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Abstract
The rise of data sharing through private and public data portals necessitates more attention to detecting and
protecting sensitive data before datasets get published. While research and practice have converged on the
importance of documenting Personal Identifiable Information (PII), automatic, accurate and scalable methods for
detecting such data in (tabular) datasets are behind. Moreover, we argue that sensitive data detection is more
than PII type detection, and methods should consider the more fine-grained context of the dataset and how its
publication can be misused beyond the identification of individuals. To guide research in this direction, we
present a novel framework for contextual sensitive data detection based on type contextualization and domain
contextualization. For type contextualization, we introduce the detect-then-reflect mechanism, in which large
language models (LLMs) first detect potential sensitive column types in tables (e.g. PII types such as email
address), and then assess their actual sensitivity based on the full table context. For domain contextualization,
we propose the retrieve-then-detect mechanism that contextualizes LLMs in external domain knowledge, such
as data governance instruction documents, to identify sensitive data beyond PII. Experiments on synthetic and
humanitarian datasets show that: 1) the detect-then-reflect mechanism significantly reduces the number of false
positives for type-based sensitive data detection, whereas 2) the retrieve-then-detect mechanism is an effective
stepping stone for domain-specific sensitive data detection, and retrieval-augmented LLM explanations already
provide a useful input for manual data auditing processes more efficient.



1 Introduction

Data sharing underpins reuse across sciences, enterprises, and governments through public and private
portals (Borgman and Groth, 2025; Worth et al., 2024; Zhang et al., 2024; Wilkinson et al., 2016; Brickley
et al., 2019). This raises the need to detect and protect sensitive data. Such data includes direct identifiers (e.g.,
names, emails (European Parliament and Council of the European Union, 2016)) as well as indirect or contextual
information that becomes risky under certain conditions (OCHA, 2025). For example, facility locations, ethnic
identifiers, or military logs may be sensitive depending on geopolitics, populations, or timing. This illustrates the
complexity of sensitive data detection (SDD) and the need for nuanced, context-dependent methods.
Beyond operational and ethical concerns, Large Language Models (LLMs) increase the risks of leakage: trained
on web data, they may memorize and reproduce sensitive information (Subramani et al., 2023; Worth et al., 2024;
Carlini et al., 2021; Lukas et al., 2023). Studies show sensitive data is often underspecified in documentation
on sharing portals like HuggingFace (Yang et al., 2024; Akhtar et al., 2024; Worth et al., 2024), motivating
improved methods and tools for (semi-)automated protection.
Most work on SDD targets Personally Identifiable Information (PII) (Kužina et al., 2023; Subramani et al.,
2023; Akhtar et al., 2024). For unstructured data, PII detection relies on Named Entity Recognition or pattern-
matching (Subramani et al., 2023); similar approaches exist for tabular data (Raman, 2001). Yet sensitivity
extends far beyond explicit PII. Kober et al. (2023) propose a taxonomy of always-, combination-, context-, and
value-sensitive data. For instance, email address may be harmless in one dataset but identifying in another,
causing naïve type-based detection yield false positives. Likewise, hospital geo-coordinates may be benign
in one region but sensitive in conflict zones (OCHA, 2025), calling for contextualization beyond PII detection.
LLMs offer new potential for sensitivity detection by reasoning over structured data. Studies show they can
interpret tables with carefully designed prompts (Fang et al., 2024), achieving strong results in tasks such as
text-to-SQL and table retrieval (Fang et al., 2024; Ji et al., 2025). These capabilities suggest that LLMs can
leverage schema, values, and external knowledge to interpret tabular dataset semantics (Hulsebos et al., 2019a).
We revisit sensitive data in tabular datasets and introduce type contextualization and domain contextualization as
key to contextual SDD. To put this into practice, we propose two mechanisms. First, detect-then-reflect addresses
type contextualization: LLMs detect potential PII-type columns, then reflect in context, reducing false positives.
Second, retrieve-then-detect addresses domain contextualization: LLMs use retrieval-augmented guidelines
to identify non-personal sensitive data in expert-informed synthetic datasets, producing effective human-audit
explanations. Finally, we evaluate both mechanisms on real humanitarian data from the UN Humanitarian Data
Exchange (HDX) platform (United Nations, 2014), showing significant false positive reduction compared to
baselines like pattern-matching and basic ML (Microsoft, 2018; Google, 2018).

