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 a b s t r a c t

The validity of classical hypothesis testing requires the significance level 𝛼 be fixed before any 
statistical analysis takes place. This is a stringent requirement. For instance, it prohibits updat-
ing 𝛼 during (or after) an experiment due to changing concern about the cost of false positives, 
or to reflect unexpectedly strong evidence against the null. Perhaps most disturbingly, witness-
ing a p-value 𝑝 ≪ 𝛼 vs 𝑝 = 𝛼 − 𝜖 for tiny 𝜖 > 0 has no (statistical) relevance for any downstream 
decision-making. Following recent work of Grünwald[1], we develop a theory of post-hoc hy-
pothesis testing, enabling 𝛼 to be chosen after seeing and analyzing the data. To study “good” 
post-hoc tests we introduce Γ-admissibility, where Γ is a set of adversaries which map the data 
to a significance level. We classify the set of Γ-admissible rules for various sets Γ, showing they 
must be based on e-values, and recover the Neyman-Pearson lemma when Γ is the constant map.

1.  Introduction

An epidemiologist runs a clinical trial to test the efficacy of a new drug. She does not choose a significance level 𝛼 beforehand, but 
waits to see the results. If the p-value is 𝑝 = .01 she rejects at level 𝛼 = 0.01 and if 𝑝 = .05 she rejects at 𝛼 = 0.05. Is this valid statistical 
practice? In the standard theory of hypothesis testing—dominant since the work of Neyman, Pearson, and Fisher in the 1920s and 
30s—it is not. Indeed, if the epidemiologist is prepared to reject at level 𝑝 for all 𝑝 ≤ 0.10 (say), then the true type-I error is 0.10, not 
𝑝.

In other words, the current paradigm of hypothesis testing requires that the significance level 𝛼 be chosen independently of 
(thus without looking at) the data. This is well-known to statisticians, but continues to be a source of frustration and confusion for 
practitioners, and the epidemiologist’s mistake above is unfortunately all too common [2–4]. This fact is limiting: once the data has 
been gathered, if the selected value of 𝛼 gives a vacuous or uninteresting result, nothing more can be done. The same data should 
not be used in any further analysis of the same question (or, technically, even a separate question motivated by the first1).

The difficulties do not end there. Requiring that 𝛼 be chosen independently of the data introduces a fundamental tension between 
evidence and decision-making. Namely, upon observing a p-value 𝑝 ≤ 𝛼, it is irrelevant whether 𝑝 is roughly the same as 𝛼 or sig-
nificantly smaller. For example, if 𝛼 = 0.05, then observing 𝑝 = .04 and 𝑝 = 10−6 have the same decision-theoretic consequences. As 
pointed out recently by [1], this is a frustrating fact: the p-value is ostensibly a measure of evidence against the null hypothesis, yet 
any 𝑝-value below 𝛼 has no formal relevance for any downstream decision task.

∗ Corresponding author.
 E-mail address: benchugg@cmu.edu (B. Chugg).
1 This—admittedly philosophically thorny and somewhat controversial—reliance of p-values on counterfactuals is one of their many restrictive 

features [5,6].
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$b$


$E(X)=0$


$E(X)$


$\calL $


$E_{\vp _E} = E$


$E$


$E$


$\calL $


$\delta _E$


$X$


$L_{b_1}(0,1) < E(X) < L_{b_2}(0,1)$


$L_{b_1}(0,1)$


$L_{b_2}(0,1)$


$E(X)$


$\widetilde {E}(X) = L_{b_1}(0,1)$


$\widetilde {E}(X)$


$E$


$P$


$\Gamma \supset \consta $


$\vp _E$


$\Gamma $


$E$


$\calL $


$\vp _E$


$\Gamma $


$E = E_{\vp _E}$


$\alla $


$\consta $


$\alla $


$\Gamma $


$\Gamma $


$\Gamma = \alla $


$\alla $


$P$


$Q$


$P$


$Q$


$P$


$Q$


$L_b(0,1)$


$\phi $


$\delta $


$B$


$\phi $


$\phi > \delta $


$\delta $


$\liminf _{b\to \inf (\calB )} L_b(1,0)/L_b(0,1) = 0$


$L_b(1,0) \approx 0$


$b$


$\alla $


$\delta $


$\protect \mathbf  {U}$


$\delta $


$\delta $


$\alla $


$E_\delta $


$\delta $


$E$


$P$


$\delta _E$


$\alla $


$E$


$E \leq \sup _bL_b(0,1)$


$P$


$\delta $


$\phi $


$\calX $


$E_\delta $


$E_\phi $


$E_\delta (X)> E_\phi (X)$


$B(X)$


$\phi (X,B) < \delta (X,B)$


$\delta $


$E_\phi (X)>E_\delta (X)$


$B(X) \to \sup (\calB )$


$\phi (X,B)$


$\calB = \{b\}$


$L_b(1,0) = 0$


$\alla $


$\protect \mathbf  {U}$


$\delta $


$\alla $


$\delta = \delta _E$


$E$


$E \leq \sup _b L_b(0,1)$


$P$


$\calX $


$\protect \mathbf  {U}$


$P$


$Q$


$\vp $


$\alla $


$E_{\vp }$


$\vp $


$E$


$P$


$\vp _E$


$\alla $


$E$


$\calL $


$\protect \mathbf  {U}$


$P$


$Q$


$\calL $


$\Re _{\geq 1}$


$\vp $


$\alla $


$\vp = \vp _E$


$E$


$P$


$\calL $


$E^\np (X) = L_{b^*}(0,1)\ind {\lr (X) \geq \kappa (b^*)}$


$b^*$


$\vp _\lr (X,b) = \ind {\lr (X) \geq L_b(0,1)}$


$\lr $


$E=\d R/\d P$


$R$


$R = Q$


$E$


$P$


$T$


$P$


$Q$


$P$


$Q$


$H_0: \theta =\theta _0$


$H_1:\theta = \theta _1$


$T$


$\theta $


\begin {align}\label {eq:rao-e-value} S_T(X) = \E _{P} [ E(X) | \sigma (T(X))],\end {align}


$\sigma (T(X))$


$\sigma $


$T(X)$


$S$


$\E _P[S] = \E _P \E _P[E|\sigma (T)] = \E _P[E]\leq 1$


$S_T$


$S_T$


$E$


$\sigma (T)$


$T$


$P$


$Q$


$E$


$P$


$\delta _{S_T}$


$S_T$


$\delta _E$


$\Gamma \subset \Gamma _{\sigma (T)}$


$\Gamma _{\sigma (T)}$


$\sigma (T)$


$\vp _{S_T}$


$\vp _E$


\begin {equation*}f(E,B) = \min \left \{L_{B}(1,0), \frac {L_B(1,0)}{L_B(0,1)}E\right \}.\end {equation*}


$f$


$E$


$B$


$\sigma (T)$


\begin {align*}\E _P[f(E,B)|\sigma (T)] \leq f(\E _P[E|\sigma (T)], B) = f(S_T,B).\end {align*}


$\lr $


$\lr $


$\sigma (T)$


$\lr $


$T$


\begin {align*}\E _Q[f(S_T,B)] &= \E _P[\lr f(S_T,B)] \geq \E _P[\lr \E _P [f(E,B)|\sigma (T)]] \\ &= \E _P[\E _P [ \lr f(E,B)|\sigma (T)]] = \E _P[\lr f(E,B)] = \E _Q[f(E,B)].\end {align*}


\begin {align*}\E _Q[L_B(1,0)\delta _{S_T}(X,B)] = \E _Q[f(S_T,B)] \geq \E _Q[f(E,B)] = \E _Q[L_B(1,0) \delta _E(X,B)],\end {align*}


$\delta _{S_T}$


$\delta _E$


$B$


$\sigma (T)$


$f(E,B) = L_B(1,0) \ind {E \geq L_B(0,1)}$


$E$


$\consta $


$\delta _E$


$\consta $


$\Gamma $


$\consta $


$\consta = \{ B: B(X) = b\text { for some } b\text { and all }X\}$


$\Gamma $


$\consta $


$\alla $


$\consta $


$P$


$Q$


$\calL $


$\consta $


$P$


$Q$


$\consta $


$\Gamma =\consta $


$\delta $


$\consta $


$\phi $


$b\in \calB $


$\E _Q[L_b(1,\delta (X,b))] \leq \E _\Q [L_b(1,\phi (X,b))]$


$\E _Q[\delta (X,b))] \leq \E _Q[\phi (X,b)]$


$b\in \calB $


$b$


$L_b(1,0)$


$b$


$\consta $


$\delta $


$\phi $


$b\in \calB $


$L_b^{-1}(0,1)$


$\delta $


$\phi $


$\E _Q[\delta (X,b)]$


$\consta $


$\lr (X)$


$\lr (Y)>\lr (X)$


$\Gamma $


$\consta $


$\delta $


$\delta $


$\consta $


$E_\delta $


$P$


$b\in \calB $


$\delta (X,b)$


$P$


$P$


$Q$


$P$


$Q$


$\delta $


$\consta $


$E_\delta $


$\calL $


$P$


$Q$


$E^\np (X) = L_{b^*}(0,1)$


$\lr (X) \geq \kappa (b^*)$


$\calL $


$E^\np (X) = L_{b^*}(0,1)(1 + \gamma )\ind {\lr (X)\geq \kappa (b^*)}$


$\calL $


$\consta $


$\consta $


$\nptest _k$


$b_k$


\begin {align}E_{\text {mix}} = \frac {1}{K}\sum _{k=1}^K E_{\phi _k}, \label {Xeqn20-20}\end {align}


$\consta $


$\frac {1}{K}\sum _{k\leq j} L_{b_k}(0,1) \in \calB $


$1\leq j\leq K$


$\nptest _k$


$\consta $


$\consta $


$P$


$Q$


$P$


$Q$


$\vp $


$\vp $


$\consta $


$E_{\vp }$


$P$


$b\in \calB $


$\vp (X,b)$


$P$


$\consta $


$\vp (X,b) = \ind {E_{\vp }(X) \geq L_b(0,1)}$


$b$


$t(b)$


$\vp (X,b) = \ind {\lr (X) \geq t(b)}$


$t$


$b$


$X$


$P$


$Q$


$\vp $


$\consta $


$t:\calB \to \Re _{\geq 0}\cup \{\infty \}$


\begin {align}\label {eq:decision-curve} \vp (X,b) = \ind {\lr (X) \geq t(b)}.\end {align}


$\vp $


$t_\vp $


$\lr $


$P$


$Q$


$t$


$\ell $


$\vp $


$P(t(b)\leq \lr (X)<\ell (b)) = 0$


$b$


$\vp $


$P$


$Q$


$t_\vp $


$\consta $


$\vp $


$\vp $


$t_\vp (b)=\infty $


$b>b^*$


$t_\vp (b) = \kappa (b^*)$


$b\leq b^*$


$t_\phi $


$Q$


$t_\vp $


$t_\phi (b) \leq t_\vp (b)$


$b\in \calB $


$b^*$


$t_\phi (b^*) < t_\vp (b^*)$


$Q(t_\phi (b^*) \leq \lr (X) < t_\vp (b^*)) > 0$


$\consta $


$\consta $


$\vp $


$b^*\in \calB $


$\sup _{b<b^*}L_b(0,1) = L_{b^*}(0,1)$


$\sup _{b<b^*} t_\vp (b) = t_\vp (b^*)$


$P(\sup _{b<b^*} t_\vp (b) \leq \lr (X) < t_\vp (b^*))=0$


$\calL $


$L_b(0,1)\in \calL $


$\eps >0$


$(L_b(0,1) - \eps ,L_b(0,1)+\eps )$


$\calL $


$\calL $


$P$


$\consta $


$\sup _{b<b^*}L_b(0,1) = L_{b^*}(0,1)$


$\sup _{b<b^*}t_\vp (b) < t_\vp (b^*)$


$X$


$\sup _{b<b^*}t_\vp (b) \leq \lr (X) \leq t_\vp (b^*)$


$\sup _b L_b(0,1) \ind {\lr (X) \geq t_\vp (b)} = L_{b^*}(0,1)$


$\vp (X,b^*) = 0$


$X$


$\vp $


$L_{b^*}(0,1)$


$X$


$b^*$


$b^*$


$\vp $


$\consta $


$P$


$Q$


$\vp $


$\consta $


$E_{\vp }$


$E$


$P$


$\vp _E$


$\consta $


$E$


$P$


$Q$


$\vp $


$\consta $


$\vp = \vp _E$


$E$


$P$


$\calL $


$L(0,1)=1/\alpha $


$\nptest (X) = \ind {\lr (X) \geq \kappa }$


$E^\np (X) = \alpha ^{-1}\ind {\lr (X) \geq \kappa }$


$\lr $


$\phi ^\np $


$\consta $


$\vp _E(X) = \ind {E(X)\geq 1/\alpha }$


$E$


$E$


$\calL = \{1/\alpha \}$


$\E _P[E]=1$


$P(E(X) = 1/\alpha ) = \alpha $


$E = h(\lr )$


$h$


$\vp _E(X) = \ind {\lr (X) \geq h^-(1/\alpha )}$


$\alpha = P(E(X)\geq 1/\alpha ) = P( \lr (X) \geq h^-(1/\alpha ))$


$h^-(1/\alpha )= \kappa $


$\vp _E = \nptest $


$L_b(0,1)=b$


$b>0$


\begin {align}\label {eq:lr-test-binary} \vp _\lr (X,b) = \ind {\lr (X) \geq L_b(0,1)},\end {align}


$\consta $


$\lr $


$\Re _{\geq 0}$


$\lr (X)$


$\Gamma $


$\Gamma $


$\Gamma $


$\Gamma $


$\Gamma $


$\consta $


$\phi (X,b) \geq \delta (X,b)$


$P$


$P\in \calP $


$Q\in \calQ $


$Q(\phi (X,b)>\delta (X,b))>0$


$A_1$


$A_2$


$\sup _{X_1\in A_1}\lr (X_1)<\inf _{X_2\in A_2}\lr (X_2)$


$P(A_1)\leq P(A_2)$


$Q(A_1)<Q(A_2)$


$Q(A_1)/Q(A_2)< P(A_1)/P(A_2)$


\begin {equation*}\overline {c} = \sup _{X\in A_1} \frac {\d \Q }{\d P}(X), \text {~ and ~} \underline {c} = \inf _{X\in A_2} \frac {\d \Q }{\d P}(X).\end {equation*}


\begin {align*}\Q (A_1) = \int _{A_1} \d \Q (x) = \int _{A_1} \lr (x) \d P(x) \leq \overline {c} \int _{A_1} \d P(x) = \overline {c} P(A_1).\end {align*}


\begin {align*}Q(A_2) = \int _{A_2} \lr (x) \d P \geq \underline {c} \int _{A_2} \d P =\underline {c} P(A_2).\end {align*}


$\overline {c}<\underline {c}$


\begin {align*}\frac {Q(A_1)}{Q(A_2)}\leq \frac {\overline {c}P(A_1)}{Q(A_2)} \leq \frac {\overline {c}P(A_1)}{\underline {c}P(A_2)} < \frac {P(A_1)}{P(A_2)}.\end {align*}


$P(A_1)\leq P(A_2)$


\begin {align*}\Q (A_1) \leq \overline {c} ,P(A_1) \leq \overline {c}\P (A_2) \leq \underline {c} \P (A_2) \leq \Q (A_2),\end {align*}


$\delta $


$\Gamma $


$\Gamma \supset \consta $


$\delta (\cdot ,b)$


$b\in \calB $


$E_\delta $


$\delta =\vp $


$\lr (X_1)\leq \lr (X_2)$


$E_\delta (X_1)\leq E_\delta (X_2)$


$\min \{1, E_\delta (X_1)/L_b(0,1)\} \leq \min \{1, E_\delta (X_2)/L_b(0,1)\}$


$b$


$\delta (X_1,b)\leq \delta (X_2,b)$


$E_\delta (X_1) > E_\delta (X_2)$


$b$


$L_b(0,1) \geq E_\delta (X_1)$


$E_\delta (X_1) > \sup _b L_b(0,1)$


$b$


$\min \{L_b(0,1), E_\delta (X_1)\} = E_\delta (X_1) > E_\delta (X_2) = \min \{ L_b(0,1), E_\delta (X_2)\}$


$\phi (X_1,b) > \phi (X_2,b)$


$P,Q$


$\delta $


$\Gamma _\const $


$Y\subset \calX $


$Q(Y)>0$


$E_\delta (X) >0$


$X\in Y$


$B^*:\calX \to \calB $


$E_\delta (X) \geq L_{B^*(X)}(0,1)$


$X\in Y$


$Q$


\begin {equation*}\sup _{X\in Y}E_\delta (X) <\inf _{b\in \calB } L_b(0,1).\end {equation*}


$E_\delta >0$


$Y$


$\gamma >0$


$A\subset Y$


$Q(A)>0$


\begin {equation*}\gamma \leq \inf _{X\in A} E_\delta (X).\end {equation*}


$A = A_1\cup A_2$


$P(A_1) = P(A_2)$


$\lr (X_1)<\lr (X_2)$


$X_1\in A_1$


$X_2\in A_2$


$\deltahat $


$b\in \calB $


$\deltahat (X,b)= \delta (X,b) - \eps / L_b(0,1)$


$X\in A_1$


$\deltahat (X,b) = \delta (X,b) + \eps / L_b(0,1)$


$X\in A_2$


$X\notin A$


$\deltahat $


$\delta $


$\delta (X, b) = E_\delta (X) / L_b(0,1) \in (0,1)$


$X\in A$


$b\in \calB $


\begin {equation*}\deltahat (X, b) = \frac {E_\delta (X) - \eps }{L_b(0,1)} \;\text { for }X\in A_1 \text {~ and ~} \deltahat (X, b) = \frac {E_\delta (X) + \eps }{L_b(0,1)}\;\text { for } X\in A_2.\end {equation*}


$\eps $


$0<\deltahat (X,b)\leq 1$


$X\in A$


$\deltahat (X,b) > 0$


$\eps < \gamma $


$\deltahat (X,b) \leq 1$


$\eps < \inf _{b\in \calB } L_b(0,1) - \sup _{X\in A} E_\delta (X)$


$\eps >0$


$\deltahat $


\begin {align*}\int _{A} E_{\deltahat }(x) \d P &= \int _{A_1}\sup _b L_b(0,1)\left (\delta (x,b) - \frac {\eps }{L_b(0,1)}\right )\d P \\ &\qquad + \int _{A_1}\sup _b L_b(0,1)\left (\delta (x,b) + \frac {\eps }{L_b(0,1)}\right )\d P \\ &= \int _{A_1} E_\delta (x) \d P - \eps P(A_1) + \int _{A_2} E_\delta (x) \d P + \eps P(A_2) \\ &= \int _{A} \sup _b L_b(0,1)\delta (x,b) \d P,\end {align*}


$P(A_1) = P(A_2)$


$\risk _P(\deltahat ) \leq 1$


\begin {equation*}\E _P[E_{\deltahat }(X)] = \int _{A}E_{\deltahat }(x) \d P + \int _{\calX \setminus A}E_{\delta }(x) \d P = \int _{\calX } E_\delta (x) \d P \leq 1.\end {equation*}


$b\in \calB $


\begin {align*}\int _{A} \deltahat (x,b) \d \Q &= \int _{A_1\cup A_2} \delta (x,b) \d Q- \frac {\eps }{L_b(0,1)} Q(A_1) + \frac {\eps }{L_b(0,1)} Q(A_2).\end {align*}


$Q(A_2)>Q(A_1)$


$A_1$


$A_2$


$-\eps Q(A_1) + \eps Q(A_2) > 0$


\begin {align*}\int _{A} \deltahat (x,b)\d \Q > \int _{A} \delta (x,b)\d Q,\end {align*}


$\E _\Q [ L_B(1, \delta (X,B))]< \E _\Q [ L_B(1, \deltahat (X,B))]$


$\delta $


$\Gamma _\all $


$t_\phi $


$Q$


$t_\vp $


$t_\phi (b) \leq t_\vp (b)$


$b\in \calB $


$b^*$


$t_\phi (b^*) < t_\vp (b^*)$


$Q(t_\phi (b^*) \leq \lr (X) < t_\vp (b^*)) > 0$


$P$


$Q$


$\vp $


$\vp $


$\consta $


$\psi $


$t_\psi $


$Q$


$t_\vp $


$\psi $


$t_\psi (b) \leq t_\vp (b)$


$b\in \calB $


$t_\psi (b^*) < t_\vp (b^*)$


$Q(t_{\psi }(b^*) < \lr (X) < t_\vp (b^*))>0$


$b\in \calB $


\begin {equation*}\vp (X,b) = \ind {\lr (X) \geq t_\vp (b)} \leq \ind {\lr (X) \geq t_\psi (b)} = \psi (X,b),\end {equation*}


$b^*$


$Q$


$\vp $


$\consta $


$\vp $


$\consta $


$\psi $


$\E _Q[\psi (X,b)] \geq \E _Q[\vp (X,b)]$


$b$


$b^*$


\begin {equation*}Q(\lr (X) \geq t_\vp (b)) \leq Q(\lr (X) \geq t_\psi (b)),\end {equation*}


$b$


$t_\vp (b) \geq t_\psi (b)$


$b^*$


$0< \E _Q[\ind {\lr (X) \geq t_\psi (b^*)} - \ind {\lr (X) \geq t_\vp (b^*)}] = Q(t_\psi (b^*) \leq \lr (X) < t_\vp (b^*))$


$P$


$Q$


$\vp $


$\vp $


$\consta $


$\vp $


$b^*$


$\sup _{b<b^*}t_\delta (b) < t_\delta (b^*)$


$P(\sup _{b<b^*}t_\delta (b) \leq \lr (X) < t_\delta (b^*)) > 0$


$\ell :\calB \to \Re _{\geq 0}\cup \{\infty \}$


\begin {align*}\ell :b\mapsto \begin {cases} t_\delta (b),& b\neq b^*,\\ \sup _{b<b^*}t_\delta (b),& b=b^*. \end {cases}\end {align*}


$\ell $


$Q$


$t_\delta $


$\delta $


$\Gamma _\const $


$t_\delta $


$b$


$\ell $


$\calX $


$C_1 = \{X : \lr (X) < \ell (b^*)\}$


$C_2 = G(b^*) = \{X: \ell (b^*)\leq \lr (X) < t_\delta (b^*)\}$


$C_3 = \{ X: \lr (X) \geq t_\delta (b^*)\}$


$C_1$


$C_3$


$\sup _b L_b(0,1)\ind {\lr (X) \geq t_\delta (b)} = \sup _bL_b(0,1)\ind {\lr (X) \geq \ell (b)}$


$b^*$


$X\in C_2$


$\ind {\lr (X) \geq t_\delta (b)}=1$


$b<b^*$


\begin {equation*}\sup _bL_b(0,\vp (X,b)) =\sup _b L_b(0,1) \ind {\lr (X) \geq t_\delta (b)} = \sup _{b<b^*} L_b(0,1) = L_{b^*}(0,1).\end {equation*}


$X\in C_2$


$\ind {\lr (X) \geq \ell (b)}=1$


$b\leq b^*$


$\sup _b L_b(0,1) \ind {\lr (X) \geq \ell (b)} = \sup _{b\leq b^*}L_b(0,1) = L_{b^*}(0,1)$


\begin {align*}\int _{C_2} \sup _b L_b(0,1)\ind {\lr (x) \geq \ell (b)}\d P = \int _{C_2} \sup _b L_b(0,\vp (x,b))\d P,\end {align*}


$C_1$


$C_3$


$\ell $


$\risk (\vp )$


$\delta $


$\delta (X,b) = 0$


$\{\lr (X)<\kappa (b^*)\}$


\begin {align*}\risk _P(\delta ) &= \int _{\{\lr (x) \geq \kappa (b^*)\}} \sup _b L_b(0,\delta (x,b)) \d P + \int _{\{\lr (x) < \kappa (b*)\}} \sup _b L_b(0,\delta (x,b)) \d P \\ &= \int _{\{\lr (x) > \kappa (b^*)\}} \sup _b L_b(0,1) \frac {L_{b^*}(0,1)}{L_b(0,1)} \d P + \int _{\{\lr (x) = \kappa (b^*)\}} \sup _b L_b(0,1) \frac {L_{b^*}(0,1)}{L_b(0,1)} \gamma \d P \\ &= \int _{\{\lr (x) > \kappa (b^*)\}} L_{b^*}(0,1) \d P + \int _{\{\lr (x) = \kappa (b^*)\}} \gamma L_{b^*}(0,1) \d P \\ &= L_{b^*}(0,1)\E _{P}[\nptest (X,b^*)] = 1.\end {align*}


$\phi $


$\phi ^\np $


$\delta $


$\Gamma $


$\E _\Q [L_B(1,\delta (X,b))]\leq \E _\Q [L_B(1,\phi (X,b))]$


$B\in \Gamma $


$B(X) = b^*$


$\Gamma $


$\E _\Q [\nptest (X,b^*)] \leq \E _\Q [\phi (X,b^*)]$


$\phi (\cdot ,b^*) = \nptest (\cdot ,b^*)$


$P$


\begin {align*}I = \int _\calX (\underbrace {\nptest (x,b^*) - \phi (x,b^*)}_{:=t_1})(\underbrace {\d \Q - \kappa (b^*)\d P}_{:=t_2}).\end {align*}


$I = 0$


$\nptest (x,b^*) = \phi (x,b^*)$


$\nptest (x,b^*)=1$


$Q(x)/P(x) > \kappa (b^*)$


$t_1$


$t_2$


$\nptest (x,b^*)=0$


$Q(x)/P(x) < \kappa (b^*)$


$0<\nptest (x,b^*)<1$


$Q(x) = \kappa P(x)$


$t_1$


$t_2$


$I\geq 0$


\begin {align*}\int _\calX (\nptest (x,b^*) - \phi (x,b^*)) \d \Q & \geq \kappa (b^*) \int _\calX (\nptest (x,b^*) - \phi (x,b^*))\d P \\ &= \kappa (b^*)(L_{b^*}^{-1}(0,1) - \E _P[\phi (X,b^*)].\end {align*}


$\E _P[\phi (X,b^*)] \leq L_{b^*}(0,1)$


$\risk _P(\phi ) \geq \E _P[L_{b^*}(0,1)\phi (X,b^*)] >1$


$\phi $


\begin {align*}\E _\Q [\nptest (X,b^*)] - \E _\Q [\phi (X,b^*)] = \int _\calX (\nptest (x,b^*) - \phi (x,b^*))\d \Q \geq 0.\end {align*}


$\E _\Q [\nptest (X,b^*)]\leq \E _\Q [\phi (X,b^*)]$


$\E _\Q [\nptest (X,b^*)]=\E _\Q [\phi (X,b^*)]$


$I$


$I = -\kappa (b^*) (L_{b^*}(0,1) - \E _{P}[\phi (X,b^*)])$


$I\geq 0$


$\E _{P}[\phi (X,b^*)] \leq L_{b^*}(0,1)$


$I=0$


$\nptest (X,b^*) = \phi (X,b^*)$


$\{x: Q(x) = \kappa (b^*)P(x)\}$


$Q$


$\nptest (X,b^*)\neq \phi (X,b^*)$


$\E _\Q [\nptest (X,b^*)] \neq \E _\Q [\phi (X,b^*)]$


$\phi (X,b^*) = \nptest (X,b^*)$


$P$


\begin {equation*}E_\phi (X) = \sup _b L_b(0,\phi (X,b)) \geq L_{b^*}(0,\phi (X,b^*)) = L_{b^*}(0,\nptest (X,b^*)).\end {equation*}


$\E _P[E_\phi (X)]\geq \E _P[L_{b^*}(0,\nptest (X,b^*))] =1$


\begin {equation*}E_\phi (X) = L_{b^*}(0,\nptest (X,b^*)),\end {equation*}


$\phi $


\begin {align}\label {eq:pf-np-decision-1} \phi (X,b) = \min \left \{1, \frac {E_\phi (X)}{L_b(0,1)}\right \} = \min \left \{1, \frac {L_{b^*}(0,1)}{L_b(0,1)}\nptest (X,b^*)\right \},\end {align}


$\delta $


$\Gamma $


$\delta (X,b^*) = \nptest (X,b^*)$


$b^*$


$\delta = \widehat {\phi }$


$P$


$\widehat {\phi }$


$\delta $


$\widehat {\phi }$


$\delta (X,b_0) > \widehat {\phi }(X,b_0)$


$X\in A\subset \calX $


$b_0\in \calB $


$P(A)>0$


$\delta $


$\widehat {\phi }(X,b_0)<1$


$X\in A$


$1\geq \delta (X,b_0) > \widehat {\phi }(X,b_0)$


$\widehat {\phi }(X,b_0) = L_{b^*}(0,1) \nptest (X,b^*) / L_{b_0}(0,1)$


$B$


$B(X) = b^*$


$X\in \calX \setminus A$


$B(X) = b_0$


$X\in A$


\begin {align*}\risk _P(\delta ) &\geq \int _A L_{B(x)}(0,\delta (x,B(x))\d P + \int _{\calX \setminus A} L_{B(x)}(0,\delta (x,B(x))\d P \\ & > \int _A L_{b_0}(0,1) \widehat {\phi }(X,b_0) \d P + \int _{\calX \setminus \calA } L_{b^*}(0,1)\delta (x,b^*)\d P \\ &= \int _A L_{b^*}(0,1) \nptest (X,b^*)\d P + \int _{\calX \setminus A} L_{b^*}(0,1) \nptest (X,b^*) \d P \\ &= L_{b^*}(0,1)\E _P[\nptest (X,b^*)] = 1,\end {align*}


$\delta $


$\delta (X,b) \leq \widehat {\phi }(X,b)$


$P$


$b\in \calB $


$b_0$


$\delta (X,b_0) < \widehat {\phi }(X,b_0)$


$X\in A$


$P(A)>0$


$\deltahat $


$\deltahat = \delta $


$A$


$b_0$


$\deltahat (X,b_0) = \widehat {\phi }(X,b_0)$


$\delta \leq \widehat {\phi }$


$P$


$\risk _P(\deltahat ) \leq \risk _P(\delta )\leq 1$


$\deltahat $


$\delta $


$B$


$A_0\subset A$


$X$


$B(X) = b_0$


\begin {align*}\E _\Q [L_B(1,0) \deltahat (X,B)] &= \int _{A_0} L_{b_0}(1,0) \deltahat (x,b_0)\d \Q + \int _{\calX \setminus A_0} L_{B(x)}(1,0) \delta (x,B(x))\d \Q \\ &\geq \int _{A_0} L_{b_0}(1,0) \deltahat (x,b_0)\d \Q + \int _{\calX \setminus A_0} L_{B(x)}(1,0) \delta (x,B(x))\d \Q \\ &= \E _\Q [L_B(1,0) \delta (X,B))],\end {align*}


$\E _\Q [L_B(1,\deltahat (X,B))] \leq \E _\Q [L_B(1,\delta (X,B))]$


$A_0$


$Q$


$\deltahat $


$\delta $


$\Gamma $


$\delta $


$\Gamma $


$\vp $


$\vp (X,b) =0$


$\lr (X) < \kappa (b^*)$


$\vp (X,b)$


$b\leq b^*$


\begin {align*}\risk _P(\delta ) &= \int _{\lr \geq \kappa (b^*)} \sup _bL_b(0,\vp (X,b)) \d P + \int _{\lr (X) < \kappa (b^*)} \sup _b L_b(0,0)\d P \\ &= \int _{\lr \geq \kappa (b^*)} L_{b^*}(0,1) \d P = L_{b^*}(0,1) P(\lr (X) \geq \kappa (b^*) = 1,\end {align*}


$\kappa (b^*)$


$\psi $


$\vp $


$\Gamma $


$B(X) = b^*$


$\E _\Q [\psi (X,b^*)] \geq \E _\Q [\vp (X,b^*)] = \E _\Q [\nptest (X,b^*)]$


$\psi (X,b^*) = \nptest (X,b^*)$


$Q$


$E_{\psi }(X)= \sup _b L_b(0,\psi (X,b)) = L_{b^*}(0,1)\nptest (X,b^*)$


$P$


\begin {align}\psi (X,b) = \ind {E_{\psi }(X) \geq L_b(0,1)} = \ind {L_{b^*}(0,1) \nptest (X,b^*) \geq L_b(0,1)}, \label {Xeqn24-A.2}\end {align}


$P$


$\vp (X,b)$


$\vp $


$\Gamma $


$b^*$


$\vp (X,b^*) = \nptest (X,b^*)$


$\vp (X,b) > 0$


$b>b^*$


$A$


$P$


$b$


$A$


$b^*$


$\delta (X,b) < \nptest (X,b^*)$


$b\leq b^*$


$\lr (X) \geq \kappa (b^*)$


$\vp $


$\Gamma $


$P$


$Q$


$b\in \calB $


$L_b(1,\phi (X,b)) = L_b(1,0)(1 - \phi (X,b)) \leq L_b(1,0)(1 - \delta (X,b)) = L_b(1,\delta (X,b))$


$B\in \Gamma $


\begin {equation*}\E _\Q [L_B(1,\phi (X,B)] \leq \E _\Q [L_B(1,\delta (X,B))].\end {equation*}


$A\subset \calX $


$\phi (X,b^*) > \delta (X,b^*)$


$X\in A$


$Q(A)>0$


$\phi $


$B(X) = b^*$


\begin {equation*}\E _Q [ L_{b^*}(1, \phi (X,b^*)\ind {X \in A} ] < \E _\Q [ L_{b^*}(1,\delta (X,b^*)\ind { X \in A}],\end {equation*}


$\phi $


$\delta $


$\Gamma $


$B\in \Gamma $


$\delta $


$\delta (X,b_1) < \delta (X,b_2)$


$b_1<b_2$


$X$


$A$


$Q$


$\deltahat $


$\deltahat (X,b_1) = \delta (X,b_2)$


$X\in A$


$\deltahat $


$\delta $


$L_{b_1}(0,1)\deltahat (X,b_1) = L_{b_1}(0,1)\delta (X,b_2) \leq L_{b_2}(0,1)\delta (X,b_2)$


$\sup _b L_b(0,1) \deltahat (X,b) = \sup _b L_b(0,1)\delta (X,b)$


$\deltahat $


$\delta $


$\Gamma $


$E_\delta (X) < E_\phi (X)$


$b$


$\delta (X,b) < \phi (X,b)$


$L_{b_0}(0,1)\phi (X,b_0) \leq L_{b_0}(0,1)\delta (X,b_0) \leq \sup _b L_b(0,1) \delta (X,b) = E_\delta (X)$


$b_0$


$b_0$


$E_\phi (X) \leq E_\delta (X)$


$\delta $


$\Gamma $


$\Gamma $


$\E _P[E_\delta ]<1$


$\deltahat $


$E_{\deltahat } > E_\delta $


$A$


$A\subset \calX $


$P(A)>0$


$b_0$


$\delta (X,b_0)$


$X\in A$


$\delta (X,b)=1$


$b\in \calB $


$P$


$\delta $


$\E _P[\sup _b L_b(0,\delta (X,b))] = \E _P[\sup _b L_b(0,1)] \leq 1$


$L_b(0,1) \leq 1$


$b$


$X\in A$


\begin {align*}\deltahat (X,b_0) = \delta (X,b_0) + \frac {\eps }{L_{b_0}(0,1)},\end {align*}


$\eps >0$


$X\not \in A$


$b\neq b_0$


$\deltahat (X,b) = \delta (X,b)$


$\deltahat (X,b_0) \leq 1$


\begin {align}\label {eq:pf-Ephi-1} \frac {\eps }{L_{b_0}(0,1)} \leq 1 - \delta (X,b_0),\end {align}


$X\in A$


$\eps >0$


$\delta (X,b_0)<1$


$\deltahat $


$\delta $


$\Gamma $


$\delta $


$\Gamma $


$\eps $


$\deltahat $


\begin {align*}\int _A \sup _b L_b(0,\deltahat (x,b))\d P &\leq \int _A \sup _b L_b(0,1)\left (\delta (x,b) + \frac {\eps }{L_b(0,1)}\right )\d P \\ &= \int _A \sup _bL_b(0,\delta (x,b))\d P + \eps P(A).\end {align*}


\begin {align*}\risk _P(\deltahat ) &= \int _A \sup _bL_b(0,\deltahat (x,b))\d P + \int _{\calX \setminus A} \sup _b L_b(0,\delta (x,b)) \d P \\ &\leq \int _\calX \sup _b L_b(0,\delta (x,b)) \d P + \eps P(A) = \risk _P(\delta ) + \eps P(A).\end {align*}


$\risk _P(\delta ) = \E _P[E_\delta ]<1$


\begin {align}\label {eq:pf-Ephi-2} 0<\eps \leq \frac {1 - \E _P[E_\delta ]}{P(A)},\end {align}


$\deltahat $


$\eps $


$\vp $


$\E _P[E_{\vp }]<1$


$A\subset \calX $


$b_0$


$\vp (X,b_0)=0$


$\vp $


$L_b(0,1)\leq 1$


$b$


$\vphat $


$\delta $


$\vphat (X,b_0) = 1 > 0 = \vp (X,b_0)$


$X$


$A_0\subset A$


$Q(A_0)>0$


$A_0$


\begin {align}\label {eq:pf-Ephi-3} P(A_0) = \frac { 1 - \E _P[E_\delta ]}{L_{b_0}(0,1)},\end {align}


$P$


$\delta (X,b) = 0$


$b\geq b_0$


$X\in A_0$


$\delta $


$\sup _b L_b(0,\vphat (X,b)) = L_{b_0}(0,1)$


$A_0$


\begin {align*}\risk _P(\deltahat ) &= \int _{\calX \setminus A_0} \sup _b L_b(0,\vp (x,b)) \d P + \int _{A_0} \sup _b L_b(0,\vphat (x,b))\d P \\ &= \int _{\calX \setminus A_0} \sup _b L_b(0,\vp (x,b)) \d P + L_{b_0}(0,1)P(A_0) \\ &\leq \risk _P(\delta ) + 1 - \E _P[E_\delta ] =1,\end {align*}


$\vphat $


$\deltahat $


$\delta $


$\Gamma $


$A$


$P(A),Q(A)>0$


$b\in \calB $


$X\in A$


$\delta (X,b) > \min \{1,E_\delta (X)/ L_b(0,1)\}$


\begin {align}\label {eq:pf-constant-sup-1} L_b(0,1)\delta (X,b) > \min \{ L_b(0,1),E_\delta (X)\}, \text {~ for all } X\in A.\end {align}


