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Inleiding
Achter het voorspellen van het weer en het simule­
ren van het klimaat gaat een wereld aan wiskunde 
schuil. De natuurkundige wetten die de stromingen 
van de atmosfeer en de oceanen bepalen, zijn gefor­
muleerd als wiskundige vergelijkingen, zogeheten 
partiële differentiaalvergelijkingen [1]. Om die ver­
gelijkingen op te lossen op een computer wordt 
gebruikgemaakt van een heel scala aan wiskundige 
methoden en technieken. De geldigheid en betrouw­
baarheid van die methoden is weer gefundeerd in 
wiskundige analyse [2]. Het gebruik van computers is 
onmisbaar, omdat de vergelijkingen en het gedrag 
dat ze beschrijven te complex zijn om met alleen pen 
en papier op te lossen of te doorgronden. Atmosfeer- 
en oceaanstromingen zijn daarin geen uitzondering; 
er zijn allerlei andere fysische systemen die eveneens 
te complex zijn om zonder computer door te reke­
nen. Voorbeelden zijn te vinden in de chemie, biolo­
gie, natuurkunde en verder.

Multischaalsystemen
Het uiterst complexe gedrag van atmosfeer en ocea­
nen hangt samen met hun zogeheten multischaal­
karakter. Als we bijvoorbeeld naar de atmosfeer kij­
ken, dan zien we patronen en fenomenen die zich 
over duizenden kilometers uit kunnen strekken, 
zoals grootschalige systemen met hoge- en lage­
drukgebieden en de straalstroom, maar ook meer 
lokale, kleinschalige patronen zoals stormen en 
regenfronten. Zoomen we nog verder in dan zien  
we individuele wolken en lokale turbulentie, en op 
letterlijk microscopische schaal zijn bijvoorbeeld de 
vorming van regendruppels en ijsdeeltjes van 
belang. Al deze grootschalige en kleinschalige pro­
cessen beïnvloeden elkaar en moeten in principe 
meegenomen worden bij het simuleren van de 
atmosfeer. Dat brengt een grote uitdaging met zich 
mee: de fysische principes achter deze processen 
zijn bekend, maar zelfs de allerkrachtigste heden­
daagse computers zijn bij lange na niet in staat om 
al deze details ook expliciet mee te nemen in bere­
keningen van de gehele (globale) atmosfeer. Dit 
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Samenvatting van de lezing
Voor het begrijpen of zelfs voorspellen van allerlei 
complexe fysische systemen, waaronder atmosfeer- 
en oceaanstromingen, zijn computers al vele jaren 
onmisbaar. Ook al zijn de onderliggende fysische 
wetmatigheden van zulke systemen bekend, met 
alleen pen en papier doorrekenen hoe die wet­
matigheden leiden tot het complexe gedrag dat we 
waarnemen, is zelden mogelijk. Een belangrijke 
reden daarvoor is het zogeheten ‘multischaalkarak­
ter’ van veel fysische systemen, gekenmerkt door de 
gecompliceerde interactie tussen microscopische 
(kleinschalige) en macroscopische (grootschalige) 
processen. Naast pen en papier maken onderzoe­
kers daarom intensief gebruik van computersimula­
ties. Die simulaties zijn traditioneel gebaseerd op 
fysische wetmatigheden die aan de hand van wis­
kundige methoden worden omgezet naar bereke­
ningen die een computer kan uitvoeren. Een nieuwe 
ontwikkeling is het gebruik van AI (artificiële intelli­
gentie) in aanvulling op, of zelfs ter vervanging van, 
de fysisch-gebaseerde computermodellen. De inzet 
van AI-technieken in dit domein is veelbelovend 
maar werpt tegelijkertijd nieuwe wiskundige vra­
gen op.
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multischaalkarakter zien we ook terug bij andere 
systemen dan atmosfeer en oceaan: de aanwezig­
heid van kleinschalige en grootschalige processen 
en fenomenen die elkaar wederzijds beïnvloeden 
speelt ook een belangrijke rol in bijvoorbeeld de 
biologie (van biochemische processen tot hele orga­
nismen) en de natuurkunde (zoals macroscopische 
materiaaleigenschappen die samenhangen met pro­
cessen op atomaire schaal) [3, 4].

Fysische modellen: niet-lineaire 
wiskundige vergelijkingen
De fysische modellen van veel multischaalsystemen 
in de natuur zijn geformuleerd in de vorm van wis­
kundige vergelijkingen, in veel gevallen niet-lineaire 
partiële differentiaalvergelijkingen of gewone diffe­
rentiaalvergelijkingen. Voor atmosfeer- en oceaan­
stromingen zijn die vergelijkingen hoofdzakelijk 
afgeleid van de Navier-Stokes-vergelijkingen (de par­
tiële differentiaalvergelijkingen voor algemene gas- 
en vloeistofstromingen). Er zijn allerlei versies, geba­
seerd op verschillende (combinaties van) fysische 
benaderingen en aannames die geschikt zijn voor 
atmosfeer of oceaan, zoals de hydrostatische bena­
dering, de Boussinesq-benadering en de aanname 
van incompressibiliteit [1].