2 Related work

Conceptualization of Sensitive Data. The notion of “sensitive data” is multifaceted, spanning legal, theoretical,
and domain-specific views. Legal frameworks often equate sensitivity with PII. The GDPR defines personal
data broadly as “any information relating to an identified or identifiable natural person,” specifying sensitive
categories like health, ethnicity, or politics requiring extra protection (European Parliament and Council of the
European Union, 2016). Similarly, HIPAA defines identifiers that make health information “Protected Health
Information (PHI)” when linked to individuals (Centers for Medicare & Medicaid Services, 1996). These provide
a baseline: data that directly or indirectly singles out a person is sensitive.
Yet static, category-based definitions are insufficient for modern governance (Quinn and Malgieri, 2021), as
they emphasize direct identifiers while overlooking non-personal but risky data such as geolocation data,
community-level attributes, or institutional records. Sensitivity is often situational: seemingly harmless data can
become sensitive when combined, repurposed, or shared across contexts (Malkin, 2023).
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Theoretical perspectives advance this nuance. Nissenbaum’s Contextual Integrity frames sensitivity as the
appropriateness of information flows within social norms (Nissenbaum, 2004). Violations occur when flows
breach expectations, not from the data type itself. Building on this, researchers advocate context-grounded
assessments (Malkin, 2022; Shvartzshnaider et al., 2019). For instance, shopping data may be ordinary in retail
but sensitive in behavioral profiling.
Recent taxonomies further refine this view. Kober et al. (2023) distinguish: (1) always-sensitive data (e.g., direct
identifiers); (2) combination-sensitive (sensitive when linked, e.g., identity + location); (3) context-sensitive
(sensitivity by use, e.g., photos in medical vs. travel contexts); and (4) value-sensitive (sensitivity from specific
values). This shows that not all PII is equally sensitive, and not all sensitive data is PII.
In summary, conceptualizations have shifted from static identifiers to layered, context-dependent models. Legal
standards remain essential for compliance, but frameworks like Contextual Integrity and multi-layer taxonomies
emphasize context, use, and value. This motivates our research: effective sensitive data detection must go beyond
PII recognition toward context-aware, domain-sensitive approaches.

Methods for Detecting Sensitive Data. Most automated sensitive data detection methods concentrate on PII
recognition. Widely adopted industry tools like Microsoft Presidio (Microsoft, 2018) and Google Cloud DLP
(Google Cloud, 2018) are largely rule-based, relying on regular expressions, keyword lists, and simple machine
learning heuristics to catch well-defined patterns like email addresses or phone numbers.
Research has advanced towards more semantic understanding. Hulsebos et al. (2019b) introduced Sherlock, a
deep learning model that classifies table columns into 78 semantic types, including numerous PII categories,
by learning from diverse feature sets extracted from column values. This approach outperformed regex and
dictionary baselines, especially on noisy or inconsistently formatted data. Kužina et al. (2023) developed this
further with CASSED, a transformer-based model (BERT) that integrates column headers, data types, and sample
values to classify columns into sensitive categories. By incorporating table context, CASSED showed improved
generalization and an ability to identify sensitive columns that lack explicit clues in their values.
Recently, Large Language Models (LLMs) have emerged as powerful tools for sensitive data detection (Shen
et al., 2025; Yang et al., 2023). Their vast internalized knowledge and semantic understanding allow them
to recognize PII even when rigid patterns fail, often in a zero-shot or few-shot manner without task-specific
training (Wang et al., 2023; Brown et al., 2020). Studies confirm that LLM-based detectors can outperform both
rule-based and traditional machine learning methods in accuracy and adaptability (Shen et al., 2025). However, a
key limitation remains: while LLMs excel at identifying known PII types, they struggle with domain-specific
contextual sensitivity unless explicitly provided with the relevant operational context (Cheng et al., 2024).
This review highlights a significant gap: most research and practical methods focus on PII-type recognition,
overlooking non-personal data that becomes sensitive due to its operational, humanitarian, or organizational
context. Our work aims to bridge this gap by developing a framework that addresses both personal and
non-personal sensitive data detection through contextualization using LLMs.