$\min \{ L_b(0,1),E_\delta (X)\} = E_\delta (X)$


$L_b(0,1) \delta (X,b) > L_b(0,1)$


$\delta (X,b)\leq 1$


$E_\delta (X)$


$L_b(0,1)\delta (X,b) > E_\delta (X)$


$E_\delta $


$b$


$b$


$\delta (X,b) < \min \{1, E_\delta (x)/ L_b(0,1)\}$


$X\in A$


$P(A),Q(A)>0$


$\deltahat $


$\deltahat (X,b) = \min \{1, E_\delta (X)/ L_b(0,1)\}$


$X\in A$


$\delta $


$X\in A$


$L_b(0,1)\deltahat (X,b) = \min \{ L_b(0,1), E_\delta (X)\}\leq E_\delta (X)$


$E_{\deltahat }(X) = \sup _b L_b(0,1)\deltahat (X,b) = E_\delta (X)$


$\deltahat (\cdot ,c) = \delta (\cdot ,c)$


$c\neq b$


\begin {align}\risk _ P(\deltahat )= \int _{\calX \setminus A} E_\delta (x)\d P + \int _A E_{\deltahat }(x)\d P= \risk _ P(\delta ) \leq 1, \label {Xeqn29-A.7}\end {align}


$\deltahat $


$\deltahat (\cdot ,b)> \delta (\cdot ,b)$


$\Q $


$\delta $


$\Gamma $


$A\subset \calX $


$E(X) > \sup _bL_b(0,1)$


$X\in A$


$P(A)>0$


$F$


$P$


$F(X) \leq \sup _bL_b(0,1)$


$X\in A$


$\delta _F$


$\delta $


$\Gamma $


$Y\subset \calX $


$E(X) < \sup _b L_b(0,1)$


$X\in Y$


$P(Y)>0$


$E(X) \geq \sup _b L_b(0,1)$


$P$


$\delta _E$


$P$


$L_b(0,1)>1$


$b$


$\eps >0$


$F$


\begin {align}F(X) = \begin {cases} \sup _b L_b(0,1), & \text {if } X\in A,\\ E(X) + \eps ,&\text {if } X\in Y, \\ E(X),&\text {otherwise}. \end {cases} \label {Xeqn30-A.8}\end {align}


$Y$


$b$


$\delta _F(X,b) = \min \{1, E_(X)/L_b(0,1)\} > E(X)/L_b(0,1) = \delta _E(X)$


$A$


$\delta _F(X) = 1 = \delta _E(X,b)$


$b$


$E(X) > F(X) =\sup _bL_b(0,1)$


$\delta _E(X,b) = \delta _F(X,b)$


$b$


$F(X) = E(X)$


$\delta _E$


$\Gamma $


$\delta _F$


\begin {align*}\risk _P(\delta _F) &= \int _A F \d P + \int _Y F \d P + \int _{\calX \setminus ( A\cup Y)} E \d P \\ &= \int _A (\sup _bL_b(0,1) - E + E)\d P + \int _E F \d P + \eps P(Y) + \int _{\calX \setminus ( A\cup Y)} E \d P \\ &= \int _\calX E \d P + \int _A (\sup _b L_b(0,1) - E)\d P + \eps P(Y).\end {align*}


\begin {align}\eps = \frac {1}{P(Y)}\int _A (\sup _bL_b(0,1) - E)\d P, \label {Xeqn31-A.9}\end {align}


$\risk _P(\delta _F) = \risk _P(\delta _E)\leq 1$


$P(E(X)>\sup _b L_b(0,1))>0$


$\delta $


$\Gamma $


$P(E(X)>\sup _b L_b(0,1)) = 0$


$E_{\delta _E}=E$


$P$


$\vp (X,b) = 1$


$L_b(0,1) > E_{\vp }(X)$


$E_{\vp }$


$\vp (X,b) \leq \ind { L_b(0,1) \leq E_{\vp }(X)}$


$b^*$


$\vp (X,b^*) =0$


$L_{b^*}(0,1) < E_{\vp }(X)$


$X\in A$


$P(A), Q(A)>0$


$\vphat $


$\vphat (X,b^*) = 1$


$X\in A$


$\vphat $


$\vp $


$E_{\vp }= E_{\vphat }$


$\vphat $


$\phi = \vphat $


$\vp $


$\Gamma $


$E$


$\calL _0$


$Y\subset \calX $


$P(Y)>0$


$X\in Y$


$L_{b_1}(0,1) < E(X) < L_{b_2}(0,1)$


$b_1<b_2$


$b\in \calB $


$b_1<b<b_2$


$E(X) > \sup _b L_b(0,1)$


$\sup _bL_b(0,1)<\infty $


$Y_0,Y_1\subset Y$


\begin {align}F(X) = \begin {cases} L_{b_1}(0,1),&\text {if } X\in Y_0,\\ L_{b_2}(0,1),&\text {if } X\in Y_1, \\ E(X),&\text {otherwise}. \end {cases} \label {Xeqn32-A.10}\end {align}


$X\in Y_0$


$b\in \calB $


$\vp _F(X,b) = \vp _E(X,b)$


$E(X) > L_{b_1}(0,1)$


$L_{b_2}(0,1)$


$\vp _E$


$\vp _F(X,b_2) =1 > 0 = \vp _E(X,b_2)$


$X\in Y_1$


$\vp _F(X,b) = \vp _E(X,b)$


$b$


$X\notin Y_0\cup Y_1$


$\vp _E(X,b) = \vp _F(X,b)$


$Y_1$


$P$


$\vp _E$


$\vp _E$


$\Gamma $


\begin {align*}\risk _P(\delta _F) &= \int _{Y_0} F\d P + \int _{Y_1}F \d P + \int _{\calX \setminus (Y_0\cup Y_1)} F\d P \\ &= \int _{Y_0} (F-E+E)\d P + \int _{Y_1}(F-E+E) \d P + \int _{\calX \setminus (Y_0\cup Y_1)} E\d P \\ &= \int _\calX E \d P + \int _{Y_0} (L_{b_1}(0,1) - E)\d P + \int _{Y_1} (L_{b_2}(0,1) - E)\d P \\ &\leq 1 + \int _{Y_0}(L_{b_1}(0,1) - E)\d P + (L_{b_2}(0,1) - L_{b_1}(0,1))P(Y_1).\end {align*}


$Y_0$


$Y_1$


\begin {align}0<P(Y_1) = (L_{b_2}(0,1) - L_{b_1}(0,1))^{-1} \int _{Y_0} (E - L_{b_1}(0,1))\d P, \label {Xeqn33-A.11}\end {align}


$\risk _P(\delta _F)\leq 1$


$Y_0$


$Y_1$


$P$


$E(X)>\sup _b L_b(0,1)$


$Y$


$U$


$E(X) < \sup _b L_b(0,1)$


$X\in U$


$U_0\subset U$


\begin {align}F(X) = \begin {cases} \sup _b L_b(0,1),& \text {if } X \in Y \cup U_0, \\ E(X),&\text {otherwise}. \end {cases} \label {Xeqn34-A.12}\end {align}


$\vp _F(X,b)\geq \vp _E(X,b)$


$b$


$x\in U_0$


$\vp _F$


$s = \sup _b L_b(0,1)$


\begin {align*}\risk _P(\vp _F) &= \int _Y (s - E + E)\d P + \int _{U_0} (s - E + E)\d P + \int _{\calX \setminus (Y\cup U_0)} E\d P \\ &\leq \int _\calX E\d P + \int _Y (s - E)\d P + \int _{U_0} s \d P \\ &\leq 1 + \int _Y (s - E)\d P + sP(U_0).\end {align*}


$s<\infty $


$P$


$U_0$


$s<P(U_0) = \int _Y ( E - s) \d P$


$\risk _P(\vp _F)$


$E_\delta $


$\delta $


$\Gamma _\all $


$\delta $


$\Gamma _\all $


$\delta $


$E_\delta $


$\phi $


$\phi $


$E_\phi $


$\calX $


$R_1\subset \calX $


$E_\phi (X) = E_\delta (X)=0$


$R_2\subset \calX $


$0=E_\delta (X) < E_\phi (X)$


$R_3\subset \calX $


$0<E_\delta (X) \leq E_\phi (X)$


$R_4\subset \calX $


$E_\delta (X) > E_\phi (X)$


$R_4$


$Q$


$E_\delta (X) \leq E_\phi (X)$


$Q$


$E_\delta $


$E_\phi $


$E_\phi (X) = E_\delta (X)$


$Q$


$\delta = \phi $


$Q$


$B$


$\E _\Q [L_B(1,\phi (X,B))] > \E _\Q [L_B(1,\delta (X,B))]$


$\phi $


$\Gamma _\all $


$\delta $


\begin {align}\E _\Q [L_B(1,\phi (X,B)) - L_B(1,\delta (X,B))] = \sum _{1\leq k\leq 4} \Delta _k, \label {Xeqn35-A.13}\end {align}


\begin {align*}\Delta _k &\equiv \int _{R_k} L_B(1,\phi (x,B)) - L_B(1,\delta (x,B)) \d \Q \\ &= \int _{R_k} L_B(1,0)( \delta (x,B) - \phi (x,B)) \d Q.\end {align*}


$B$


$R_4$


$Q$


$X\in R_4$


$B(X)$


$b$


$L_b(0,1)>E_\phi (X)$


$b$


$E_\delta (X) > E_\phi (X) \geq \sup _b L_b(0,1)$


$E_\delta (X)$


$R_4$


$\phi $


$\phi (X,B(X)) = E_\phi (X) / L_{B(X)}(0,1) < 1$


\begin {align*}\delta (X, B(X)) = \min \left \{1, \frac {E_\delta (X)}{L_{B(X)}(0,1)}\right \} > \frac {E_\phi (X)}{L_{B(X)}(0,1)} = \phi (X,B(X)), \quad Q\text {-almost surely}.\end {align*}


\begin {align*}\Delta _4 = \int _{R_4} L_{B}(1,0)\left (\frac {E_\delta (X)}{L_{B}(0,1)} - \frac {E_\phi (X)}{L_{B}(0,1)}\right )\d \Q > 0,\end {align*}


$B$


$\calX $


$X\in R_1$


$\phi (X,b) = \delta (X,b) = 0$


$\Delta _1=0$


$R_2$


\begin {align*}\Delta _2 = -\int _{R_2} L_{B}(1,0) \min \left \{1, \frac {E_\phi (X)}{L_{B}(0,1)}\right \}\d \Q .\end {align*}


$X\in R_2$


$B(X) = b$


$b$


\begin {align}\label {eq:pf-M-admissible-1} \frac {L_b(1,0)}{L_b(0,1)} \leq \frac {\Delta _4}{4 \int _{R_2} E_\phi (X)\d \Q } \text {~ and ~} L_b(0,1) \geq \sup _{X\in R_2} E_\phi (X).\end {align}


$b$


$E_\phi $


\begin {equation*}\Delta _2 \geq - \int _{R_2} \frac {L_b(1,0)}{L_b(0,1)} E_\phi (X) \d \Q \geq - \frac {\Delta _4}{4}.\end {equation*}


$R_3$


\begin {align*}\Delta _3 = - \int _{R_3} L_B(1,0)(\phi (x,B) - \delta (x,B))\d \Q \geq -\int _{R_3} L_B(1,0)\min \left \{1, \frac {E_\phi (X)}{L_B(0,1)}\right \}\d \Q .\end {align*}


$B(X) = b$


$b$


$R_3$


$R_2$


$\Delta _3 \geq -\Delta _4/4$


$\sum _{k\leq 4} \Delta _k \geq -\Delta _4/4 - \Delta _4/4 + \Delta _4 >0$


$\Delta _4>0$


$E$


$P$


$E\leq \sup _bL_b(0,1)$


$P$


$E_{\delta _E} = E$


$P$


$E$


$E_{\delta _E}$


$\delta _E$


$\Gamma _\all $


$\delta _E$


$\Gamma _\all $


$E_{\delta _E}$


$E$


$E_{\delta _E}(X) \leq E(X)$


$E = E_{\delta _E}$


$E_{\delta _E}(X)\leq \sup _bL_b(0,1)$


$X$


$W= \{X : E(X) \neq E_{\delta _E}(X)\}$


$E$


$E_{\delta _E}$


$E(X) > \sup _b L_b(0,1)$


\begin {equation*}W = \{ X: E(X) > \sup _bL_b(0,1)\}.\end {equation*}


$E$


\begin {align*}1 &= \E _P[E] = \E _P[E\ind {X\notin W}] + \E _P[E\ind {X\in W}] \\ &= \E _P[E_{\delta _E}\ind {X\notin W}] + \E _P[E\ind {X\in W}] \\ &> \E _P[E_{\delta _E}\ind {X\notin W}] + \sup _b L_b(0,1) P(W).\end {align*}


\begin {align*}1 &= \E _P[E_{\delta _E}] = \E _P[E\ind {X\notin W}] + \E _P[E_{\delta _E}\ind {X\in W}] \\ &< 1 - \sup _b L_b(0,1)P(W) \E _P[E_{\delta _E}\ind {X\in W}] \\ &\leq 1 - \sup _b L_b(0,1)P(W) \sup _b L_b(0,1)P(W) = 1,\end {align*}


$P(W)=0$


$E = E_{\delta _E}$


$P$


$E_{\vp }$


$\vp $


$R_4$


$E_\delta (X) > E_\phi (X)$


$\Re \cap [M,\infty )$


$b$


$E_\phi (X) < L_b(0,1) \leq E_\delta (X)$


$E_\delta (X) \geq \inf b L_b(0,1)\geq M$


$\delta $


$B(X)$


$b$


$\Delta _4 > 0$


$R_1$


$B$


$R_2$


$B(X)$


$L_{B(X)}(0,1) > E_\phi (X)$


$\sup _b L_b(0,1) = \infty $


$E_\phi $


$P$


$\phi $


$\Delta _2 = 0$


$R_3$


$\E _Q[L_B(1,\phi (X,B))] - \E _Q[L_B(1,\delta (X,B))] = \sum _i \Delta _i >0$


$E$


$P$


$E$


$E_{\delta _E}$


$E_{\delta _E}(X) = \sup _b L_b(0,1)\ind {E(X) \geq L_b(0,1)} \leq E(X)$


$\delta _E$


$\Gamma _\all $


$E$


$\delta _E$


$\Gamma _\all $


$E$


$E_{\delta _E} = E$


$P$


$E$


$E_{\delta _E}$


$\delta _E$


$\Gamma _\all $


$A_1, A_2$


$b$


\begin {align*}\inf _{X_1\in A_1}E_\delta (X_1) > \sup _{X_2\in A_2} E_\delta (X_2),\text {~ and ~} \sup _{X_1\in A_1}\lr (X_1) < \sup _{X_2\in A_2} \lr (X_2).\end {align*}


\begin {align*}\gamma _1 = \inf _{X_1\in A_1}E_\delta (X_1), \quad \gamma _2 = \sup _{X_2\in A_2}E_\delta (X_2).\end {align*}


$\deltahat $


$\delta $


$\Gamma _\const $


$\Delta \in \Re $


$0<\Delta <\gamma _1-\gamma _2$


\begin {align*}\calB _0 &\equiv \{b: L_b(0,1) \leq \gamma _2\}\\ \calB _1 &\equiv \{b: \gamma _2< L_b(0,1) \leq \gamma _2+\Delta \} \\ \calB _2 &\equiv \calB \setminus (\calB _0 \cup \calB _1).\end {align*}


$\calB _0,\calB _1$


$\calB _2$


$\calB $


$L_b(0,1)$


$\lr (X)$


$\calB _0$


$b$


$\calB _2$


$\calB _2$


\begin {equation*}\sup _{b\in \calB } L_b(0,1) \leq \gamma _2 + \Delta < \gamma _1\leq \sup _{X\in A_1} \sup _{b\in \calB } L_b(0,1)\delta (X,b) \leq \sup _{b\in \calB } L_b(0,1),\end {equation*}


$L_b(0,1)$


$b$


$b_1 \notin \calB _0$


$b_2 >b_1$


$b_2\notin \calB _0$


$b \in \calB _0\cup \calB _1$


$\deltahat (\cdot ,b)=\delta (\cdot ,b)$


$b \in \calB _2$


\begin {align}\deltahat (X_1,b) = \delta (X_1,b) - \frac {\eps _1}{ L_b(0,1)}, \text {~ and ~} \deltahat (X_2,b) = \delta (X_2,b) + \frac {\eps _2}{ L_b(0,1)}, \label {Xeqn37-A.15}\end {align}


$X_1\in A_1$


$X_2 \in A_2$


$A_1$


$A_2$


$\deltahat $


$\delta $


$X_1\in A_1$


$X_2\in A_2$


$\deltahat $


$\deltahat (X_1,b)\geq 0$


$\deltahat (X_2,b)\leq 1$


$\deltahat (X_1,b) \leq \delta (X_1, b) \leq 1$


$\deltahat (A_2,b) \geq \delta (A_2,b) \geq 0$


$\delta (X_1,b) = \min \{1, E_\delta (X_1)/ L_b(0,1)\}$


$\delta (X_2,b) = \min \{1, E_\delta (X_2)/ L_b(0,1)\}$


$\deltahat (X_1,b) = \min \{1, E_\delta (X_1)/L_b(0,1)\} - \eps _1/L_b(0,1)\geq 0$


$\eps _1\leq L_b(0,1)$


$\eps _1\leq \inf _{X_1\in A_1} E_\delta (X_1) = \gamma _1$


$L_b(0,1)$


$b$


$L_b(0,1)>\gamma _2+\Delta $


$b\in \calB _2$


\begin {align}\label {eq:pf-inc-d1} \eps _1\leq \gamma _2 + \Delta <\gamma _1.\end {align}


$\deltahat $


$A_2$


$\deltahat (X_2,b) = (E_\delta (X_2) + \eps _2)/ L_b(0,1)$


$b\in \calB _2$


$E_\delta (X_2) +\eps _2\leq L_b(0,1)$


$\gamma _2 + \Delta \leq L_b(0,1)$


$b\in \calB _2$


$E_\delta (X_2) \leq \gamma _2$


$\eps _2 \leq \gamma _2 + \Delta - \gamma _2$


\begin {align}\label {eq:pf-inc-d2} 0<\eps _2\leq \Delta .\end {align}


$\eps _1,\eps _2>0$


$\deltahat $


$\deltahat $


$\Gamma _\const $


$\delta $


$\deltahat $


$A_1$


$A_2$


\begin {align}\label {eq:pf-inc-in-lr-1} \int _{A_1\cup A_2} \sup _b L_b(0,\deltahat (x,b))\d P \leq \int _{A_1\cup A_2} \sup _b L_b(0,\delta (x,b))\d P.\end {align}


$b\in \calB _0\cup \calB _1$


$\delta (X_1,b) = \min \{1, E_\delta (X_1)/L_b(0,1)\} = 1$


$L_b(0,1)\leq \gamma _2+\Delta <\gamma _1\leq E_\delta (X_1)$


$\deltahat (X_1,b) = \delta (X_1,b)$


$b$


$b\in \calB _2$


$\deltahat (X_1,b) = \min \{1, E_\delta (X_1)/L_b(0,1)\} - \eps _1/L_b(0,1) \leq (E_\delta (X_1) - \eps _1)/L_b(0,1)$


\begin {align*}\sup _{b\in \calB _2}L_b(0,\deltahat (X_1,b)) &\leq \sup _{b\in \calB _2} L_b(0,1) \left (\frac {E_\delta (X_1)-\eps _1}{L_b(0,1)}\right ) = E_\delta (X_1)- \eps _1,\end {align*}


\begin {align*}\sup _{b\in \calB } L_b(0,\deltahat (X_1,b)) &= \max \left \{\sup _{b\in \calB _0\cup B_1} L_b(0,\delta (X_1,b)), \sup _{b\in \calB _2} L_b(0,\deltahat (X_1,b)) \right \} \\ &\leq \max \left \{\sup _{b\in \calB _0\cup \calB _1} L_b(0,1), E_\delta (X_1) - \eps _1 \right \} \\ &\leq \max \left \{\gamma _2 + \Delta , E_\delta (X_1) - \eps _1 \right \}.\end {align*}


$E_\delta (X_1) - \eps _1$


$\eps _1$


\begin {align}\label {eq:pf-inc-d3} 0 < \eps _1 \leq \gamma _1 - (\gamma _2 + \Delta ) \leq E_\delta (X_1) - (\gamma _2 + \Delta ),\end {align}


$\Delta $


$E_\delta (X_1)-\eps _1$


\begin {align}\label {eq:pf-inc-d3.1} \sup _b L_b(0,\deltahat (X_1,b)) \leq E_\delta (X_1) - \eps _1.\end {align}


$A_2$


$b\in \calB _0$


$\deltahat (X_2,b) = \delta (X_2,b) \leq 1$


$b\in \calB _1$


$\deltahat (X_2,b) = \delta (X_2,b) = \min \{1, \gamma _2/L_b(0,1)\} = E_\delta (X_2)/L_b(0,1)$


$b\in \calB _2$


$\deltahat (X_2,b) = \delta (X_2,b) = E_\delta (X_2) / L_b(0,1) + \eps _2/L_b(0,1)$


\begin {align*}\sup _{b\in \calB } L_b(0,\deltahat (X_2,b) &\leq \max \left \{ \sup _{b\in \calB _0} L_b(0,1), \sup _{b\in \calB _1} L_b(0,\deltahat (X_2,b)), \sup _{b\in \calB _2} L_b(0,\deltahat (X_2,b))\right \} \\ &= \max \left \{ \sup _{b\in \calB _0} L_b(0,1), \sup _{b\in \calB _1} E_\delta (X_2), \sup _{b\in \calB _2} E_\delta (X_2) + \eps _2\right \} \\ &\leq \max \{ \gamma _2, \gamma _2, \gamma _2 + \eps _2\} = \gamma _2 + \eps _2.\end {align*}


\begin {align*}\int _{A_1\cup A_2} \sup _{b\in \calB } L_b(0,\deltahat (x,b))\d P &\leq \int _{A_1}E_\delta (x)\d P \d P - \eps _1P(A_1) + \int _{A_2}E_\delta (x)\d P - \eps _2P(A_2) \\ &= \int _{A_1\cup A_2} \sup _b L_b(0,\delta (x,b)) \d P - \eps _1 P(A_1) + \eps _2 P(A_2).\end {align*}


$-\eps _1 P(A_1) + \eps _2 P(A_2) \leq 0$


\begin {align}\label {eq:pf-inc-in-lr-2} \frac {\eps _2}{\eps _1} \leq \frac {P(A_1)}{P(A_2)}.\end {align}


$\eps _1$


$\eps _2$


$b\in \calB _2$


$\E _Q [\deltahat (X,b))] \geq \E _\Q [\delta (X,b))]$


$b\in \calB _0\cup \calB _1$


$\deltahat (\cdot ,b) = \delta (\cdot ,b)$


$b$


$\deltahat $


$\delta $


$\Gamma _\const $


$\deltahat $


$\delta $


$A$


$A_1$


$A_2$


\begin {align}\label {eq:pf-inc-lr-21} \E _Q [\deltahat (X,b)\ind {X\in A}] \geq \E _\Q [\delta (X,b)\ind {X\in A}],\end {align}


$b\in \calB _2$


$b$


\begin {align*}\int _{A_1} \deltahat (x,b)\d \Q &= \int _{A_1} \left (\delta (x,b) - \frac {\eps _1}{L_b(0,1)}\right )\d \Q = \int _{A_1} \delta (x,b) \d \Q - \frac {\eps _1}{L_b(0,1)} Q(A_1).\end {align*}


\begin {align*}\int _{A_2} \deltahat (x,b)\d \Q = \int _{A_2} \delta (x,B) \d \Q + \frac {\eps _2}{L_b(0,1)}Q(A_2).\end {align*}


\begin {align}\label {eq:pf-inc-in-lr-3} \frac {\eps _2}{\eps _1} > \frac {Q(A_1)}{Q(A_2)}.\end {align}


$\eps _1 = w P(A_1)$


$\eps _2 = wP(A_2)$


$w>0$


$\eps _1$


$\eps _2$


\begin {equation*}\frac {\eps _2}{\eps _1} = \frac {P(A_1)}{P(A_2)} > \frac {Q(A_1)}{Q(A_2)},\end {equation*}


$\deltahat $


$\delta $


$\Gamma _\const $


$\delta $


$\Gamma _\const $


$E_\delta (X)$


$P$


$E_\delta (X) \geq \inf _{b\in \calB }L_b(0,1)$


$Q$


$E_\delta (X) > \sup _{b\in \calB } L_b(0,1)$


$A$


$Q(A)>0$


$\calB = \calB _0 \cup \calB _1$


\begin {equation*}\sup _{b\in \calB _0}L_b(0,1) < E_\delta (X) < \inf _{b\in \calB _1}L_b(0,1).\end {equation*}


$b_1,b_2$


$b_1 = \sup _{b\in \calB _0} L_b(0,1)$


$b_2 = \inf _{b\in \calB _1}L_b(0,1)$


$\calB $


$\calB _1 = \{b\geq b_2\}$


$b$


$A = A_1\cup A_2$


$P(A_1) = P(A_2)$


$\lr (X_1)<\lr (X_2)$


$X_1\in A_1$


$X_2\in A_2$


$\deltahat $


$b\in \calB _0$


$\deltahat (X,b)= \delta (X,b) - \eps / L_b(0,1)$


$X\in A_1$


$\deltahat (X,b) = \delta (X,b) + \eps / L_b(0,1)$


$X\in A_2$


$\deltahat $


$\delta $


$0<\delta (X,b)<1$


$X\in A$


$b\in \calB _1$


$\eps $


$0<\deltahat (X,b)\leq 1$


$X\in A$


$\eps $


\begin {align}\label {eq:pf-rich-d1} L_{b_1}(0,1) + \eps < E_\delta (X).\end {align}


$\deltahat $


$X\in A_1$


\begin {align*}E_{\deltahat }(X) &= \sup _{b}L_b(0, \deltahat (X,b)) \\ &= \max \left \{ \sup _{b<b_2} L_b(0,\delta (X,b)), \sup _{b\geq b_2} L_b(0,\deltahat (X,b))\right \} \\ &= \max \left \{ L_{b_1}(0,1), \left (\sup _{b\geq b_2} L_b(0,1)\delta (X,b)\right ) - \eps \right \} \\ &= \max \left \{ L_{b_1}(0,1), E_\delta (X) - \eps \right \} \\ &= E_\delta (X) -\eps ,\end {align*}


$X\in A_2$


\begin {align*}E_{\deltahat }(X) &= \max \left \{ L_{b_1}(0,1), \left (\sup _{b\geq b_2} L_b(0,1)\delta (X,b)\right ) + \eps \right \} \\ &= \max \left \{ L_{b_1}(0,1), E_\delta (X) + \eps \right \} \\ &= E_\delta (X) + \eps .\end {align*}


\begin {align*}\int _A E_{\deltahat }(x)\d P &= \int _{A_1} (E_\delta (x) - \eps )\d P + \int _{A_2} (E_\delta (x) + \eps )\d P\\ &= \int _A E_\delta (x) - \eps P(A_1) + \eps P(A_2) = \int _A E_\delta (x)\d P,\end {align*}


$P(A_1) = P(A_2)$


$\risk _P(\deltahat ) \leq 1$


\begin {equation*}\E _P[E_{\deltahat }(X)] = \int _{A'}E_{\deltahat }(x) \d P + \int _{A}E_{\delta }(x) \d P = \int _{\calX } E_\delta (x) \d P \leq 1.\end {equation*}


$\delta $


$\delta (X,b)$


$\lr $


$E_\delta $


$\lr $


$b^*\in \calB $


$\delta (\cdot , {b^*})$


$\lr $


$A_1,A_2\subset \calX $


$P$


$\Q $


$X_1\in A_1$


$X_2\in A_2$


\begin {align}\label {eq:decreasing_lr} \delta (X_1,b^*) = 1, \; \delta (X_2,b^*) = 0, \text {~ and ~} \sup _{X\in A_1} \lr (X_1) < \inf _{X_2\in A_2} \lr (X_2)\end {align}


$G = [t_-, t_+]\subset \calB \cup \{\inf (\calB )\}\cup \{\sup (\calB )\}$


$\sup (\calB ) = \sup _{b\in \calB } b$


$\inf (\calB )$


$A_1'\subset A_1$


$t> b^*$


$\delta (X_1,b)=0$


$b>t$


$X_1\in A_1'$


$t^+= t$


$A_1\gets A_1'$


$A_1'$


$t$


$\delta (X_1,b)=1$


$X_1\in A_1$


$b\geq b^*$


$\delta $


$b$


$\delta (X,b) = 0$


$b\geq b^*$


$\delta (X,{b'})=0$


$b'\geq b$


$t^+ = \sup (\calB )$


$t_-$


$A_2'\subset A_2$


$t\leq b^*$


$\delta (X,b) = 1$


$x\in A_2'$


$b<t$


$t = t_-$


$A_2 \gets A_2'$


$\delta (X,b)=0$


$b\leq b^*$


$X\in A_2$


$t_-=\inf (\calB )$


$P(A_2)> P(A_1)$


$A_2'\subset A_2$


$P(A_2') = P(A_1)$


$P(A_1) = P(A_2)$


$P(A_1)= P(A_2)$


$b>t_+$


$\delta (X_1,b)$


$X_1\in A_1$


$b<t_-$


$\delta (X_2,b) = 1$


$X_2\in A_2$


$X_1\in A_1$


$X_2\in A_2$


$G^+ :=\{ b\in \calB : b>t_+\}$


$G^- = \{b\in \calB : b<t_-\}$


$G \cup G^+\cup G^-= \calB $


$G^+$


$G^-$


\begin {align}\label {eq:all-0-or-1} \sup _{X_1\in A_1} \sup _{b\in G^+} \delta (X_1,b)= 0, \quad \inf _{X_2\in A_2} \inf _{b\in G^-} \delta (X_2,b) =1.\end {align}


$\deltahat $


\begin {align}\deltahat (X,b) = \begin {cases} \delta (X,b) & X\notin A_1\cup A_2\text { or }b\notin G, \\ 0, & X\in A_1\text { and }b\in G, \\ 1,& X\in A_2\text { and }b\in G. \end {cases} \label {Xeqn48-A.27}\end {align}


$\deltahat $


$\delta $


$\delta $


$\Gamma _\const $


\begin {align}\label {eq:proof-increasing-delta_risk} \risk _ P(\deltahat ) = \int _{\calX \setminus A_1\cup A_2} \sup _b L_b(0,\delta (x,b))\d P + \int _{A_1 \cup A_2} \sup _bL_b(0,\deltahat (x,b))\d P,\end {align}


$\calX \setminus A_1\cup A_2$


$\deltahat (\cdot ,b) = \delta (\cdot ,b)$


$b$


$X_1\in A_1$


$L_b(0,1) \deltahat (X_1,b)=0$


$b\in G\cup G^+$


$\deltahat $


$\deltahat (X_1,b) \equiv 0$


$b\in G$


$\deltahat (X_1,b) = \delta (X_1,b)\equiv 0$


$b\in G^+$


$G^+=\emptyset $


$X_1\in A_1$


\begin {align*}\sup _{b\in \calB } L_b(0,1)\deltahat (x_1,b) = \sup _{b\in G^-} L_b(0,1) \deltahat (x_1,b) = \sup _{b\in G^-} L_b(0,1) \delta (x_1,b) = \sup _{b\in G^-} L_b(0,1),\end {align*}


$G^-=\emptyset $


\begin {align*}\int _{A_1} \sup _b L_b(0,1)\deltahat (x,b) \d P \leq \int _{A_1} \sup _{b\in G^-}L_b(0,1) \d P = \int _{A_2}\sup _{b\in G^-}L_b(0,1) \d P,\end {align*}


$P(A_1) = P(A_2)$


\begin {align*}\int _{A_2}\sup _{b\in G^-}L_b(0,1) \d P = \int _{A_2}\sup _{b\in G^-}L_b(0,1) \delta (x,b) \d P \leq \int _{A_2}\sup _{b\in \calB }L_b(0,1)\delta (x,b) \d P.\end {align*}


\begin {align}\label {eq:proof-increasing-A1_bound} \int _{A_1} \sup _{b\in \calB } L_b(0,1)\deltahat (x,b)\d P \leq \int _{A_2}\sup _{b\in \calB }L_b(0,1)\delta (x,b) \d P.\end {align}


$X_2\in A_2$


$\deltahat (X_2,b) = 0$


$b\in G^+$


$\deltahat (X_2,b) = 1$


$b\in G$


$\deltahat (X_2,b) = \delta (X_2,b) = 1$


$b\in G^-$


$L_b(0,1)$


$b$


\begin {equation*}\sup _{b\in \calB } L_b(0,1) \deltahat (X_2,b) \leq \sup _{b\in G\cup G^-} L_b(0,1) = \sup _{b\in G} L_b(0,1),\end {equation*}


$P(A_1) = P(A_2)$


\begin {align}\int _{A_2} \sup _{b\in \calB }L_b(0,1)\deltahat _b(x) \d P &\leq \int _{A_2} \sup _{b\in G}L_b(0,1) \d P \notag \\ &= \int _{A_1} \sup _{b\in G}L_b(0,1) \d P \leq \int _{A_1}\sup _{b\in \calB } L_b(0,1)\delta _b(x) \d P. \label {eq:proof-increasing-A2_bound}\end {align}


\begin {equation*}\sup _{b\in G}L_b(0,1) = \sup _{b\in G}L_b(0,1) \delta (X_1,b) \leq \sup _{b\in \calB } L_b(0,1)\delta (X_1,b),\end {equation*}


$X_1\in A_1$


\begin {align}\int _{A_1 \cup A_2} \sup _{b\in \calB }L_b(0,1)\deltahat (x,b)\d P \leq \int _{A_1\cup A_2}\sup _{b\in \calB } L_b(0,1)\delta (x,b)\d P. \label {Xeqn51-A.31}\end {align}


$\risk _ P(\deltahat )\leq \int _\calX \sup _{b\in \calB } L_b(0,1)\delta _b(X)\d P = \risk _ P(\delta )\leq 1$


$\widehat {\delta }$


$\delta $


$b\in G$


$\deltahat $


$\delta $


$b\notin G$


$\delta $


$P(A_1) = P(A_2)$


$Q(A_1) < Q(A_2)$


$b\in G$


$\deltahat (X_2,b) = 1$


$X_2\in A_2$


$\deltahat (X_1,b)=0$


$X_1\in A_1$


\begin {align*}\E _{\Q }[\deltahat _b(X)] &= \int _{\calX \setminus A_1\cup A_2} \deltahat (x,b)\d \Q + \int _{A_1\cup A_2}\deltahat (x,b)\Q (A_2) \\ &= \int _{\calX \setminus A_1\cup A_2} \delta (x,b) d\Q + \Q (A_2) \\ &> \int _{\calX \setminus A_1\cup A_2} \delta (x,b)\d \Q + \Q (A_1) = \E _{\Q }[\delta (X,b)],\end {align*}


$\delta $


$\Gamma _\const $


$\consta $


$\vp $


$\lr $


$E_\psi $


$h$


$E_\phi (X) = h(\lr (X))$


$\vp (X,b) = \ind {E_\phi (X) \geq L_b(0,1)} = \ind {h(\lr (X)) \geq L_b(0,1)} = \ind {\lr (X) \geq h^-(L_b(0,1))}$


$h^-$


$h$


$h$


$t(b) = h^-(L_b(0,1))$


$\vp $


$\Gamma _\const $


$E_\delta $


$\lr $


$E_{\vp }$


$\lr $


$\vp $


$\vp $


$\Gamma _\const $


$\psi $


$t_\phi (b)\leq t_\delta (b)$


$b\in \calB $


$t_\phi (b^*)<t_\delta (b^*)$


$b^*$


$Q(t_\phi (b^*)\leq \lr (X) < t_\delta (b^*)) > 0$


$I(b^*) = \{X: t_\phi (b^*) \leq \lr (X) < t_\delta (b^*)\}$


\begin {align}\label {eq:pf-const-admissibility-1} \int _{I(b^*)} \sup _b L_b(0,\vp (x,b)) \d P < \int _{I(b^*)} \sup _b L_b(0,\psi (x,b)) \d P.\end {align}


$X\in I(b^*)$


$\phi (X,b^*) = \ind {\lr (X) \geq t_\phi (b^*)} = 1$


$\sup _b L_b(0,\psi (X,b)) \geq L_{b^*}(0,1)$


$L_{b^*}(0,1) P(I(b^*))$


$L_{b^*}(0,1)$


$b_0$


$t_\phi (b^*) < t_\delta (b_0) < t_\delta (b^*)$


$P(t_\phi (b^*) \leq \lr (X) < t_\delta (b_0)) > 0$


$I(b^*) = I_1 \cup I_2$


$I_1 = \{X: t_\phi (b^*)\leq \lr (X) < t_\delta (b_0)\}$


$I_2 = \{X: t_\delta (b_0)\leq \lr (X) < t_\delta (b^*)\}$


$t_\delta $


$X\in I_1$


$\ind {\lr (X) \geq t_\delta (b)} = 0$


$b>b_0$


\begin {align*}\sup _b L_b(0,\vp (X,b)) = \sup _b L_b(0,1)\ind {\lr (X) \geq t_\delta (b)} \leq L_{b_0}(0,1) < L_{b^*}(0,1).\end {align*}


$X\in I_2$


$\sup _b L_b(0,\vp (X,b)) \leq L_{b^*}(0,1)$


\begin {align*}\int _{I(b^*)} \sup _b L_b(0,\vp (x,b)) \d P &= L_{b_0}(0,1)P(I_1) + L_{b^*}(0,1)P(I_2) < L_{b^*}(0,1) P(I(b^*)),\end {align*}


$b_0 < b^*$


$t_\delta $


$b_0$


$\sup _{b<b^*}t_\delta (b) \leq t_\phi (b^*)<t_\delta (b^*)$


$Q(\sup _{b<b^*}t_\delta (b) \leq \lr (X) < t_\delta (b^*)) \geq Q(t_\phi (b^*)\leq \lr (X) < t_\delta (b^*))>0$


$\phi $


$\sup _{b<b^*}L_b(0,1) < L_{b^*}(0,1)$


$\vp $


$\vp (X,b) = \ind {\lr (X) \geq t_\delta (b)}$


$b>b^*$


$X\in I(b^*)$


\begin {align*}\int _{I_{b^*}} \sup _{b}L_b(0,\vp (x,b))\d P &= \int _{I(b^*)} \sup _{b<b^*} L_b(0,1)\ind {\lr (x) \geq t_\delta (b)} \d P \\ &\leq \int _{I(b^*)} \sup _{b<b^*} L_b(0,1) \d P < L_{b^*}(0,1)P(I(b^*)),\end {align*}