Ook met deze benaderingen en aannames, bedoeld 
om tot stelsels vergelijkingen te komen die wat mak­
kelijker op te lossen zijn dan de algemene Navier- 
Stokes-vergelijkingen, blijft het onmogelijk om de 

vergelijkingen met alleen pen en papier op te lossen. 
In plaats daarvan worden ze numeriek opgelost, op 
een computer. Dit vormt de basis voor het maken 
van simulaties en voorspellingen van atmosfeer- en 
oceaanstromingen. De wiskundige methoden om par­
tiële differentiaalvergelijkingen op te lossen op de 
computer, en de fundamentele wiskundige onder­
bouwing en analyse van de geldigheid van deze 
methoden, behoren tot het deelgebied van ‘scientific 
computing’ en numerieke analyse binnen de wis­
kunde [2]. Twee belangrijke ingrediënten waarmee 
de vergelijkingen voor atmosfeer en oceaan nume­
riek worden opgelost zijn:
•	 ruimtelijke discretisatie, bijvoorbeeld door middel 

van een ruimtelijk grid of raster (figuur 1), waar­
mee de ruimte- en tijdsafhankelijke partiële diffe­
rentiaalvergelijkingen worden omgezet in een 
(hoogdimensionale) set gekoppelde gewone dif­
ferentiaalvergelijkingen die alleen nog van de tijd 
afhangen;

•	 tijdsdiscretisatie, waarmee de toestand van de 
stroming in stappen van bijvoorbeeld 10 minuten 
steeds verder vooruit in de tijd berekend wordt 
(figuur 2), aan de hand van de gewone differen­
tiaalvergelijkingen verkregen uit de eerderge­
noemde ruimtelijke discretisatie.

Parametrisatie
Zoals eerder genoemd, is het vanwege het multi­
schaalkarakter niet mogelijk om alle details en klein­
schalige processen expliciet mee te nemen in nume­

Figuur 1: Een raster voor ruimtelijke discretisatie in 
oost-west- en noord-zuid-richtingen.

Figuur 2: Een voorbeeld van tijdsdiscretisatie, waar­
in de toestand van de stroming (Φ) in stappen voor­
uit in de tijd berekend wordt, aan de hand van de 
tijdsafgeleide (f ) van Φ.
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lucht uit het onderste deel van de atmosfeer opstijgt 
en een deel van het vocht in de stijgende lucht con­
denseert en zo wolken vormt. Numerieke modellen 
die dit expliciet kunnen beschrijven hebben een 
horizontale ruimtelijke resolutie (afstand tussen ras­
terpunten) in de orde van 100  meter. Er kunnen 
simulaties mee worden gedaan op domeinen van 
bijvoorbeeld 100 km bij 100 km (horizontaal), maar 
niet over de hele aarde [5]. In klimaatmodellen zoals 
beschreven in het laatste IPCC-rapport [6] heeft de 
atmosfeer een horizontale resolutie die vele malen 
minder fijn is, tussen de 50  km en 300  km (CMIP6- 
modellen). Een kleinere groep modellen (HighRes­
MIP) heeft hogere resoluties, tussen de 10  km en 
50 km. In al deze modellen (figuur 3) moet convectie 
geparametriseerd worden. Alhoewel convectie en 
wolkenprocessen kleinschalig zijn is hun effect op 
het klimaat significant, en een verbetering van hun 
representatie in klimaatmodellen is van belang voor 
een beter begrip van klimaatverandering. Het 6e IPCC- 
rapport meldt hierover: “Clouds remain the largest 
contribution to overall uncertainty in climate feed­
backs” [6].

rieke simulaties van atmosfeer en oceaan. Het expliciet 
simuleren van kleinschalige processen vraagt om 
een verfijnde ruimtelijke discretisatie (oftewel hoge 
resolutie) en een kleine tijdstap. Hoe hoger de reso­
lutie en hoe kleiner de tijdstap, hoe groter de beno­
digde rekenkracht. Met een te verfijnde discretisatie 
is de gevraagde rekenkracht te groot om met de 
beschikbare computers aan te kunnen. Om toch 
numerieke simulaties te kunnen doen die een vol­
doende groot ruimtelijk domein en tijdsinterval 
beslaan (bijvoorbeeld, in geval van klimaatsimulaties, 
atmosfeer- en oceaanstromingen over de gehele 
aarde, gedurende een tijdsinterval van 100  jaar) wordt 
gebruikgemaakt van zogeheten ‘parametrisaties’ in 
numerieke modellen. Een parametrisatie (ook wel 
‘closure’ of sluiting genoemd) is een vereenvoudigde 
representatie van het effect van kleinschalige, niet 
expliciet meegenomen processen op de stroming op 
grotere schalen (die wel expliciet beschreven wor­
den in het numerieke model).

Een voorbeeld is atmosferische convectie en wolken­
vorming, het lokale proces waarbij relatief warme 

Figuur 3: Modelresoluties van klimaatmodellen beschreven in het 6e IPCC-rap­
port.