3 Revisiting the Concept of Sensitive Data

The definition of Personally Identifiable Information (PII) is straightforward: it refers to data that can identify an
individual (European Parliament and Council of the European Union, 2016). Existing detection methods often
recognize standard entities (e.g., names, emails, phone numbers) but treat all occurrences as equally sensitive,
leading to high false positive rates. Sensitivity, however, depends on context: an email address may reflect
personal or organizational use. We call this type contextualization, evaluating whether a column truly contains
PII requires considering the full table context.
While regulations like GDPR (European Parliament and Council of the European Union, 2016) and HIPAA (Cen-
ters for Medicare & Medicaid Services, 1996) emphasize identity-related data, humanitarian contexts demand
a broader view of sensitivity. Following Nissenbaum’s theory of Contextual Integrity (Nissenbaum, 2004),
privacy risks arise when data is used outside its intended setting. Sensitivity may thus extend beyond identity
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exposure to risks such as targeting or undermining humanitarian access. Similar concerns arise in enterprises or
governments, where non-PII (e.g., company-sensitive or classified data) requires protection. We refer to this
broader perspective as domain contextualization: sensitivity emerges from the dataset’s role and potential misuse,
not just from the presence of PII.

4 Toward Contextual Sensitive Data Detection

Here, we first introduce two mechanisms for contextual sensitive data detection, for type contextualization and
domain contextualization. We then provide details of our implementation of these mechanisms.

Type Contextualization: detect-then-reflect

Type Detection Type Reflection

Input
- Table & metadata
- Types of interest

type-labeled
columns

(a) The detect-then-reflect mechanism for detecting
sensitive table columns, e.g. PII, using type contex-
tualization to increase the precision. This mechanism
entails: ➀ detecting potentially sensitive columns based
on their types, such as address and name, ➁ having
an LLM reflect on the actual sensitivity of the column
in the full table context to, for example, not mark the
address and name of organizations as PII.

Report
- Sensitive columns
- Sensitivity levels

Domain Contextualization: retrieve-then-detect

Detect 
non-personal 

sensitivity

Retrieve relevant 
context

Input
- Table & metadata
- Domain-specific docs

relevant
context

(b) The retrieve-then-detect mechanism for detecting
sensitive data that requires domain contextualization.
This mechanism entails: ➀ retrieving relevant contex-
tual information such as rule-based guidelines, ➁ having
an LLM detect sensitive data using its parametric knowl-
edge, the retrieved instructions, and expert-informed
instructions provided in the prompt.

Figure 1. Mechanisms for detecting sensitive data.

4.1 Type contextualization: detect-then-reflect

Building on our observation that sensitive data detection is a context-specific task, we introduce a two-track
pipeline for personal sensitive data: detect-then-reflect. This method first performs a broad detection pass to
identify all columns that may contain personal identifiers, followed by a context-aware refinement step.
In the initial detection phase, potentially sensitive columns are identified using type classification based on
column names and representative values. This phase prioritizes recall in order to avoid missing any columns that
may carry personal identifiers. In the second reflection phase, the model re-evaluates these columns in the context
of the full table. We prompt an LLM with a markdown-formatted table, including the column’s detected PII
type. The model then determines whether the column is contextually sensitive, taking into account inter-column
relationships across the entire table. This enables a more precise classification than standard pattern-based
methods.