$X\in \calX $


$\phi (X,b) \geq \delta (X,b)$


$t_\phi (b) \leq t_\delta (b)$


\begin {align*}\risk _P(\vp ) &= \int _{\calX \setminus I(b^*)} \sup _b L_b(0,\vp (X,b)) \d P + \int _{I(b^*)} \sup _b L_b(0,\vp (X,b)) \d P \\ &< \int _{\calX \setminus I(b^*)} \sup _b L_b(0,\psi (X,b)) \d P + \int _{I(b^*)} \sup _b L_b(0,\psi (X,b)) \d P \\ &= \risk _P(\psi )\leq 1,\end {align*}


$E_{\vp }$


$E$


$P$


$\vp _E$


$\Gamma _\const $


$E = E_{\vp _E}$


$E$


$\lr $


$E$


$\lr $


$E = E_{\vp _E}$


$\vp _E$


$\Gamma _\const $


$h$


$E(X) + h(\lr (X))$


$h^-(y)=\inf \{x\in \Re : h(x)\geq y\}$


$h$


$h^-$


\begin {align*}\vp _E(X,b) = \ind {E(X) \geq L_b(0,1)} = \ind {\lr (X) \geq h^-(L_b(0,1))},\end {align*}


$h^-(L_b(0,1))$


$t_\delta (b)$


$P$


$\sup _{b<b^*}L_b(0,1) = L_{b^*}(0,1)$


$h^-(\sup _{b<b^*}L_b(0,1)) = h^-(L_{b^*}(0,1))$


$t_\delta (b)$


$\delta $


$\phi $


$b\in \calB $


$Q\in \calQ $


\begin {align}Q(L_b(1,\phi (X,b)) > L_b(1,\delta (X,b)) = 0, \label {Xeqn53-B.1}\end {align}


$b\in \calB $


$Q\in \calQ $


\begin {align}Q(L_b(1,\phi (X,b)) < L_b(1,\delta (X,b))) > 0. \label {Xeqn54-B.2}\end {align}


$\phi $


$\delta $


$Q$


$\delta $


$\phi $


$\delta $


$L_b(1,a) > L_b(1,a)$


$L_b(0,a) > L_b(0,a)$


$a$


$\calP $


$\calQ $


$\delta $


$E$


$\calP $


$\delta (X,b) = \ind {E(X) \geq L_b(0,1)}$


$\delta = \ind {E(X)\geq L_b(0,1)}$


$E$


$\calP $


$\calL _0$


$P\in \calP $


$\delta $


$\Gamma $


$\consta $


$\delta $


$b$


$\consta $


$\delta $


$\phi $


$b\in \calB $


\begin {equation*}\phi (X,b) \geq \delta (X,b)\quad Q\text {-almost everywhere for all }Q\in \calQ ,\end {equation*}


$\phi (X,b_0) > \delta (X,b_0)$


$b_0$


$X\in A$


$Q_0(A)>0$


$Q_0$


$\E _{Q_0} [\delta (X,b_0)\ind {A}] < \E _{Q_0}[\phi (X,b_0)\ind {A}]$


$\E _{Q_0}[\delta (X,b_0) \ind {A^c}]\leq \E _{Q_0}[\phi (X,b_0)\ind {A^c}]$


$\E _{Q_0}[\delta (X,b_0)] < \E _{Q_0}[\delta (X,b_0)]$


$\delta (X,b)\geq \phi (X,b)$


$\calQ $


$b$


$\E _Q[\delta (X,b)]\leq \E _Q[\delta (X,b)]$


$b$


$\phi $


$\delta $


$\alla $


$\consta $


$\consta $


$\alla $


$\calB =[1,\infty )$


$X$


$[1,\infty )$


$\delta (X,b) > \phi (X,b)$


$X\neq b$


$X=b$


$\delta (X,b) <\phi (X,b)$


$X=b$


$\delta $


$\phi $


$B(X) = x$


$\E _\Q [L_B(1,\delta (X,B))] = \E _\Q [L_X(1,0)(1 - \delta (X,X))] > \E _\Q [L_X(1,0) (1 - \phi (X,X))] = \E _Q[L_B(1,\phi (X,B))]$


$\delta $


$\phi $


$\alla $


$\alla $


$\alla $


$\delta $


$\phi $


\begin {align}\label {eq:stringent_admissibility} \E \bigg [\sup _{b\in \calB } ( L_b(1,\delta _b(X)) - L_b(1,\phi _b(X))\bigg ] \leq 0.\end {align}


$\calP = \{ P\}$


$\calQ = \{\Q \}$


$\calB = \{0,1\}$


$\delta $


$i\in \{0,1\}$


\begin {equation*}\phi ^{(i)}(X,b) = \begin {cases} \ind {\lr (X) \geq \kappa _{i}}, & \text {if }b=i \\ 0, & \text {otherwise}, \end {cases}\end {equation*}


$\kappa _i$


$\E _{ P}[\phi ^{(i)}(X,b)] = 1/L_{i}(0,1)$


$\phi ^{(i)}$


\begin {align*}& \quad \E _{Q} \left [\sup _b\left ( L_b(1,\delta (X,b)) - L_b(1,\phi ^{(i)}(X,b))\right )\right ] \\ &\geq \E _{Q} [L_i(1,\delta (X,i)) - L_i(1,\phi ^{(i)}(X,i)] \\ &= L_i(1,0) \E _{Q} [\phi ^{(i)}(X,i) - \delta (X,i)] \geq 0,\end {align*}


$\phi ^{(i)}$


$\E _{Q}[\phi ^{(i)}(X,i) - \delta (X,i)]=0$


$\delta $


$\phi ^{(i)}$


$b_i$


$\delta = \phi ^{(i)}$


$i$


$\phi ^{(1)} = \delta = \phi ^{(2)}$


$(\calA ,\Sigma )$


$\rho $


$X$


$\Sigma $


$\sigma $


$\rho $


$(\Omega , \calF , P)$


$(\Omega , \calF )$


$Y:(\calA ,\Sigma _\calA )\to (\Re ,\Sigma _\Re )$


$\Sigma _\calA $


$\Sigma _\calA /\Sigma _\Re $


$\Sigma _\Re $


$\sigma $


$\Re $


$\Re $


$(\Omega , \calF ,P)$


$\calX $


$\calB $


$\sigma $


$\Sigma _X$


$\Sigma _\calB $


$(\calX ,\Sigma _\calX )$


$(\calB ,\Sigma _\calB )$


$\{L_b(0,1):b\in \calB \}$


$b\mapsto L_b(0,1)$


$\Sigma _\calB $


$\delta $


$(\Sigma _\calX \otimes \Sigma _\calB )$


$\delta $


\begin {align}\label {eq:risk-as-adversary-2} \E _{X\sim P}\sup _{b\in \calB } L_b(0,\delta (X,b))= \sup _{B:\calX \to \calB } \E _{X\sim P} L_{B(X)}(0,\delta (X,B(X))),\end {align}


$B$


$\Sigma _\calX /\Sigma _\calB $


$g: \Omega \to \Re $


$g(\omega ) = \sup _b L_b(0,\delta (X(\omega ),b))$


$g$


$\calF $


$L_b= L_b(0,1)$


$\Sigma _\calB $


$\delta $


$(\Sigma _\calX \otimes \Sigma _\calB )$


$L_b(0,\delta (x,b))=L_b(0,1)\delta (x,b)$


$(\Sigma _\calX \otimes \Sigma _\calB )$


$(\omega ,b)\mapsto L_b(0,\delta (X(\omega ),b))$


$(\calF \otimes \Sigma _\calB )$


\begin {align*}\{\omega : g(\omega )>c\} = \Gamma _\Omega (\underbrace {\{(\omega , b): L_b(0,1)\delta (X(\omega ),b) > c\}}_{=:A_c}),\end {align*}


$\Gamma _\Omega $


$\Omega \times \calB $


$\Omega $


$A_c$


$\Sigma _\calX \otimes \calB $


$L_b(0,1)\delta (X(\omega ),b)$


$\{\omega :g(\omega )>c\}$


$\Omega $


$P$


$g$


$\calF $


$X$


$B$


$L_{B(X)}(0,\delta (X,B(X))) \leq \sup _b L_b(0,\delta (X,b))$


$B$


$\eps >0$


$\omega $


$\Xi _\eps :\Omega \rightrightarrows \calB $


\begin {align*}\Xi _\eps (\omega ) = \left \{ b^*\in \calB : L_{b^*}(0,\delta (X(\omega ), b^*)) > \sup _b L_b(0,\delta (X(\omega ),b)) - \eps \right \},\end {align*}


$\calF $


$(\omega ,b)\mapsto L_b(0,\delta (X(\omega ),b))$


$B^*_\eps (X(\omega ))$


$B_\eps (X(\omega )) \in \Xi _\eps (\omega )$


$L_{B^*_\eps (X)}(0,\delta (X(\omega ),B_\eps ^*(X)) + \eps > \sup _b L_b(0,\delta (X,b))$


$\eps \downarrow 0$


$P\in \calP $


$(\Omega , \calF )$


$\calP $


$(\Omega ,\calF ,P)$


$P\in \calP $


$(\calX ,\Sigma _\calX )$


$(\calB ,\Sigma _\calB )$


$\{L_b(0,1):b\in \calB \}$


\begin {align}\sup _{P\in \calP }\E _{X\sim P}\sup _{b\in \calB } L_b(0,\delta (X,b))= \sup _{P\in \calP }\sup _{B:\calX \to \calB } \E _{X\sim P} L_{B(X)}(0,\delta (X,B(X))), \label {Xeqn57-B.5}\end {align}


$B$


$\Sigma _\calX /\Sigma _\calB $


$\{L_b\}_{b\in \calB }$


$\sup _b L_b(0,\delta (X,b))$


$\delta $


$\xi :\calX \to \Re _{\geq 0}$


\begin {align}\sup _{ P\in \calP } \E _{X\sim P} \xi (X) \leq 1\text {~ and ~} \sup _{b\in \calB } L_b(0,\delta (X,b))\leq \xi (X)\quad \calP \text {-almost surely.} \label {Xeqn58-B.6}\end {align}


$\Theta $


$\calA $


$L:\Theta \times \calA \to \Re _{\geq 0}$


$\theta \in \Theta $


$P_\theta $


$\pi $


$\Theta $


$X$


\begin {align}\label {eq:bayes_estimator} \delta _\pi (X) \equiv \argmin _{a\in \calA } \E _{\theta \sim \pi (\cdot |X)} L(\theta , a).\end {align}


$\delta _\pi $


$B_\pi (\delta _\pi ) = \inf _\delta B_\pi (\delta )$


\begin {align}\label {eq:bayes_risk} B_\pi (\delta ) = \E _{\theta \sim \pi } \E _{X\sim P_\theta }[L(\theta , \delta (X))].\end {align}


$\theta $


$\pi $


$\pi (\cdot |X)$


$\calA = \{0,1\}$


$\Theta $


$\Theta _0$


$\Theta _1$


$\Theta _0$


$\Theta _1$


$\pi _i(\theta ) = \pi _i(\theta |\theta \in \Theta _i)$


$\pi _i(\theta |X) = \pi _i(\theta |X,\theta \in \Theta _i)$


$L(\theta , i) = 0$


$\theta \in \Theta _i$


$i\in \{0,1\}$


\begin {align}\delta _\pi (X) &= \argmin \big \{ \E _{\theta \sim \pi (\cdot |X)} [L(\theta ,0)], \E _{\theta \sim \pi (\cdot |X)}[L(\theta ,1)]\big \} \nonumber \\ &= \argmin \big \{ \E _{\theta \sim \pi _1(\cdot |X)} [L(\theta ,0)]\pi (\Theta _1|X), \E _{\theta \sim \pi _0(\cdot |X)}[L(\theta ,1)]\pi (\Theta _0|X)\big \} \nonumber \\ &= \ind {\E _{\theta \sim \pi _1(\cdot |X)} [L(\theta ,0)]\pi (\Theta _1|X) \geq \E _{\theta \sim \pi _0(\cdot |X)}[L(\theta ,1)]\pi (\Theta _0|X)}.\end {align}


$\{L_b\}_{b\in \calB }$


$b$


$B:\calX \to \calB $


$B(X)$


$L_{B(X)}$


\begin {align*}\phi _\pi (X) = \argmin _{a\in \calA } \E _{\theta \sim \pi (\cdot |X)} L_{B(X)} (\theta , a),\end {align*}


\begin {align*}\E _{\theta \sim \pi } \E _{X\sim P_\theta } L_{B(X)}(\theta , \phi _\pi (X)) = \inf _{\phi } \E _{\theta \sim \pi } \E _{X\sim P_\theta } L_{B(X)}(\theta , \phi (X)),\end {align*}


$B:\calX \to \calB $


$\phi _\pi $


$\phi $


$B(X)$


$\phi $


$\ell (\phi (x) |x) = \E _{\theta \sim \pi (\cdot |x)} L_{B(x)}(\theta , \phi (x))$


$x$


$L_{B(x)}$


$P_\theta $


$p(\cdot |\theta )$


$p(x) = \int p(x|\theta )\pi (\theta )\text {d}\theta $


$p(x|\theta )\pi (\theta ) = \pi (\theta |x)p(x)$


\begin {align*}\E _{\theta \sim \pi } \E _{X\sim P_\theta } L_{B(X)}(\theta , \phi (X)) &= \int _\Theta \int _\calX L_{B(x)} (\theta , \phi (x)) p(x|\theta )\pi (\theta )\text {d} x\text {d}\theta \\ &= \int _\calX \int _\Theta L_{B(x)} (\theta , \phi (x)) \pi (\theta |x)p(x)\text {d} \theta \text {d} x \\ &= \int _\calX \ell (\phi (x)|x) p(x) \text {d}\theta .\end {align*}


$\ell (\phi (x)|x)$


$x$


\begin {align}\label {eq:bayesian-type-I-risk} S_\pi (\delta )= \sup _{B:\calX \to \calB }\E _{\theta \sim \pi _0} \E _{X\sim P_\theta } L_{B(X)} (\theta , \delta (X)),\end {align}


$\theta $


$\pi _0$


$\Theta _0$


$\pi $


$\Theta _0$


$\Theta _0$


$\calP $


$B$


$\E _{\theta \sim \pi _0}$


$S_\pi (\delta ) \leq 1$


$\lambda $


$\lambda \geq 0$


$\delta _\pi $


\begin {align}\widehat {L}(\theta , a) = \begin {cases} L(\theta , a), &\theta \in \Theta _1, \\ \frac {\pi (\Theta _0) + \lambda }{\pi (\Theta _0)}L(\theta , a), & \theta \in \Theta _0, \end {cases} \label {Xeqn62-C.5}\end {align}


$S_\pi (\delta _\pi )\leq 1$


$S_\pi (\delta _\pi ) \leq 1$


$\lambda $


\begin {align}\min _\delta \big \{ B_\pi (\delta ) + \lambda (S_\pi (\delta ) - 1)\big \}. \label {Xeqn63-C.6}\end {align}


\begin {align*}B_\pi (\delta ) + \lambda (S_\pi (\delta ) - 1) &= (\pi (\Theta _0) + \lambda )\E _{\theta \sim \pi _0}\E _{X\sim P_\theta } L(\theta , \delta (X)) \\ &\qquad + \E _{\theta \sim \pi _1}\E _{X\sim P_\theta } L(\theta ,\delta (X))\pi (\Theta _1) - \lambda \\ &= \E _{\theta \sim \pi } \E _{X\sim P_\theta } \widehat {L}(\theta , \delta (X)) - \lambda .\end {align*}


$L$


$\widehat {L}$


$\lambda $


$S_\pi (\delta )\leq 1$


$p\leq \alpha $

https://orcid.org/0000-0003-0497-311X
https://orcid.org/0000-0001-9832-9936
mailto:benchugg@cmu.edu
https://doi.org/10.1016/j.ijar.2026.109634
https://doi.org/10.1016/j.ijar.2026.109634
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2026.109634&domain=pdf
http://creativecommons.org/licenses/by/4.0/


B. Chugg, T. Lardy, A. Ramdas et al.

Example 1  (Investment). A funder is interested in investing in a company producing a new drug that looks promising based 
on an early clinical trial. The funder wants to buy-in at an amount inversely proportional to the risk that the drug is ineffective. 
The original trial was run at 𝛼 = 0.05 and produced a p-value of less than 0.001. While both the company and the investor 
would like to use this information, the company can only give guarantees about the false positive rate at the 5% level. 

This limitation serves as an uncomfortable reminder that current statistical practice consists of an odd combination of both Ronald 
Fisher’s perspective and that of Jerzy Neyman and Egon Pearson. Whereas Fisher proposed the p-value as measure of evidence [7,8], 
Neyman and Pearson were focused on decision making [9]. The fact that we both report the p-value and make a decision at a 
prespecified significance level is an awkward methodological hybrid that none of these pioneers promoted.

This hybrid approach reflects (or perhaps introduces) confusion over the proper interpretation of p-values, significance levels, 
and hypothesis testing in general. And such confusion has substantial practical consequences. “The problem of roving alphas” as 
Goodman[10] puts it, i.e., choosing 𝛼 as a function of the data, is well-documented in business and management science [11,12], 
medicine [13], and psychology [14]. What are statisticians to do in the face of this mistake?

One response to the problem of roving alphas is to continue to educate practitioners on the proper use of statistical tools. This, 
however, doesn’t solve the fundamental tension inherent in the standard theory of hypothesis testing. The epidemiologist’s mistake is 
understandable, after all—there are many situations where it is natural to want to use the p-value to say more than is mathematically 
warranted. Consider the following example where an analyst might be tempted to incorrectly use p-values in a downstream decision-
making task.

Faced with such examples, in this work we consider an alternative response to the problem of roving alphas. Instead of pointing 
out flaws in the epidemiologist’s approach, we focus on building new statistical tools which function both as measures of evidence and
allow for mathematically sound downstream decision-making. In particular, we develop the theory of post-hoc hypothesis testing [1], 
which allows for data-dependent significance levels. The catch is that the guarantees that an analyst can give on their procedure 
changes under this theory, moving from error probabilities to expected losses. If 𝛼 is fixed beforehand, however, then the theory 
of post-hoc testing recovers the standard theory of hypothesis testing. Thus, in that sense, post-hoc hypothesis testing is a strict 
generation of the classical framework. Our focus in this paper is to define and classify “admissible test families”, which are the 
analogue of uniformly most powerful tests in the post-hoc setting.

One can situate our work as belonging to a recent push to resolve several issues with traditional statistical tools. The inability to 
handle post-hoc significance levels is just one problem with much of modern statistics—others include the inability to handle optional 
stopping and optional continuation. The burgeoning area of sequential, anytime-valid inference (SAVI) [15] is focused on such issues. 
A fundamental tool in this line of work is the e-value [16,17], an object which will also play a crucial role in this paper. Overall, we 
view our work here as an extension of SAVI: broadly, as an attempt to refine existing statistical technology to make life easier for 
practitioners and to mitigate the risk of statistical malpractice.

1.1.  Contributions

Following Grünwald et al. [16], in order to formulate a theory of post-hoc hypothesis testing we begin by following Wald[18] 
and recast the usual notions of type-I and type-II error probabilities in terms of expectations over data-dependent type-I and type-II 
loss functions. We require that a test has bounded type-I loss in expectation, where the type-I loss may be chosen adversarially. Such 
a test is called type-I risk safe, a notion which generalizes the property of a test having a bounded type-I error probability.

At this point we depart from the setting studied by Grünwald[1] and introduce a different notion of admissibility. We summarize 
our contributions below. While the general setting and several of the results are presented for composite hypotheses, we are mainly 
focused on testing point nulls and alternatives.

Throughout the paper it will often be useful to remark on the differences or similarities between our post-hoc setting and the 
traditional, non-post-hoc setting. Henceforth, we will often refer to the latter as the “traditional setting” or sometimes as the “Neyman-
Pearson paradigm.”

1.1.0.1.  Definition of Γ-admissibility. Definition 2.4 introduces the notion of Γ-admissibility, where Γ is a set of functions which 
map the data to a type-II loss function. This generalizes the definition of a uniformly most powerful test to the post-hoc setting 
(Observation 2.1 makes this precise). Informally, a test is Γ-admissible if there is no test that has smaller expected type-II loss 
under each distribution in the alternative and across all mappings in Γ. Our definition of Γ-admissibility departs from the notion 
of admissibility studied by Grünwald[1], which requires that a test be dominated with probability 1 under each distribution in the 
alternative to be inadmissible. We require that a test be dominated only in expectation, making fewer tests admissible.

1.1.0.2.  Extension of the likelihood ratio test to the post-hoc setting. We give an extension of the likelihood ratio test—shown to be 
uniformly most powerful in the traditional paradigm [19]—to a post-hoc setting and prove that the extension is Γ-admissible for 
any Γ. This is in Section 3. This shows that our definition of admissibility is not too strict; the set of Γ-admissible tests is non-
empty. This investigation also sheds light on an interesting phenomenon in the post-hoc setting: Even for continuous distributions, 
if randomization is allowed then admissible tests will always be randomized. More specifically, there will be losses on which the 
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test is randomized. Since randomized tests may not be kosher for all applications, this motivates explicitly defining and studying the 
admissibility of binary post-hoc tests which reject or accept with probability one.

1.1.0.3.  General properties of admissible tests. Moving beyond the likelihood ratio test, we prove several general properties for all 
Γ-admissible tests for any Γ. We study both randomized and binary tests. Of particular note, we associate with each test an e-variable 
and show how any admissible test can be written as a function of the associated e-variable. Thus, the e-variable directly determines 
the behavior of the test. In the opposite direction, given an e-variable, we can associate with it a test obtained by thresholding. See 
Lemmas 4.4 and 4.6 and Eqs. (14) and (17) for the details of these relationships. A second result worth mentioning is a Rao-Blackwell 
type-argument [20,21], whereby we demonstrate how to (weakly) improve any given test by conditioning on a sufficient statistic. 
This can be found in Section 5.2.

1.1.0.4. 𝐔- and 𝐂-admissibility. Finally, we study two specific families of maps Γ and give necessary and sufficient conditions on tests 
(and e-variables) to be Γ-admissible. In particular, we study both Γ = 𝐔 and Γ = 𝐂 where 𝐔 is the set of all mappings from the data to 
the losses, and 𝐂 is the set of constant mappings. For a point null and alternative, we give a full characterization of all 𝐔-admissible 
tests in terms of e-variables for both randomized and binary tests—see Theorems 5.1 and 5.2. For 𝐂, we give several necessary 
conditions for a randomized test to be admissible, and provide a complete characterization in the binary case—see Theorem 5.3. 
This final result recovers the Neyman-Pearson lemma [9] when instantiated with a single loss function. The curious reader can jump 
ahead to Table 2 for a diagramatic overview of our admissibility results.

To summarize, our main contributions are as follows:

1. We give a definition of admissibility in the post-hoc setting—Γ-admissibility, see Definition 2.4—which generalizes the notion of 
admissibility in the traditional Neyman-Pearson setting;

2. We give a Γ-admissible generalization of the likelihood ratio test to the post-hoc setting (Section 3) for all Γ;
3. For both randomized and binary tests, we classify the set of 𝐔-admissible tests (Theorems 5.1 and 5.2). For binary tests, we classify 
the set of 𝐂-admissible tests (Theorem 5.3).

1.2.  Related work

The post-hoc framework studied here is not the only proposal for how to resolve the issues with traditional hypothesis testing. 
Bayesian decision theory [22,23] has a devoted following, where one replaces p-values and significance levels with posterior prob-
abilities and Bayes factors, and makes decisions by minimizing posterior loss. A great benefit of the Bayesian paradigm is that it 
handles data-dependent loss functions for free, which we show formally in Appendix C where we explore the connection between 
our setting and the Bayesian one. The hefty price to pay is that one cannot get prior-free Type-I error probability guarantees.

Another avenue of related work is the subfield of imprecise probability. Here one tries to avoid making claims with false precision 
by demanding that decisions be defensible over a set of models and/or priors (as done recently in, e.g., Chau et al. [24] for two-sample 
testing). E-values may already be considered as a tool of imprecise probability, as they are closed under convex combinations of the 
null (sometimes called “credal sets”). Moreover, the e-posterior [25] was recently connected to credal sets [26, Proposition 10]. While 
we do not pursue further connections here, we believe this to be an interesting direction. 

Besides imprecise probability and Bayesian methods, other approaches to navigate around the drawbacks of traditional hypothesis 
testing involve changing what researchers report, e.g., switching p-values with confidence intervals [27] or likelihood ratios [28]. 
Post-hoc hypothesis testing has more in common with some of these than with others (it plays nicely with the law of likelihood 
for instance, since the likelihood ratio is an e-value), but importantly it is the only approach to seek a strict generalization of the 
traditional Neyman-Pearson paradigm. Given that most hypothesis testing in practice still relies on this paradigm, we believe it 
worthwhile to study how to expand the scope of its tools instead of casting them aside.

Our work can be viewed as part of a more general focus on e-variables/e-values, which are simple yet surprisingly fruitful math-
ematical objects that have proven useful across a wide variety of statistical problems. While some authors had previously used them 
implicitly, it was not until recently (roughly 2020) that excitement grew concerning their applications and they were given a name. 
Since then, there has been growing interest in both developing the underlying theory of e-variables and deploying them in various 
problems. We refer to Grünwald et al. [16], Ramdas and Wang[17], and Vovk and Wang[29] for introductions to e-values and their 
use in hypothesis testing.

That e-values can play nicely with data-dependent parameters, thus overcoming some of the drawbacks of p-values, has been 
noted previously by several authors. The first work in this vein came from the multiple testing literature and worked with e-values 
only implicitly [30]. As far as we are aware, the first result to explicitly link link e-values and data-dependent thresholds is Lemma 4.1 
of Wang and Ramdas[31] in the context of false discovery rate control. Then Grünwald[1] put these connection on firm decision-
theoretic ground and launched the original investigation into post-hoc hypothesis testing. In contradistinction to this paper, Grünwald 
considers multiple actions, whereas we consider only accept/reject decisions. Working under a different notion of admissibility, he 
gives a partial classification of all admissible tests in terms of e-variables. We further discuss his results and his notion of admissibility 
in Appendix B.

As part of this work, Grünwald[1] notes that e-value based confidence intervals and confidence distributions (using the so-called 
e-posterior [25]) are safe under data-dependent selections of 𝛼. Since then, a number of authors have noted the promise of e-values in 
enabling testing and estimating when significance levels are data-dependent [32–36]. In particular, Koning[33] also studies post-hoc 
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hypothesis testing and defines post-hoc p-values. He further relates post-hoc p-values to e-values and shows that any post-hoc test 
defines an e-value. An overview of post-hoc testing and decision-making with e-values was recently given in Ramdas and Wang[17, 
Chapter 4].

Besides Grünwald[1], several other authors have studied questions concerning the admissibility of e-variables. These include 
Wang[37], Vovk and Wang[38], and Ramdas et al. [39]. However, their notions of admissibility either differ from ours or the settings 
are incomparable. Wang[37] and Vovk and Wang[38] are concerned with designing e-values that are as large as possible under the 
alternative, and Ramdas et al. [39] are concerned with admissible anytime-valid inference.

1.3.  Outline

Section 2 introduces the general framework of post-hoc hypothesis testing, recasting the usual notions of type-I and type-II error 
probabilities as type-I and type-II risk. Here we formalize a post-hoc hypothesis test as a “test family,” introducing both randomized 
and binary test families (Definitions 2.1 and 2.2). Section 2.1 introduces Γ-admissibility and discusses its relationship with traditional 
hypothesis testing. Section 2.2 discusses various assumption we make in the remainder of the paper and gives relevant background 
on e-values. With this machinery in hand, Section 3 generalizes the likelihood ratio test to a post-hoc setting. Section 4 then gives 
general properties of Γ-admissible tests for any Γ. Section 4.1 studies tests which allow randomization and Section 4.2 studies tests 
that are restricted to be binary. Sections 5.1 and 5.3 study 𝐔-admissibility and 𝐂-admissibility respectively. Section 6 concludes. All 
longer proofs are delegated to Appendix A.

2.  Post-hoc hypothesis testing

We begin with a standard hypothesis testing setup. Let  and  be two disjoint families of probability measures on some measurable 
space (Ω, ). We observe data encoded by a random variable 𝑋 ∶ Ω →  taking values in some space  whose behavior is governed 
by some unknown distribution 𝑅 ∈  ∪. We are testing  against , meaning that we are tasked with deciding between the null 
hypothesis 𝐻0 ∶ 𝑅 ∈  and the alternative 𝐻1 ∶ 𝑅 ∈ . We either reject or sustain the null hypothesis 𝐻0. If the former, we are 
implicitly adopting the alternative.

We will introduce the framework of post-hoc hypothesis testing in terms of possibly composite hypotheses  and , but thereafter 
switch to considering only point hypothesis  = {𝑃 } and  = {𝑄}. While some of our results extend to the composite case, not all 
do, and considering point hypotheses keeps the presentation cleaner.

In order to formalize the notion of post-hoc significance levels, we follow Wald[18] and Grünwald[1] and frame hypothesis testing 
in terms of expected losses instead of error probabilities. For an index set  ⊂ ℜ≥0 which we call a set of scenarios, let {𝐿𝑏}𝑏∈ be a set 
of loss functions, where 𝐿𝑏 ∶ {0, 1} × {0, 1} → ℜ>0. The first argument denotes whether we are considering the loss under the null or 
alternative: 𝐿𝑏(0, ⋅) is loss under the former and 𝐿𝑏(1, ⋅) that under the latter. The second argument denotes whether we sustain (0) or 
reject (1) the null. We will assume that 𝐿𝑏(0, 0) = 𝐿𝑏(1, 1) = 0 for each 𝑏 ∈ . In other words, making the correct decision (sustaining 
when 𝑅 ∈  and rejecting when 𝑅 ∈ ) incurs zero loss.

We choose the letters  and 𝑏 to accord with Example 1. For instance, we might consider 𝐿𝑏(0, 1) to be the buy in of the funding 
agency—that is, the amount they stand to lose if the drug turns out to be ineffective. We do not assume that  is finite (or even 
countable). For instance, we might have 𝐿𝑏(0, 1) = 𝑏 for all 𝑏 ≥ 1. (Indeed, this is arguably the most natural choice; see the discussion 
at the end of this section). Finally, we assume without loss of generality that the losses 𝐿𝑏(0, 1) are increasing in 𝑏 (if not, we may 
simply relabel accordingly). Note this does not imply any ordering of the losses under the alternative.

Next we define the analogue of a hypothesis test in this post-hoc setting. Our decision to sustain or reject the null takes the form 
of a test family, which sees both the data and the loss, and then makes a (possibly randomized) decision. We emphasize that while 
we will allow the loss to be data-dependent, the test takes this loss as an argument. If it were otherwise, a test would have to be 
needlessly conservative. This is also the case in the traditional setting: the test knows the parameter 𝛼.

In what follows, let Ber(𝑝) denote a Bernoulli distribution with parameter 𝑝 ∈ [0, 1].

Definition 2.1  (Test family). A test family 𝛿 is a map 𝛿 ∶  ×  → [0, 1]. We call 𝛿 a family because it represents a hypothesis test for 
each 𝑏 ∈ . Given 𝑋 ∈  and 𝑏 ∈ , the decision to reject is drawn as 𝐷 ∼ Ber(𝛿(𝑋, 𝑏)) where 𝐷 = 1 means reject and 𝐷 = 0 means sustain. 

We also define binary test families, which do not allow randomization.
Definition 2.2  (Binary test family). A binary test family 𝜑 is a map 𝜑 ∶  ×  → {0, 1}. Given 𝑋 ∈  and 𝑏 ∈ , we reject if 𝜑(𝑋, 𝑏) = 1
and sustain otherwise. 

When studying binary test families, we will assume that  and  consist of continuous distributions. Even in the traditional 
setting, we know that powerful hypothesis tests must generally be randomized for discrete distributions. Further, in the case of 
discrete distributions and binary tests, there is no neat classification of UMP tests as far as we are aware. Thus, studying admissibility 
in this case becomes quite challenging.

We will typically denote binary test families with the Greek letters 𝜑 or 𝜓—see Table 1. Unless binary test families are mentioned 
explicitly, it should be assumed in the sequel that we are discussing test families that could be either randomized or binary. We 
will denote such families with letters 𝛿 and 𝜙. We may sometimes refer to test families that allow randomization (Definition 2.1) as 
randomized test families to emphasize the distinction from binary test families.
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For notational simplicity, for a test family 𝛿 and 𝑎 ∈ {0, 1} define 
𝐿𝑏(𝑎, 𝛿(𝑋, 𝑏)) ≡ 𝔼𝐷∼Ber(𝛿(𝑋,𝑏))𝐿𝑏(𝑎,𝐷), (1)

which is the expected loss (type-I or type-II) when playing 𝛿(𝑋, 𝑏) on loss 𝐿𝑏. Note that we can write 𝐿𝑏(0, 𝛿(𝑋, 𝑏)) = 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) and 
𝐿𝑏(1, 𝛿(𝑋, 𝑏)) = 𝐿𝑏(1, 0)(1 − 𝛿(𝑋, 𝑏)), since we are assuming that 𝐿𝑏(0, 0) = 𝐿𝑏(1, 1) = 0. These two identities will be used extensively. 
Next we define the risk of a test family.
Definition 2.3  (Type-I Risk). For a test family 𝛿, set 

 (𝛿) ≡ sup
Pr∈

𝔼𝑋∼Pr sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋, 𝑏)). (2)

We call  (𝛿) the type-I risk of 𝛿. If  (𝛿) ≤ 1, we say that 𝛿 is type-I risk safe. 
Definition 2.3 implicitly assumes that sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏)) is measurable. In this work we will make certain modest assumptions that 

ensure this is the case (see the discussion in Section B.1).
Risk is the equivalent of type-I error probability in the standard Neyman-Pearson paradigm. Indeed, consider the case of a single 

loss  = {𝑏0}. Then  (𝛿) = sup𝑃∈ 𝔼𝑃𝐿𝑏0 (0, 𝛿(𝑋, 𝑏0)) = 𝐿𝑏0 (0, 1) sup𝑃∈ 𝔼𝑃 [𝛿(𝑋, 𝑏0)]. A risk bounded by 1 is thus identical to a type-I 
error probability bounded by 𝛼 > 0 if we take 𝐿𝑏0 (0, 1) = 1∕𝛼. The upper bound of 1 on the risk is arbitrary. It can be replaced by any 
positive constant and our results will scale accordingly. See for instance Ramdas and Wang[17, Section 4] which replaces 1 with a 
constant 𝛽 > 0.

While risk recovers type-I error probability when there is a single loss, risk is of course a different metric than an error probability 
in general. A framework built on replacing error probabilities with risk may therefore make some readers uncomfortable. We provide 
a longer defense of risk in Appendix D, but let us make two points here. First, risk is actually the norm in decision theory. Second, 
type-I risk seems to us the most straightforward generalization of type-I error control.2

In the definition of type-I risk, the supremum over losses is inside the expectation. This allows the loss to be data-dependent, 
which can be seen explicitly by writing type-I risk in terms of the supremum over mappings from the data to losses. In particular, 
under reasonable measure-theoretic assumptions on the data and the losses, we have the equality: 

sup
𝑃∈

𝔼𝑋∼𝑃 sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋, 𝑏)) = sup
𝑃∈

sup
𝐵∶→

𝔼𝑋∼Pr𝐿𝐵(𝑋)(0, 𝛿(𝑋,𝐵(𝑋))), (3)

Each function 𝐵 ∶  →  in (3) can be thought of as an adversary who chooses a loss based on the data. Thus, if a decision 𝛿 is type-I 
risk safe, it is post-hoc type-I risk safe in the sense that it guarantees a type-I loss of at most 1 on any data-dependent loss. While 
intuitively clear, making this fully mathematically precise requires some non-trivial work. The formal statement and its proof can be 
fund in Appendix B.1.

We define the following fundamental object: 
𝐸𝛿(𝑋) ≡ sup

𝑏∈
𝐿𝑏(0, 𝛿(𝑋, 𝑏)). (4)

Using the letter “E” is no coincidence: If 𝛿 is type-I risk safe, then 𝐸𝛿 is an e-value (see Section 2.2). There is also a natural way to 
define test families from e-values which we will see in Section 4. This creates a bidirectional mapping between e-values and tests, a 
relationship which will be convenient both for classifying the admissible test families (e.g., Theorem 5.1) and in proving properties 
of admissible tests.

2.1.  Admissible test families

In the standard theory of hypothesis testing, two classes of tests are of interest: uniformly most powerful (UMP) tests and admissible 
tests. A level-𝛼 test (i.e., having type-I error bounded by 𝛼) is UMP if it has greater or equal power than every other level-𝛼 test for 
every 𝑄 ∈ . If  is composite, then UMP tests only exist in special settings. These include practically relevant cases, however, such as 
the one-sided t-test and 𝜒2-tests, and more generally when  ∪ admit a monotone likelihood ratio. An admissible test, meanwhile, 
cannot be uniformly improved across all 𝑄 ∈  (meaning that it cannot be strictly improved for some 𝑄 and not made worse on any 
other 𝑄). In this work we generalize admissibility to a post-hoc setting. 

Let 𝐔 ≡ 𝐔( ,) be the set of all measurable functions (“adversaries”) 𝐵 ∶  → . Intuitively, we call a test family 𝛿 Γ-inadmissible 
for some Γ ⊂ 𝐔 if there is another test which is type-I risk safe and never has higher, but sometimes lower, expected type-II loss under 
some adversary 𝐵 ∈ Γ. More formally:
Definition 2.4  (Γ-admissibility). We say the decision family 𝜙 is weakly preferable to 𝛿 relative to Γ ⊂ 𝐔 if it is type-I risk safe and for 
all 𝐵 ∈ Γ and all 𝑄 ∈ , 

𝔼𝑋∼𝑄[𝐿𝐵(𝑋)(1, 𝜙(𝑋,𝐵(𝑋)))] ≤ 𝔼𝑋∼𝑄[𝐿𝐵(𝑋)(1, 𝛿(𝑋,𝐵(𝑋)))]. (5)

We call 𝜙 strictly preferable to 𝛿 if the inequality is strict for at least one 𝐵 ∈ Γ and 𝑄 ∈ . If there exists some type-I risk safe 𝜙 that is 
strictly preferable to 𝛿 relatively to Γ we say that 𝛿 is Γ-inadmissible. If no decision family 𝜙 is strictly preferable to 𝛿 relative to Γ then we 
say that 𝛿 is Γ-admissible. (Here is an alternative definition: 𝛿 is Γ-admissible if for every 𝜙 that is weakly preferable to 𝛿, (5) actually holds 
with equality for all 𝐵 ∈ Γ and 𝑄 ∈ .) 