Bron: [6], figuur 1.19
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Als het gaat om het inzetten van AI in klimaatmodel­
lering wordt veel onderzoek gedaan naar zogeheten 
‘hybride’ modellen, waarin AI gebruikt wordt in aan­
vulling op fysisch-gebaseerde modellen [7, 8]. In deze 
hybride modellen worden dus fysisch-gebaseerde en 
AI-gebaseerde modelcomponenten gecombineerd, 
een andere aanpak dan de hierboven beschreven 
volledig AI-gebaseerde modellen voor weersvoor­
spelling. AI wordt met name gebruikt om parametri­
saties te leren uit data, en zo de representatie van 
kleinschalige processen in klimaatmodellen te ver­
beteren [14, 15]. De trainingsdata komt daarbij in veel 
gevallen van fysische modellen met hoge resolutie 
(gesimuleerd over een korte tijdsperiode en/of over 
een beperkt ruimtelijk domein, om de benodigde 
rekenkracht binnen de perken te houden). Om het 
effect van kleinschalige processen te representeren 
met AI-gebaseerde parametrisaties wordt gebruikge­
maakt van neurale netwerken (figuur 4).

Conclusie
AI geeft ons een krachtige en snelgroeiende verza­
meling aan technieken om de uitdagingen aan te 
gaan die het modelleren en simuleren van multi­
schaalsystemen met zich meebrengen. De combina­
tie van fysisch-gebaseerd en data-gebaseerd model­
leren is veelbelovend en wordt ook buiten het 
domein van klimaatmodellering intensief onderzocht 
[17, 18]. De combinatie werpt ook nieuwe vragen op 

Data-gedreven modellen
Aangedreven door de grote ontwikkelingen in artifi­
ciële intelligentie (AI) in de afgelopen 5-10 jaar is er 
een nieuwe klasse van modellen aan het ontstaan 
voor het simuleren van weer en klimaat. Deze model­
len worden ‘getraind met data’, gebruikmakend van 
moderne technieken voor ‘machine learning’ (ML) en 
AI [7, 8]. Een belangrijke bron van data hierbij is zoge­
heten ‘re-analysis data’ zoals de ERA5-dataset, waarin 
historische observaties worden gecombineerd met 
een (fysisch) model om een dataset te creëren die de 
gehele atmosfeer omvat. De ERA5-dataset bestrijkt 
de periode sinds 1940, met een tijdstap van 1 uur [9].

Deze data-gedreven modellen kunnen de fysisch-ge­
baseerde modellen aanvullen of zelfs als alternatief 
voor ze dienen. In het laatste geval wordt er met de 
data een AI-gebaseerd model getraind dat gebruikt 
kan worden voor voorspellingen of simulaties waar 
geen fysisch model meer aan te pas komt. De laatste 
drie jaar zijn er volledig op AI gebaseerde globale 
weersvoorspellingsmodellen ontwikkeld waarvan de 
kwaliteit van de voorspellingen (van circa 1 tot 10 
dagen vooruit) zich in allerlei opzichten kan meten 
met die van de beste fysisch-gebaseerde voorspel­
lingsmodellen (zie o.a. [10-12]). Ze maken gebruik van 
moderne, geavanceerde AI-technieken zoals ‘graph 
neural networks’, ‘vision transformers’ of ‘Fourier neu­
ral operators’. Voor het trainen (leren uit data) van 
deze AI-modellen is vrij veel rekenkracht en tijd 
nodig, maar eenmaal getraind gaat het maken van 
voorspellingen met AI-modellen erg snel, met slechts 
beperkte rekenkracht.

Niettegenstaande de snelle ontwikkelingen zijn er 
nog de nodige open vragen rondom AI-gebaseerde 
weersvoorspellingen. Onder andere het correct voor­
spellen van extreem weer door AI-modellen is een 
belangrijk punt van aandacht en onderwerp van 
intensief onderzoek (zie [13] voor een recent over­
zicht en meer details). Zoals al genoemd, hebben de 
AI-weersvoorspellingsmodellen geen fysisch model 
meer nodig om voorspellingen te maken als ze een­
maal getraind zijn, maar er is wel een fysisch model 
aan te pas gekomen om de ERA5-dataset te maken 
waarmee ze getraind worden.

Figuur 4: Processen zoals atmosferische convectie 
en wolkenvorming, die te kleinschalig zijn om met 
het globale raster beschreven te worden, moeten 
worden geparametriseerd. AI-gebaseerde parame­
trisaties gebruiken neurale netwerken om het effect 
van kleinschalige processen te representeren.

Figuur gebaseerd op [16]
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die met verdere wiskundige analyse onderzocht 
moeten worden. Dit betreft onder andere vragen 
rondom de numerieke stabiliteit en het langeter­
mijngedrag van hybride modellen, de manier van 
trainen van deze modellen (keuze van de kostfunctie 
of ‘loss function’ in ML [19]), uitlegbaarheid (‘explai­
nability’) en het kwantificeren van onzekerheden van 
hybride en AI-gebaseerde modellen.
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