4.1.1 Implementation Detection. We frame PII detection as a multiclass classification task over a taxonomy of
27 entity types (e.g., PERSON_NAME, EMAIL_ADDRESS, GENERIC_IDENTIFIER) derived from GDPR and UN
OCHA guidelines (see Appendix A for the complete list). The LLM is prompted with a column name and five
sample values and instructed to return only the most appropriate entity label or None. This step is designed to
maximize high recall.
We employ both zero-shot and fine-tuned approaches. The zero-shot method leverages the model’s inherent
ability to follow instructions without task-specific training, while the fine-tuned approach enhances performance

4



by training the Gemma 2 9B and Qwen3 8B base models on a synthetic dataset of 1,000 labeled columns.
Fine-tuning is carried out using Low-Rank Adaptation (LoRA) for parameter efficiency, with a rank of 𝑟 = 16
and a scaling factor of 𝛼 = 16 applied to both attention and feedforward layers. The models were optimized with
AdamW for a single epoch using an 80/20 train-validation split.

4.1.2 Implementation Reflection. In this phase, the model re-evaluates each candidate PII column within the
context of the entire table by being prompted with a markdown-formatted rendering of the full table, including
headers and five sample rows per column, along with the specific PII type detected for the target column. It is
then instructed to assign one of three contextual sensitivity levels: NON_SENSITIVE, referring to information that
cannot identify a person (e.g., aggregate data, organization names); MODERATE_SENSITIVE, referring to data that
could potentially identify a person when combined with other attributes (e.g., demographics, partial information);
and HIGH_SENSITIVE, referring to data that definitively identifies a person (e.g., full name, email, national
ID). This step is crucial for mitigating false positives from the detection stage by incorporating inter-column
relationships and table semantics.

4.2 Domain contextualization: retrieve-then-detect

While personal data sensitivity can often be inferred from structural context, non-personal sensitive data typically
depends on domain-specific and geopolitical factors that lie beyond the data table itself. For such cases, we
propose a retrieve-then-detect approach.
This method integrates external contextual information, such as country-specific Information Sharing Protocols
(ISPs) and policy documents, into the classification process. Relevant documents are retrieved based on the
location of a dataset and included in the prompt alongside the table and column under analysis. The LLM
leverages both its internal parametric knowledge and the retrieved external document to assess whether a column
contains data that should be considered sensitive in the given operational context. Unlike PII detection, where
there is a predefined list of entities (e.g. email, phone number), non-personal sensitive data has no fixed
ontology. We retrieve domain-specific column sensitivity based on the broader table context and retrieved
contextual knowledge.

4.2.1 Implementation Retrieval. For detecting non-PII sensitive data, we propose a retrieval-augmented
generation (RAG) approach that integrates external domain knowledge.
The system retrieves relevant policy fragments based on the dataset’s geographical context (e.g., country). For
our humanitarian use case, we index country-specific Information Sharing Protocols (ISPs). To reduce prompt
length, we use GPT-4o-mini to extract the specific sensitivity rules from these documents (e.g., data types for LOW,
MODERATE, HIGH, SEVERE sensitivity), which we store in a dictionary. If no country-specific ISP is available, a
default fallback template based on cross-country consensus is used.

4.2.2 Implementation Detection. In the detection phase, the LLM is provided with a curated prompt containing
table context (headers and five representative rows), relevant ISP extracts containing explicit instructions to
classify each column’s sensitivity according to the ISP guidelines while justifying its decision by directly citing
the relevant policy passages. Based on the policy definitions, the model assigns one of four sensitivity levels,
NON_SENSITIVE, MODERATE_SENSITIVE, HIGH_SENSITIVE, or SEVERE_SENSITIVE, ensuring that sensitivity
assessments are grounded in explicit, auditable domain policies, thereby enhancing both interpretability and
practical usability for domain experts.

5 Experimental Setup

This section outlines the datasets, evaluation metrics, baselines, and implementation details used to evaluate our
proposed framework for contextually sensitive data detection.
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5.1 Datasets

We evaluate our mechanisms on both synthetic and real-world datasets containing PII and non-personal sensitive
data, focusing on humanitarian contexts:

• Synthetic PII data: 1,000 labeled columns generated with GPT-4o, spanning 27 PII types plus a None class.
Each column included a name and five values (mix of obvious PII, ambiguous, and misleading non-PII). All
examples were manually labeled and used for fine-tuning and zero-shot evaluation.