2 For the interested reader, Koning[33] explores two other options, so-called “geometric” and “arithmetic” post-hoc validity.
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Remark 1. Unless we consider Γ = 𝐔 there is an asymmetry between the adversaries considered in the definition of type-I risk and the 
definition of Γ-admissibility. Lemma B.2 shows that a type-I risk safe rule has expected type-I loss bounded by 1 across any mapping 
𝐵 ∶  → , while in Γ-admissibility we are deliberately restricting the mappings under consideration, but only for the alternative 
(i.e. for type II risk). This is by design. In the worst case, the loss may be data-dependent—we want to ensure we remark in type-I 
risk safe in this case. However, we might also be cautiously optimistic that it won’t be data-dependent, and allow ourselves to choose 
a test that is 𝐶-admissible based on this hope, all the while knowing that if we are wrong then at least we are protected under the 
null. Therefore, our first goal is to find tests which have bounded type-I risk under even the worst case adversary. Only then do we 
consider type-II risk. This is analogous to how Neyman and Pearson prioritize type-I error bounded by 𝛼 and only then look for tests 
with higher power. 

We leave implicit in Definition 2.4 whether we are considering binary or randomized tests; the definition holds for both. We will 
always make clear in the text which kinds of tests are under consideration.

In what follows we will always assume that any collection Γ of adversaries includes the constant mappings. This will simplify 
many of the proofs. It is also intuitive: it would be odd if an adversary could play 𝐿𝑏(1, 0) for only a subset of the observations. To 
formalize this assumption, we will consider only those Γ ⊃ 𝐂 where 

𝐂 ≡
{

𝐵 ∈ 𝐔 ∶ 𝐵(𝑋) = 𝑏∗ for all 𝑋 ∈  and some 𝑏∗}. (6)

In the sequel, we will often shorthand 𝐵(𝑋) to 𝐵 in equations to save space. Recall that for any 𝑏 ∈ , 𝐿𝑏(1, 𝛿(𝑋, 𝑏)) =
𝐿𝑏(1, 0)(1 − 𝛿(𝑋, 𝑏)) (we are assuming that 𝐿𝑏(1, 1) = 𝐿𝑏(0, 0) = 0), so (5) can be equivalently written as 𝔼𝑋∼𝑄𝐿𝐵(1, 0)𝛿(𝑋,𝐵) ≤
𝔼𝑋∼𝑄𝐿𝐵(1, 0)𝜙(𝑋,𝐵). In particular, this implies that if 𝜙(𝑋, 𝑏) ≥ 𝛿(𝑋, 𝑏) for some 𝑏 ∈  and all 𝑋 ∈ 𝐹  for some 𝐹 ⊂  , then 
𝔼𝑄[𝐿𝑏(1, 𝜙(𝑋, 𝑏))𝟏{𝑋 ∈ 𝐹 }] ≤ 𝔼𝑄[𝐿𝑏(1, 𝛿(𝑋, 𝑏)𝟏{𝑋 ∈ 𝐹 }], a fact we will use often.

Despite the differences between being UMP and admissible, it’s worth investigating when the two notions coincide. Suppose that 
there is only one loss function 𝐿𝑏0 . If 𝜙 is UMP at level 𝐿−1

𝑏0
(0, 1) then it satisfies 𝔼𝑄[𝛿(𝑋, 𝑏0)] ≤ 𝔼𝑄[𝜙(𝑋, 𝑏0)] for all 𝑄 ∈  and all other 

tests 𝛿. Thus, in particular, these inequalities are satisfied when 𝛿 is admissible (which notion of admissibility does not matter, since 
there is only one loss), thus implying that the inequalities must be equalities. Hence 𝛿 has the same power as 𝜙 on each 𝑄, and is also 
UMP. We may therefore conclude: 
Observation 2.1. For a single loss 𝐿 (the traditional Neyman-Pearson setting) with 𝛼 = 𝐿−1(0, 1), if a uniformly most powerful level-𝛼 test 
exists then any admissible test family is such a test.

One could consider other notions of admissibility. Grünwald[1] considers a family 𝜙 to be preferable to 𝛿 if, for any adversary, 𝜙
rejects whenever 𝛿 rejects with probability 1. We compare our notion of admissibility with that of Grünwald[1] further in Appendix B, 
but suffice it to say here that requiring that 𝜙 be better than 𝛿 with probability 1 is a strong requirement, and does not recover the 
notion of a uniformly most powerful test.

A second natural idea is to move the supremum over 𝐵 ∈ Γ inside the expectation and replace (5) with 𝔼𝑄[sup𝐵∈Γ 𝐿𝐵(1, 𝜙(𝑋,𝐵))] ≤
𝔼𝑋∼𝑄[sup𝐵∈Γ 𝐿𝐵(1, 𝛿(𝑋,𝐵))]. That is, we require that the worst case adversary for 𝜙 is no worse than the worst case of 𝛿, in expectation. 
However, such a definition of admissibility is too strong: the set of admissible families is empty. This is also shown in Appendix B.

One might expect that if 𝛿 is Γ1-admissible, then it is Γ2-admissible for any Γ1 ⊂ Γ2. But this does not necessarily hold. Consider 
Γ1 = {𝐵 ∶ 𝐵(𝑥) = 𝑏0} for some fixed 𝑏0. The family 𝛿(𝑋, 𝑏) = 𝜙np𝑏0 (𝑋) if 𝑏 = 𝑏0 and 𝛿(𝑥, 𝑏) = 0 otherwise is Γ1-admissible, but is not 
𝐔-admissible by Lemma 4.4 if  contains more than 𝑏0. To put it another way, by introducing more adversaries we open ourselves 
to the possibility of a test family having strictly better type-II risk than 𝛿 on one of those adversaries.
Remark 2. Related to the previous remark, one could also consider different sets of adversaries in the definition of type-I risk 
safety. In particular, we could consider the notion of (Γ1,Γ2)-admissibility, where Γ1 is the set of mappings considered in type-I risk 
(i.e., the supremum on the right hand side of (3)), and Γ2 is the set of adversaries considered in Definition 2.4. This paper would 
then be concerned with (𝐔,Γ)-admissibility while standard Neyman-Pearson theory focuses on (𝐂,𝐂)-admissibility. While this nicely 
emphasizes the relationship between our notion of type-I risk safety and that of traditional hypothesis testing, it is burdensome to 
continuously write (𝐔,Γ)-admissibility. Therefore, to spare ourselves notational pain, in this paper we shorten (𝐔,Γ)-admissibility to 
Γ-admissibility. 

Throughout this work, we will be primarily concerned with testing a simple null 𝑃  against simple alternative 𝑄. Section 4 will 
give general properties of admissible test families for all Γ, and then Sections 5.1 and 5.3 will provide full or partial classifications of 
Γ-admissible test families for two particular classes Γ:
1. Γ = 𝐔. The first natural set of adversaries to consider is all mappings 𝐵 ∶  → . Under such a liberal notion of admissibility, a 
great many test families are admissible. Indeed, under mild assumptions on the losses, every test family 𝛿 which satisfies  (𝛿) = 1
is admissible. In other words, every test which is defined by a sharp e-value is admissible.

2. Γ = 𝐂 for 𝐂 as in (6). We discuss the interpretation of 𝐂 further in Section 5.3, and provide a concrete motivation in Example 2, but 
let us mention here that it may be helpful to interpret 𝐂-admissibility in terms of counterfactuals. Namely, if 𝛿 is 𝐂-admissible then 
for every type-I risk safe 𝜙, there exists some loss 𝑏 such that if the adversary had played 𝐿𝑏, we would not regret playing 𝛿 instead 
of 𝜙. We will give several necessary conditions for a randomized test family to be 𝐂-admissible and provide a full characterization 
of 𝐂-admissible binary test families.

Note that 𝐔 and 𝐂 are, respectively, the largest and smallest sets of adversaries we can consider under the assumption that Γ ⊃ 𝐂: 
we are studying the two extrema of Definition 2.4. While we do not explicitly study other sets of adversaries here (apart from when 
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Example 2. (Example 1, Continued)  Consider the following idealized instantiation(s) of Example 1. Suppose 𝑏 represents the 
cost of investment expressed in some monetary unit; for concreteness say the cost is $𝑏 ⋅ 105. A funder is given the opportunity 
to invest 𝑏 in the drug’s production.
If the drug turns out to be ineffective yet an investment is made then the investor loses their capital. We formalize this as 
𝐿𝑏(0, 0) = 0, 𝐿𝑏(0, 1) = 𝑏.  When the drug is effective, we consider two pay-off variations:

1. The pay-off is a fixed constant 𝐶∗. This reflects, for example, a situation in which the funder is the sole investor, and the 
investment is used to build a factory that can produce a fixed quantity of the drug. We view the loss as the regret incurred if 
the funder does not invest in the successful drug, so 𝐿𝑏(1, 1) = 0 and 𝐿𝑏(1, 0) = 𝐶∗ for all 𝑏.

2. The pay-off is a strictly increasing function 𝑓 (𝑏) of 𝑏. This could for example be the case if larger 𝑏’s represent a larger factory 
(more productive capacity) or if there are many funders who each get a share of profits proportional to their investment (in 
that case 𝑓 would be linear). In this case, again viewing 𝐿𝑏(1, ⋅) as the regret of not investing in a successful drug, we set 
𝐿𝑏(1, 0) = 𝑓 (𝑏) and 𝐿𝑏(1, 1) = 0.

In the first variation, 𝐿𝑏(1, 0) = 𝐶∗ is independent of 𝑏, showing that Γ = 𝐂 is an important special case to consider. In the second 
variation, 𝐿𝑏(1, 0) is increasing in 𝑏. It then seems reasonable to assume that the investment 𝑏 is increasing in the amount of 
evidence for effectiveness—in practice the ‘adversaries’ might be the data-analysts in a company, who suggest to management 
to make a larger investment the more evidence they see in the data. This reflects how p-hacking typically occurs in practice: an 
analyst is tempted to lower 𝛼 (increase 𝐿𝑏(0, 1), which, in the second case also increases 𝐿𝑏(1, 0)) after seeing promising results. 
This suggests an analysis in which Γ is restricted to those 𝐵(𝑋) which are (monotonically) increasing in a sufficient statistic 
of the data (e.g., the likelihood ratio); thus 𝐂 ⊊ Γ ⊊ 𝐔. On the other hand, if we allowed 𝑓 (𝑏) to be all functions of 𝑏, not just 
increasing functions, then Γ = 𝐔.

Table 1 
Some common notation used throughout the paper. 
𝛿, 𝜙  Test families, either binary or randomized Definition 2.1
𝜑,𝜓  Binary test families Definition 2.2
𝑡𝜑  Decision curve of (admissible) binary test 𝜑 Corollary 5.3
𝐸𝛿  e-variable associated with 𝛿 Eq. (4)
𝛿𝐸 , 𝜙𝐸  Randomized test families defined by 𝐸 Eq. (14)
𝜑𝐸 , 𝜓𝐸  Binary test families defined by 𝐸 Eq. (17)
  Set of all type-I losses, {𝐿𝑏(0, 1) ∶ 𝑏 ∈ } Eq. (12)
𝐔  All measurable maps from  to   —
𝐂  All constant maps from  to  Eq. (6)

our results easy generalize to handle all families Γ; cf. Section 4),  we believe that other sets could be of interest, as illustrated by 
Example 2 below, which also provides further motivation for studying 𝐂-admissibility.

Table 2 gives an overview of our admissibility results.
Finally, it is very natural to take 𝐿𝑏(0, 1) = 𝑏 for 𝑏 ≥ 1. In this case, 

sup
𝑃∈

𝔼𝑃
[

sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋, 𝑏))
]

= sup
𝑃∈

𝔼𝑃

[

sup
𝛼∈(0,1]

𝛿(𝑋, 1∕𝛼)
𝛼

]

. (7)

That is, letting the losses take on any value in [1,∞) lets us consider any post-hoc significance level 𝛼 ∈ (0, 1). Arguably, the right 
hand side of (7) is what one would expect of a definition of post-hoc hypothesis testing (see, e.g., Wang and Ramdas[31, Section 
6.1], Koning[33] and Gauthier et al. [36]).

2.2.  Notation, assumptions, and further background

As discussed previously, our results rely heavily on e-variables/e-values. An e-variable for a set of distributions  is a nonnegative 
random variable 𝐸 with expected value at most 1 under the null: supPr∈ 𝔼𝑃 [𝐸] ≤ 1. The realized value of an e-variable is called an 
e-value. E-variables are typically functions of the underlying data 𝑋 and we will often write 𝐸 = 𝐸(𝑋). We call an e-variable 𝐸 sharp
if sup𝑃∈ 𝔼𝑃 [𝐸] = 1.

We use 𝟏{⋅} as an indicator, i.e., 𝟏{𝐹 } is 1 if 𝐹  occurs and 0 otherwise. Throughout, we synonymize “increasing” with “non-
decreasing,” and not with “strictly increasing.” Given a function ℎ ∶ ℜ → ℜ, let ℎ−(𝑦) = inf{𝑧 ∶ ℎ(𝑧) ≥ 𝑦} denote its (lower) gener-
alized inverse. If ℎ is strictly increasing and ℎ−1 is well-defined, then ℎ− = ℎ−1. If ℎ is increasing, then ℎ− is left-continuous and 
𝟏{ℎ(𝑥) ≥ 𝑦} = 𝟏{𝑥 ≥ ℎ−(𝑦)}. The generalized inverse will appear mainly in Section 5.3.1.

For a point null 𝑃  and point alternative 𝑄 with 𝑄 ≪ 𝑃  we use Λ to refer to the likelihood ratio Λ(𝑋) =
Q.
P.
(𝑋) where Q. ∕P.  is the 

Radon-Nikodym derivative between 𝑄 and 𝑃 . We let  = {𝐿𝑏(0, 1) ∶ 𝑏 ∈ } be the “span” of the type-I losses, to appear in Section 4.
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Let us now discuss some assumptions. Suppose we observe 𝑋 which has no support under any 𝑃 ∈  . Any reasonable test family 
must reject the null in this case. If not, then a test family which does so will have lower type-II risk on all losses. Similarly, a test 
family which observes 𝑋 with no support under any 𝑄 ∈  must sustain. This leads to the following observation.

Observation 2.2. If 𝛿 is a Γ-admissible test family for any Γ, then for any 𝐴 ⊂  with sup𝑃∈ 𝑃 (𝐴) = 0, 𝛿(𝑋, 𝑏) = 1 for all 𝑋 ∈ 𝐴 -almost 
surely and all 𝑏 ∈ . Likewise, for any 𝐶 ⊂  with sup𝑄∈𝑄(𝐶) = 0, we have 𝛿(𝑋, 𝑏) = 0 for all 𝑋 ∈ 𝐶 -almost surely and 𝑏 ∈ .

Thus, going forward, we may safely assume that ⋃𝑄∈ supp(𝑄) =
⋃

𝑃∈ supp(𝑃 ) (where supp(𝑃 ) is the support of 𝑃 ). In the case 
of testing a simple null 𝑃  against a simple alternative 𝑄, this implies that both 𝑄 and 𝑃  are absolutely continuous with respect to one 
another (𝑄 ≪ 𝑃  and 𝑃 ≪ 𝑄). Because of this assumption, we will usually say 𝑃 -almost surely, instead of 𝑃 - and 𝑄-almost surely.

We will also assume that there exists some 𝑏 such that 𝐿𝑏(0, 1) > 1. Otherwise a test family may always reject with probability 
1 and remain type-I risk safe, making the problem uninteresting. This assumption is akin to not studying 𝛼 = 1 in the traditional 
Neyman-Pearson paradigm, which is uninteresting for the same reason. We also make the necessary (quite modest) measure-theoretic 
assumptions so that (3) holds. See Appendix B.1 for precise details. Finally, going forward, we assume that we are testing a point null 
 = {𝑃 } against a point alternative  = {𝑄}.

We end this section by noting how one might modify the notation we use throughout the paper.

Remark 3  (Koning representation of post-hoc hypothesis tests).  For the choice 𝐿𝑏(0, 1) = 𝑏, Koning[40] recently suggested merging 
the loss into the decision space of the test. Instead of a test mapping to [0, 1], he rescales the range to [0, 𝐿𝑏(0, 1)] ⊇ [0, 1]. One could 
do the same thing throughout this paper. Such a transformation amounts to rescaling our usual test family 𝛿 and defining a new test 
family 𝑓 given by 𝑓 (𝑋, 𝑏) = 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏). In this case, type-I risk safety is the condition 𝔼𝑃 [sup𝑏 𝑓 (𝑋, 𝑏)] ≤ 1. That is, the test itself 
becomes an e-value, as opposed to the quantity sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏)). While Koning’s representation definitely has a strong appeal, in 
this paper we opt to work with the standard range of [0, 1] in the hope that it makes the framework more familiar to those new to 
post-hoc testing and e-values. 

3.  Warmup: likelihood ratio tests

In the case of a single loss function, the Neyman-Pearson lemma [19] implies that the likelihood ratio test is most powerful. What 
can we say about likelihood ratio-style tests in a setting with multiple losses?

For each fixed 𝑏 ∈ , let 𝜙np(𝑋, 𝑏) denote the likelihood ratio test on loss 𝐿𝑏(0, 1). Let Λ be the likelihood ratio between 𝑄 and 𝑃 . 
The likelihood ratio test has the form 

𝜙np(𝑋, 𝑏) = 𝟏{Λ(𝑋) > 𝜅(𝑏)} + 𝛾𝟏{Λ(𝑋) = 𝜅(𝑏)}, (8)

where 𝜅(𝑏) and 𝛾 are chosen such that 
𝔼𝑃 [𝜙np(𝑋, 𝑏)] = 𝐿−1

𝑏 (0, 1).

We use the superscript “NP” to refer to Neyman-Pearson. Note that the second term 𝛾𝟏{Λ(𝑋) = 𝜅(𝑏)} is only relevant for discrete 
distributions. We refer to Shao[41] for a modern treatment of the Neyman-Pearson lemma and the optimality of the likelihood ratio 
test.

Let 𝛿 be an arbitrary Γ-admissible test family and suppose that it acts as 𝜙np(⋅, 𝑏∗) on some 𝑏∗ (that is, 𝛿(𝑋, 𝑏∗) = 𝜙np(𝑋, 𝑏∗)). 
How does it behave for 𝑏 ≠ 𝑏∗? Naively, one would like to set 𝛿(⋅, 𝑏) = 𝜙np(⋅, 𝑏) on each 𝑏. Such a test family would not be type-I risk 
safe, however. This is easy to see, even in the case of two losses. Suppose that 𝛿(𝑋, 𝑏1) = 𝜙np(𝑋, 𝑏1) and 𝛿(𝑋, 𝑏2) = 𝜙np(𝑋, 𝑏2) with 
𝑏1 < 𝑏2.  Since 𝐿𝑏2 (0, 1) > 𝐿𝑏1 (0, 1) we have 𝜅(𝑏2) > 𝜅(𝑏1). If an adversary 𝐵 plays loss 𝑏2 for 𝑋 with Λ(𝑋) ≥ 𝜅(𝑏2) and 𝑏1 for 𝑋 with 
𝜅(𝑏1) ≤ Λ(𝑋) < 𝜅(𝑏2), then 𝔼𝑃 [𝐿𝐵(0, 𝛿(𝑋,𝐵))] = 𝐿𝑏2 (0, 1)𝑃 (Λ(𝑋) ≥ 𝜅(𝑏2)) + 𝐿𝑏1 (0, 1)𝑃𝑟(𝜅(𝑏1) ≤ Λ(𝑋) < 𝜅(𝑏2)) > 1, so 𝑃 (𝛿) > 1.

However, for 𝑏 ≤ 𝑏∗, 𝛿(⋅, 𝑏) can act as 𝜙np(⋅, 𝑏∗) and remain type-I risk safe. (In fact, in the discrete case, for those 𝑋 such that 
Λ(𝑋) = 𝜅(𝑏) it can even raise the probability of rejection due to the extra freedom afforded by the fact that 𝐿𝑏(0, 1) ≤ 𝐿𝑏∗ (0, 1).) For 
𝑏 > 𝑏∗ meanwhile, 𝛿(⋅, 𝑏) must lower the probability of rejection, but may still reject. That is, even in the continuous case, in contrast to 
the NP setting with a single loss function, if we allow randomized test families then admissible test families will always be randomized. 
Formally, Proposition 3.1 demonstrates that, for any Γ ⊃ 𝐂, the only admissible test family which plays as 𝜙np(⋅, 𝑏∗) on 𝑏∗ has the 
following form: 

𝛿(𝑋, 𝑏) = min
{

1,
𝐿𝑏∗ (0, 1)
𝐿𝑏(0, 1)

𝜙np(𝑋, 𝑏∗)
}

. (9)

The proof is in Appendix A.2. One may prove the result directly, but instead we leverage some of the properties of general admissible 
rules proven in Section 4. Even so, the proof is more involved than one might initially expect.

Proposition 3.1. The test family 𝛿 defined by (9) is Γ-admissible for any Γ ⊃ 𝐂. Conversely, if 𝜙 is Γ-admissible for any Γ ⊃ 𝐂 and there 
exists some 𝑏∗ such that 𝜙(𝑋, 𝑏∗) = 𝜙np(𝑋, 𝑏∗) 𝑃 -almost surely then 𝜙 acts as (9) 𝑃 -almost surely. 

The representation of 𝛿 in (9) foreshadows a more general pattern that we explore further in Section 4. In particular, after noting 
that 𝐸𝛿(𝑋) = 𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗), we see that we can write 𝛿(𝑋, 𝑏) = min{1, 𝐸𝛿(𝑋)∕𝐿𝑏(0, 1)} which is a representation that holds for all 
admissible tests (for any Γ) and illustrates a fundamental connection between e-values and test families.
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It is worth noting that when 𝑃  and 𝑄 are continuous, (9) can be rewritten as: 

𝛿(𝑋, 𝑏) =

{𝐿𝑏∗ (0,1)
𝐿𝑏(0,1)

𝜙np(𝑋, 𝑏∗), 𝑏 > 𝑏∗,

𝜙np(𝑋, 𝑏∗), 𝑏 ≤ 𝑏∗.
(10)

This representation is perhaps more intuitive to digest. If an adversary 𝐵 plays 𝐵(𝑋) = 𝑏∗ for all 𝑋, the expected type-I risk 
𝔼𝑃 [𝐿𝐵(1, 𝛿(𝑋,𝐵)] is precisely 1 by definition of the likelihood ratio test. For 𝑏 ≤ 𝑏∗ we have 𝐿𝑏(0, 1) ≤ 𝐿𝑏∗ (0, 1) so an adversary 
playing such a 𝑏 can only lower the type-I risk and 𝛿 can play as 𝜙np(𝑋, 𝑏∗). For 𝑏 > 𝑏∗, 𝛿 may still reject, but it must lower its rejec-
tion probability to make up for the increase in type-I risk. We set 𝛿 such that 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) = 𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗) so that the type-I risk 
stays the same. We note that Koning[33] also studied (10) (see his example 9). He cites it as an example of a post-hoc test, though 
he does not prove that it is admissible.

The test family in (10) illustrates a general phenomenon we discussed previously, namely that admissible rules will always be 
randomized (or, more precisely, there will exist losses on which the test will be randomized), even for continuous distributions. 
Because randomization may not be desirable, it is reasonable to search for binary test families. In this case, we can show that 

𝜑(𝑋, 𝑏) =

{

0, 𝑏 > 𝑏∗,
𝜙np(𝑋, 𝑏∗), 𝑏 ≤ 𝑏∗,

(11)

is admissible when 𝑃  and 𝑄 are assumed to be continuous. When 𝑃  and 𝑄 are discrete, then 𝜙np(⋅, 𝑏∗) is randomized—see (8)—so 
this case is not of interest. The proof of the following proposition is in Appendix A.3.
Proposition 3.2. Fix any Γ ⊃ 𝐂 and suppose 𝑃  and 𝑄 are continuous. If we restrict our attention to binary test families, then (11) is 
Γ-admissible. Moreover, if 𝜓 is any binary Γ-admissible test family and there exists some 𝑏∗ such that 𝜓(𝑋, 𝑏∗) = 𝜙np(𝑋, 𝑏∗), then 𝜓 acts 
as (11) 𝑃 -almost surely. 

Just as (9) was illustrative of a more general representation of test families when randomization is allowed, (11) is illustrative of 
a general representation in the binary case. Indeed, Lemma 4.6 in Section 4 will show that, for any Γ ⊃ 𝐂, a Γ-admissible binary test 
𝜑 can be written as 𝜑(𝑋, 𝑏) = 𝟏

{

𝐸𝛿(𝑋) ≥ 𝐿𝑏(0, 1)
}

.

4.  Properties of admissible rules

Here we prove properties of Γ-admissible families that hold for general Γ ⊃ 𝐂, the most important results being lemmas 4.4 and 
4.6, which provide explicit representations of any admissible test 𝛿 in terms of its associated e-value 𝐸𝛿 (defined in (4)), generalizing 
Eqs. (9) and (10). All omitted proofs can be found in Appendix A.

We begin by proving an intuitive property of any test family: If it can be modified to reject with strictly higher probability on 
some loss without sacrificing type-I risk safety, then it cannot be admissible. This fact is immediate in the traditional Neyman-Pearson 
framework for any uniformly most powerful test (indeed, it is the definition of being uniformly most powerful). But it requires proof 
in the post-hoc setting.
Lemma 4.1. Let 𝜙, 𝛿 be two type-I risk safe test families such that 𝜙(𝑋, 𝑏) ≥ 𝛿(𝑋, 𝑏) 𝑃 -almost surely for all 𝑏 ∈ . If 𝜙 is anywhere strictly 
greater than 𝛿, i.e., there exists some 𝑏∗ ∈  such that 𝑃 (𝜙(𝑋, 𝑏∗) > 𝛿(𝑋, 𝑏∗)) > 0, then 𝛿 is Γ-inadmissible for any Γ ⊃ 𝐂. The same statement 
holds if 𝜙 and 𝛿 are binary test families. 

One property which follows from Lemma 4.1 is that any admissible test must be decreasing in the loss. In other words, as the loss 
increases, a test should only become more conservative. This fact was also noted by Koning[33, Remark 4], though not related to 
admissibility.

Lemma 4.2. Fix any Γ ⊃ 𝐂 and let 𝛿 be Γ-admissible. Then 𝛿(𝑋, 𝑏1) ≥ 𝛿(𝑋, 𝑏2) 𝑃 -almost surely if and only if 𝑏1 ≤ 𝑏2. The same statement 
holds for binary test families. 

A second consequence of Lemma 4.1 is that the e-value of an admissible test cannot be strictly dominated by the e-value of another 
admissible test. Consequently, admissible tests define sharp e-values (recall that 𝐸𝛿(𝑋) = sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏))). The proof is postponed to 
Appendix A.6. Note that the properties of Γ-admissible tests given by Lemmas 4.2 and 4.3 are both illustrated by the Neyman-Pearson 
style tests of Section 3.
Lemma 4.3. Let 𝜙, 𝛿 be two type-I risk safe test families. If 𝐸𝜙(𝑋) ≥ 𝐸𝛿(𝑋) 𝑃 -almost surely and 𝑃 (𝐸𝜙(𝑋) > 𝐸𝛿(𝑋)) > 0 then 𝛿 is Γ-
inadmissible for any Γ ⊃ 𝐂. Consequently, if 𝐸𝛿 is not sharp then it is Γ-inadmissible for any Γ ⊃ 𝐂. The same statement holds if 𝜙 and 𝛿 are 
binary test families and 𝑃  and 𝑄 are continuous. 

Given a test family 𝛿 we can study the properties of 𝐸𝛿 , sometimes giving necessary and sufficient conditions on 𝐸𝛿 for 𝛿 to be 
admissible. But we will also be interested in the other direction. That is, given an e-variable 𝐸 for 𝑃 , the next sections will define an 
associated test family 𝛿𝐸—Section 4.1 in the randomized case and Section 4.2 in the binary case. We may then ask about the properties 
of 𝐸 that lead to admissible tests. A helpful concept when reasoning about the behavior of e-variables is that of compatibility. Recall 
that 

 ≡ {𝐿𝑏(0, 1) ∶ 𝑏 ∈ }. (12)
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Definition 4.1. We say an e-variable 𝐸 for 𝑃  is compatible with  if 𝐸(𝑋) ∈  ∪ {0} 𝑃 -almost surely. If  is understood from context, 
we will often simply say that 𝐸 is compatible. 

Lemma 4.7 will show that if 𝐸 defines a Γ-admissible binary test family for any Γ then 𝐸 is compatible. Such a general result 
does not hold in the randomized case, which can be seen by considering the e-values of Neyman-Pearson tests when the distributions 
are discrete. However, Lemma 5.2 proves that when 𝑃  and 𝑄 are continuous and the randomized test 𝛿𝐸 is 𝐂-admissible, then 𝐸 is 
compatible. Interestingly, the issue of compatibility also arose for Grünwald[1], even when studying a different notion of admissibility. 
He called the condition “richness.”

Beyond this point, the properties of randomized test families and binary test families begin to diverge so we give a separate 
treatment of each.

4.1.  Randomized test families

Throughout this subsection we assume that all test families allow for randomization. The distributions 𝑃  and 𝑄 can be continuous 
or discrete, unless stated otherwise. As usual, we assume they have the same support. Our first result provides an explicit form for 
any test family in terms of its associated e-value.
Lemma 4.4. Fix any Γ ⊃ 𝐂. If 𝛿 is Γ-admissible then for all 𝑏 ∈ , 

𝛿(𝑋, 𝑏) = min
{

1,
𝐸𝛿(𝑋)
𝐿𝑏(0, 1)

}

, P-almost surely. (13)

We will sometimes call (13) the canonical representation of 𝛿, or simply say that 𝛿 is canonical if written as such. Lemma 4.4 
will be particularly useful in the upcoming theorems on admissibility, since it lets us assume that all test families we deal with are 
canonical. We note that Koning[33, Corollary 2] shows that the test in (13) is type-I risk safe.

Just as test families define e-variables, it will be convenient to enable e-variables to define test families. In view of Lemma 4.4, 
given an e-variable 𝐸 for  , we define the corresponding test family as 

𝛿𝐸 (𝑋, 𝑏) ≡ min
{

1,
𝐸(𝑋)
𝐿𝑏(0, 1)

}

. (14)

It is easy to verify that this definition is consistent in the sense that 𝛿𝐸𝛿 (𝑋, 𝑏) = 𝛿(𝑋, 𝑏) for a Γ-admissible test 𝛿 (this follows immediately 
from Lemma 4.4). Further, if we begin with an e-variable 𝐸, define 𝛿𝐸 and then compute 𝐸𝛿𝐸 , we recover 𝐸 under weak assumptions. 
To wit, 

𝐸𝛿𝐸 (𝑋) = sup
𝑏∈

𝐿𝑏(0, 𝛿𝐸 (𝑋, 𝑏)) = sup
𝑏∈

min{𝐿𝑏(0, 1), 𝐸(𝑋)} = 𝐸(𝑋) ∧ sup
𝑏
𝐿𝑏(0, 1). (15)

If sup𝐿𝑏(0, 1) = ∞ then the final quantity is 𝐸(𝑋). In fact, we show next that if 𝛿𝐸 is admissible, then 𝐸(𝑋) ∧ sup𝑏 𝐿𝑏(0, 1) = 𝐸(𝑋)
𝑃 -almost surely, which suffices for us to conclude that the final expression in (15) equals 𝐸.
Lemma 4.5. Let 𝐸 be an e-variable for 𝑃 . If 𝑃 (𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1)) > 0 then 𝛿𝐸 is Γ-inadmissible for any Γ ⊃ 𝐂. Otherwise, 𝐸𝛿𝐸 = 𝐸
𝑃 -almost surely, and in particular this holds if 𝛿𝐸 is Γ-admissible. 

The proof can be found in Appendix A.8. It is helpful to view Lemma 4.5 as a weaker form of compatibility. It doesn’t guarantee 
that 𝐸 takes values in  ∪ {0}, but it does guarantee that it won’t take values strictly larger than those in . As we discussed earlier, 
Lemma 4.5 can be strengthened to bonafide compatibility when we consider admissibility with respect to constant adversaries. We 
now move onto studying binary test families.

4.2.  Binary test families

Throughout this section we assume that 𝑃  and 𝑄 are continuous. We begin with the analogue of Lemma 4.4 but for binary test 
families. The same representation was given recently in Ramdas and Wang[17, Chapter 4], though stated as a definition, not as the 
unique form of any admissible binary test family. Let us note that [Koning[33]Theorem 5.2 and Corollary 2] proves a very similar 
result. In particular, after translating his result to our setting, he shows that given an e-variable 𝐸, we can obtain a type-I risk safe 
test via (𝑋, 𝑏) ↦ 𝟏

{

𝐿𝑏(0, 1) ≤ 𝐸(𝑋)
}

. Conversely, given a type-I risk safe test, then 𝐸𝜙 = sup{𝐿𝑏(0, 1) ≤ 𝐸(𝑋)} is an e-value. We show 
that, starting with 𝜙, one can write 𝜙(𝑋, 𝑏) = 𝟏

{

𝐿𝑏(0, 1) ≤ 𝐸𝜙(𝑋)
} if 𝜙 is admissible. This also follows from Koning’s result after only 

slightly more work. 
Lemma 4.6. Fix any Γ ⊃ 𝐂. If 𝜑 is a Γ-admissible binary test family then, for all 𝑏 ∈ , 

𝜑(𝑋, 𝑏) = 𝟏
{

𝐿𝑏(0, 1) ≤ 𝐸𝜑(𝑋)
}

𝑃 -almost surely. (16)

Similarly to the randomized case, let us say that a test family with the representation in (16) is canonical, or has canonical 
representation. And again as we did in the randomized case, let us associate test families to e-variables. Given an e-variable 𝐸 for 𝑃 , 
we define its associated binary test family as 

𝜑𝐸 (𝑋, 𝑏) ≡ 𝟏
{

𝐿𝑏(0, 1) ≤ 𝐸(𝑋)
}

. (17)
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Table 2 
An overview of our admissibility results and how they relate to the traditional Neyman-Pearson 
paradigm (|𝐵| = 1). 𝐸 always refers to an e-variable above. Note the one-way implication 
(highlighted in red) for 𝐂-admissibility for randomized test families, which differs from the 
biconditionals (if and only if) in the other cases. Recall that 𝐸 is sharp if 𝔼𝑃 [𝐸] = 1 and 𝐸 is 
compatible with  if 𝐸 ∈  ∪ {0} 𝑃 -almost surely (Definition 4.1).

 Necessary and sufficient conditions for admissibility
Γ |𝐵| > 1 |𝐵| = 1

Randomized test families
(Continuous or discrete

distributions) 𝐔

If (C1) holds:
𝛿 is 𝐔-admissible

⇔
𝛿 = 𝛿𝐸 for 𝐸 sharp
and 𝐸 ≤ sup𝑏 𝐿𝑏(0, 1)

𝛿 is 𝐔-admissible
⇔

𝛿 is 𝐂-admissible
⇔

𝛿 is the Neyman-Pearson
(likelihood-ratio) test

𝐂

𝛿 is 𝐂-admissible
⇒

𝛿 = 𝛿𝐸 for 𝐸 sharp, increasing in Λ,
and compatible with 

Binary test families
(Continuous distributions) 𝐔

If (C2) holds:
𝜑 is 𝐔-admissible

⇔
𝜑 = 𝜑𝐸 for 𝐸 sharp

and compatible with 

𝐂

𝜑 is 𝐂-admissible
⇔

𝜑 = 𝜑𝐸 for 𝐸 sharp, increasing in Λ,
and compatible with 

As usual, we use 𝜑𝐸 or 𝜓𝐸 to denote the binary test family associated with 𝐸, as opposed to the randomized test defined by (14). We 
will always explicitly mention whether we are considering randomized or binary tests.

Both (16) and (17) are satisfying in that they are precisely what one would obtain from naively applying the results in the previous 
section and rounding all non-integer values taken by a test family to zero. Similarly to the randomized case, it is easy to check that 
𝜑𝐸𝜑 (𝑋, 𝑏) = 𝜑(𝑋, 𝑏) 𝑃 -almost surely. Moreover, given an e-variable 𝐸, we have 

𝐸𝜑𝐸 (𝑋) = sup
𝑏
𝐿𝑏(0, 1)𝟏

{

𝐸(𝑋) ≥ 𝐿𝑏(0, 1)
}

, (18)

which is equal to 𝐸(𝑋) if 𝐸(𝑋) = 𝐿𝑏(0, 1) for some 𝑏, or 𝐸(𝑋) = 0. In other words, if 𝐸(𝑋) is compatible with  then 𝐸𝜑𝐸 = 𝐸 for any 
e-variable 𝐸.

If 𝐸 is not compatible with , then the test family 𝛿𝐸 is “wasting” some of its risk budget for no reduction in type-II loss. Indeed, 
suppose that for some 𝑋 𝐿𝑏1 (0, 1) < 𝐸(𝑋) < 𝐿𝑏2 (0, 1) where there is no other loss between 𝐿𝑏1 (0, 1) and 𝐿𝑏2 (0, 1). Then 𝐸(𝑋) defines 
the same test as taking 𝐸(𝑋) = 𝐿𝑏1 (0, 1). Moreover, 𝐸(𝑋) can take advantage of the reduction in type-I risk in order to take larger 
values elsewhere and improve its type-II risk. The following result formalizes this argument. Its proof is provided in Appendix A.10.
Lemma 4.7. Let 𝐸 be an e-variable for 𝑃  and fix any Γ ⊃ 𝐂. If 𝜑𝐸 is Γ-admissible then 𝐸 is compatible with . Consequently, if 𝜑𝐸 is 
Γ-admissible then 𝐸 = 𝐸𝜑𝐸 . 

5.  Classifying the admissible rules

The following two sections study 𝐔-admissibility and 𝐂-admissibility. Table 2 provides a summary of the results.

