natuurkundige wetten die de stromingen
van de atmosfeer en de oceanen bepalen, zijn gefor-
muleerd als wiskundige vergelijkingen, zogeheten
partiéle differentiaalvergelijkingen [1]. Om die ver-
gelijkingen op te lossen op een computer wordt
gebruikgemaakt van een heel scala aan wiskundige
methoden en technieken. De geldigheid en betrouw-
baarheid van die methoden is weer gefundeerd in
wiskundige analyse [2]. Het gebruik van computers is
onmisbaar, omdat de vergelijkingen en het gedrag
dat ze beschrijven te complex zijn om met alleen pen
en papier op te lossen of te doorgronden. Atmosfeer-
en oceaanstromingen zijn daarin geen uitzondering;
er zijn allerlei andere fysische systemen die eveneens
te complex zijn om zonder computer door te reke-
nen. Voorbeelden zijn te vinden in de chemie, biolo-
gie, natuurkunde en verder.

Multischaalsystemen

Het uiterst complexe gedrag van atmosfeer en ocea-
nen hangt samen met hun zogeheten multischaal-
karakter. Als we bijvoorbeeld naar de atmosfeer kij-
ken, dan zien we patronen en fenomenen die zich
over duizenden kilometers uit kunnen strekken,
zoals grootschalige systemen met hoge- en lage-
drukgebieden en de straalstroom, maar ook meer
lokale, kleinschalige patronen zoals stormen en
regenfronten. Zoomen we nog verder in dan zien
we individuele wolken en lokale turbulentie, en op
letterlijk microscopische schaal zijn bijvoorbeeld de
vorming van regendruppels en ijsdeeltjes van
belang. Al deze grootschalige en kleinschalige pro-
cessen beinvloeden elkaar en moeten in principe
meegenomen worden bij het simuleren van de
atmosfeer. Dat brengt een grote uitdaging met zich
mee: de fysische principes achter deze processen
zijn bekend, maar zelfs de allerkrachtigste heden-
daagse computers zijn bij lange na niet in staat om
al deze details ook expliciet mee te nemen in bere-
keningen van de gehele (globale) atmosfeer. Dit
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multischaalkarakter zien we ook terug bij andere
systemen dan atmosfeer en oceaan: de aanwezig-
heid van kleinschalige en grootschalige processen
en fenomenen die elkaar wederzijds beinvloeden
speelt ook een belangrijke rol in bijvoorbeeld de
biologie (van biochemische processen tot hele orga-
nismen) en de natuurkunde (zoals macroscopische
materiaaleigenschappen die samenhangen met pro-
cessen op atomaire schaal) 3, 4].

Fysische modellen: niet-lineaire
wiskundige vergelijkingen

De fysische modellen van veel multischaalsystemen
in de natuur zijn geformuleerd in de vorm van wis-
kundige vergelijkingen, in veel gevallen niet-lineaire
partiéle differentiaalvergelijkingen of gewone diffe-
rentiaalvergelijkingen. Voor atmosfeer- en oceaan-
stromingen zijn die vergelijkingen hoofdzakelijk
afgeleid van de Navier-Stokes-vergelijkingen (de par-
tiéle differentiaalvergelijkingen voor algemene gas-
en vloeistofstromingen). Er zijn allerlei versies, geba-
seerd op verschillende (combinaties van) fysische
benaderingen en aannames die geschikt zijn voor
atmosfeer of oceaan, zoals de hydrostatische bena-
dering, de Boussinesg-benadering en de aanname
van incompressibiliteit [1].

Ook met deze benaderingen en aannames, bedoeld
om tot stelsels vergelijkingen te komen die wat mak-
kelijker op te lossen zijn dan de algemene Navier-
Stokes-vergelijkingen, blijft het onmogelijk om de

Figuur 1: Een raster voor ruimtelijke discretisatie in
oost-west- en noord-zuid-richtingen.

vergelijkingen met alleen pen en papier op te lossen.
In plaats daarvan worden ze numeriek opgelost, op
een computer. Dit vormt de basis voor het maken
van simulaties en voorspellingen van atmosfeer- en
oceaanstromingen. De wiskundige methoden om par-
tiéle differentiaalvergelijkingen op te lossen op de
computer, en de fundamentele wiskundige onder-
bouwing en analyse van de geldigheid van deze
methoden, behoren tot het deelgebied van ‘scientific
computing’ en numerieke analyse binnen de wis-
kunde [2]. Twee belangrijke ingrediénten waarmee
de vergelijkingen voor atmosfeer en oceaan nume-
riek worden opgelost zijn:

- ruimtelijke discretisatie, bijvoorbeeld door middel
van een ruimtelijk grid of raster (figuur 1), waar-
mee de ruimte- en tijdsafhankelijke partiéle diffe-
rentiaalvergelijkingen worden omgezet in een
(hoogdimensionale) set gekoppelde gewone dif-
ferentiaalvergelijkingen die alleen nog van de tijd
afhangen;

- tijdsdiscretisatie, waarmee de toestand van de
stroming in stappen van bijvoorbeeld 10 minuten
steeds verder vooruit in de tijd berekend wordt
(figuur 2), aan de hand van de gewone differen-
tiaalvergelijkingen verkregen uit de eerderge-
noemde ruimtelijke discretisatie.

Parametrisatie

Zoals eerder genoemd, is het vanwege het multi-
schaalkarakter niet mogelijk om alle details en klein-
schalige processen expliciet mee te nemen in nume-
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Figuur 2: Een voorbeeld van tijdsdiscretisatie, waar-
in de toestand van de stroming (®) in stappen voor-
uit in de tijd berekend wordt, aan de hand van de
tijdsafgeleide (f) van @.
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rieke simulaties van atmosfeer en oceaan. Het expliciet
simuleren van kleinschalige processen vraagt om
een verfijnde ruimtelijke discretisatie (oftewel hoge
resolutie) en een kleine tijdstap. Hoe hoger de reso-
lutie en hoe kleiner de tijdstap, hoe groter de beno-
digde rekenkracht. Met een te verfijnde discretisatie
is de gevraagde rekenkracht te groot om met de
beschikbare computers aan te kunnen. Om toch
numerieke simulaties te kunnen doen die een vol-
doende groot ruimtelijk domein en tijdsinterval
beslaan (bijvoorbeeld, in geval van klimaatsimulaties,
atmosfeer- en oceaanstromingen over de gehele
aarde, gedurende een tijdsinterval van 100 jaar) wordt
gebruikgemaakt van zogeheten ‘parametrisaties’ in
numerieke modellen. Een parametrisatie (ook wel
‘closure’ of sluiting genoemd) is een vereenvoudigde
representatie van het effect van kleinschalige, niet
expliciet meegenomen processen op de stroming op
grotere schalen (die wel expliciet beschreven wor-
den in het numerieke model).

Een voorbeeld is atmosferische convectie en wolken-
vorming, het lokale proces waarbij relatief warme
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lucht uit het onderste deel van de atmosfeer opstijgt
en een deel van het vocht in de stijgende lucht con-
denseert en zo wolken vormt. Numerieke modellen
die dit expliciet kunnen beschrijven hebben een
horizontale ruimtelijke resolutie (afstand tussen ras-
terpunten) in de orde van 100 meter. Er kunnen
simulaties mee worden gedaan op domeinen van
bijvoorbeeld 100 km bij 100 km (horizontaal), maar
niet over de hele aarde [5]. In klimaatmodellen zoals
beschreven in het laatste IPCC-rapport [6] heeft de
atmosfeer een horizontale resolutie die vele malen
minder fijn is, tussen de 50 km en 300 km (CMIP6-
modellen). Een kleinere groep modellen (HighRes-
MIP) heeft hogere resoluties, tussen de 10 km en
50 km. In al deze modellen (figuur 3) moet convectie
geparametriseerd worden. Alhoewel convectie en
wolkenprocessen kleinschalig zijn is hun effect op
het klimaat significant, en een verbetering van hun
representatie in klimaatmodellen is van belang voor
een beter begrip van klimaatverandering. Het 6e IPCC-
rapport meldt hierover: “Clouds remain the largest
contribution to overall uncertainty in climate feed-
backs” [6].
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Figuur 3: Modelresoluties van klimaatmodellen beschreven in het 6e IPCC-rap-

port.

Bron: [6], figuur 1.19
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Data-gedreven modellen

Aangedreven door de grote ontwikkelingen in artifi-
ciéle intelligentie (Al) in de afgelopen 5-10 jaar is er
een nieuwe klasse van modellen aan het ontstaan
voor het simuleren van weer en klimaat. Deze model-
len worden ‘getraind met data, gebruikmakend van
moderne technieken voor ‘machine learning’ (ML) en
Al [7, 8]. Een belangrijke bron van data hierbij is zoge-
heten ‘re-analysis data’ zoals de ERA5-dataset, waarin
historische observaties worden gecombineerd met
een (fysisch) model om een dataset te creéren die de
gehele atmosfeer omvat. De ERA5-dataset bestrijkt
de periode sinds 1940, met een tijdstap van 1 uur [9].