• Real PII tables (GitTables): 66 anonymized tables (2,061 columns) from GitTables (Hulsebos et al., 2023),
annotated for both PII entities and contextual sensitivity to provide ground truth for detect-then-reflect.

• Synthetic humanitarian tables: 9 tables based on humanitarian use cases (e.g., displacement tracking, public
health) and ISPs. Each contained both safe and sensitive columns (e.g., “access restrictions”, “vulnerability
score”), with domain experts defining sensitivity labels.

• Real humanitarian data (placebo set): 14 non-sensitive HDX datasets, selected as published, non-sensitive
tables from countries with available ISPs. Used to estimate false positive rates.

For domain contextualization (retrieve-then-detect), we evaluated on the 9 synthetic humanitarian tables combined
with the 14 non-sensitive HDX datasets.

5.2 Metrics

We evaluate along three axes: PII detection, contextual reflection for PII, and non-PII sensitivity detection.
To account for class imbalance, we report both weighted (support-weighted) and macro averages. Weighted
averages reflect overall performance across examples, while macro averages treat each class equally and reduce
dominance by frequent classes. Unless otherwise noted, we focus on weighted averages, but report macro scores
in Appendix, Table 10).
Performance is assessed at both the column and table level. At the column level (type contextualization), PII
detection is treated as a multiclass task over 27 PII types (plus a “None” category), while sensitivity reflection
reduces to a binary decision between sensitive (moderate/high) and non-sensitive (low). At the table level
(domain contextualization), a table is classified as sensitive if it contains any moderate/high/severe sensitive
information, resulting in a binary task (sensitive vs. not). Precision, recall, and F1 are used as evaluation metrics.
For labeling, sensitivity levels are binarized: low is treated as non-sensitive, while moderate, high, and severe are
grouped as sensitive. This aligns with operational practice where any moderate or higher sensitivity triggers
safeguards, consistent with UN OCHA guidance that such data warrants protective measures (OCHA, 2025).
Finally, alongside classification metrics, we report average inference time per table to assess deployment
practicality, particularly where responsiveness and scalability are critical.

5.3 Baselines

We compare our methods against two industry-standard baselines for sensitive data detection. The first is Google
Cloud DLP, a rule-based system that combines built-in infoTypes (predefined detectors for common PII entities)
with custom-defined infoTypes such as dictionaries and regexes. For our experiments, we configured the minimum
likelihood threshold to “Likely”. The second baseline is Microsoft Presidio, an open-source SDK that leverages
regular expressions, pattern-based rules, context windows, and optional NER to detect PII. To enable consistent
evaluation, each Presidio entity was mapped to a corresponding category in our unified taxonomy (Appendix,
Table 8).
Both systems output column-level predictions and are widely adopted in enterprise settings. However, neither
tool supports contextual reflection or table-wide reasoning; any match to a known PII pattern is automatically
treated as sensitive.
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5.4 Model Selection

We evaluate both proprietary and open-source LLMs. The proprietary GPT-4o-mini (OpenAI et al., 2024) serves
as an upper baseline. Open-source models include the Gemma family (2 and 3) (Team, 2025; Team et al., 2024)
and Qwen3 in 8B and 14B sizes (Yang et al., 2025). We fine-tuned Qwen3 8B and Gemma 2 9B on our synthetic
PII data to create Qwen3 8B-FT and Gemma 2 9B FT.
Qwen3 14B was selected based on its predecessor Qwen2.5’s exceptional performance on advanced benchmarks
such as MMLU Pro 1, demonstrating strong reasoning capabilities and robust general understanding, particularly
among relatively small language models. While Qwen2.5 already showed good performance in its size class,
we opted to use the newer Qwen3 variant, anticipating further improvements in reasoning and contextual
capabilities. Gemma 2 9B and Gemma 3 12B were included to strike a balance between computational efficiency
and performance. These models provide transparency due to their open-source nature and support quantized
deployment, making them suitable for scenarios with limited hardware resources or privacy concerns. Aya
Expanse 8B serves as a lightweight alternative appropriate for resource-constrained environments, though
it benchmarks comparatively lower performance on the MMLU Pro benchmark. Lastly, GPT-4o-mini was
incorporated due to its practical performance across various tasks, despite its API-only accessibility, which
restricts control over data privacy and deployment flexibility in sensitive use-cases.