5.1. 𝐔-admissibility

The first natural set of adversaries Γ to consider in the definition of Γ-admissibility is all mappings from the data to the losses; i.e., 
Γ = 𝐔. This section classifies the set of 𝐔-admissible test families and binary test families for a point null 𝑃  versus a point alternative 
𝑄. For randomized test families we will let 𝑃  and 𝑄 to be either discrete or continuous. As usual, for binary test families we assume 
that 𝑃  and 𝑄 are continuous.

When discussing randomized test families we will impose the following conditions on the losses, which restricts the behavior the 
ratio of type-II loss to type-I loss in the limit. In particular, we will assume that 

lim inf
𝑏→sup()

𝐿𝑏(1, 0)
𝐿𝑏(0, 1)

= 0. (C1)

Condition (C1) implies that an adversary can make type-II loss arbitrarily unimportant compared to type-I loss. In other words, as 
the cost of false positives increases (𝐿𝑏(0, 1) grows) we care more about false positives than false negatives.

Intuitively, given two test families 𝜙 and 𝛿, if condition (C1) holds then an adversary 𝐵 can make 𝜙 arbitrarily small on re-
gions where 𝜙 > 𝛿, thus ensuring a lower type-II risk for 𝛿. Without such a condition, the set of admissible rules appear to depend 
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in unsatisfactory ways on the precise null and alternative being tested. Condition (C1) can be replaced by the assumption that 
lim inf𝑏→inf() 𝐿𝑏(1, 0)∕𝐿𝑏(0, 1) = 0, but this requires that 𝐿𝑏(1, 0) ≈ 0 for small 𝑏, which is unsatisfying for practical applications. If the 
type-II loss is zero, then one should always accept the null.

With that, we state the main result for 𝐔-admissibility of randomized test families. Recall that 𝛿 is canonical if it is written as 
in (13).
Theorem 5.1  (𝐔-admissibility, randomized tests). Let 𝛿 be a randomized test family and suppose condition (C1) holds. Then 𝛿 is 𝐔-
admissible if and only if 𝐸𝛿 is sharp and 𝛿 is canonical. Furthermore, given an e-variable 𝐸 for 𝑃 , 𝛿𝐸 is 𝐔-admissible if and only if 𝐸 is sharp 
and 𝐸 ≤ sup𝑏 𝐿𝑏(0, 1) 𝑃 -almost surely. 

The proof is in Appendix A.11. The idea for the first part of the theorem is straightforward. Given two type-I risk safe test families 
𝛿 and 𝜙, we split  into regions depending on whether 𝐸𝛿 is greater than 𝐸𝜙 or vice versa. When 𝐸𝛿(𝑋) > 𝐸𝜙(𝑋), we can pick the 
adversary 𝐵(𝑋) such that 𝜙(𝑋,𝐵) < 𝛿(𝑋,𝐵), ensuring that 𝛿 has smaller type-II risk in such regions. When 𝐸𝜙(𝑋) > 𝐸𝛿(𝑋), we choose 
𝐵(𝑋) → sup() which drives the contribution of 𝜙(𝑋,𝐵) on such regions to 0.
Remark 4. The invocation of Condition (C1) in Theorem 5.1 prohibits us from translating the results into the standard Neyman-
Pearson setting. That is, Observation 2.1 does not apply. Indeed, for a singleton  = {𝑏}, (C1) implies that 𝐿𝑏(1, 0) = 0, so type-II risk 
loses its meaning and does not translate into the power of a test in the traditional paradigm. 

An immediate consequence of Theorem 5.1 is that any 𝐔-admissible test family can be written as the test family corresponding to 
some e-variable, highlighting their central role in post-hoc testing:
Corollary 5.1  (𝐔-admissibility, randomized tests). Suppose condition (C1) holds. Then a randomized test family 𝛿 is 𝐔-admissible if and 
only if 𝛿 = 𝛿𝐸 for some sharp e-variable 𝐸 such that 𝐸 ≤ sup𝑏 𝐿𝑏(0, 1) 𝑃 -almost surely. 

Intriguingly, Theorem 5.1 and Corollary 5.1 recover the result of Grünwald[1] up to some assumptions, even though he studied a 
weaker form of admissibility. In particular, Theorem 5.1 of Grünwald[1] essentially shows that any G-admissible rule is defined by a 
sharp e-variable. Roughly speaking, he considers a test family to be G-admissible if it is not dominated with probability 1 by another 
test. (We use G-admissibility to refer to Grünwald.)

Upon reflection, the convergence of our two results is unsurprising. Given two sharp but distinct e-variables, each must be greater 
than the other in some region of  . Neither will dominate the other with probability 1, hence neither will the corresponding tests. 
Thus both are G-admissible. In our setting meanwhile, Condition (C1) ensures that we can choose the adversary to take advantage of 
the difference between the two e-values.

Let us now provide the analogue of Theorem 5.1 for binary test families. In this case we replace condition (C1) with an assumption 
on the density of the losses in the reals. In particular: 

 is contained in and is dense in ℜ≥𝑀  for some 𝑀 > 0. (C2)

Theorem 5.2  (𝐔-admissibility, binary tests). Let 𝑃  and 𝑄 be continuous and suppose that (C2) holds. A binary test family 𝜑 is 𝐔-
admissible if and only if 𝐸𝜑 is sharp and 𝜑 is canonical. Moreover, given an e-variable 𝐸 for 𝑃 , 𝜑𝐸 is 𝐔-admissible if and only if 𝐸 is sharp 
and compatible with . 

The proof is in Appendix A.12. It follows a similar logic to the proof of Theorem 5.1. Like Condition (C1), the density assumption 
in Theorem 5.2 prohibits us from applying the result to the standard Neyman-Pearson paradigm. That is, the conclusion of Remark 4 
applies in this case as well.

To end this section, we state the analogue of Corollary 5.1 for binary test families.
Corollary 5.2  (𝐔-admissibility, binary tests).  Let 𝑃  and 𝑄 be continuous and suppose that  is contained in and is dense in ℜ≥1. A binary 
test family 𝜑 is 𝐔-admissible if and only if 𝜑 = 𝜑𝐸 for some sharp e-variable 𝐸 for 𝑃  which is compatible with . 

5.2.  Improving tests via Rao-Blackwellization

What kinds of e-variables are available to us when testing point nulls and alternatives? For the Neyman-Pearson style tests in 
Section 3, the corresponding e-variable is easily seen to be 𝐸np(𝑋) = 𝐿𝑏∗ (0, 1)𝟏{Λ(𝑋) ≥ 𝜅(𝑏∗)} for some fixed 𝑏∗. Another e-variable is of 
course the likelihood ratio itself which, in the binary case, defines the satisfyingly intuitive test family 𝜑Λ(𝑋, 𝑏) = 𝟏

{

Λ(𝑋) ≥ 𝐿𝑏(0, 1)
}

.
These examples might make us wonder whether all “good” e-variables for post-hoc hypothesis testing for point hypotheses are 

functions of the likelihood ratio. In general, of course, there are e-variables which are not functions of Λ. Indeed, 𝐸 = R. ∕P.  for any 
distribution 𝑅 is a (sharp) e-variable. However, unless 𝑅 = 𝑄, such an e-variable is not log-optimal [42]. We might therefore expect 
that it can be improved as a post-hoc test.

Here we show that Rao-Blackwellization [20,21] can weakly improve the type-II risk of any test family based on an e-variable, 
with respect to a particular set of adversaries. Recall that the Rao-Blackwell theorem says that the expected loss of an estimator can 
be weakly improved (with respect to a convex loss) by conditioning on a sufficient statistic. See Wasserman[43, Theorem 9.42] for 
a modern statement of the result.

Let 𝐸 be an arbitrary e-variable for 𝑃  and let 𝑇  be any sufficient statistic for testing 𝑃  vs 𝑄. More formally, we assume that testing 
𝑃  vs 𝑄 can be written as 𝐻0 ∶ 𝜃 = 𝜃0 and 𝐻1 ∶ 𝜃 = 𝜃1 and that 𝑇  is sufficient for 𝜃. Define 

𝑆𝑇 (𝑋) = 𝔼𝑃 [𝐸(𝑋)|𝜎(𝑇 (𝑋))], (19)
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where 𝜎(𝑇 (𝑋)) is the 𝜎-field defined by 𝑇 (𝑋). Note that 𝑆 is an e-variable by the law of total expectation: 𝔼𝑃 [𝑆] = 𝔼𝑃𝔼𝑃 [𝐸|𝜎(𝑇 )] =
𝔼𝑃 [𝐸] ≤ 1. Further note that 𝑆𝑇  is observable, meaning that it does not depend on the unknown parameter. This is by definition of 
sufficiency.

The following result shows that 𝑆𝑇  defines a test family that is weakly-preferable to that defined by 𝐸. However, we must restrict 
ourselves to adversaries that are 𝜎(𝑇 )-measurable.
Proposition 5.1. Let 𝑇  be a sufficient statistic for 𝑃  vs 𝑄. Given any e-variable 𝐸 for 𝑃 , the test family 𝛿𝑆𝑇  for 𝑆𝑇  in (19) is weakly-
preferable to 𝛿𝐸 with respect to any Γ ⊂ Γ𝜎(𝑇 ) where Γ𝜎(𝑇 ) is the set of all adversaries which are 𝜎(𝑇 )-measurable. The same statement holds 
for the binary test families 𝜑𝑆𝑇  and 𝜑𝐸 . 
Proof.  Let

𝑓 (𝐸,𝐵) = min
{

𝐿𝐵(1, 0),
𝐿𝐵(1, 0)
𝐿𝐵(0, 1)

𝐸
}

.

Note that 𝑓 is concave in 𝐸. Therefore, by Jensen’s inequality, if 𝐵 is 𝜎(𝑇 )-measurable, we have 
𝔼𝑃 [𝑓 (𝐸,𝐵)|𝜎(𝑇 )] ≤ 𝑓 (𝔼𝑃 [𝐸|𝜎(𝑇 )], 𝐵) = 𝑓 (𝑆𝑇 , 𝐵).

Since Λ is minimally sufficient, it follows that Λ is 𝜎(𝑇 ) measurable (apply the Fisher-Neyman characterization to write Λ as a function 
of 𝑇 ). Therefore,

𝔼𝑄[𝑓 (𝑆𝑇 , 𝐵)] = 𝔼𝑃 [Λ𝑓 (𝑆𝑇 , 𝐵)] ≥ 𝔼𝑃 [Λ𝔼𝑃 [𝑓 (𝐸,𝐵)|𝜎(𝑇 )]]

= 𝔼𝑃 [𝔼𝑃 [Λ𝑓 (𝐸,𝐵)|𝜎(𝑇 )]] = 𝔼𝑃 [Λ𝑓 (𝐸,𝐵)] = 𝔼𝑄[𝑓 (𝐸,𝐵)].

We have thus shown that 
𝔼𝑄[𝐿𝐵(1, 0)𝛿𝑆𝑇 (𝑋,𝐵)] = 𝔼𝑄[𝑓 (𝑆𝑇 , 𝐵)] ≥ 𝔼𝑄[𝑓 (𝐸,𝐵)] = 𝔼𝑄[𝐿𝐵(1, 0)𝛿𝐸 (𝑋,𝐵)],

thus showing that 𝛿𝑆𝑇  is weakly-preferable to 𝛿𝐸 with respect to all adversaries 𝐵 that are 𝜎(𝑇 )-measurable, as desired. When con-
sidering binary test families, we instead take 𝑓 (𝐸,𝐵) = 𝐿𝐵(1, 0)𝟏

{

𝐸 ≥ 𝐿𝐵(0, 1)
}

, which is also concave in 𝐸. The rest of the argument 
remains unchanged. ∎

For 𝐂-admissibility, Lemma 5.1 will show that, not only is 𝛿𝐸 a function of the likelihood ratio, it must be an increasing function 
of the likelihood ratio.

5.3. 𝐂-admissibility

The results of Section 5.1 were, in some sense, disappointingly liberal. As Remark 4 points out, Condition (C1) ensures that 
Theorems 5.1 and 5.2 cannot be mapped back to the standard hypothesis testing setting. However, even if this were not the case, the 
result itself is unsatisfying: There are many sharp e-variables that do not correspond to the likelihood ratio test. Ideally, we would 
like a result which recovers the Neyman-Pearson lemma when instantiated with a single loss function. This motivates considering a 
different set Γ of adversaries. In this section we study 𝐂-admissibility, where we recall that 𝐂 = {𝐵 ∶ 𝐵(𝑋) = 𝑏 for some 𝑏 and all 𝑋}.

It is worth revisiting Remark 1 at this point. We stress that considering a restricted family Γ of adversaries in the definition of 
admissibility does not change our notion of type-I risk safety, which continues to provide a guarantee with respect to all adversaries. 
In other words, the set of type-I risk safe test families stays the same, but the subset which are 𝐂-admissible is smaller (or so it will 
turn out) than the set which are 𝐔-admissible.

For test families which are permitted to randomize, we give two necessary conditions to be 𝐂-admissible. The first is that the 
test families must be increasing functions of the likelihood ratio. The second is that, when 𝑃  and 𝑄 are continuous, the e-variable 
associated to the test must be compatible with . For binary test families we give a complete characterization of all 𝐂-admissible 
rules in terms of e-variables. As in Section 5.1 we consider a point null 𝑃  and a point alternative 𝑄.

Studying 𝐂-admissibility has an interesting consequence: The type-II losses do not matter. Indeed, instantiating Definition 2.4 
when Γ = 𝐂, we see that 𝛿 is 𝐂-inadmissible if, there exists a 𝜙 such that for all 𝑏 ∈ , 𝔼𝑄[𝐿𝑏(1, 𝛿(𝑋, 𝑏))] ≤ 𝔼𝑄[𝐿𝑏(1, 𝜙(𝑋, 𝑏))], i.e., 
𝔼𝑄[𝛿(𝑋, 𝑏))] ≤ 𝔼𝑄[𝜙(𝑋, 𝑏)] for all 𝑏 ∈ , with a strict inequality for some 𝑏. That is, the precise values of 𝐿𝑏(1, 0), assuming they are 
not zero, do not affect the admissibility of a test.

In other words, subject to type-I risk safety, we are looking for tests which maximize their power on each fixed 𝑏. This leads 
us to the counterfactual interpretation of 𝐂-admissibility of 𝛿: For every other test 𝜙, there exists a 𝑏 ∈  such that had we set our 
significance level to be 𝐿−1

𝑏 (0, 1) at the beginning of the experiment, we would not regret using 𝛿 instead of 𝜙 (in terms of power, i.e., 
𝔼𝑄[𝛿(𝑋, 𝑏)]).

We begin by proving that any randomized 𝐂-admissible test must be increasing in the likelihood ratio. The result is, of course, 
satisfyingly intuitive—a larger likelihood ratio indicates indicates more evidence against the null. A test that rejects the null at Λ(𝑋)
but fails to reject when Λ(𝑌 ) > Λ(𝑋) is doing so despite increased odds in favor of the alternative. That such a result does not hold 
for richer classes of adversaries Γ is yet another reason to consider 𝐂. Indeed, tests which don’t satisfy this property are flaunting the 
law of likelihood [28].
Lemma 5.1. Let 𝛿 be a randomized test family. If a randomized test family 𝛿 is 𝐂-admissible then 𝐸𝛿 is an increasing function of the likelihood 
ratio 𝑃 -almost surely. Consequently, for each fixed 𝑏 ∈ , 𝛿(𝑋, 𝑏) is an increasing function of the likelihood ratio 𝑃 -almost surely. 
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The proof may be found in Appendix A.13. This result mirrors a result by Koning[40] (see Theorem 5.1) with a similar flavor: he 
shows that e-variables which maximize a fixed expected concave utility under a (simple) alternative must also be increasing in the 
likelihood ratio. Connecting his result with Lemma 5.1 may be an interesting avenue for future research.

Our second result shows that when 𝑃  and 𝑄 are continuous, Lemma 4.7 holds for randomized tests as well as binary ones. The 
proof may be found in Appendix A.14.
Lemma 5.2. Let 𝑃  and 𝑄 be continuous. If a randomized test family 𝛿 is 𝐂-admissible then 𝐸𝛿 is compatible with . 

It is worth noting that the properties given in Lemmas 5.1 and 5.2 are both on display for the likelihood ratio test. For continuous 
𝑃  and 𝑄, its associated e-value is 𝐸np(𝑋) = 𝐿𝑏∗ (0, 1) if Λ(𝑋) ≥ 𝜅(𝑏∗) and 0 otherwise (see Section 3), which is clearly compatible with 
. However, in the discrete case, the e-value obeys 𝐸np(𝑋) = 𝐿𝑏∗ (0, 1)(1 + 𝛾)𝟏{Λ(𝑋) ≥ 𝜅(𝑏∗)}, which may not belong to . Hence, the 
assumption of continuity in Lemma 5.2 cannot be removed.

We leave it as an open question whether the conditions specified by Lemmas 5.1 and 5.2 (in addition, of course, to the canonical 
representation in Lemma 4.4) are also sufficient to specify 𝐂-admissible tests. We expect the answer is no. We do, however, conjecture 
that in addition to our extensions of the likelihood ratio test, mixtures of likelihood ratio tests are 𝐂-admissible, subject to compatibility. 
More formally, if 𝜙np𝑘  is the post-hoc likelihood ratio test on loss 𝑏𝑘 (i.e., the test defined by (9)) then we suspect that the test defined 
by the (sharp) e-variable 

𝐸mix =
1
𝐾

𝐾
∑

𝑘=1
𝐸𝜙𝑘 , (20)

is 𝐂-admissible, as long as 1𝐾
∑

𝑘≤𝑗 𝐿𝑏𝑘 (0, 1) ∈  for each 1 ≤ 𝑗 ≤ 𝐾. Note that 𝜙np𝑘  is 𝐂-admissible by Proposition 3.1.

5.3.1.  Binary test families
We now consider 𝐂-admissible binary test families. In this case we can provide a complete characterization of admissibility. As 

usual for binary tests, throughout this section we assume that 𝑃  and 𝑄 are continuous. We begin with the analogue of Lemma 5.1 in 
the binary case. The proof is in Appendix A.15.
Lemma 5.3. Let 𝑃  and 𝑄 be continuous and let 𝜑 be a binary test family. If 𝜑 is 𝐂-admissible then 𝐸𝜑 is increasing in the likelihood ratio 
𝑃 -almost surely. Consequently, for each fixed 𝑏 ∈ , 𝜑(𝑋, 𝑏) is an increasing function of the likelihood ratio 𝑃 -almost surely. 

One might initially suspect that Lemma 5.3 follows from Lemma 5.1. In that proof, however, we tweaked the given randomized 
test slightly, and there was no guarantee that the resulting test family was binary (in fact it almost certainly would not be). While the 
spirit of the proof of Lemma 5.3 is the same, the mechanics are quite different and use the fact that we begin with a binary test.

Recall from Lemma 4.6 that we can represent any 𝐂-admissible binary test as 𝜑(𝑋, 𝑏) = 𝟏
{

𝐸𝜑(𝑋) ≥ 𝐿𝑏(0, 1)
}

. At a fixed 𝑏, this 
allows us to compare two binary rules by comparing their e-values. Lemma 5.3 implies that there exists some threshold 𝑡(𝑏) such 
that 𝜑(𝑋, 𝑏) = 𝟏{Λ(𝑋) ≥ 𝑡(𝑏)} and, moreover, 𝑡 is increasing in 𝑏 by Lemma 4.2. This allows us to compare two tests at the same 𝑋
by comparing these thresholds. Moving forward, our analysis will make heavy use of these thresholds. Let us state this formally. The 
proof is in Appendix A.16.
Corollary 5.3. Let 𝑃  and 𝑄 be continuous and let 𝜑 be a 𝐂-admissible binary test family. Then there exists an increasing function, henceforth 
called a decision curve, 𝑡 ∶  → ℜ≥0 ∪ {∞} such that 

𝜑(𝑋, 𝑏) = 𝟏{Λ(𝑋) ≥ 𝑡(𝑏)}. (21)

We write the decision curve associated with 𝜑 as 𝑡𝜑. 
Remark 5. There can be multiple decision curves for a given test, but they can differ only outside the range of Λ under 𝑃  and 𝑄. 
That is, if 𝑡 and 𝓁 are two decision curves for 𝜑, then 𝑃 (𝑡(𝑏) ≤ Λ(𝑋) < 𝓁(𝑏)) = 0 for all 𝑏, otherwise 𝜑 is not a well-defined function. 
What happens outside the support of 𝑃  and 𝑄 does not affect admissibility, so going forward we will refer to the unique decision 
curve 𝑡𝜑 of a 𝐂-admissible test 𝜑. 

As an example, if 𝜑 is the binary NP-type decision rule defined by (11) in Section 3, then 𝑡𝜑(𝑏) = ∞ for 𝑏 > 𝑏∗ and 𝑡𝜑(𝑏) = 𝜅(𝑏∗) for 
𝑏 ≤ 𝑏∗.

A test can be shown to be better than a second if the decision curve of the first is never above that of the second and is sometimes 
strictly lower. More formally, we say 𝑡𝜙 𝑄-strictly dominates 𝑡𝜑 if 𝑡𝜙(𝑏) ≤ 𝑡𝜑(𝑏) for all 𝑏 ∈  and there exists some 𝑏∗ such that 𝑡𝜙(𝑏∗) <
𝑡𝜑(𝑏∗) and 𝑄(𝑡𝜙(𝑏∗) ≤ Λ(𝑋) < 𝑡𝜑(𝑏∗)) > 0.

It turns out that we can characterize the 𝐂-admissible by appealing to decision curves. Lemma A.4 in the appendix does precisely 
this. But such a classification is not practically useful. To move beyond decision curves and state 𝐂-admissibility in terms of e-variables, 
we require the following technical definition.
Definition 5.1. We say that a binary test family 𝜑 has a minimal decision curve if for any 𝑏∗ ∈ , whenever sup𝑏<𝑏∗ 𝐿𝑏(0, 1) = 𝐿𝑏∗ (0, 1), 
we either have sup𝑏<𝑏∗ 𝑡𝜑(𝑏) = 𝑡𝜑(𝑏∗) or 𝑃 (sup𝑏<𝑏∗ 𝑡𝜑(𝑏) ≤ Λ(𝑋) < 𝑡𝜑(𝑏∗)) = 0. 

Definition 5.1 is vacuous whenever  is discrete, meaning for every 𝐿𝑏(0, 1) ∈  there exists some 𝜖 > 0 such that (𝐿𝑏(0, 1) −
𝜖, 𝐿𝑏(0, 1) + 𝜖) does not contain any other element of . It is relevant only for  that is dense (or has a subset which is dense). When 𝑃
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puts mass everywhere, the definition is equivalent to requiring that the decision curve be left continuous whenever the type-I losses 
are left continuous.

Lemma A.5 shows that a 𝐂-admissible test must have a minimal decision curve. The intuition is as follows. Suppose 
sup𝑏<𝑏∗ 𝐿𝑏(0, 1) = 𝐿𝑏∗ (0, 1) but sup𝑏<𝑏∗ 𝑡𝜑(𝑏) < 𝑡𝜑(𝑏∗). Then, for 𝑋 such that sup𝑏<𝑏∗ 𝑡𝜑(𝑏) ≤ Λ(𝑋) ≤ 𝑡𝜑(𝑏∗), sup𝑏 𝐿𝑏(0, 1)𝟏

{

Λ(𝑋) ≥ 𝑡𝜑(𝑏)
}

=
𝐿𝑏∗ (0, 1). However, 𝜑(𝑋, 𝑏∗) = 0 for such 𝑋. That is, 𝜑 is suffering a type-I loss of 𝐿𝑏∗ (0, 1) on such 𝑋 but not receiving the benefits of 
rejecting on loss 𝑏∗. In this case, one can define a second test family which rejects on 𝑏∗ and suffers the same type-I loss, thus making 
𝜑 𝐂-inadmissible.

We can now state the main result of this section. The proof is in Appendix A.17.

Theorem 5.3. Let 𝑃  and 𝑄 be continuous. A canonical binary test family 𝜑 is 𝐂-admissible if and only if it has a minimal decision curve 
and 𝐸𝜑 is sharp and an increasing function of the likelihood ratio. Moreover, given an e-variable 𝐸 for 𝑃 , 𝜑𝐸 is 𝐂-admissible if and only if 
𝐸 is sharp, compatible, and increasing in the likelihood ratio. 

As was done in Section 5.1, it is worth stating the following immediate corollary of Theorem 5.3 which highlights the direct 
correspondence between admissible tests and e-variables.

Corollary 5.4. Let 𝑃  and 𝑄 be continuous. A binary test family 𝜑 is 𝐂-admissible if and only if 𝜑 = 𝜑𝐸 for some sharp e-variable 𝐸 for 𝑃
which is compatible with  and increasing in the likelihood ratio. 

Theorem 5.3 makes no assumptions on the losses, hence can recover the Neyman-Pearson lemma for continuous distributions. In-
deed, as we discussed previously, for a single loss 𝐿(0, 1) = 1∕𝛼, the e-variable associated to the likelihood ratio 𝜙np(𝑋) = 𝟏{Λ(𝑋) ≥ 𝜅}
is 𝐸np(𝑋) = 𝛼−1𝟏{Λ(𝑋) ≥ 𝜅} and is sharp, increasing in Λ, and compatible by construction. We can also see that 𝜙np is the unique 
test which satisfies Corollary 5.4. Consider any other 𝐂-admissible rule, which can be written as 𝜑𝐸 (𝑋) = 𝟏{𝐸(𝑋) ≥ 1∕𝛼} for some 
𝐸. Since 𝐸 is compatible with  = {1∕𝛼} and 𝔼𝑃 [𝐸] = 1, we have 𝑃 (𝐸(𝑋) = 1∕𝛼) = 𝛼. Additionally, 𝐸 = ℎ(Λ) for some increasing 
ℎ by Lemma 5.3, so 𝜑𝐸 (𝑋) = 𝟏{Λ(𝑋) ≥ ℎ−(1∕𝛼)}. Therefore 𝛼 = 𝑃 (𝐸(𝑋) ≥ 1∕𝛼) = 𝑃 (Λ(𝑋) ≥ ℎ−(1∕𝛼)), meaning that ℎ−(1∕𝛼) = 𝜅 and 
𝜑𝐸 = 𝜙np.

Now consider 𝐿𝑏(0, 1) = 𝑏 for all 𝑏 > 0. In this case the test 

𝜑Λ(𝑋, 𝑏) = 𝟏
{

Λ(𝑋) ≥ 𝐿𝑏(0, 1)
}

, (22)

is 𝐂-admissible. Indeed, Λ is sharp, compatible with ℜ≥0 and obviously increasing in itself. This test is satisfying in that it accords 
well with calls to report the likelihood ratio instead of the p-value [44–47]. This nicely bridges the Fisherian and Neyman-Pearson 
perspectives on hypothesis testing: If a study summarizes its findings via Λ(𝑋) as a measure of evidence, downstream analysts can 
reject at whatever level they like, maintaining type-I risk safety.

6.  Summary

We studied post-hoc hypothesis testing, a framework which allows the significance level to be chosen as a function of the data. The 
notions of type-I and type-II error are replaced by type-I and type-II risk, which take the form of expectations over data-dependent 
type-I and type-II loss functions. In order to generalize the notion of a uniformly most powerful test to this setting, we introduced the 
notion of Γ-admissibility, where Γ is a set of functions mapping the data to a type-II loss function.

Different families Γ result in different classes of admissible tests. For point hypotheses, when Γ is all mappings from the data to 
losses we show that all admissible tests correspond to sharp e-variables. When Γ is the set of constant mappings and the tests are 
binary, we give a classification of all admissible tests which recovers the Neyman-Pearson lemma [19].

This work suggests several open questions. For one, in the case of randomized tests, the set of necessary and sufficient conditions 
for 𝐂-admissibility do not match. Can we close the gap and give a classification of all admissible tests in this case? As discussed in 
Section 5.3, we expect that mixtures of likelihood ratio tests are admissible but we have been unable to prove it. Second, while we 
have focused mainly on point hypotheses, hypothesis testing in practice typically involves composite hypotheses. While some of our 
results extend straightforwardly to composite settings,3 can we obtain composite versions of our main classification theorems? Third, 
we have adopted the typical hypothesis testing setup of two actions: either sustaining or rejecting the null. Grünwald[1], however, 
studies multiple actions. How must our results be modified in this case?

Overall, post-hoc hypothesis testing is in its nascency. We hope our work provides a foundation that will inspire further research. 
The connections we have established between admissible tests and e-variables connect post-hoc hypothesis testing to exciting devel-
opments in modern statistics, and our generalization of classical results suggest that post-hoc testing may serve as a principled bridge 
between traditional hypothesis testing and more adaptive approaches to statistical inference. While our work here has been primarily 
theoretical, we also hope that post-hoc hypothesis testing may offer solutions to some of the problems plaguing various empirical 
fields as they grapple with issues of statistical validity and reproducibility.

3 In particular, Lemmas 4.1–4.3 can be extended to composite settings if handled correctly. For instance, a composite version of Lemma 4.1 would 
posit that 𝜙(𝑋, 𝑏) ≥ 𝛿(𝑋, 𝑏) 𝑃 -almost surely for all 𝑃 ∈  and that there exists some 𝑄 ∈  such that 𝑄(𝜙(𝑋, 𝑏) > 𝛿(𝑋, 𝑏)) > 0. The representations in 
Lemmas 4.4 and 4.6 likewise hold in composite settings.
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Appendix A.  Auxiliary results and omitted proofs

A.1.  Technical Lemmas

Lemma A.1. Suppose there exist sets 𝐴1, 𝐴2 such that sup𝑋1∈𝐴1
Λ(𝑋1) < inf𝑋2∈𝐴2

Λ(𝑋2). Then both of the following hold: (a) if 𝑃 (𝐴1) ≤
𝑃 (𝐴2) then 𝑄(𝐴1) < 𝑄(𝐴2), and (b) 𝑄(𝐴1)∕𝑄(𝐴2) < 𝑃 (𝐴1)∕𝑃 (𝐴2). 
Proof.  Define

𝑐 = sup
𝑋∈𝐴1

Q.
P.
(𝑋),   and  𝑐 = inf

𝑋∈𝐴2

Q.
P.
(𝑋).

Observe that 

𝑄(𝐴1) = ∫𝐴1

Q. (𝑥) = ∫𝐴1

Λ(𝑥)P. (𝑥) ≤ 𝑐 ∫𝐴1

P. (𝑥) = 𝑐𝑃 (𝐴1).

Similarly, 

𝑄(𝐴2) = ∫𝐴2

Λ(𝑥)P. ≥ 𝑐 ∫𝐴2

P. = 𝑐𝑃 (𝐴2).

To prove (b), use the above two displays and note that 𝑐 < 𝑐. Then, by assumption, we have 
𝑄(𝐴1)
𝑄(𝐴2)

≤
𝑐𝑃 (𝐴1)
𝑄(𝐴2)

≤
𝑐𝑃 (𝐴1)
𝑐𝑃 (𝐴2)

<
𝑃 (𝐴1)
𝑃 (𝐴2)

.

As for (a), suppose that 𝑃 (𝐴1) ≤ 𝑃 (𝐴2). Then, 
𝑄(𝐴1) ≤ 𝑐, 𝑃 (𝐴1) ≤ 𝑐 Pr(𝐴2) ≤ 𝑐 Pr(𝐴2) ≤ 𝑄(𝐴2),

as desired. ∎
Lemma A.2. Let 𝛿 be Γ-admissible for any Γ ⊃ 𝐂. Then 𝛿(⋅, 𝑏) is increasing in the likelihood ratio for each 𝑏 ∈  if and only if 𝐸𝛿 is 
increasing in the likelihood ratio. The same statement holds if 𝛿 = 𝜑 is a binary test family. 
Proof.  Suppose Λ(𝑋1) ≤ Λ(𝑋2). If 𝐸𝛿(𝑋1) ≤ 𝐸𝛿(𝑋2) then min{1, 𝐸𝛿(𝑋1)∕𝐿𝑏(0, 1)} ≤ min{1, 𝐸𝛿(𝑋2)∕𝐿𝑏(0, 1)} for each 𝑏, so applying 
Lemma 4.4 demonstrates that 𝛿(𝑋1, 𝑏) ≤ 𝛿(𝑋2, 𝑏). Conversely, suppose that 𝐸𝛿(𝑋1) > 𝐸𝛿(𝑋2). Consider any 𝑏 such that 𝐿𝑏(0, 1) ≥ 𝐸𝛿(𝑋1)
(this must exist, otherwise 𝐸𝛿(𝑋1) > sup𝑏 𝐿𝑏(0, 1), which is impossible by definition). For such 𝑏, min{𝐿𝑏(0, 1), 𝐸𝛿(𝑋1)} = 𝐸𝛿(𝑋1) >
𝐸𝛿(𝑋2) = min{𝐿𝑏(0, 1), 𝐸𝛿(𝑋2)}, implying that 𝜙(𝑋1, 𝑏) > 𝜙(𝑋2, 𝑏). This proves the result in the randomized case. The argument in the 
binary case is proved similarly. ∎
Lemma A.3. Let 𝑃 ,𝑄 be continuous and let 𝛿 be Γconst-admissible. Let 𝑌 ⊂  satisfy 𝑄(𝑌 ) > 0 and 𝐸𝛿(𝑋) > 0 for all 𝑋 ∈ 𝑌 . Then there 
exists an adversary 𝐵∗ ∶  →  such that 𝐸𝛿(𝑋) ≥ 𝐿𝐵∗(𝑋)(0, 1) for all 𝑋 ∈ 𝑌 𝑄-almost surely. 
Proof.  Suppose not. Then

sup
𝑋∈𝑌

𝐸𝛿(𝑋) < inf
𝑏∈

𝐿𝑏(0, 1).

Since 𝐸𝛿 > 0 on 𝑌 , we can find some 𝛾 > 0 and 𝐴 ⊂ 𝑌  with 𝑄(𝐴) > 0 such that
𝛾 ≤ inf

𝑋∈𝐴
𝐸𝛿(𝑋).
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Let 𝐴 = 𝐴1 ∪ 𝐴2 where 𝑃 (𝐴1) = 𝑃 (𝐴2) and Λ(𝑋1) < Λ(𝑋2) for all 𝑋1 ∈ 𝐴1 and 𝑋2 ∈ 𝐴2. (This is possible by continuity.) Define a new 
decision rule 𝛿 such that, for all 𝑏 ∈ , 𝛿(𝑋, 𝑏) = 𝛿(𝑋, 𝑏) − 𝜖∕𝐿𝑏(0, 1) for all 𝑋 ∈ 𝐴1 and 𝛿(𝑋, 𝑏) = 𝛿(𝑋, 𝑏) + 𝜖∕𝐿𝑏(0, 1) for all 𝑋 ∈ 𝐴2. 
For 𝑋 ∉ 𝐴, 𝛿 is the same as 𝛿. Note that by Lemma 4.4, 𝛿(𝑋, 𝑏) = 𝐸𝛿(𝑋)∕𝐿𝑏(0, 1) ∈ (0, 1) for 𝑋 ∈ 𝐴 and 𝑏 ∈ . Therefore,

𝛿(𝑋, 𝑏) =
𝐸𝛿(𝑋) − 𝜖
𝐿𝑏(0, 1)

 for 𝑋 ∈ 𝐴1  and  𝛿(𝑋, 𝑏) =
𝐸𝛿(𝑋) + 𝜖
𝐿𝑏(0, 1)

 for 𝑋 ∈ 𝐴2.

Therefore, we may find 𝜖 small enough such that 0 < 𝛿(𝑋, 𝑏) ≤ 1 for all 𝑋 ∈ 𝐴. Indeed, to ensure that 𝛿(𝑋, 𝑏) > 0 we need to ensure 
that 𝜖 < 𝛾 and for ̂𝛿(𝑋, 𝑏) ≤ 1 we need 𝜖 < inf𝑏∈ 𝐿𝑏(0, 1) − sup𝑋∈𝐴 𝐸𝛿(𝑋), where the final quantity is greater than zero by assumption. 
Fix any such 𝜖 > 0.

To see that 𝛿 is type-I risk safe, write

∫𝐴
𝐸𝛿(𝑥)P. = ∫𝐴1

sup
𝑏
𝐿𝑏(0, 1)

(

𝛿(𝑥, 𝑏) − 𝜖
𝐿𝑏(0, 1)

)

P.

+ ∫𝐴1

sup
𝑏
𝐿𝑏(0, 1)

(

𝛿(𝑥, 𝑏) + 𝜖
𝐿𝑏(0, 1)

)

P.

= ∫𝐴1

𝐸𝛿(𝑥)P. − 𝜖𝑃 (𝐴1) + ∫𝐴2

𝐸𝛿(𝑥)P. + 𝜖𝑃 (𝐴2)

= ∫𝐴
sup
𝑏
𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. ,

since 𝑃 (𝐴1) = 𝑃 (𝐴2) by assumption. From this it follows that 𝑃 (𝛿) ≤ 1 since

𝔼𝑃 [𝐸𝛿(𝑋)] = ∫𝐴
𝐸𝛿(𝑥)P. + ∫⧵𝐴

𝐸𝛿(𝑥)P. = ∫
𝐸𝛿(𝑥)P. ≤ 1.

For type-II risk, fix any 𝑏 ∈  and notice that 

∫𝐴
𝛿(𝑥, 𝑏)Q. = ∫𝐴1∪𝐴2

𝛿(𝑥, 𝑏)Q. −
𝜖

𝐿𝑏(0, 1)
𝑄(𝐴1) +

𝜖
𝐿𝑏(0, 1)

𝑄(𝐴2).

Lemma A.1 implies that 𝑄(𝐴2) > 𝑄(𝐴1) by our choice of 𝐴1 and 𝐴2. Therefore −𝜖𝑄(𝐴1) + 𝜖𝑄(𝐴2) > 0 and we conclude 

∫𝐴
𝛿(𝑥, 𝑏)Q. > ∫𝐴

𝛿(𝑥, 𝑏)Q. ,

implying that 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))] < 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))]. Hence 𝛿 is Γall-inadmissible. ∎
Recall that a decision curve 𝑡𝜙 𝑄-strictly dominates 𝑡𝜑 if 𝑡𝜙(𝑏) ≤ 𝑡𝜑(𝑏) for all 𝑏 ∈  and there exists some 𝑏∗ such that 𝑡𝜙(𝑏∗) < 𝑡𝜑(𝑏∗)

and 𝑄(𝑡𝜙(𝑏∗) ≤ Λ(𝑋) < 𝑡𝜑(𝑏∗)) > 0.