Deze data-gedreven modellen kunnen de fysisch-ge-
baseerde modellen aanvullen of zelfs als alternatief
voor ze dienen. In het laatste geval wordt er met de
data een Al-gebaseerd model getraind dat gebruikt
kan worden voor voorspellingen of simulaties waar
geen fysisch model meer aan te pas komt. De laatste
drie jaar zijn er volledig op Al gebaseerde globale
weersvoorspellingsmodellen ontwikkeld waarvan de
kwaliteit van de voorspellingen (van circa 1 tot 10
dagen vooruit) zich in allerlei opzichten kan meten
met die van de beste fysisch-gebaseerde voorspel-
lingsmodellen (zie 0.a. [10-12]). Ze maken gebruik van
moderne, geavanceerde Al-technieken zoals ‘graph
neural networks’, ‘vision transformers’ of ‘Fourier neu-
ral operators’ Voor het trainen (leren uit data) van
deze Al-modellen is vrij veel rekenkracht en tijd
nodig, maar eenmaal getraind gaat het maken van
voorspellingen met Al-modellen erg snel, met slechts
beperkte rekenkracht.

Niettegenstaande de snelle ontwikkelingen zijn er
nog de nodige open vragen rondom Al-gebaseerde
weersvoorspellingen. Onder andere het correct voor-
spellen van extreem weer door Al-modellen is een
belangrijk punt van aandacht en onderwerp van
intensief onderzoek (zie [13] voor een recent over-
zicht en meer details). Zoals al genoemd, hebben de
Al-weersvoorspellingsmodellen geen fysisch model
meer nodig om voorspellingen te maken als ze een-
maal getraind zijn, maar er is wel een fysisch model
aan te pas gekomen om de ERA5-dataset te maken
waarmee ze getraind worden.

Als het gaat om het inzetten van Al in klimaatmodel-
lering wordt veel onderzoek gedaan naar zogeheten
‘hybride’ modellen, waarin Al gebruikt wordt in aan-
vulling op fysisch-gebaseerde modellen [7, 8]. In deze
hybride modellen worden dus fysisch-gebaseerde en
Al-gebaseerde modelcomponenten gecombineerd,
een andere aanpak dan de hierboven beschreven
volledig Al-gebaseerde modellen voor weersvoor-
spelling. Al wordt met name gebruikt om parametri-
saties te leren uit data, en zo de representatie van
kleinschalige processen in klimaatmodellen te ver-
beteren [14, 15]. De trainingsdata komt daarbij in veel
gevallen van fysische modellen met hoge resolutie
(gesimuleerd over een korte tijdsperiode en/of over
een beperkt ruimtelijk domein, om de benodigde
rekenkracht binnen de perken te houden). Om het
effect van kleinschalige processen te representeren
met Al-gebaseerde parametrisaties wordt gebruikge-
maakt van neurale netwerken (figuur 4).

Conclusie

Al geeft ons een krachtige en snelgroeiende verza-
meling aan technieken om de uitdagingen aan te
gaan die het modelleren en simuleren van multi-
schaalsystemen met zich meebrengen. De combina-
tie van fysisch-gebaseerd en data-gebaseerd model-
leren is veelbelovend en wordt ook buiten het
domein van klimaatmodellering intensief onderzocht
[17, 18]. De combinatie werpt ook nieuwe vragen op

Figuur 4: Processen zoals atmosferische convectie
en wolkenvorming, die te kleinschalig zijn om met
het globale raster beschreven te worden, moeten
worden geparametriseerd. Al-gebaseerde parame-
trisaties gebruiken neurale netwerken om het effect
van kleinschalige processen te representeren.
Figuur gebaseerd op [16]
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die met verdere wiskundige analyse onderzocht
moeten worden. Dit betreft onder andere vragen
rondom de numerieke stabiliteit en het langeter-
mijngedrag van hybride modellen, de manier van
trainen van deze modellen (keuze van de kostfunctie
of ‘loss function’ in ML [19]), uitlegbaarheid (‘explai-
nability’) en het kwantificeren van onzekerheden van
hybride en Al-gebaseerde modellen.
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