Model GPU API Params Size 4bit Supported Tasks
(B) (GB) (GB) PII Detect PII Reflect non-PII Detect

GPT-4o-mini ✗ ✓ - - - ✓ ✓ ✓
GPT-4o ✗ ✓ - - - ✓ ✗ ✗
Qwen3 8B ✓ ✗ 8.0 ∼16.4 ∼7.5 ✓ ✓ ✓
Qwen3 14B ✓ ✗ 14.0 ∼29.5 ∼11.1 ✓ ✓ ✓
Gemma 2 ✓ ✗ 9.0 ∼18.5 ∼6.1 ✓ ✓ ✓
Gemma 3 ✓ ✗ 12.0 ∼19.4 ∼12.8 ✓ ✗ ✗
Aya Expanse ✓ ✗ 8.0 ∼16.1 N/A ✓ ✓ ✓

Table 1. Overview of model characteristics and supported tasks. API-based models (e.g.,
GPT-4o) are accessed via cloud endpoints, while others require local GPU deployment. Model
sizes refer to 16-bit versions; 4-bit quantized sizes are shown where available. Exact parameter
size of GPT-4o-mini and GPT-4o are undisclosed by OpenAI. Access is provided only through
the API.

6 Results of contextual sensitive data detection

We present a comprehensive evaluation of our proposed framework for contextually sensitive data detection in
tabular datasets, focusing on two core mechanisms: Type Contextualization (Detect-Then-Reflect) for PII and
Domain Contextualization (Retrieve-Then-Detect) for non-PII sensitivity.

6.1 Type Contextualization: Detect-Then-Reflect

6.1.1 LLM-Based PII detection. We evaluated baseline systems (Google DLP, Microsoft Presidio) and a range
of LLMs for detecting PII in tabular data. Baselines performed poorly: Google DLP achieved moderately high
precision (0.71) but suffered from very low recall (0.32), while Presidio performed worse across all metrics
due to schema mismatches and limited use of contextual signals. In contrast, LLMs substantially outperformed

1https://huggingface.co/spaces/TIGER-Lab/MMLU-Pro
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both baselines. Among zero-shot models, Qwen3 14B and Gemma 3 12B achieved the strongest results,
with F1 scores above 0.80. Fine-tuning further improved performance, most notably for Qwen3 8B, which
reached an F1 score of 0.94 and outperformed larger models, underscoring the effectiveness of lightweight
task-specific adaptation. However, much of this improvement was driven by better handling of the most frequent
entity class, GENERIC_IDENTIFIER, highlighting challenges in detecting rare PII types. Finally, we tested a
privacy-preserving “no-records” configuration that excluded sample values from the prompt. This substantially
degraded performance (F1: 0.28 vs. 0.42), indicating that LLMs rely heavily on example values, alongside
column names, for accurate classification.

System / Model Precision Recall F1
Google DLP 0.713 0.324 0.298
Presidio 0.198 0.245 0.208
GPT-4o-mini 0.578 0.366 0.422
GPT-4o-mini no records 0.393 0.253 0.284
GPT-4o 0.962 0.658 0.728
Gemma 2 9B 0.960 0.538 0.605
Gemma 2 9B FT 0.945 0.775 0.832
Gemma 3 12B 0.859 0.811 0.818
Qwen3 8B 0.919 0.549 0.582
Qwen3 8B FT 0.968 0.934 0.942
Qwen3 14B 0.931 0.819 0.857
Aya Expanse 8B 0.931 0.394 0.448

(a) Performance of baseline systems (Google Cloud DLP
and Microsoft Presidio) and LLMs on PII entity detection
in tabular data. Each LLM received a column name and
five unique sample values and predicted one of 27 PII types
or “None”. “FT” denotes a fine-tuned model variant.