Lemma A.4. Let 𝑃  and 𝑄 be continuous and let 𝜑 be a type-I risk safe binary test family. Then 𝜑 is 𝐂-inadmissible if and only if there exists 
some binary type-I risk safe 𝜓 such that 𝑡𝜓 𝑄-strictly dominates 𝑡𝜑. 
Proof.  Let 𝜓 be a binary test family which is type-I risk safe and satisfies 𝑡𝜓 (𝑏) ≤ 𝑡𝜑(𝑏) for all 𝑏 ∈  and 𝑡𝜓 (𝑏∗) < 𝑡𝜑(𝑏∗) where 𝑄(𝑡𝜓 (𝑏∗) <
Λ(𝑋) < 𝑡𝜑(𝑏∗)) > 0. Then for all 𝑏 ∈ ,

𝜑(𝑋, 𝑏) = 𝟏
{

Λ(𝑋) ≥ 𝑡𝜑(𝑏)
}

≤ 𝟏
{

Λ(𝑋) ≥ 𝑡𝜓 (𝑏)
}

= 𝜓(𝑋, 𝑏),

and the inequality is strict for 𝑏∗ on a set of positive measure under 𝑄. Apply Lemma 4.1 to see that 𝜑 is 𝐂-inadmissible. Conversely, 
suppose that 𝜑 is 𝐂-inadmissible, so there exists some 𝜓 satisfying 𝔼𝑄[𝜓(𝑋, 𝑏)] ≥ 𝔼𝑄[𝜑(𝑋, 𝑏)] for all 𝑏, with a strict inequality for at 
least one 𝑏∗. Using the representation (21) of both test families, this implies that

𝑄(Λ(𝑋) ≥ 𝑡𝜑(𝑏)) ≤ 𝑄(Λ(𝑋) ≥ 𝑡𝜓 (𝑏)),

for all 𝑏, so 𝑡𝜑(𝑏) ≥ 𝑡𝜓 (𝑏). For 𝑏∗, 0 < 𝔼𝑄[𝟏
{

Λ(𝑋) ≥ 𝑡𝜓 (𝑏∗)
}

− 𝟏
{

Λ(𝑋) ≥ 𝑡𝜑(𝑏∗)
}

] = 𝑄(𝑡𝜓 (𝑏∗) ≤ Λ(𝑋) < 𝑡𝜑(𝑏∗)), completing the proof. ∎
Lemma A.5. Let 𝑃  and 𝑄 be continuous and let 𝜑 be a type-I risk safe binary test family. If 𝜑 is 𝐂-admissible then it has a minimal decision 
curve. 
Proof.  We prove the contrapositive. Suppose that 𝜑 does have not have a minimal decision curve, so there exists some 𝑏∗ such that 
sup𝑏<𝑏∗ 𝑡𝛿(𝑏) < 𝑡𝛿(𝑏∗) and 𝑃 (sup𝑏<𝑏∗ 𝑡𝛿(𝑏) ≤ Λ(𝑋) < 𝑡𝛿(𝑏∗)) > 0. Define a new functions 𝓁 ∶  → ℜ≥0 ∪ {∞} as 

𝓁 ∶ 𝑏↦

{

𝑡𝛿(𝑏), 𝑏 ≠ 𝑏∗,
sup𝑏<𝑏∗ 𝑡𝛿(𝑏), 𝑏 = 𝑏∗.

Observe that 𝓁 𝑄-strictly dominates 𝑡𝛿 . We claim that it also defines a type-I risk safe test family, which will show that 𝛿 is Γconst-
inadmissible by Lemma A.4. Note that since 𝑡𝛿 is increasing in 𝑏 by Corollary 5.3, so too is 𝓁.

Partition  into 𝐶1 = {𝑋 ∶ Λ(𝑋) < 𝓁(𝑏∗)}, 𝐶2 = 𝐺(𝑏∗) = {𝑋 ∶ 𝓁(𝑏∗) ≤ Λ(𝑋) < 𝑡𝛿(𝑏∗)}, 𝐶3 = {𝑋 ∶ Λ(𝑋) ≥ 𝑡𝛿(𝑏∗)}. On 𝐶1 and 𝐶3, we 
have sup𝑏 𝐿𝑏(0, 1)𝟏

{

Λ(𝑋) ≥ 𝑡𝛿(𝑏)
}

= sup𝑏 𝐿𝑏(0, 1)𝟏{Λ(𝑋) ≥ 𝓁(𝑏)} since, in both cases, the supremum does not involve 𝑏∗. Now, for 
𝑋 ∈ 𝐶2, 𝟏

{

Λ(𝑋) ≥ 𝑡𝛿(𝑏)
}

= 1 if and only if 𝑏 < 𝑏∗, so
sup
𝑏
𝐿𝑏(0, 𝜑(𝑋, 𝑏)) = sup

𝑏
𝐿𝑏(0, 1)𝟏

{

Λ(𝑋) ≥ 𝑡𝛿(𝑏)
}

= sup
𝑏<𝑏∗

𝐿𝑏(0, 1) = 𝐿𝑏∗ (0, 1).
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Moreover, again for 𝑋 ∈ 𝐶2, 𝟏{Λ(𝑋) ≥ 𝓁(𝑏)} = 1 if and only if 𝑏 ≤ 𝑏∗, giving that sup𝑏 𝐿𝑏(0, 1)𝟏{Λ(𝑋) ≥ 𝓁(𝑏)} = sup𝑏≤𝑏∗ 𝐿𝑏(0, 1) =
𝐿𝑏∗ (0, 1). Therefore, 

∫𝐶2
sup
𝑏
𝐿𝑏(0, 1)𝟏{Λ(𝑥) ≥ 𝓁(𝑏)}P. = ∫𝐶2

sup
𝑏
𝐿𝑏(0, 𝜑(𝑥, 𝑏))P. ,

which, combined with equality on 𝐶1 and 𝐶3, implies that the risk of the test family defined by 𝓁 is equal to (𝜑), completing the 
argument. ∎

A.2.  Proof of Proposition 3.1

First let us show that 𝛿 is type-I risk safe. Since 𝛿(𝑋, 𝑏) = 0 on {Λ(𝑋) < 𝜅(𝑏∗)},

𝑃 (𝛿) = ∫{Λ(𝑥)≥𝜅(𝑏∗)}
sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. + ∫{Λ(𝑥)<𝜅(𝑏∗)}

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P.

= ∫{Λ(𝑥)>𝜅(𝑏∗)}
sup
𝑏
𝐿𝑏(0, 1)

𝐿𝑏∗ (0, 1)
𝐿𝑏(0, 1)

P. + ∫{Λ(𝑥)=𝜅(𝑏∗)}
sup
𝑏
𝐿𝑏(0, 1)

𝐿𝑏∗ (0, 1)
𝐿𝑏(0, 1)

𝛾P.

= ∫{Λ(𝑥)>𝜅(𝑏∗)}
𝐿𝑏∗ (0, 1)P. + ∫{Λ(𝑥)=𝜅(𝑏∗)}

𝛾𝐿𝑏∗ (0, 1)P.

= 𝐿𝑏∗ (0, 1)𝔼𝑃 [𝜙np(𝑋, 𝑏∗)] = 1.

Now we show it is admissible. Suppose there is a type-I risk safe test family 𝜙 (distinct from 𝜙np) which is weakly preferable to 𝛿
(with respect to Γ). That is, 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋, 𝑏))] ≤ 𝔼𝑄[𝐿𝐵(1, 𝜙(𝑋, 𝑏))] for all 𝐵 ∈ Γ. If we consider the constant map 𝐵(𝑋) = 𝑏∗, which is 
in Γ by assumption, we obtain 𝔼𝑄[𝜙np(𝑋, 𝑏∗)] ≤ 𝔼𝑄[𝜙(𝑋, 𝑏∗)]. We claim this implies that 𝜙(⋅, 𝑏∗) = 𝜙np(⋅, 𝑏∗) 𝑃 -almost-surely. Indeed, 
this follows from the uniqueness in the Neyman-Pearson lemma, but let us prove it directly since it may not be a priori obvious that 
the same logic transfers to the post-hoc setting. Consider the integral 

𝐼 = ∫
(𝜙np(𝑥, 𝑏∗) − 𝜙(𝑥, 𝑏∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝑡1

)(Q. − 𝜅(𝑏
∗)P.

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∶=𝑡2

).

We claim that 𝐼 = 0. We begin by showing that the integrand is nonnegative. This is clear if 𝜙np(𝑥, 𝑏∗) = 𝜙(𝑥, 𝑏∗). If 𝜙np(𝑥, 𝑏∗) = 1
then 𝑄(𝑥)∕𝑃 (𝑥) > 𝜅(𝑏∗) so both 𝑡1 and 𝑡2 are nonnegative. If 𝜙np(𝑥, 𝑏∗) = 0 then 𝑄(𝑥)∕𝑃 (𝑥) < 𝜅(𝑏∗) so both terms are nonpositive. If 
0 < 𝜙np(𝑥, 𝑏∗) < 1 then 𝑄(𝑥) = 𝜅𝑃 (𝑥) so 𝑡1 and 𝑡2 multiply to zero. This shows that 𝐼 ≥ 0. Hence,

∫
(𝜙np(𝑥, 𝑏∗) − 𝜙(𝑥, 𝑏∗))Q. ≥ 𝜅(𝑏∗)∫

(𝜙np(𝑥, 𝑏∗) − 𝜙(𝑥, 𝑏∗))P.

= 𝜅(𝑏∗)(𝐿−1
𝑏∗ (0, 1) − 𝔼𝑃 [𝜙(𝑋, 𝑏∗)].

Now, we must have 𝔼𝑃 [𝜙(𝑋, 𝑏∗)] ≤ 𝐿𝑏∗ (0, 1), otherwise 𝑃 (𝜙) ≥ 𝔼𝑃 [𝐿𝑏∗ (0, 1)𝜙(𝑋, 𝑏∗)] > 1, contradicting that 𝜙 is type-I risk safe. The 
last term in the above display is thus nonnegative, and we have that 

𝔼𝑄[𝜙np(𝑋, 𝑏∗)] − 𝔼𝑄[𝜙(𝑋, 𝑏∗)] = ∫
(𝜙np(𝑥, 𝑏∗) − 𝜙(𝑥, 𝑏∗))Q. ≥ 0.

Since we know from above that 𝔼𝑄[𝜙np(𝑋, 𝑏∗)] ≤ 𝔼𝑄[𝜙(𝑋, 𝑏∗)], we have shown that 𝔼𝑄[𝜙np(𝑋, 𝑏∗)] = 𝔼𝑄[𝜙(𝑋, 𝑏∗)]. Finally, we can 
rewrite 𝐼 as 𝐼 = −𝜅(𝑏∗)(𝐿𝑏∗ (0, 1) − 𝔼𝑃 [𝜙(𝑋, 𝑏∗)]) which we now see must equal 0, since 𝐼 ≥ 0 but we argued above that 𝔼𝑃 [𝜙(𝑋, 𝑏∗)] ≤
𝐿𝑏∗ (0, 1). Since 𝐼 = 0 with a positive integrand, the integrand must be 0 almost surely. This implies that 𝜙np(𝑋, 𝑏∗) = 𝜙(𝑋, 𝑏∗) except 
on the set {𝑥 ∶ 𝑄(𝑥) = 𝜅(𝑏∗)𝑃 (𝑥)}. If this set has positive measure under 𝑄 (as it does in the discrete case) and 𝜙np(𝑋, 𝑏∗) ≠ 𝜙(𝑋, 𝑏∗), 
then one has higher power than the other, implying that 𝔼𝑄[𝜙np(𝑋, 𝑏∗)] ≠ 𝔼𝑄[𝜙(𝑋, 𝑏∗)], a contradiction. We conclude that 𝜙(𝑋, 𝑏∗) =
𝜙np(𝑋, 𝑏∗) 𝑃 -almost surely.

Returning to the main proof, write

𝐸𝜙(𝑋) = sup
𝑏
𝐿𝑏(0, 𝜙(𝑋, 𝑏)) ≥ 𝐿𝑏∗ (0, 𝜙(𝑋, 𝑏∗)) = 𝐿𝑏∗ (0, 𝜙np(𝑋, 𝑏∗)).

Hence 𝔼𝑃 [𝐸𝜙(𝑋)] ≥ 𝔼𝑃 [𝐿𝑏∗ (0, 𝜙np(𝑋, 𝑏∗))] = 1 and we may conclude that

𝐸𝜙(𝑋) = 𝐿𝑏∗ (0, 𝜙np(𝑋, 𝑏∗)),

since 𝜙 is assumed to be type-I risk safe. By Lemma 4.4 we can write 

𝜙(𝑋, 𝑏) = min
{

1,
𝐸𝜙(𝑋)
𝐿𝑏(0, 1)

}

= min
{

1,
𝐿𝑏∗ (0, 1)
𝐿𝑏(0, 1)

𝜙np(𝑋, 𝑏∗)
}

, (A.1)

as desired. Now we prove the second half of the proposition. Suppose 𝛿 is Γ-admissible and satisfies 𝛿(𝑋, 𝑏∗) = 𝜙np(𝑋, 𝑏∗) for some 𝑏∗. 
We are tasked with showing that 𝛿 = 𝜙 𝑃 -almost surely, where 𝜙 is defined as the right hand side of (A.1). First we show that 𝛿 cannot 
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be greater than 𝜙. Suppose that 𝛿(𝑋, 𝑏0) > 𝜙(𝑋, 𝑏0) for all 𝑋 ∈ 𝐴 ⊂  and some 𝑏0 ∈  where 𝑃 (𝐴) > 0. We will show that 𝛿 is not type-
I risk safe. Observe that since 𝜙(𝑋, 𝑏0) < 1 for 𝑋 ∈ 𝐴 (since 1 ≥ 𝛿(𝑋, 𝑏0) > 𝜙(𝑋, 𝑏0)), we have 𝜙(𝑋, 𝑏0) = 𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗)∕𝐿𝑏0 (0, 1). 
Consider an adversary 𝐵 defined as 𝐵(𝑋) = 𝑏∗ for 𝑋 ∈  ⧵ 𝐴 and 𝐵(𝑋) = 𝑏0 for 𝑋 ∈ 𝐴. Then

𝑃 (𝛿) ≥ ∫𝐴
𝐿𝐵(𝑥)(0, 𝛿(𝑥, 𝐵(𝑥))P. + ∫⧵𝐴

𝐿𝐵(𝑥)(0, 𝛿(𝑥, 𝐵(𝑥))P.

> ∫𝐴
𝐿𝑏0 (0, 1)𝜙(𝑋, 𝑏0)P. + ∫⧵

𝐿𝑏∗ (0, 1)𝛿(𝑥, 𝑏∗)P.

= ∫𝐴
𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗)P. + ∫⧵𝐴

𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗)P.

= 𝐿𝑏∗ (0, 1)𝔼𝑃 [𝜙np(𝑋, 𝑏∗)] = 1,

so 𝛿 is not type-I risk safe. We conclude that we must have 𝛿(𝑋, 𝑏) ≤ 𝜙(𝑋, 𝑏) 𝑃 -almost surely for all 𝑏 ∈ . Now suppose that for some 
𝑏0, 𝛿(𝑋, 𝑏0) < 𝜙(𝑋, 𝑏0) for all 𝑋 ∈ 𝐴 where again 𝑃 (𝐴) > 0. Consider defining a new test family 𝛿 such that 𝛿 = 𝛿, except on 𝐴 and 𝑏0
in which case we set ̂𝛿(𝑋, 𝑏0) = 𝜙(𝑋, 𝑏0). Since we’ve already shown that 𝛿 ≤ 𝜙 𝑃 -almost surely, it follows that 𝑃 (𝛿) ≤ 𝑃 (𝛿) ≤ 1, so 
𝛿 is type-I risk safe. Moreover, it has greater type-II risk than 𝛿. To see this, consider any adversary 𝐵 and let 𝐴0 ⊂ 𝐴 be the (possibly 
empty) set of 𝑋 such that 𝐵(𝑋) = 𝑏0. Then

𝔼𝑄[𝐿𝐵(1, 0)𝛿(𝑋,𝐵)] = ∫𝐴0

𝐿𝑏0 (1, 0)𝛿(𝑥, 𝑏0)Q. + ∫⧵𝐴0

𝐿𝐵(𝑥)(1, 0)𝛿(𝑥, 𝐵(𝑥))Q.

≥ ∫𝐴0

𝐿𝑏0 (1, 0)𝛿(𝑥, 𝑏0)Q. + ∫⧵𝐴0

𝐿𝐵(𝑥)(1, 0)𝛿(𝑥, 𝐵(𝑥))Q.

= 𝔼𝑄[𝐿𝐵(1, 0)𝛿(𝑋,𝐵))],

hence 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))] ≤ 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))]. If 𝐴0 has positive measure under 𝑄 then the inequality above becomes a strictly in-
equality, showing that 𝛿 sometimes has strictly lower type-II risk than 𝛿 (such an adversary exists in Γ by assumption) making it 
strictly preferable to 𝛿 with respect to Γ, completing the proof.

A.3.  Proof of Proposition 3.2

The proof has similar mechanics to that of Proposition 3.2. First note that 𝜑 is indeed type-I risk safe. By definition, 𝜑(𝑋, 𝑏) = 0
whenever Λ(𝑋) < 𝜅(𝑏∗) and 𝜑(𝑋, 𝑏) iff 𝑏 ≤ 𝑏∗ otherwise. Therefore,

𝑃 (𝛿) = ∫Λ≥𝜅(𝑏∗)
sup
𝑏
𝐿𝑏(0, 𝜑(𝑋, 𝑏))P. + ∫Λ(𝑋)<𝜅(𝑏∗)

sup
𝑏
𝐿𝑏(0, 0)P.

= ∫Λ≥𝜅(𝑏∗)
𝐿𝑏∗ (0, 1)P. = 𝐿𝑏∗ (0, 1)𝑃 (Λ(𝑋) ≥ 𝜅(𝑏∗) = 1,

by definition of 𝜅(𝑏∗). Now suppose that 𝜓 is any other type-I risk safe binary test family that is weakly preferable to 𝜑 with respect 
to any Γ. For the adversary 𝐵(𝑋) = 𝑏∗ we have 𝔼𝑄[𝜓(𝑋, 𝑏∗)] ≥ 𝔼𝑄[𝜑(𝑋, 𝑏∗)] = 𝔼𝑄[𝜙np(𝑋, 𝑏∗)]. As in Appendix A.2, this implies that 
𝜓(𝑋, 𝑏∗) = 𝜙np(𝑋, 𝑏∗) 𝑄-almost surely, which in turn implies that 𝐸𝜓 (𝑋) = sup𝑏 𝐿𝑏(0, 𝜓(𝑋, 𝑏)) = 𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗) 𝑃 -almost surely. 
Therefore, by the canonical representation given in Lemma 4.6, we have 

𝜓(𝑋, 𝑏) = 𝟏
{

𝐸𝜓 (𝑋) ≥ 𝐿𝑏(0, 1)
}

= 𝟏
{

𝐿𝑏∗ (0, 1)𝜙np(𝑋, 𝑏∗) ≥ 𝐿𝑏(0, 1)
}

, (A.2)

𝑃 -almost surely, which is precisely 𝜑(𝑋, 𝑏). Next, suppose that 𝜑 is Γ-admissible and there exists some 𝑏∗ such that 𝜑(𝑋, 𝑏∗) =
𝜙np(𝑋, 𝑏∗). Then we cannot have 𝜑(𝑋, 𝑏) > 0 for any 𝑏 > 𝑏∗ on any set 𝐴 of positive measure under 𝑃 , otherwise an adversary can 
ensure the type-I risk is higher than 1 by playing 𝑏 on 𝐴 and 𝑏∗ everywhere else. (We omit the precise calculation because it is similar 
to the proof in Appendix A.2). Similarly, we cannot have 𝛿(𝑋, 𝑏) < 𝜙np(𝑋, 𝑏∗) for 𝑏 ≤ 𝑏∗ and Λ(𝑋) ≥ 𝜅(𝑏∗) otherwise 𝜑 is Γ-inadmissible 
by Lemma 4.1. This completes the proof.

A.4.  Proof of Lemma 4.1

By assumption we may assume that anything with positive probability under 𝑃  has positive probability under 𝑄 and vice versa. 
For any 𝑏 ∈ , 𝐿𝑏(1, 𝜙(𝑋, 𝑏)) = 𝐿𝑏(1, 0)(1 − 𝜙(𝑋, 𝑏)) ≤ 𝐿𝑏(1, 0)(1 − 𝛿(𝑋, 𝑏)) = 𝐿𝑏(1, 𝛿(𝑋, 𝑏)). Therefore, for any 𝐵 ∈ Γ,

𝔼𝑄[𝐿𝐵(1, 𝜙(𝑋,𝐵)] ≤ 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))].

Suppose 𝐴 ⊂  is such that 𝜙(𝑋, 𝑏∗) > 𝛿(𝑋, 𝑏∗) for all 𝑋 ∈ 𝐴 and 𝑄(𝐴) > 0. Then 𝜙 has strictly lower type-II risk on the map 𝐵(𝑋) = 𝑏∗

since

𝔼𝑄[𝐿𝑏∗ (1, 𝜙(𝑋, 𝑏∗)𝟏{𝑋 ∈ 𝐴}] < 𝔼𝑄[𝐿𝑏∗ (1, 𝛿(𝑋, 𝑏∗)𝟏{𝑋 ∈ 𝐴}],

making 𝜙 strictly preferable to 𝛿 with respect to any Γ (𝐵 ∈ Γ by assumption).
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A.5.  Proof of Lemma 4.2

Let 𝛿 be any test family, binary or otherwise, such that 𝛿(𝑋, 𝑏1) < 𝛿(𝑋, 𝑏2) for some 𝑏1 < 𝑏2 and all 𝑋 belonging to some set 𝐴
of positive measure on 𝑄. Define a new test family 𝛿 such that 𝛿(𝑋, 𝑏1) = 𝛿(𝑋, 𝑏2) for all 𝑋 ∈ 𝐴. Otherwise 𝛿 is the same as 𝛿. Since 
𝐿𝑏1 (0, 1)𝛿(𝑋, 𝑏1) = 𝐿𝑏1 (0, 1)𝛿(𝑋, 𝑏2) ≤ 𝐿𝑏2 (0, 1)𝛿(𝑋, 𝑏2), it follows that sup𝑏 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) = sup𝑏 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏). This implies that 𝛿 is 
type-I risk safe and we conclude that 𝛿 is Γ-inadmissible by Lemma 4.1.

A.6.  Proof of Lemma 4.3

If 𝐸𝛿(𝑋) < 𝐸𝜙(𝑋) then there exists some 𝑏 such that 𝛿(𝑋, 𝑏) < 𝜙(𝑋, 𝑏). If not, then 𝐿𝑏0 (0, 1)𝜙(𝑋, 𝑏0) ≤ 𝐿𝑏0 (0, 1)𝛿(𝑋, 𝑏0) ≤
sup𝑏 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) = 𝐸𝛿(𝑋) for all 𝑏0, so taking the supremum over 𝑏0 gives 𝐸𝜙(𝑋) ≤ 𝐸𝛿(𝑋), a contradiction. Now apply Lemma 4.1 
to see that 𝛿 is Γ-inadmissible for any Γ. As for the second part of the result, suppose that 𝔼𝑃 [𝐸𝛿] < 1. We will define a new test family 
𝛿 such that 𝐸𝛿 > 𝐸𝛿 in some region 𝐴 while remaining type-I risk safe. First note that there exists some region 𝐴 ⊂  with 𝑃 (𝐴) > 0
and some 𝑏0 such that 𝛿(𝑋, 𝑏0) for all 𝑋 ∈ 𝐴. If not, then 𝛿(𝑋, 𝑏) = 1 for all 𝑏 ∈  𝑃 -almost surely. Since 𝛿 is type-I risk safe, we have 
𝔼𝑃 [sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏))] = 𝔼𝑃 [sup𝑏 𝐿𝑏(0, 1)] ≤ 1, hence 𝐿𝑏(0, 1) ≤ 1 for all 𝑏, contradicting our assumption on the losses. For 𝑋 ∈ 𝐴, set 

𝛿(𝑋, 𝑏0) = 𝛿(𝑋, 𝑏0) +
𝜖

𝐿𝑏0 (0, 1)
,

for some 𝜖 > 0 to be determined. For 𝑋 ∉ 𝐴 or any 𝑏 ≠ 𝑏0, let 𝛿(𝑋, 𝑏) = 𝛿(𝑋, 𝑏). In order to ensure that 𝛿(𝑋, 𝑏0) ≤ 1, we require that 
𝜖

𝐿𝑏0 (0, 1)
≤ 1 − 𝛿(𝑋, 𝑏0), (A.3)

for all 𝑋 ∈ 𝐴. We can choose 𝜖 > 0 small enough such that (A.3) is satisfied since 𝛿(𝑋, 𝑏0) < 1. If ̂𝛿 is type-I risk safe then it is strongly 
preferable to 𝛿 for any Γ by Lemma 4.1, thus rendering 𝛿 Γ-inadmissible. To see that 𝜖 can be chosen to make 𝛿 type-I risk safe, first 
write

∫𝐴
sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. ≤ ∫𝐴

sup
𝑏
𝐿𝑏(0, 1)

(

𝛿(𝑥, 𝑏) + 𝜖
𝐿𝑏(0, 1)

)

P.

= ∫𝐴
sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. + 𝜖𝑃 (𝐴).

Therefore,

𝑃 (𝛿) = ∫𝐴
sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. + ∫⧵𝐴

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P.

≤ ∫
sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. + 𝜖𝑃 (𝐴) = 𝑃 (𝛿) + 𝜖𝑃 (𝐴).

Since 𝑃 (𝛿) = 𝔼𝑃 [𝐸𝛿] < 1 by assumption, choosing any 

0 < 𝜖 ≤
1 − 𝔼𝑃 [𝐸𝛿]
𝑃 (𝐴)

, (A.4)

ensures that 𝛿 remains type-I risk safe. Thus, choosing any 𝜖 that satisfies both (A.4) and (A.3) completes the proof when the test 
families are allowed to be randomized. Now let us consider the case of binary test families. Let 𝜑 be such that 𝔼𝑃 [𝐸𝜑] < 1. As before, 
this implies the existence of some 𝐴 ⊂  and 𝑏0 such that 𝜑(𝑋, 𝑏0) = 0. Otherwise 𝜑 rejects with probability 1 everywhere and on all 
losses, implying that 𝐿𝑏(0, 1) ≤ 1 for all 𝑏. We define ̂𝜑 which acts as 𝛿 everywhere except that ̂𝜑(𝑋, 𝑏0) = 1 > 0 = 𝜑(𝑋, 𝑏0) for all 𝑋 in 
some 𝐴0 ⊂ 𝐴 with 𝑄(𝐴0) > 0. In particular, we choose 𝐴0 to satisfy 

𝑃 (𝐴0) =
1 − 𝔼𝑃 [𝐸𝛿]
𝐿𝑏0 (0, 1)

, (A.5)

which is possible by continuity of 𝑃 . Next, notice that by Lemma 4.2, 𝛿(𝑋, 𝑏) = 0 for all 𝑏 ≥ 𝑏0 and 𝑋 ∈ 𝐴0, otherwise 𝛿 is already 
inadmissible. Therefore, sup𝑏 𝐿𝑏(0, 𝜑̂(𝑋, 𝑏)) = 𝐿𝑏0 (0, 1) in 𝐴0. This gives

𝑃 (𝛿) = ∫⧵𝐴0

sup
𝑏
𝐿𝑏(0, 𝜑(𝑥, 𝑏))P. + ∫𝐴0

sup
𝑏
𝐿𝑏(0, 𝜑̂(𝑥, 𝑏))P.

= ∫⧵𝐴0

sup
𝑏
𝐿𝑏(0, 𝜑(𝑥, 𝑏))P. + 𝐿𝑏0 (0, 1)𝑃 (𝐴0)

≤ 𝑃 (𝛿) + 1 − 𝔼𝑃 [𝐸𝛿] = 1,

which proves that 𝜑̂ is type-I risk safe. To complete the proof, apply Lemma 4.1 to see that 𝛿 is strictly preferable to 𝛿 with respect 
to any Γ.
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A.7.  Proof of Lemma 4.4

Suppose there exists some 𝐴 satisfying 𝑃 (𝐴), 𝑄(𝐴) > 0 such that for some 𝑏 ∈  and all 𝑋 ∈ 𝐴, 𝛿(𝑋, 𝑏) > min{1, 𝐸𝛿(𝑋)∕𝐿𝑏(0, 1)}. 
That is, 

𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) > min{𝐿𝑏(0, 1), 𝐸𝛿(𝑋)},   for all 𝑋 ∈ 𝐴. (A.6)

Observe that we must have min{𝐿𝑏(0, 1), 𝐸𝛿(𝑋)} = 𝐸𝛿(𝑋). Otherwise (A.6) implies that 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) > 𝐿𝑏(0, 1), which is impossible 
since 𝛿(𝑋, 𝑏) ≤ 1 by definition. Therefore the minimum is achieved by 𝐸𝛿(𝑋) and we have 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) > 𝐸𝛿(𝑋), contradicting the 
definition of 𝐸𝛿 . Thus no such 𝑏 can exist, and we conclude that the left hand side of (13) is at most the right hand side.

Next, suppose there exists some 𝑏 with 𝛿(𝑋, 𝑏) < min{1, 𝐸𝛿(𝑥)∕𝐿𝑏(0, 1)} for all 𝑋 ∈ 𝐴, where again 𝑃 (𝐴), 𝑄(𝐴) > 0. Consider a 
new decision family 𝛿 defined as 𝛿(𝑋, 𝑏) = min{1, 𝐸𝛿(𝑋)∕𝐿𝑏(0, 1)} for all 𝑋 ∈ 𝐴 and which acts as 𝛿 everywhere else. Note that 
for 𝑋 ∈ 𝐴, 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) = min{𝐿𝑏(0, 1), 𝐸𝛿(𝑋)} ≤ 𝐸𝛿(𝑋), hence 𝐸𝛿(𝑋) = sup𝑏 𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) = 𝐸𝛿(𝑋) (using that ̂𝛿(⋅, 𝑐) = 𝛿(⋅, 𝑐) for all 
𝑐 ≠ 𝑏). Therefore, 

𝑃 (𝛿) = ∫⧵𝐴
𝐸𝛿(𝑥)P. + ∫𝐴

𝐸𝛿(𝑥)P. = 𝑃 (𝛿) ≤ 1, (A.7)

so 𝛿 remains type-I risk safe. Moreover, it strictly improves type-II risk by Lemma 4.1 (𝛿(⋅, 𝑏) > 𝛿(⋅, 𝑏) on a set of positive measure 
under 𝑄), implying that 𝛿 is Γ-inadmissible.

A.8.  Proof of Lemma 4.5

Suppose there exists a set 𝐴 ⊂  such that 𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1) for all 𝑋 ∈ 𝐴 and 𝑃 (𝐴) > 0. We will define a new e-variable 𝐹  for 
𝑃  such that 𝐹 (𝑋) ≤ sup𝑏 𝐿𝑏(0, 1) for all 𝑋 ∈ 𝐴 and 𝛿𝐹  is strictly preferable to 𝛿 with respect to any Γ. First we observe that there exists 
some 𝑌 ⊂  such that 𝐸(𝑋) < sup𝑏 𝐿𝑏(0, 1) for all 𝑋 ∈ 𝑌  and 𝑃 (𝑌 ) > 0. If not, then 𝐸(𝑋) ≥ sup𝑏 𝐿𝑏(0, 1) 𝑃 -almost surely, implying by 
definition (see (14)) that 𝛿𝐸 rejects with probability 1 𝑃 -almost surely, contradicting our assumption that 𝐿𝑏(0, 1) > 1 for some 𝑏. For 
some fixed 𝜖 > 0 to be specified later, define 𝐹  as follows: 

𝐹 (𝑋) =

⎧

⎪

⎨

⎪

⎩

sup𝑏 𝐿𝑏(0, 1), if 𝑋 ∈ 𝐴,
𝐸(𝑋) + 𝜖, if 𝑋 ∈ 𝑌 ,
𝐸(𝑋), otherwise.

(A.8)

First notice that on 𝑌  there exists some 𝑏 such that 𝛿𝐹 (𝑋, 𝑏) = min{1, 𝐸(𝑋)∕𝐿𝑏(0, 1)} > 𝐸(𝑋)∕𝐿𝑏(0, 1) = 𝛿𝐸 (𝑋). Moreover, on 𝐴, 𝛿𝐹 (𝑋) =
1 = 𝛿𝐸 (𝑋, 𝑏) for all 𝑏 since 𝐸(𝑋) > 𝐹 (𝑋) = sup𝑏 𝐿𝑏(0, 1). Finally, everywhere else we have 𝛿𝐸 (𝑋, 𝑏) = 𝛿𝐹 (𝑋, 𝑏) for all 𝑏 since 𝐹 (𝑋) =
𝐸(𝑋). Therefore, it follows from Lemma 4.1 that 𝛿𝐸 is Γ-inadmissible if 𝛿𝐹  is type-I risk safe. Compute

𝑃 (𝛿𝐹 ) = ∫𝐴
𝐹P. + ∫𝑌

𝐹P. + ∫⧵(𝐴∪𝑌 )
𝐸P.

= ∫𝐴
(sup
𝑏
𝐿𝑏(0, 1) − 𝐸 + 𝐸)P. + ∫𝐸

𝐹P. + 𝜖𝑃 (𝑌 ) + ∫⧵(𝐴∪𝑌 )
𝐸P.

= ∫
𝐸P. + ∫𝐴

(sup
𝑏
𝐿𝑏(0, 1) − 𝐸)P. + 𝜖𝑃 (𝑌 ).

Taking 

𝜖 = 1
𝑃 (𝑌 ) ∫𝐴

(sup
𝑏
𝐿𝑏(0, 1) − 𝐸)P. , (A.9)

thus suffices to ensure that 𝑃 (𝛿𝐹 ) = 𝑃 (𝛿𝐸 ) ≤ 1. We have thus proven that if 𝑃 (𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1)) > 0 then 𝛿 is Γ-inadmissible. 
Then, if 𝑃 (𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1)) = 0, 𝐸𝛿𝐸 = 𝐸 𝑃 -almost surely by (15).

A.9.  Proof of Lemma 4.6

The proof is similar to that of Lemma 4.4. First note that we can’t have 𝜑(𝑋, 𝑏) = 1 if 𝐿𝑏(0, 1) > 𝐸𝜑(𝑋) by definition of 𝐸𝜑. 
Therefore, 𝜑(𝑋, 𝑏) ≤ 𝟏

{

𝐿𝑏(0, 1) ≤ 𝐸𝜑(𝑋)
}

. Conversely, suppose that, for some 𝑏∗, 𝜑(𝑋, 𝑏∗) = 0 when 𝐿𝑏∗ (0, 1) < 𝐸𝜑(𝑋) for all 𝑋 ∈ 𝐴
where 𝑃 (𝐴), 𝑄(𝐴) > 0. Define a new rule 𝜑̂ such that 𝜑̂(𝑋, 𝑏∗) = 1 for 𝑋 ∈ 𝐴 and otherwise 𝜑̂ is the same as 𝜑. Since 𝐸𝜑 = 𝐸𝜑̂, 𝜑̂ is 
type-I risk safe. Now apply Lemma 4.1 with 𝜙 = 𝜑̂ to see that 𝜑 is Γ-inadmissible.

A.10.  Proof of Lemma 4.7

We prove the contrapositive. Suppose that 𝐸 is not compatible with 0. Then there exists some set 𝑌 ⊂  with 𝑃 (𝑌 ) > 0 such that, 
for all 𝑋 ∈ 𝑌 , either

1. 𝐿𝑏1 (0, 1) < 𝐸(𝑋) < 𝐿𝑏2 (0, 1) for some 𝑏1 < 𝑏2 such that there is no 𝑏 ∈  with 𝑏1 < 𝑏 < 𝑏2, or
2. 𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1). Of course, in this case sup𝑏 𝐿𝑏(0, 1) <∞.
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We consider these two cases separately. First suppose that (1) holds. For some disjoint subsets 𝑌0, 𝑌1 ⊂ 𝑌  to be determined, we define 
a new random variable as follows: 

𝐹 (𝑋) =

⎧

⎪

⎨

⎪

⎩

𝐿𝑏1 (0, 1), if 𝑋 ∈ 𝑌0,
𝐿𝑏2 (0, 1), if 𝑋 ∈ 𝑌1,
𝐸(𝑋), otherwise.

(A.10)

Notice that for all 𝑋 ∈ 𝑌0 and all 𝑏 ∈ , 𝜑𝐹 (𝑋, 𝑏) = 𝜑𝐸 (𝑋, 𝑏); the fact that 𝐸(𝑋) > 𝐿𝑏1 (0, 1) makes no difference since it is strictly 
smaller than the next loss, 𝐿𝑏2 (0, 1) and thus cannot influence the value of 𝜑𝐸 . Meanwhile, 𝜑𝐹 (𝑋, 𝑏2) = 1 > 0 = 𝜑𝐸 (𝑋, 𝑏2) for 𝑋 ∈ 𝑌1, 
and 𝜑𝐹 (𝑋, 𝑏) = 𝜑𝐸 (𝑋, 𝑏) for all other 𝑏. For 𝑋 ∉ 𝑌0 ∪ 𝑌1, clearly 𝜑𝐸 (𝑋, 𝑏) = 𝜑𝐹 (𝑋, 𝑏). Therefore, as long as 𝑌1 has positive measure 
under 𝑃  and 𝜑𝐸 is type-I risk safe, then 𝜑𝐸 is Γ-inadmissible by Lemma 4.1. Let us compute

𝑃 (𝛿𝐹 ) = ∫𝑌0
𝐹P. + ∫𝑌1

𝐹P. + ∫⧵(𝑌0∪𝑌1)
𝐹P.

= ∫𝑌0
(𝐹 − 𝐸 + 𝐸)P. + ∫𝑌1

(𝐹 − 𝐸 + 𝐸)P. + ∫⧵(𝑌0∪𝑌1)
𝐸P.

= ∫
𝐸P. + ∫𝑌0

(𝐿𝑏1 (0, 1) − 𝐸)P. + ∫𝑌1
(𝐿𝑏2 (0, 1) − 𝐸)P.

≤ 1 + ∫𝑌0
(𝐿𝑏1 (0, 1) − 𝐸)P. + (𝐿𝑏2 (0, 1) − 𝐿𝑏1 (0, 1))𝑃 (𝑌1).

Thus, for a fixed 𝑌0 with positive measure, taking 𝑌1 small enough such that 

0 < 𝑃 (𝑌1) = (𝐿𝑏2 (0, 1) − 𝐿𝑏1 (0, 1))
−1

∫𝑌0
(𝐸 − 𝐿𝑏1 (0, 1))P. , (A.11)

ensures that 𝑃 (𝛿𝐹 ) ≤ 1. Such choices of 𝑌0 and 𝑌1 are possible by continuity of 𝑃 . This completes the proof of case (1).
Let us now consider case (2). Here the proof is similar to that of Lemma 4.5, but it must be handled somewhat differently to account 

for binary tests. Since 𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1) on 𝑌 , there exists some 𝑈 such that 𝐸(𝑋) < sup𝑏 𝐿𝑏(0, 1) for all 𝑋 ∈ 𝑈 . The reasoning is 
the same as in previous proofs.

For some 𝑈0 ⊂ 𝑈 , define 

𝐹 (𝑋) =

{

sup𝑏 𝐿𝑏(0, 1), if 𝑋 ∈ 𝑌 ∪ 𝑈0,
𝐸(𝑋), otherwise.

(A.12)

Following similar reasoning as above, 𝜑𝐹 (𝑋, 𝑏) ≥ 𝜑𝐸 (𝑋, 𝑏) with strict inequality for some 𝑏 when 𝑥 ∈ 𝑈0. We thus need only show 
that 𝜑𝐹  is type-I risk safe to complete the proof. Let 𝑠 = sup𝑏 𝐿𝑏(0, 1) and write

𝑃 (𝜑𝐹 ) = ∫𝑌
(𝑠 − 𝐸 + 𝐸)P. + ∫𝑈0

(𝑠 − 𝐸 + 𝐸)P. + ∫⧵(𝑌 ∪𝑈0)
𝐸P.

≤ ∫
𝐸P. + ∫𝑌

(𝑠 − 𝐸)P. + ∫𝑈0

𝑠P.

≤ 1 + ∫𝑌
(𝑠 − 𝐸)P. + 𝑠𝑃 (𝑈0).

Since 𝑠 < ∞ and 𝑃  is continuous, we can choose 𝑈0 such that 𝑠 < 𝑃 (𝑈0) = ∫𝑌 (𝐸 − 𝑠)P. , which gives 𝑃 (𝜑𝐹 ), completing the argument.

A.11.  Proof of Theorem 5.1

Lemma 4.3 implies that if 𝐸𝛿 is not sharp then 𝛿 is Γall-inadmissible. Meanwhile, Lemma 4.4 implies that if 𝛿 is not canonical then 
it is not Γall-admissible. This proves one direction. To prove the other direction, suppose that 𝛿 is canonical and 𝐸𝛿 is sharp. Let 𝜙 be 
any other type-I risk safe test family. We may assume that 𝜙 is canonical and 𝐸𝜙 sharp, otherwise we may improve it and consider 
the resulting test family.

Define the following subsets of  . Let

1. 𝑅1 ⊂  be the region where 𝐸𝜙(𝑋) = 𝐸𝛿(𝑋) = 0,
2. 𝑅2 ⊂  be the region where 0 = 𝐸𝛿(𝑋) < 𝐸𝜙(𝑋),
3. 𝑅3 ⊂  be the region where 0 < 𝐸𝛿(𝑋) ≤ 𝐸𝜙(𝑋),
4. and 𝑅4 ⊂  be the region where 𝐸𝛿(𝑋) > 𝐸𝜙(𝑋).

Observe that 𝑅4 cannot have 𝑄-measure zero. Indeed, if so, then 𝐸𝛿(𝑋) ≤ 𝐸𝜙(𝑋) 𝑄-almost surely. Since both 𝐸𝛿 and 𝐸𝜙 have the 
same expected value and both are nonnegative, this implies that 𝐸𝜙(𝑋) = 𝐸𝛿(𝑋) 𝑄-almost surely, implying by Lemma 4.4 that 𝛿 = 𝜙
𝑄-almost surely.
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It suffices to find a map 𝐵 such that 𝔼𝑄[𝐿𝐵(1, 𝜙(𝑋,𝐵))] > 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))], thus demonstrating that 𝜙 cannot be strongly Γall-
preferable to 𝛿. To this end, write 

𝔼𝑄[𝐿𝐵(1, 𝜙(𝑋,𝐵)) − 𝐿𝐵(1, 𝛿(𝑋,𝐵))] =
∑

1≤𝑘≤4
Δ𝑘, (A.13)

where

Δ𝑘 ≡ ∫𝑅𝑘
𝐿𝐵(1, 𝜙(𝑥, 𝐵)) − 𝐿𝐵(1, 𝛿(𝑥, 𝐵))Q.

= ∫𝑅𝑘
𝐿𝐵(1, 0)(𝛿(𝑥, 𝐵) − 𝜙(𝑥, 𝐵))Q. .

Define the adversary 𝐵 as follows. First consider 𝑅4 which, as we argued above, has positive measure under 𝑄. For 𝑋 ∈ 𝑅4, we set 
𝐵(𝑋) to be any 𝑏 such that 𝐿𝑏(0, 1) > 𝐸𝜙(𝑋). Such a 𝑏 must exist otherwise, 𝐸𝛿(𝑋) > 𝐸𝜙(𝑋) ≥ sup𝑏 𝐿𝑏(0, 1), contradicting the definition 
of 𝐸𝛿(𝑋). Therefore, on 𝑅4, 𝜙 satisfies 𝜙(𝑋,𝐵(𝑋)) = 𝐸𝜙(𝑋)∕𝐿𝐵(𝑋)(0, 1) < 1, by Lemma 4.4, so 

𝛿(𝑋,𝐵(𝑋)) = min
{

1,
𝐸𝛿(𝑋)

𝐿𝐵(𝑋)(0, 1)

}

>
𝐸𝜙(𝑋)

𝐿𝐵(𝑋)(0, 1)
= 𝜙(𝑋,𝐵(𝑋)), 𝑄-almost surely.

Therefore, 

Δ4 = ∫𝑅4

𝐿𝐵(1, 0)
(

𝐸𝛿(𝑋)
𝐿𝐵(0, 1)

−
𝐸𝜙(𝑋)
𝐿𝐵(0, 1)

)

Q. > 0,

Now let us choose how 𝐵 acts on the rest of  . For 𝑋 ∈ 𝑅1, the choice is arbitrary, since 𝜙(𝑋, 𝑏) = 𝛿(𝑋, 𝑏) = 0 so Δ1 = 0. For 𝑅2, write 

Δ2 = −∫𝑅2

𝐿𝐵(1, 0)min
{

1,
𝐸𝜙(𝑋)
𝐿𝐵(0, 1)

}

Q. .

For all 𝑋 ∈ 𝑅2, take 𝐵(𝑋) = 𝑏 where 𝑏 is large enough such that 
𝐿𝑏(1, 0)
𝐿𝑏(0, 1)

≤
Δ4

4 ∫𝑅2
𝐸𝜙(𝑋)Q.

  and  𝐿𝑏(0, 1) ≥ sup
𝑋∈𝑅2

𝐸𝜙(𝑋). (A.14)

Such a 𝑏 must exist by condition (C1) and by definition of 𝐸𝜙. In this case,

Δ2 ≥ −∫𝑅2

𝐿𝑏(1, 0)
𝐿𝑏(0, 1)

𝐸𝜙(𝑋)Q. ≥ −
Δ4
4
.

For 𝑅3 we make a similar argument. Write 

Δ3 = −∫𝑅3

𝐿𝐵(1, 0)(𝜙(𝑥, 𝐵) − 𝛿(𝑥, 𝐵))Q. ≥ −∫𝑅3

𝐿𝐵(1, 0)min
{

1,
𝐸𝜙(𝑋)
𝐿𝐵(0, 1)

}

Q. .

Take 𝐵(𝑋) = 𝑏 where 𝑏 defined as in (A.14) but with 𝑅3 in place of 𝑅2. Then Δ3 ≥ −Δ4∕4. Therefore, overall we have 
∑

𝑘≤4 Δ𝑘 ≥
−Δ4∕4 − Δ4∕4 + Δ4 > 0 since Δ4 > 0. This completes the first part of the argument.

For the second part, let 𝐸 be an e-variable for 𝑃 . If 𝐸 ≤ sup𝑏 𝐿𝑏(0, 1) 𝑃 -almost surely, then 𝐸𝛿𝐸 = 𝐸 𝑃 -almost surely by (15). 
Thus if 𝐸 is sharp then 𝐸𝛿𝐸  is sharp, and we may apply the first part of the theorem to see that 𝛿𝐸 is Γall-admissible. Conversely, 
if 𝛿𝐸 is Γall-admissible then 𝐸𝛿𝐸  is sharp, again by applying the first part of the theorem. This in turn implies that 𝐸 is sharp, 
since 𝐸𝛿𝐸 (𝑋) ≤ 𝐸(𝑋) by (15). Next we claim that 𝐸 = 𝐸𝛿𝐸 , which will complete the proof since 𝐸𝛿𝐸 (𝑋) ≤ sup𝑏 𝐿𝑏(0, 1) for all 𝑋 by 
construction. Let 𝑊 = {𝑋 ∶ 𝐸(𝑋) ≠ 𝐸𝛿𝐸 (𝑋)} be the subset on which 𝐸 and 𝐸𝛿𝐸  disagree. By (15), we know they disagree if and only 
if 𝐸(𝑋) > sup𝑏 𝐿𝑏(0, 1). Therefore, we can write

𝑊 = {𝑋 ∶ 𝐸(𝑋) > sup
𝑏
𝐿𝑏(0, 1)}.

Since 𝐸 is sharp,
1 = 𝔼𝑃 [𝐸] = 𝔼𝑃 [𝐸𝟏{𝑋 ∉ 𝑊 }] + 𝔼𝑃 [𝐸𝟏{𝑋 ∈ 𝑊 }]

= 𝔼𝑃 [𝐸𝛿𝐸 𝟏{𝑋 ∉ 𝑊 }] + 𝔼𝑃 [𝐸𝟏{𝑋 ∈ 𝑊 }]

> 𝔼𝑃 [𝐸𝛿𝐸 𝟏{𝑋 ∉ 𝑊 }] + sup
𝑏
𝐿𝑏(0, 1)𝑃 (𝑊 ).

Therefore,

1 = 𝔼𝑃 [𝐸𝛿𝐸 ] = 𝔼𝑃 [𝐸𝟏{𝑋 ∉ 𝑊 }] + 𝔼𝑃 [𝐸𝛿𝐸 𝟏{𝑋 ∈ 𝑊 }]

< 1 − sup
𝑏
𝐿𝑏(0, 1)𝑃 (𝑊 )𝔼𝑃 [𝐸𝛿𝐸 𝟏{𝑋 ∈ 𝑊 }]

≤ 1 − sup
𝑏
𝐿𝑏(0, 1)𝑃 (𝑊 ) sup

𝑏
𝐿𝑏(0, 1)𝑃 (𝑊 ) = 1,

a contradiction. Hence we must have 𝑃 (𝑊 ) = 0, meaning 𝐸 = 𝐸𝛿𝐸 𝑃 -almost surely. This completes the proof.
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A.12.  Proof of Theorem 5.2

The proof is similar to that of Theorem 5.1, so we provide only a sketch. Lemma 4.3 implies that 𝐸𝜑 must be sharp; Lemma 4.6 
implies that 𝜑 must be canonical. For the converse, we partition the sample space the same way as in the proof of Theorem 5.1. 
On 𝑅4 we have 𝐸𝛿(𝑋) > 𝐸𝜙(𝑋). Because the losses are dense in ℜ ∩ [𝑀,∞), we can find some 𝑏 such that 𝐸𝜙(𝑋) < 𝐿𝑏(0, 1) ≤ 𝐸𝛿(𝑋). 
(Note that 𝐸𝛿(𝑋) ≥ inf 𝑏𝐿𝑏(0, 1) ≥𝑀 for binary 𝛿.) We take 𝐵(𝑋) to be this value of 𝑏. Then Δ4 > 0. For 𝑅1, the choice of 𝐵 is 
again arbitrary. For 𝑅2, choose 𝐵(𝑋) such that 𝐿𝐵(𝑋)(0, 1) > 𝐸𝜙(𝑋) which is possible sup𝑏 𝐿𝑏(0, 1) = ∞ (𝐸𝜙 cannot be infinite on a 
set of positive measure under 𝑃  otherwise 𝜙 is not type-I risk safe). Then Δ2 = 0. A similar argument applies to 𝑅3. This shows that 
𝔼𝑄[𝐿𝐵(1, 𝜙(𝑋,𝐵))] − 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))] =

∑

𝑖 Δ𝑖 > 0.
Now consider an e-variable 𝐸 for 𝑃 . If 𝐸 is not sharp then neither is 𝐸𝛿𝐸  since 𝐸𝛿𝐸 (𝑋) = sup𝑏 𝐿𝑏(0, 1)𝟏

{

𝐸(𝑋) ≥ 𝐿𝑏(0, 1)
}

≤ 𝐸(𝑋). 
Therefore 𝛿𝐸 is Γall-inadmissible by the first part of the theorem. Further, if 𝐸 is not compatible then 𝛿𝐸 is Γall-inadmissible by 
Lemma 4.7. Now we prove the other direction. If 𝐸 is compatible, then 𝐸𝛿𝐸 = 𝐸 𝑃 -almost surely. Therefore if 𝐸 is sharp so is 𝐸𝛿𝐸  so 
𝛿𝐸 is Γall-admissible, again by applying the first part of the theorem.

A.13.  Proof of Lemma 5.1

Suppose not, so there exists 𝐴1, 𝐴2 and 𝑏 such that 
inf

𝑋1∈𝐴1
𝐸𝛿(𝑋1) > sup

𝑋2∈𝐴2

𝐸𝛿(𝑋2),   and  sup
𝑋1∈𝐴1

Λ(𝑋1) < sup
𝑋2∈𝐴2

Λ(𝑋2).

For convenience, define 
𝛾1 = inf

𝑋1∈𝐴1
𝐸𝛿(𝑋1), 𝛾2 = sup

𝑋2∈𝐴2

𝐸𝛿(𝑋2).

We will define a new decision rule ̂𝛿 which is strictly preferable to 𝛿 with respect to Γconst. Pick any Δ ∈ ℜ such that 0 < Δ < 𝛾1 − 𝛾2, 
which exists by the density of the reals. Define

0 ≡ {𝑏 ∶ 𝐿𝑏(0, 1) ≤ 𝛾2}

1 ≡ {𝑏 ∶ 𝛾2 < 𝐿𝑏(0, 1) ≤ 𝛾2 + Δ}

2 ≡  ⧵ (0 ∪ 1).

Notice that 0,1, and 2 are all disjoint and form a partition of . It may be helpful to draw a plot with 𝐿𝑏(0, 1) on the y-axis and 
Λ(𝑋) on the x-axis. 0 are those 𝑏 at the bottom, 2 those at the top. Further notice that 2 is non-empty. Otherwise

sup
𝑏∈

𝐿𝑏(0, 1) ≤ 𝛾2 + Δ < 𝛾1 ≤ sup
𝑋∈𝐴1

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑋, 𝑏) ≤ sup
𝑏∈

𝐿𝑏(0, 1),

a contradiction. Finally, note that since 𝐿𝑏(0, 1) is increasing in 𝑏, if 𝑏1 ∉ 0 and 𝑏2 > 𝑏1, then 𝑏2 ∉ 0. Now, for all 𝑏 ∈ 0 ∪ 1, we 
let 𝛿(⋅, 𝑏) = 𝛿(⋅, 𝑏). For all 𝑏 ∈ 2, we set 

𝛿(𝑋1, 𝑏) = 𝛿(𝑋1, 𝑏) −
𝜖1

𝐿𝑏(0, 1)
,   and  𝛿(𝑋2, 𝑏) = 𝛿(𝑋2, 𝑏) +

𝜖2
𝐿𝑏(0, 1)

, (A.15)

for all 𝑋1 ∈ 𝐴1 and 𝑋2 ∈ 𝐴2. Outside of 𝐴1 and 𝐴2, 𝛿 will be defined as 𝛿. Throughout this proof, to save ourselves from constantly 
writing quantifiers, we will always assume that 𝑋1 ∈ 𝐴1 and 𝑋2 ∈ 𝐴2.

We must first ensure that 𝛿 is well-defined, i.e., 𝛿(𝑋1, 𝑏) ≥ 0 and 𝛿(𝑋2, 𝑏) ≤ 1 (it is clear that 𝛿(𝑋1, 𝑏) ≤ 𝛿(𝑋1, 𝑏) ≤ 1 and 𝛿(𝐴2, 𝑏) ≥
𝛿(𝐴2, 𝑏) ≥ 0). By Lemma 4.4, we may assume that 𝛿(𝑋1, 𝑏) = min{1, 𝐸𝛿(𝑋1)∕𝐿𝑏(0, 1)} and 𝛿(𝑋2, 𝑏) = min{1, 𝐸𝛿(𝑋2)∕𝐿𝑏(0, 1)}. Therefore, 
to ensure that 𝛿(𝑋1, 𝑏) = min{1, 𝐸𝛿(𝑋1)∕𝐿𝑏(0, 1)} − 𝜖1∕𝐿𝑏(0, 1) ≥ 0, it suffices that (a) 𝜖1 ≤ 𝐿𝑏(0, 1) and (b) 𝜖1 ≤ inf𝑋1∈𝐴1

𝐸𝛿(𝑋1) = 𝛾1
(consider the two cases in the minimum). Since 𝐿𝑏(0, 1) is increasing in 𝑏 and 𝐿𝑏(0, 1) > 𝛾2 + Δ for all 𝑏 ∈ 2, we can ensure that (a) 
and (b) are both met by taking 

𝜖1 ≤ 𝛾2 + Δ < 𝛾1. (A.16)

As for 𝛿 on 𝐴2, notice that 𝛿(𝑋2, 𝑏) = (𝐸𝛿(𝑋2) + 𝜖2)∕𝐿𝑏(0, 1) for all 𝑏 ∈ 2, which is at most 1 if 𝐸𝛿(𝑋2) + 𝜖2 ≤ 𝐿𝑏(0, 1). Since 𝛾2 + Δ ≤
𝐿𝑏(0, 1) for 𝑏 ∈ 2 and 𝐸𝛿(𝑋2) ≤ 𝛾2, it suffices to take 𝜖2 ≤ 𝛾2 + Δ − 𝛾2, i.e., 

0 < 𝜖2 ≤ Δ. (A.17)

We have shown that there exist 𝜖1, 𝜖2 > 0 such that ̂𝛿 is well-defined. Next we show that they can be chosen to ensure that ̂𝛿 remains 
type-I risk safe and is Γconst-preferable to 𝛿. We begin with type-I safety. Since ̂𝛿 changes only on 𝐴1 and 𝐴2, it suffices to show that 

∫𝐴1∪𝐴2

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. ≤ ∫𝐴1∪𝐴2

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. . (A.18)

For all 𝑏 ∈ 0 ∪ 1, we have 𝛿(𝑋1, 𝑏) = min{1, 𝐸𝛿(𝑋1)∕𝐿𝑏(0, 1)} = 1 since 𝐿𝑏(0, 1) ≤ 𝛾2 + Δ < 𝛾1 ≤ 𝐸𝛿(𝑋1). Moreover, ̂𝛿(𝑋1, 𝑏) = 𝛿(𝑋1, 𝑏)
for such 𝑏. For 𝑏 ∈ 2 meanwhile, 𝛿(𝑋1, 𝑏) = min{1, 𝐸𝛿(𝑋1)∕𝐿𝑏(0, 1)} − 𝜖1∕𝐿𝑏(0, 1) ≤ (𝐸𝛿(𝑋1) − 𝜖1)∕𝐿𝑏(0, 1) so 

sup
𝑏∈2

𝐿𝑏(0, 𝛿(𝑋1, 𝑏)) ≤ sup
𝑏∈2

𝐿𝑏(0, 1)
(

𝐸𝛿(𝑋1) − 𝜖1
𝐿𝑏(0, 1)

)

= 𝐸𝛿(𝑋1) − 𝜖1,
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and

sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋1, 𝑏)) = max

{

sup
𝑏∈0∪𝐵1

𝐿𝑏(0, 𝛿(𝑋1, 𝑏)), sup
𝑏∈2

𝐿𝑏(0, 𝛿(𝑋1, 𝑏))

}

≤ max

{

sup
𝑏∈0∪1

𝐿𝑏(0, 1), 𝐸𝛿(𝑋1) − 𝜖1

}

≤ max
{

𝛾2 + Δ, 𝐸𝛿(𝑋1) − 𝜖1
}

.

We want this final quantity to equal 𝐸𝛿(𝑋1) − 𝜖1, so we choose 𝜖1 such that 
0 < 𝜖1 ≤ 𝛾1 − (𝛾2 + Δ) ≤ 𝐸𝛿(𝑋1) − (𝛾2 + Δ), (A.19)

which is possible by our choice of Δ. This ensures the maximum in the above display is achieved by 𝐸𝛿(𝑋1) − 𝜖1 and we have 
sup
𝑏
𝐿𝑏(0, 𝛿(𝑋1, 𝑏)) ≤ 𝐸𝛿(𝑋1) − 𝜖1. (A.20)

Now let us consider 𝐴2. For 𝑏 ∈ 0 we have 𝛿(𝑋2, 𝑏) = 𝛿(𝑋2, 𝑏) ≤ 1 and for 𝑏 ∈ 1, 𝛿(𝑋2, 𝑏) = 𝛿(𝑋2, 𝑏) = min{1, 𝛾2∕𝐿𝑏(0, 1)} =
𝐸𝛿(𝑋2)∕𝐿𝑏(0, 1). For 𝑏 ∈ 2, 𝛿(𝑋2, 𝑏) = 𝛿(𝑋2, 𝑏) = 𝐸𝛿(𝑋2)∕𝐿𝑏(0, 1) + 𝜖2∕𝐿𝑏(0, 1), so

sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋2, 𝑏) ≤ max

{

sup
𝑏∈0

𝐿𝑏(0, 1), sup
𝑏∈1

𝐿𝑏(0, 𝛿(𝑋2, 𝑏)), sup
𝑏∈2

𝐿𝑏(0, 𝛿(𝑋2, 𝑏))

}

= max

{

sup
𝑏∈0

𝐿𝑏(0, 1), sup
𝑏∈1

𝐸𝛿(𝑋2), sup
𝑏∈2

𝐸𝛿(𝑋2) + 𝜖2

}

≤ max{𝛾2, 𝛾2, 𝛾2 + 𝜖2} = 𝛾2 + 𝜖2.

Combining this and (A.20), the left hand side of (A.18) can be upper bounded as

∫𝐴1∪𝐴2

sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. ≤ ∫𝐴1

𝐸𝛿(𝑥)P.P. − 𝜖1𝑃 (𝐴1) + ∫𝐴2

𝐸𝛿(𝑥)P. − 𝜖2𝑃 (𝐴2)

= ∫𝐴1∪𝐴2

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. − 𝜖1𝑃 (𝐴1) + 𝜖2𝑃 (𝐴2).

For (A.18) to hold we thus require that −𝜖1𝑃 (𝐴1) + 𝜖2𝑃 (𝐴2) ≤ 0, i.e., 
𝜖2
𝜖1

≤
𝑃 (𝐴1)
𝑃 (𝐴2)

. (A.21)

Still leaving the precise choice of 𝜖1 and 𝜖2 unspecified for the moment, let us move on to type-II risk. We claim that for all 𝑏 ∈ 2, 
𝔼𝑄[𝛿(𝑋, 𝑏))] ≥ 𝔼𝑄[𝛿(𝑋, 𝑏))]. Since type-II risk remains unchanged for 𝑏 ∈ 0 ∪ 1 (since 𝛿(⋅, 𝑏) = 𝛿(⋅, 𝑏) for such 𝑏), this will show that 
𝛿 is strictly preferable to 𝛿 with respect to Γconst.

As with type-I risk, because 𝛿 is the same as 𝛿 outside of 𝐴, it suffices to focus on 𝐴1 and 𝐴2 and show that 
𝔼𝑄[𝛿(𝑋, 𝑏)𝟏{𝑋 ∈ 𝐴}] ≥ 𝔼𝑄[𝛿(𝑋, 𝑏)𝟏{𝑋 ∈ 𝐴}], (A.22)

for all 𝑏 ∈ 2. For these 𝑏, write 

∫𝐴1

𝛿(𝑥, 𝑏)Q. = ∫𝐴1

(

𝛿(𝑥, 𝑏) −
𝜖1

𝐿𝑏(0, 1)

)

Q. = ∫𝐴1

𝛿(𝑥, 𝑏)Q. −
𝜖1

𝐿𝑏(0, 1)
𝑄(𝐴1).

Similarly, 

∫𝐴2

𝛿(𝑥, 𝑏)Q. = ∫𝐴2

𝛿(𝑥, 𝐵)Q. +
𝜖2

𝐿𝑏(0, 1)
𝑄(𝐴2).

Combining these two displays, we see that (A.22) holds iff 
𝜖2
𝜖1
>
𝑄(𝐴1)
𝑄(𝐴2)

. (A.23)

We choose 𝜖1 = 𝑤𝑃 (𝐴1) and 𝜖2 = 𝑤𝑃 (𝐴2), where 𝑤 > 0 is small enough to ensure that conditions (A.16), (A.17), and (A.19) are met 
(note that none of these conditions are in conflict with one another; all are upper bounds on 𝜖1 and 𝜖2). Then,

𝜖2
𝜖1

=
𝑃 (𝐴1)
𝑃 (𝐴2)

>
𝑄(𝐴1)
𝑄(𝐴2)

,

where the final inequality follows from Lemma A.1. Inequalities (A.21) and (A.23) are thus met, demonstrating that 𝛿 is strongly 
preferable to 𝛿 with respect to Γconst. This contradicts that 𝛿 is Γconst-admissible, so we conclude that 𝐸𝛿(𝑋) is indeed increasing in 
the likelihood ratio 𝑃 -almost surely. The second part of the lemma follows by applying Lemma A.2.
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A.14.  Proof of Lemma 5.2

Suppose not. By Lemma A.3 we have that 𝐸𝛿(𝑋) ≥ inf𝑏∈ 𝐿𝑏(0, 1)𝑄-almost surely. Morever, we cannot have 𝐸𝛿(𝑋) > sup𝑏∈ 𝐿𝑏(0, 1)
by definition. Therefore, there exists some 𝐴 with 𝑄(𝐴) > 0 and some partition of  = 0 ∪ 1 such that

sup
𝑏∈0

𝐿𝑏(0, 1) < 𝐸𝛿(𝑋) < inf
𝑏∈1

𝐿𝑏(0, 1).

For simplicity we will assume that there exist 𝑏1, 𝑏2 such that 𝑏1 = sup𝑏∈0
𝐿𝑏(0, 1) and 𝑏2 = inf𝑏∈1

𝐿𝑏(0, 1), but the proof can be 
amended if these supremum and infimum are not in . We can thus write 1 = {𝑏 ≥ 𝑏2} since the losses are assumed to be increasing 
in 𝑏.

Let 𝐴 = 𝐴1 ∪ 𝐴2 where 𝑃 (𝐴1) = 𝑃 (𝐴2) and Λ(𝑋1) < Λ(𝑋2) for all 𝑋1 ∈ 𝐴1 and 𝑋2 ∈ 𝐴2 (this is possible by continuity). Define a new 
decision rule 𝛿 such that, for all 𝑏 ∈ 0, 𝛿(𝑋, 𝑏) = 𝛿(𝑋, 𝑏) − 𝜖∕𝐿𝑏(0, 1) for all 𝑋 ∈ 𝐴1 and 𝛿(𝑋, 𝑏) = 𝛿(𝑋, 𝑏) + 𝜖∕𝐿𝑏(0, 1) for all 𝑋 ∈ 𝐴2. 
Otherwise 𝛿 is the same as 𝛿. We have 0 < 𝛿(𝑋, 𝑏) < 1 for all 𝑋 ∈ 𝐴 and 𝑏 ∈ 1 (the lower bound of 0 is implied by Lemma 4.4). 
Therefore, we may find 𝜖 small enough such that 0 < 𝛿(𝑋, 𝑏) ≤ 1 for all 𝑋 ∈ 𝐴. In particular, let us ensure that 𝜖 is small enough such 
that 

𝐿𝑏1 (0, 1) + 𝜖 < 𝐸𝛿(𝑋). (A.24)

To see that 𝛿 is type-I risk safe, observe that for 𝑋 ∈ 𝐴1,

𝐸𝛿(𝑋) = sup
𝑏
𝐿𝑏(0, 𝛿(𝑋, 𝑏))

= max

{

sup
𝑏<𝑏2

𝐿𝑏(0, 𝛿(𝑋, 𝑏)), sup
𝑏≥𝑏2

𝐿𝑏(0, 𝛿(𝑋, 𝑏))

}

= max

{

𝐿𝑏1 (0, 1),

(

sup
𝑏≥𝑏2

𝐿𝑏(0, 1)𝛿(𝑋, 𝑏)

)

− 𝜖

}

= max
{

𝐿𝑏1 (0, 1), 𝐸𝛿(𝑋) − 𝜖
}

= 𝐸𝛿(𝑋) − 𝜖,

where the final equality follows by (A.24). Similarly, for 𝑋 ∈ 𝐴2,

𝐸𝛿(𝑋) = max

{

𝐿𝑏1 (0, 1),

(

sup
𝑏≥𝑏2

𝐿𝑏(0, 1)𝛿(𝑋, 𝑏)

)

+ 𝜖

}

= max
{

𝐿𝑏1 (0, 1), 𝐸𝛿(𝑋) + 𝜖
}

= 𝐸𝛿(𝑋) + 𝜖.

Therefore,

∫𝐴
𝐸𝛿(𝑥)P. = ∫𝐴1

(𝐸𝛿(𝑥) − 𝜖)P. + ∫𝐴2

(𝐸𝛿(𝑥) + 𝜖)P.

= ∫𝐴
𝐸𝛿(𝑥) − 𝜖𝑃 (𝐴1) + 𝜖𝑃 (𝐴2) = ∫𝐴

𝐸𝛿(𝑥)P. ,

since 𝑃 (𝐴1) = 𝑃 (𝐴2) by assumption. From this it follows that 𝑃 (𝛿) ≤ 1 since

𝔼𝑃 [𝐸𝛿(𝑋)] = ∫𝐴′
𝐸𝛿(𝑥)P. + ∫𝐴

𝐸𝛿(𝑥)P. = ∫
𝐸𝛿(𝑥)P. ≤ 1.

So much for type-I risk. For type-II risk, the argument is nearly identical to that in Lemma A.3, so we omit it here.

A.15.  Proof of Lemma 5.3

Throughout the proof we drop the superscript “bin” on 𝛿. By Lemma A.2 𝛿(𝑋, 𝑏) is increasing in Λ iff 𝐸𝛿 is increasing in the Λ, so 
we focus on the test family itself.

Suppose that for some 𝑏∗ ∈ , 𝛿(⋅, 𝑏∗) is not an increasing function of Λ. Then we can find two sets, 𝐴1, 𝐴2 ⊂  with positive 
measure under both 𝑃  and 𝑄 such that, for all 𝑋1 ∈ 𝐴1 and 𝑋2 ∈ 𝐴2, 

𝛿(𝑋1, 𝑏
∗) = 1, 𝛿(𝑋2, 𝑏

∗) = 0,   and  sup
𝑋∈𝐴1

Λ(𝑋1) < inf
𝑋2∈𝐴2

Λ(𝑋2) (A.25)

Define a set 𝐺 = [𝑡−, 𝑡+] ⊂  ∪ {inf()} ∪ {sup()} as follows.4 Suppose we can find some 𝐴′
1 ⊂ 𝐴1 and 𝑡 > 𝑏∗ such that 𝛿(𝑋1, 𝑏) = 0

for all 𝑏 > 𝑡 and all 𝑋1 ∈ 𝐴′
1. Then take 𝑡+ = 𝑡 and redefine 𝐴1 ← 𝐴′

1. If no such 𝐴′
1 and 𝑡 exist, then 𝛿(𝑋1, 𝑏) = 1 for all 𝑋1 ∈ 𝐴1 all 

4 Here sup() = sup𝑏∈ 𝑏. Similarly for inf().
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𝑏 ≥ 𝑏∗, since 𝛿 is nonincreasing in 𝑏 by Lemma 4.2 (if 𝛿(𝑋, 𝑏) = 0 for some 𝑏 ≥ 𝑏∗ then 𝛿(𝑋, 𝑏′) = 0 for all 𝑏′ ≥ 𝑏). In this case we set 
𝑡+ = sup().

As for 𝑡−, suppose we can find some 𝐴′
2 ⊂ 𝐴2 and some 𝑡 ≤ 𝑏∗ such that 𝛿(𝑋, 𝑏) = 1 for all 𝑥 ∈ 𝐴′

2 and 𝑏 < 𝑡. Then we take 𝑡 = 𝑡−
and redefine 𝐴2 ← 𝐴′

2. Otherwise, 𝛿(𝑋, 𝑏) = 0 for all 𝑏 ≤ 𝑏∗ for all 𝑋 ∈ 𝐴2. In this case take 𝑡− = inf().
Finally, if 𝑃 (𝐴2) > 𝑃 (𝐴1), then take a subset of 𝐴′

2 ⊂ 𝐴2 such that 𝑃 (𝐴′
2) = 𝑃 (𝐴1) (which is possible by continuity). We may therefore 

assume that 𝑃 (𝐴1) = 𝑃 (𝐴2).
The upshot of this construction is contained in the following three facts:

F1. 𝑃 (𝐴1) = 𝑃 (𝐴2)
F2. If 𝑏 > 𝑡+ then 𝛿(𝑋1, 𝑏) for all 𝑋1 ∈ 𝐴1.
F3. If 𝑏 < 𝑡− then 𝛿(𝑋2, 𝑏) = 1 for all 𝑋2 ∈ 𝐴2.

As we did in the proof of Lemma 5.1, we will always assume that 𝑋1 ∈ 𝐴1 and 𝑋2 ∈ 𝐴2 to save ourselves from constantly writing 
quantifiers.

Now, let 𝐺+ ∶= {𝑏 ∈  ∶ 𝑏 > 𝑡+} and 𝐺− = {𝑏 ∈  ∶ 𝑏 < 𝑡−}. Either (or both) of these sets may be empty. Note that 𝐺 ∪ 𝐺+ ∪ 𝐺− =
. If 𝐺+ and 𝐺− are non-empty, facts F1 and F2 above can be rephrased as 

sup
𝑋1∈𝐴1

sup
𝑏∈𝐺+

𝛿(𝑋1, 𝑏) = 0, inf
𝑋2∈𝐴2

inf
𝑏∈𝐺−

𝛿(𝑋2, 𝑏) = 1. (A.26)

We define a new decision family, 𝛿, where 

𝛿(𝑋, 𝑏) =

⎧

⎪

⎨

⎪

⎩

𝛿(𝑋, 𝑏) 𝑋 ∉ 𝐴1 ∪ 𝐴2 or 𝑏 ∉ 𝐺,
0, 𝑋 ∈ 𝐴1 and 𝑏 ∈ 𝐺,
1, 𝑋 ∈ 𝐴2 and 𝑏 ∈ 𝐺.

(A.27)

We claim that 𝛿 remains type-I risk safe and has (sometimes strictly) lower type-II risk than 𝛿, thus demonstrating that 𝛿 is Γconst-
inadmissible. To see type-I risk safety, write 

𝑃 (𝛿) = ∫⧵𝐴1∪𝐴2

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. + ∫𝐴1∪𝐴2

sup
𝑏
𝐿𝑏(0, 𝛿(𝑥, 𝑏))P. , (A.28)

where we’ve used that on  ⧵ 𝐴1 ∪ 𝐴2, 𝛿(⋅, 𝑏) = 𝛿(⋅, 𝑏) for all 𝑏. Meanwhile for all 𝑋1 ∈ 𝐴1, 𝐿𝑏(0, 1)𝛿(𝑋1, 𝑏) = 0 for all 𝑏 ∈ 𝐺 ∪ 𝐺+ by 
F2 and definition of 𝛿 (since 𝛿(𝑋1, 𝑏) ≡ 0 by construction for 𝑏 ∈ 𝐺 and 𝛿(𝑋1, 𝑏) = 𝛿(𝑋1, 𝑏) ≡ 0 for 𝑏 ∈ 𝐺+ by F2. If 𝐺+ = ∅ this holds 
trivially). Hence, for any 𝑋1 ∈ 𝐴1, 

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑥1, 𝑏) = sup
𝑏∈𝐺−

𝐿𝑏(0, 1)𝛿(𝑥1, 𝑏) = sup
𝑏∈𝐺−

𝐿𝑏(0, 1)𝛿(𝑥1, 𝑏) = sup
𝑏∈𝐺−

𝐿𝑏(0, 1),

where we interpret the supremum as 0 if 𝐺− = ∅. Therefore, 

∫𝐴1

sup
𝑏
𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. ≤ ∫𝐴1

sup
𝑏∈𝐺−

𝐿𝑏(0, 1)P. = ∫𝐴2

sup
𝑏∈𝐺−

𝐿𝑏(0, 1)P. ,

since 𝑃 (𝐴1) = 𝑃 (𝐴2). Moreover, 

∫𝐴2

sup
𝑏∈𝐺−

𝐿𝑏(0, 1)P. = ∫𝐴2

sup
𝑏∈𝐺−

𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. ≤ ∫𝐴2

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. .

To summarize, the previous two displays imply that: 

∫𝐴1

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. ≤ ∫𝐴2

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. . (A.29)

Next, note that for all 𝑋2 ∈ 𝐴2, ̂𝛿(𝑋2, 𝑏) = 0 for any 𝑏 ∈ 𝐺+, ̂𝛿(𝑋2, 𝑏) = 1 for 𝑏 ∈ 𝐺 by definition, and ̂𝛿(𝑋2, 𝑏) = 𝛿(𝑋2, 𝑏) = 1 for 𝑏 ∈ 𝐺−

by F3. Therefore, since 𝐿𝑏(0, 1) is increasing in 𝑏,
sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑋2, 𝑏) ≤ sup
𝑏∈𝐺∪𝐺−

𝐿𝑏(0, 1) = sup
𝑏∈𝐺

𝐿𝑏(0, 1),

and so, again using that 𝑃 (𝐴1) = 𝑃 (𝐴2),

∫𝐴2

sup
𝑏∈

𝐿𝑏(0, 1)𝛿𝑏(𝑥)P. ≤ ∫𝐴2

sup
𝑏∈𝐺

𝐿𝑏(0, 1)P.

= ∫𝐴1

sup
𝑏∈𝐺

𝐿𝑏(0, 1)P. ≤ ∫𝐴1

sup
𝑏∈

𝐿𝑏(0, 1)𝛿𝑏(𝑥)P. . (A.30)

Here the final inequality uses that
sup
𝑏∈𝐺

𝐿𝑏(0, 1) = sup
𝑏∈𝐺

𝐿𝑏(0, 1)𝛿(𝑋1, 𝑏) ≤ sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑋1, 𝑏),
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for all 𝑋1 ∈ 𝐴1. Combining (A.29) and (A.30) we have 

∫𝐴1∪𝐴2

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. ≤ ∫𝐴1∪𝐴2

sup
𝑏∈

𝐿𝑏(0, 1)𝛿(𝑥, 𝑏)P. . (A.31)

Hence, by (A.28), 𝑃 (𝛿) ≤ ∫ sup𝑏∈ 𝐿𝑏(0, 1)𝛿𝑏(𝑋)P. = 𝑃 (𝛿) ≤ 1.
Next we show that ̂𝛿 has strictly lower type-II risk than 𝛿 for all 𝑏 ∈ 𝐺. Since the type-II risk of ̂𝛿 is the same as that of 𝛿 for all 𝑏 ∉ 𝐺

(by construction), this will show that 𝛿 is inadmissible. Since 𝑃 (𝐴1) = 𝑃 (𝐴2) by construction, we have 𝑄(𝐴1) < 𝑄(𝐴2) by Lemma A.1. 
Therefore, for any 𝑏 ∈ 𝐺, since 𝛿(𝑋2, 𝑏) = 1 for all 𝑋2 ∈ 𝐴2 and 𝛿(𝑋1, 𝑏) = 0 for all 𝑋1 ∈ 𝐴1, we have

𝔼𝑄[𝛿𝑏(𝑋)] = ∫⧵𝐴1∪𝐴2

𝛿(𝑥, 𝑏)Q. + ∫𝐴1∪𝐴2

𝛿(𝑥, 𝑏)𝑄(𝐴2)

= ∫⧵𝐴1∪𝐴2

𝛿(𝑥, 𝑏)𝑑𝑄 +𝑄(𝐴2)

> ∫⧵𝐴1∪𝐴2

𝛿(𝑥, 𝑏)Q. +𝑄(𝐴1) = 𝔼𝑄[𝛿(𝑋, 𝑏)],

which proves that 𝛿 is Γconst-inadmissible, completing the argument.

A.16.  Proof of Corollary 5.3

Lemma 5.3 implies that a 𝐂-admissible binary test 𝜑 is increasing in Λ, hence so too is 𝐸𝜓  by Lemma A.2 in the appendix. 
Therefore, there exists an increasing function ℎ such that 𝐸𝜙(𝑋) = ℎ(Λ(𝑋)) and we may write 𝜑(𝑋, 𝑏) = 𝟏

{

𝐸𝜙(𝑋) ≥ 𝐿𝑏(0, 1)
}

=
𝟏
{

ℎ(Λ(𝑋)) ≥ 𝐿𝑏(0, 1)
}

= 𝟏
{

Λ(𝑋) ≥ ℎ−(𝐿𝑏(0, 1))
}

, where ℎ− is the generalized inverse of ℎ and the final equality holds since ℎ is in-
creasing. The function 𝑡(𝑏) = ℎ−(𝐿𝑏(0, 1)) defines the decision curve.

A.17.  Proof of Theorem 5.3

If 𝜑 is Γconst-admissible then 𝐸𝛿 is sharp by Lemma 4.3, increasing in Λ by Lemma 5.3, and has a minimal decision curve by 
Lemma A.5. This proves the forward direction. Conversely, suppose that 𝐸𝜑 is sharp and increasing in Λ and that 𝜑 has a minimal 
decision curve but that 𝜑 is Γconst-inadmissible. Then, by Lemma A.4 there exists some 𝜓 such that 𝑡𝜙(𝑏) ≤ 𝑡𝛿(𝑏) for all 𝑏 ∈  and 
𝑡𝜙(𝑏∗) < 𝑡𝛿(𝑏∗) for some 𝑏∗, with 𝑄(𝑡𝜙(𝑏∗) ≤ Λ(𝑋) < 𝑡𝛿(𝑏∗)) > 0. Let 𝐼(𝑏∗) = {𝑋 ∶ 𝑡𝜙(𝑏∗) ≤ Λ(𝑋) < 𝑡𝛿(𝑏∗)}. We claim that 

∫𝐼(𝑏∗)
sup
𝑏
𝐿𝑏(0, 𝜑(𝑥, 𝑏))P. < ∫𝐼(𝑏∗)

sup
𝑏
𝐿𝑏(0, 𝜓(𝑥, 𝑏))P. . (A.32)

For 𝑋 ∈ 𝐼(𝑏∗), 𝜙(𝑋, 𝑏∗) = 𝟏
{

Λ(𝑋) ≥ 𝑡𝜙(𝑏∗)
}

= 1, so sup𝑏 𝐿𝑏(0, 𝜓(𝑋, 𝑏)) ≥ 𝐿𝑏∗ (0, 1) and the right hand side of (A.32) is at least 
𝐿𝑏∗ (0, 1)𝑃 (𝐼(𝑏∗)). We claim that the integrand on the left hand side is less than 𝐿𝑏∗ (0, 1). We consider two cases.

1. Suppose that we can find some 𝑏0 such that 𝑡𝜙(𝑏∗) < 𝑡𝛿(𝑏0) < 𝑡𝛿(𝑏∗) and 𝑃 (𝑡𝜙(𝑏∗) ≤ Λ(𝑋) < 𝑡𝛿(𝑏0)) > 0. Let 𝐼(𝑏∗) = 𝐼1 ∪ 𝐼2 where 𝐼1 =
{𝑋 ∶ 𝑡𝜙(𝑏∗) ≤ Λ(𝑋) < 𝑡𝛿(𝑏0)} and 𝐼2 = {𝑋 ∶ 𝑡𝛿(𝑏0) ≤ Λ(𝑋) < 𝑡𝛿(𝑏∗)}. Since 𝑡𝛿 is increasing, for 𝑋 ∈ 𝐼1, we have 𝟏

{

Λ(𝑋) ≥ 𝑡𝛿(𝑏)
}

= 0
for all 𝑏 > 𝑏0 so 

sup
𝑏
𝐿𝑏(0, 𝜑(𝑋, 𝑏)) = sup

𝑏
𝐿𝑏(0, 1)𝟏

{

Λ(𝑋) ≥ 𝑡𝛿(𝑏)
}

≤ 𝐿𝑏0 (0, 1) < 𝐿𝑏∗ (0, 1).

Similarly, for 𝑋 ∈ 𝐼2, sup𝑏 𝐿𝑏(0, 𝜑(𝑋, 𝑏)) ≤ 𝐿𝑏∗ (0, 1) and it follows that 

∫𝐼(𝑏∗)
sup
𝑏
𝐿𝑏(0, 𝜑(𝑥, 𝑏))P. = 𝐿𝑏0 (0, 1)𝑃 (𝐼1) + 𝐿𝑏∗ (0, 1)𝑃 (𝐼2) < 𝐿𝑏∗ (0, 1)𝑃 (𝐼(𝑏

∗)),

using since 𝑏0 < 𝑏∗ (again since 𝑡𝛿 in increasing). Thus, in this case, (A.32) holds.
2. Next suppose that no such 𝑏0 exists. Therefore sup𝑏<𝑏∗ 𝑡𝛿(𝑏) ≤ 𝑡𝜙(𝑏∗) < 𝑡𝛿(𝑏∗). Since 𝑄(sup𝑏<𝑏∗ 𝑡𝛿(𝑏) ≤ Λ(𝑋) < 𝑡𝛿(𝑏∗)) ≥ 𝑄(𝑡𝜙(𝑏∗) ≤

Λ(𝑋) < 𝑡𝛿(𝑏∗)) > 0 by assumption of 𝜙, it follows that sup𝑏<𝑏∗ 𝐿𝑏(0, 1) < 𝐿𝑏∗ (0, 1) since 𝜑 has a minimal decision curve. Therefore, 
since 𝜑(𝑋, 𝑏) = 𝟏

{

Λ(𝑋) ≥ 𝑡𝛿(𝑏)
} for all 𝑏 > 𝑏∗ for 𝑋 ∈ 𝐼(𝑏∗), we have

∫𝐼𝑏∗
sup
𝑏
𝐿𝑏(0, 𝜑(𝑥, 𝑏))P. = ∫𝐼(𝑏∗)

sup
𝑏<𝑏∗

𝐿𝑏(0, 1)𝟏
{

Λ(𝑥) ≥ 𝑡𝛿(𝑏)
}

P.

≤ ∫𝐼(𝑏∗)
sup
𝑏<𝑏∗

𝐿𝑏(0, 1)P. < 𝐿𝑏∗ (0, 1)𝑃 (𝐼(𝑏∗)),

and the final quantity is a lower bound on the right hand side of (A.32).

We have thus proved (A.32). Note all for all 𝑋 ∈  , 𝜙(𝑋, 𝑏) ≥ 𝛿(𝑋, 𝑏) since 𝑡𝜙(𝑏) ≤ 𝑡𝛿(𝑏). Therefore,

𝑃 (𝜑) = ∫⧵𝐼(𝑏∗)
sup
𝑏
𝐿𝑏(0, 𝜑(𝑋, 𝑏))P. + ∫𝐼(𝑏∗)

sup
𝑏
𝐿𝑏(0, 𝜑(𝑋, 𝑏))P.

< ∫⧵𝐼(𝑏∗)
sup
𝑏
𝐿𝑏(0, 𝜓(𝑋, 𝑏))P. + ∫𝐼(𝑏∗)

sup
𝑏
𝐿𝑏(0, 𝜓(𝑋, 𝑏))P.
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= 𝑃 (𝜓) ≤ 1,

contradicting that 𝐸𝜑 is sharp. This proves the first part of theorem.
For the second half of the theorem, let 𝐸 be an e-variable for 𝑃 . Suppose 𝜑𝐸 is Γconst-admissible. By Lemma 4.7, 𝐸 = 𝐸𝜑𝐸 . Then, by 

the first past of the theorem, 𝐸 is sharp, compatible, and increasing in Λ. Conversely, suppose 𝐸 is sharp, compatible, and increasing 
in Λ. By compatibility, 𝐸 = 𝐸𝜑𝐸  so it remains only to show that 𝜑𝐸 has a minimal decision-curve, in which case Γconst-admissibility 
will again follow from applying the first part of the theorem. Let ℎ be an increasing function such that 𝐸(𝑋) + ℎ(Λ(𝑋)) and let 
ℎ−(𝑦) = inf{𝑥 ∈ ℜ ∶ ℎ(𝑥) ≥ 𝑦} by its generalized inverse. Since ℎ is increasing, ℎ− is left continuous. Further, 

𝜑𝐸 (𝑋, 𝑏) = 𝟏
{

𝐸(𝑋) ≥ 𝐿𝑏(0, 1)
}

= 𝟏
{

Λ(𝑋) ≥ ℎ−(𝐿𝑏(0, 1))
}

,

so ℎ−(𝐿𝑏(0, 1)) is equal to 𝑡𝛿(𝑏) 𝑃 -almost surely. Therefore, if sup𝑏<𝑏∗ 𝐿𝑏(0, 1) = 𝐿𝑏∗ (0, 1) then ℎ−(sup𝑏<𝑏∗ 𝐿𝑏(0, 1)) = ℎ−(𝐿𝑏∗ (0, 1)), hence 
𝑡𝛿(𝑏) is a minimal decision curve. This completes the proof.

Appendix B.  On the definition of admissibility

First let us discuss the notion of admissibility used by Grünwald[1], which we henceforth refer to as G-admissibility. We say a 
test family 𝛿 is G-inadmissible if there exists a type-I risk safe test family 𝜙 such that, for all 𝑏 ∈  and all 𝑄 ∈ , 

𝑄(𝐿𝑏(1, 𝜙(𝑋, 𝑏)) > 𝐿𝑏(1, 𝛿(𝑋, 𝑏)) = 0, (B.1)

and there exists some 𝑏 ∈  and some 𝑄 ∈  such that 
𝑄(𝐿𝑏(1, 𝜙(𝑋, 𝑏)) < 𝐿𝑏(1, 𝛿(𝑋, 𝑏))) > 0. (B.2)

In other words, 𝜙 has loss at most that of 𝛿 with 𝑄-probability 1 on all losses, and has lower loss than 𝛿 with positive probability. 
If no such 𝜙 exists then we say that 𝛿 is G-admissible. We note that Grünwald[1] defines G-admissibility in terms of type-I losses 
instead of type-II, after preprocessing the losses to remove any such that 𝐿𝑏(1, 𝑎) > 𝐿𝑏(1, 𝑎) and 𝐿𝑏(0, 𝑎) > 𝐿𝑏(0, 𝑎) for some 𝑎, which 
can be done without loss of generality.

Now, if we translate Grünwald’s results to our setting—in particular, we consider binary actions only—then his main result can 
be formulated as follows. Consider testing  against . Then:

1. If 𝛿 is G-admissible, then there exists some e-variable 𝐸 for  such that 𝛿(𝑋, 𝑏) = 𝟏
{

𝐸(𝑋) ≥ 𝐿𝑏(0, 1)
}

.
2. If 𝛿 = 𝟏

{

𝐸(𝑋) ≥ 𝐿𝑏(0, 1)
} for some some e-variable 𝐸 for  that is sharp, compatible with 0, and all 𝑃 ∈  are absolutely 

continuous with one another, then 𝛿 is G-admissible.

Let us now discuss some relationships between Γ-admissibility and G-admissibility. First, 𝐂-admissibility implies G-admissibility. 
This is intuitive: If a test family 𝛿 cannot be beat in expectation for fixed 𝑏, then it cannot be beat with probability 1 either.

Lemma B.1. 𝐂-admissibility implies G-admissibility. 
Proof.  We prove the contrapositive. Suppose that 𝛿 is G-inadmissible. So there exists some 𝜙 such that, for all 𝑏 ∈ ,

𝜙(𝑋, 𝑏) ≥ 𝛿(𝑋, 𝑏) 𝑄-almost everywhere for all 𝑄 ∈ ,

and 𝜙(𝑋, 𝑏0) > 𝛿(𝑋, 𝑏0) for some 𝑏0 and all 𝑋 ∈ 𝐴 with 𝑄0(𝐴) > 0 for some 𝑄0. Therefore, 𝔼𝑄0
[𝛿(𝑋, 𝑏0)𝟏{𝐴}] < 𝔼𝑄0

[𝜙(𝑋, 𝑏0)𝟏{𝐴}] and 
𝔼𝑄0

[𝛿(𝑋, 𝑏0)𝟏{𝐴𝑐}] ≤ 𝔼𝑄0
[𝜙(𝑋, 𝑏0)𝟏{𝐴𝑐}]. Thus 𝔼𝑄0

[𝛿(𝑋, 𝑏0)] < 𝔼𝑄0
[𝛿(𝑋, 𝑏0)]. Moreover, since 𝛿(𝑋, 𝑏) ≥ 𝜙(𝑋, 𝑏) -almost surely for all 

𝑏, we have 𝔼𝑄[𝛿(𝑋, 𝑏)] ≤ 𝔼𝑄[𝛿(𝑋, 𝑏)] for all 𝑏, hence 𝜙 is strictly preferable to 𝛿 with respect to 𝐔. Thus G-inadmissibility implies 
𝐂-inadmissibility. ∎

Note, however, that this proof does not work if we replace 𝐂-admissibility by 𝐔-admissibility. Consider the following example: Set 
 = [1,∞) and let 𝑋 take values on [1,∞). Suppose that 𝛿(𝑋, 𝑏) > 𝜙(𝑋, 𝑏) for all 𝑋 ≠ 𝑏, and for 𝑋 = 𝑏 we have 𝛿(𝑋, 𝑏) < 𝜙(𝑋, 𝑏). Since 
𝑋 = 𝑏 has measure zero, 𝛿 is strictly preferable to 𝜙 with respect to G-admissibility. But for 𝐵(𝑋) = 𝑥 we have 𝔼𝑄[𝐿𝐵(1, 𝛿(𝑋,𝐵))] =
𝔼𝑄[𝐿𝑋 (1, 0)(1 − 𝛿(𝑋,𝑋))] > 𝔼𝑄[𝐿𝑋 (1, 0)(1 − 𝜙(𝑋,𝑋))] = 𝔼𝑄[𝐿𝐵(1, 𝜙(𝑋,𝐵))], so 𝛿 is not preferable to 𝜙 with respect to 𝐔-admissibility. 
This shows that we cannot conclude 𝐔-inadmissibility from G-inadmissibility.

Of course, this does not provide a counterexample to the claim that 𝐔-admissibility implies G-admissibility per se. But it sheds 
light on the fact that one would need a proof totally unlike the one above. This makes us doubt that the claim is true. 

Next let us return to a question raised in Section 2: Why not define admissibility with a supremum over losses inside the expecta-
tion? That is, we could say that 𝛿 is admissible if it is type-I risk safe and for all other type-I risk safe tests 𝜙, 

𝔼
[

sup
𝑏∈

(𝐿𝑏(1, 𝛿𝑏(𝑋)) − 𝐿𝑏(1, 𝜙𝑏(𝑋))
]

≤ 0. (B.3)

Such a definition, however, leads to an empty set of admissible test families. Intuitively, no test can be as good as any other on every 
data-dependent loss. To do so, it must be the most powerful test on every loss. That is, for a point null versus a point alternative, it 
must be the Neyman-Pearson test. But it is invalid to play the Neyman-Pearson on each loss, since such a test family is not type-I risk 
safe. This is formalized in the following argument.
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Suppose we are testing a simple null vs simple alternative,  = {𝑃 } vs  = {𝑄}. Consider two loss functions,  = {0, 1}. Suppose 
𝛿 is admissible according to (B.3) and consider the Neyman-Pearson test on each loss. That is, for 𝑖 ∈ {0, 1}, define

𝜙(𝑖)(𝑋, 𝑏) =

{

𝟏
{

Λ(𝑋) ≥ 𝜅𝑖
}

, if 𝑏 = 𝑖
0, otherwise,

where, as usual, 𝜅𝑖 is chosen such that 𝔼𝑃 [𝜙(𝑖)(𝑋, 𝑏)] = 1∕𝐿𝑖(0, 1). Note that 𝜙(𝑖) is type-I risk safe. Also,

𝔼𝑄
[

sup
𝑏

(

𝐿𝑏(1, 𝛿(𝑋, 𝑏)) − 𝐿𝑏(1, 𝜙(𝑖)(𝑋, 𝑏))
)

]

≥ 𝔼𝑄[𝐿𝑖(1, 𝛿(𝑋, 𝑖)) − 𝐿𝑖(1, 𝜙(𝑖)(𝑋, 𝑖)]

= 𝐿𝑖(1, 0)𝔼𝑄[𝜙(𝑖)(𝑋, 𝑖) − 𝛿(𝑋, 𝑖)] ≥ 0,

where the last inequality follows since 𝜙(𝑖) is the uniformly most powerful test by the Neyman-Pearson lemma. Therefore, by admis-
sibility we conclude that 𝔼𝑄[𝜙(𝑖)(𝑋, 𝑖) − 𝛿(𝑋, 𝑖)] = 0. That is, 𝛿 has the same power as 𝜙(𝑖) under loss 𝑏𝑖 and thus, by the uniqueness of 
the Neyman-Pearson lemma, we have 𝛿 = 𝜙(𝑖) almost surely. But 𝑖 was arbitrary, so 𝜙(1) = 𝛿 = 𝜙(2), a contradiction.

B.1.  Type-I risk as the supremum over adversaries

Let us now discuss (3), i.e., the fact that we can write type-I risk as the supremum over maps from the data to losses.
Recall that (,Σ) is a standard Borel space if there exists a complete, separable metric 𝜌 on 𝑋 such that Σ becomes the Borel 

𝜎-field under 𝜌. A probability space (Ω, , 𝑃 ) is Borel if (Ω, ) is Borel. If we call a function 𝑌 ∶ (,Σ) → (ℜ,Σℜ) Σ-measurable, 
we mean that it is Σ∕Σℜ-measurable where Σℜ is understood to the Borel 𝜎-field; likewise if ℜ is replaced with any subset of ℜ.

Lemma B.2. Let (Ω, , 𝑃 ) be a Borel probability space. Equip  and  with 𝜎-fields Σ𝑋 and Σ such that ( ,Σ ) and (,Σ) are standard 
Borel spaces. Consider any set of type-I loss functions {𝐿𝑏(0, 1) ∶ 𝑏 ∈ } such that 𝑏↦ 𝐿𝑏(0, 1) is Σ-measurable. Let 𝛿 be a test family that 
is (Σ ⊗ Σ)-measurable. If 𝛿 has finite type-I risk, then: 

𝔼𝑋∼𝑃 sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋, 𝑏)) = sup
𝐵∶→

𝔼𝑋∼𝑃𝐿𝐵(𝑋)(0, 𝛿(𝑋,𝐵(𝑋))), (B.4)

where the supremum on the right is over all maps 𝐵 that are Σ∕Σ-measurable. 
Proof.  First we claim the left hand side is well-defined. Define the function 𝑔 ∶ Ω → ℜ by 𝑔(𝜔) = sup𝑏 𝐿𝑏(0, 𝛿(𝑋(𝜔), 𝑏)). We claim that 
𝑔 is  -measurable. Since 𝐿𝑏 = 𝐿𝑏(0, 1) is Σ-measurable and 𝛿 is (Σ ⊗ Σ)-measurable, 𝐿𝑏(0, 𝛿(𝑥, 𝑏)) = 𝐿𝑏(0, 1)𝛿(𝑥, 𝑏) is (Σ ⊗ Σ)-
measurable. Consequently, the map (𝜔, 𝑏) ↦ 𝐿𝑏(0, 𝛿(𝑋(𝜔), 𝑏)) is ( ⊗ Σ)-measurable. Consider the super-level sets 

{𝜔 ∶ 𝑔(𝜔) > 𝑐} = ΓΩ({(𝜔, 𝑏) ∶ 𝐿𝑏(0, 1)𝛿(𝑋(𝜔), 𝑏) > 𝑐}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐴𝑐

),

where ΓΩ represents the projection of a set in Ω ×  onto Ω. The set 𝐴𝑐 is Borel (i.e., lies in Σ ⊗ ) by the measurability of 
𝐿𝑏(0, 1)𝛿(𝑋(𝜔), 𝑏). The projection of a Borel set on a product space is analytic by Suslin’s theorem, hence {𝜔 ∶ 𝑔(𝜔) > 𝑐} is ana-
lytic [48, Exercise 14.3]. Moreover, every analytic set is universally measurable [48, Theorem 21.10], meaning it is measurable for 
any finite Borel measure on Ω, and 𝑃  is finite and Borel by assumption. Finally, if the super-level sets of a real-valued function are 
measurable, then the function itself measurable. We conclude that 𝑔 is  -measurable, so the left hand side of (3) exists. Now, for any 
𝑋 and 𝐵, 𝐿𝐵(𝑋)(0, 𝛿(𝑋,𝐵(𝑋))) ≤ sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏)). Taking expectations and then taking the supremum over all maps 𝐵, we see that 
the right hand side of (3) is at most the left hand side.

To prove the converse fix 𝜖 > 0 and let 𝜔 be given. Define the multifunction Ξ𝜖 ∶ Ω ⇉ 

Ξ𝜖(𝜔) =
{

𝑏∗ ∈  ∶ 𝐿𝑏∗ (0, 𝛿(𝑋(𝜔), 𝑏∗)) > sup
𝑏
𝐿𝑏(0, 𝛿(𝑋(𝜔), 𝑏)) − 𝜖

}

,

which is  -measurable since (𝜔, 𝑏) ↦ 𝐿𝑏(0, 𝛿(𝑋(𝜔), 𝑏)) is measurable. The Kuratowski-Ryll-Nardzewski measurable selection theo-
rem [49] (see also Kechris48, Theorem 12.13) guarantees the existence of a measurable selector 𝐵∗

𝜖 (𝑋(𝜔)) such that 𝐵𝜖(𝑋(𝜔)) ∈ Ξ𝜖(𝜔), 
hence 𝐿𝐵∗

𝜖 (𝑋)(0, 𝛿(𝑋(𝜔), 𝐵∗
𝜖 (𝑋)) + 𝜖 > sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏)). Taking expectations and letting 𝜖 ↓ 0 shows that the left hand side of (3) is at 

most the right, which proves the result. ∎
The following corollary extends the result to composite null hypotheses. The proof follows by taking the supremum over 𝑃 ∈ 

on both sides of (B.4).

Corollary B.1. Let (Ω, ) be a measurable space and let  be a collection of probability measures such that (Ω, , 𝑃 ) is a Borel probability 
space for each 𝑃 ∈  . Let ( ,Σ ), (,Σ), and {𝐿𝑏(0, 1) ∶ 𝑏 ∈ } be as in Lemma B.2. Then 

sup
𝑃∈

𝔼𝑋∼𝑃 sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋, 𝑏)) = sup
𝑃∈

sup
𝐵∶→

𝔼𝑋∼𝑃𝐿𝐵(𝑋)(0, 𝛿(𝑋,𝐵(𝑋))), (B.5)

where the rightmost supremum is over all maps 𝐵 that are Σ∕Σ-measurable. 
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Remark 6. There exist pathological choices of {𝐿𝑏}𝑏∈ which ensure that sup𝑏 𝐿𝑏(0, 𝛿(𝑋, 𝑏)) is not measurable, in which case Def-
inition 2.3 breaks down and Lemma B.2 doesn’t hold. Instead of making various measurability assumptions as we do in this work, 
one could circumvent this problem by following Grünwald[1] and calling 𝛿 type-I risk safe if there exists some measurable function 
𝜉 ∶  → ℜ≥0 such that 

sup
𝑃∈

𝔼𝑋∼𝑃 𝜉(𝑋) ≤ 1  and  sup
𝑏∈

𝐿𝑏(0, 𝛿(𝑋, 𝑏)) ≤ 𝜉(𝑋) -almost surely. (B.6)

Appendix C.  On the relationship to Bayesian decision theory

A common response to the drawbacks of classical Neyman-Pearson theory that we’ve highlighted is to pivot to Bayesian decision 
theory [22]. While the Bayesian often/typically omits the notion of type-I error control and focuses solely on loss minimization, we 
show below that he gains the ability to handle post-hoc loss functions for free. We also discuss what a Bayesian notion of type-I risk 
control might look like, and how to achieve it.

Moving away from the setting considered in the main paper for a moment, let Θ be a parameter space,  a set of actions, and 
𝐿 ∶ Θ × → ℜ≥0 a loss function. Associated to each 𝜃 ∈ Θ is a distribution 𝑃𝜃 . Let 𝜋 be a prior on Θ. Given observations 𝑋, Bayesian 
decision theory tells us to minimize the expected posterior loss. That is, we take action 

𝛿𝜋 (𝑋) ≡ arg min𝑎∈𝔼𝜃∼𝜋(⋅|𝑋)𝐿(𝜃, 𝑎). (C.1)

A fundamental result is that the Bayes optimal decision rule [50, Theorem 4.1.1], henceforth ‘Bayes decision’ for brevity, is always 
given by 𝛿𝜋 , meaning that it satisfies 𝐵𝜋 (𝛿𝜋 ) = inf𝛿 𝐵𝜋 (𝛿) where 

𝐵𝜋 (𝛿) = 𝔼𝜃∼𝜋𝔼𝑋∼𝑃𝜃 [𝐿(𝜃, 𝛿(𝑋))]. (C.2)

(Note that 𝜃 is drawn from the prior 𝜋 in (C.2), not the posterior 𝜋(⋅|𝑋) as in (C.1).) Bayes estimators are, as the name suggests, the 
Bayesian equivalent to frequentist minimax estimators, so a unified solution for the Bayes decision regardless of the loss function is 
a big benefit of Bayesian decision theory.

To apply this to our setting, we take  = {0, 1} and we assume that Θ is naturally partitioned into Θ0 and Θ1, where Θ0 corresponds 
to the null and Θ1 to the alternative. This induces the conditional prior distributions 𝜋𝑖(𝜃) = 𝜋𝑖(𝜃|𝜃 ∈ Θ𝑖) and conditional posterior 
distributions 𝜋𝑖(𝜃|𝑋) = 𝜋𝑖(𝜃|𝑋, 𝜃 ∈ Θ𝑖).

Assuming as usual that 𝐿(𝜃, 𝑖) = 0 for 𝜃 ∈ Θ𝑖 and 𝑖 ∈ {0, 1}, the Bayes decision becomes
𝛿𝜋 (𝑋) = arg min{𝔼𝜃∼𝜋(⋅|𝑋)[𝐿(𝜃, 0)],𝔼𝜃∼𝜋(⋅|𝑋)[𝐿(𝜃, 1)]

}

= arg min{𝔼𝜃∼𝜋1(⋅|𝑋)[𝐿(𝜃, 0)]𝜋(Θ1|𝑋),𝔼𝜃∼𝜋0(⋅|𝑋)[𝐿(𝜃, 1)]𝜋(Θ0|𝑋)
}

= 𝟏
{

𝔼𝜃∼𝜋1(⋅|𝑋)[𝐿(𝜃, 0)]𝜋(Θ1|𝑋) ≥ 𝔼𝜃∼𝜋0(⋅|𝑋)[𝐿(𝜃, 1)]𝜋(Θ0|𝑋)
}

. (C.3)

In words, we play whichever action has the lowest cost if wrong (i.e., results in a false positive or negative), weighted by the probability 
under the posterior.

To move to a post-hoc setting, let’s consider a set of losses {𝐿𝑏}𝑏∈. As before, we allow an adversary to choose 𝑏 after seeing 
the data and we encode the adversary as a measurable map 𝐵 ∶  → . As usual, we let the decision rule see 𝐵(𝑋) before making a 
decision.

Can Bayesian decision theory accommodate a post-hoc selection of the loss? Yes, in the following sense: If we minimize the 
expected posterior loss as before but on loss 𝐿𝐵(𝑋) (which we observe), then the resulting decision rule minimizes Bayes risk, where 
the Bayes risk is now defined in terms of the loss selected by the adversary. More formally:
Proposition C.1. The decision rule 

𝜙𝜋 (𝑋) = arg min𝑎∈𝔼𝜃∼𝜋(⋅|𝑋)𝐿𝐵(𝑋)(𝜃, 𝑎),

satisfies 
𝔼𝜃∼𝜋𝔼𝑋∼𝑃𝜃𝐿𝐵(𝑋)(𝜃, 𝜙𝜋 (𝑋)) = inf

𝜙
𝔼𝜃∼𝜋𝔼𝑋∼𝑃𝜃𝐿𝐵(𝑋)(𝜃, 𝜙(𝑋)),

for all 𝐵 ∶  → . 
We emphasize that 𝜙𝜋 is well-defined since, as mentioned earlier, 𝜙 is allowed to see 𝐵(𝑋). We also note that this result is not new. 
For example, Grünwald[25] notes that that Bayesian decision can accommodate post-hoc loss functions, but we hope the formal 
treatment above clarifies in what sense this is true, and allows for easier comparison to our frequentist results.
Proof.  For any decision rule 𝜙, let 𝓁(𝜙(𝑥)|𝑥) = 𝔼𝜃∼𝜋(⋅|𝑥)𝐿𝐵(𝑥)(𝜃, 𝜙(𝑥)) be its expected posterior loss at a given 𝑥 on loss 𝐿𝐵(𝑥). For 
simplicity, assume that 𝑃𝜃 has density 𝑝(⋅|𝜃). Let 𝑝(𝑥) = ∫ 𝑝(𝑥|𝜃)𝜋(𝜃)d𝜃 be the marginal and note that 𝑝(𝑥|𝜃)𝜋(𝜃) = 𝜋(𝜃|𝑥)𝑝(𝑥). Then, 
by Fubini’s theorem,

𝔼𝜃∼𝜋𝔼𝑋∼𝑃𝜃𝐿𝐵(𝑋)(𝜃, 𝜙(𝑋)) = ∫Θ ∫
𝐿𝐵(𝑥)(𝜃, 𝜙(𝑥))𝑝(𝑥|𝜃)𝜋(𝜃)d𝑥d𝜃

= ∫ ∫Θ
𝐿𝐵(𝑥)(𝜃, 𝜙(𝑥))𝜋(𝜃|𝑥)𝑝(𝑥)d𝜃d𝑥
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= ∫
𝓁(𝜙(𝑥)|𝑥)𝑝(𝑥)d𝜃.

By minimizing the expected posterior 𝓁(𝜙(𝑥)|𝑥) we’re minimizing the above integrand at every 𝑥, thus minimizing the value of the 
integral. ∎

The Bayesian paradigm is thus post-hoc valid in the sense of Proposition C.1. But it does not take into account the notion of type-I 
error—it is solely concerned with minimizing the loss. In other words, Bayesian theory treats type-I and type-II loss as symmetric, 
whereas Neyman-Pearson theory, and our generalized version thereof, views type-I risk as taking precedence. A natural question is 
whether one can incorporate a notion of type-I risk safety into Bayesian decision theory; we provide one answer below.

We might consider the following definition of type-I risk in the Bayesian context: 
𝑆𝜋 (𝛿) = sup

𝐵∶→
𝔼𝜃∼𝜋0𝔼𝑋∼𝑃𝜃𝐿𝐵(𝑋)(𝜃, 𝛿(𝑋)), (C.4)

where we emphasize that 𝜃 is being drawn from the induced prior 𝜋0 over Θ0, not from 𝜋 itself. It’s helpful to compare (C.4) to the 
frequentist counterpart in the main paper, Definition 2.3. First, following the Bayesian philosophy, we’ve replaced the supremum 
over Θ0 with an expectation (the supremum over Θ0 appears as a supremum over  in Definition 2.3). But we have also moved the 
supremum over 𝐵 to the outside; we leave moving the supremum inside 𝔼𝜃∼𝜋0  as a possible future direction.

It turns out that we can solve a constrained optimization problem in order provide an alternative estimator which satisfies 𝑆𝜋 (𝛿) ≤
1. This alternative estimator is the Bayes decision for a new problem with a different loss function. Only the general form of this 
estimator can be given, however. It involves a parameter 𝜆 which, to calculate explicitly, would require knowledge of the particular 
distributions involved (and thus can be calculated for any given problem, just not in a closed form manner that applies to all problems).
Proposition C.2.  There exists some 𝜆 ≥ 0 such that the Bayes decision 𝛿𝜋 with loss 

𝐿̂(𝜃, 𝑎) =

{

𝐿(𝜃, 𝑎), 𝜃 ∈ Θ1,
𝜋(Θ0)+𝜆
𝜋(Θ0)

𝐿(𝜃, 𝑎), 𝜃 ∈ Θ0,
(C.5)

satisfies 𝑆𝜋 (𝛿𝜋 ) ≤ 1 on the original problem. 
Proof.  In order to enforce the constraint 𝑆𝜋 (𝛿𝜋 ) ≤ 1 we introduce the Lagrange multiplier 𝜆 and solve the optimization problem 

min
𝛿

{

𝐵𝜋 (𝛿) + 𝜆(𝑆𝜋 (𝛿) − 1)
}

. (C.6)

Expanding, we can collect terms and obtain
𝐵𝜋 (𝛿) + 𝜆(𝑆𝜋 (𝛿) − 1) = (𝜋(Θ0) + 𝜆)𝔼𝜃∼𝜋0𝔼𝑋∼𝑃𝜃𝐿(𝜃, 𝛿(𝑋))

+ 𝔼𝜃∼𝜋1𝔼𝑋∼𝑃𝜃𝐿(𝜃, 𝛿(𝑋))𝜋(Θ1) − 𝜆

= 𝔼𝜃∼𝜋𝔼𝑋∼𝑃𝜃 𝐿̂(𝜃, 𝛿(𝑋)) − 𝜆.

This is minimized by the Bayes estimator in (C.1) with 𝐿 replaced by ̂𝐿. The value of 𝜆 can then be adjusted to ensure that 𝑆𝜋 (𝛿) ≤ 1. ∎

Appendix D.  On risk control vs error probabilities

The formulation of post-hoc hypothesis testing we’ve advanced here changes the kinds of guarantees that an analyst can give 
concerning the performance of their tests. The currency of our framework is risk control (Definition 2.3) instead of type-I error 
control—one obtains a bound on the expected loss instead of the error probability. Given that modern hypothesis testing uses error 
probabilities, it is reasonable to be skeptical of changing the metric. Here we consider four brief arguments in favor of risk control. 
To provide a full-throated defense would require its own paper, but it’s worth at least sketching these considerations here.

The first argument is historical. As we’ve discussed, Wald[18] noted that standard Neyman-Pearson hypothesis testing is a part of 
classical statistical decision theory once it is reformulated in terms of loss functions. And decision theory has always been concerned 
with expected loss as the error metric, due to compelling arguments such as representation theorems [51], coherence and Dutch 
books arguments [52], complete class theorems [53,54], amenability to central limit theorems and laws of large numbers, and so on. 
Thus, our emphasis on risk control can be seen as a return to the roots of hypothesis testing as decision theory, where expected risk 
is the norm.

The second is a pragmatic argument. As we mentioned in the introduction, there are alternatives to Neyman-Pearson hypothesis 
testing, the most successful of which is the Bayesian agenda. But if one is fond of the tools of the Neyman-Pearson paradigm—such 
as significance levels, power, and accept/reject procedures—and seeks to generalize those tools to handle post-hoc analysis, then the 
formulation of post-hoc hypothesis testing studied here (and in 1) appears to be the only option currently on offer. (See Appendix C 
for a longer discussion on Bayesian decision theory and how it relates to our framework.)

The third argument is pedagogical. It is well known that p-values and error probabilities are misunderstood by practitioners, 
necessitating a near-constant stream of mildly condescending educational articles on their correct use and interpretation. Changing 
the metric to risk control (and reporting e-values instead of p-values) may be prophylactic, allowing us to leave some of this confusion 
behind.
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Last is a normative argument. Traditional hypothesis testing, with its focus on controlling error probabilities, can mislead prac-
titioners into treating the results as definitive solely based on whether 𝑝 ≤ 𝛼. This obscures the fundamental uncertainty inherent in 
any single study. Risk control, by contrast, emphasizes expected loss across many applications of a testing procedure. The guarantee 
is only that the average loss will be controlled in the long run. It emphasizes that any individual study may be wrong, and one should 
remain humble when asserting conclusions. 
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