Model Precision Recall F1
Ground-truth PII 0.527 1.000 0.690
GPT-4o-mini 0.932 0.944 0.938
Gemma 2 9B 0.705 0.913 0.796
Gemma 3 12B 0.883 0.816 0.848
Qwen3 8B 0.544 0.997 0.703
Qwen3 14B 0.683 0.951 0.795
Aya Expanse 8B 0.552 0.997 0.710

(b) Evaluation of PII sensitivity reflection by LLMs with
ground-truth PII entities provided. The first row shows
the low precision if all PII columns are labeled sensitive;
reflection improves precision significantly with minimal
recall loss.

Table 2. Results of contextual sensitive data detection: (a) PII detection and (b) PII sensitivity
reflection.

Error analysis revealed that false positives were most often due to date-like values incorrectly labeled as
DATE_OF_BIRTH, despite non-indicative column names. False negatives primarily arose from the ambiguous
GENERIC_IDENTIFIER class and from PII encoded in categorical or binary form (e.g., race codes), which
masked sensitive meaning. Additional challenges included high-variability entities such as PERSON_NAME,
ORGANIZATION_NAME, ZIPCODE, and STREET_ADDRESS, where non-standard formats or unfamiliar names
reduced recall. Overall, LLMs consistently outperformed rule-based baselines by leveraging semantic cues in
both column names and values, but recall remained a key limitation for rare or implicit PII types.

6.1.2 Contextual Sensitivity Reflection. While LLMs detected PII entities effectively, traditional approaches
assume all PII is equally sensitive, overlooking contextual factors such as table purpose and structure. To isolate
the reflection step, we provided models with ground-truth PII columns and tasked them only with classifying
contextual sensitivity based on the full table. This setup removed detection errors and directly evaluated LLMs’
ability to reason about sensitivity in context.
Treating all PII-type columns as sensitive achieved perfect recall but low precision, as many fields (e.g.,
ORGANIZATION_NAME, GENERIC_IDENTIFIER) were not contextually sensitive. LLMs improved precision
dramatically (from 0.53 to >0.90 in the best cases) while maintaining high recall. GPT-4o-mini reached 0.932
precision and 0.944 recall (F1 0.938), and Gemma 3 12B achieved an F1 of 0.848, demonstrating effective
contextual reasoning. Some models, like Qwen3 8B and Aya Expanse 8B, prioritized recall (>0.99) at the cost
of precision, over-classifying columns as sensitive. Others, including Gemma 2 9B and Qwen3 14B, offered a
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better precision-recall balance, suitable for high-risk scenarios. Overall, the reflection step allowed nuanced
sensitivity classification, significantly boosting precision with minimal recall loss and confirming the value of
the detect-then-reflect approach.

6.1.3 End-to-End Evaluation (Detect-Then-Reflect). To assess the full pipeline performance of our detect-then-
reflect mechanism, we reported the performance of LLMs in an end-to-end setting where both PII detection
and contextual sensitivity reflection are applied. We compared three configurations: traditional baselines (i.e.,
treating all detected PII-type columns as sensitive), LLMs without reflection (i.e., treating all detected PII-type
columns as sensitive), and LLMs with reflection (i.e., filtering detected PII columns based on table context).

System / Model No Reflection With Reflection
Prec. Rec. F1 Prec. Rec. F1

Google DLP 0.531 0.628 0.576 – – –
Presidio 0.520 0.618 0.565 – – –
Ground-truth PII 0.527 1.000 0.690 – – –
GPT-4o-mini 0.856 0.639 0.732 0.938 0.632 0.755
Gemma 2 9B 0.740 0.819 0.778 0.800 0.792 0.796
Gemma 3 12B 0.487 0.941 0.642 0.753 0.806 0.779
Qwen3 8B 0.742 0.868 0.800 0.749 0.868 0.804
Qwen3 14B 0.565 0.972 0.714 0.732 0.941 0.824
Aya Expanse 8B 0.812 0.674 0.736 0.812 0.674 0.736
Qwen3 8B FT → GPT-4o-mini – – – 0.902 0.861 0.881

Table 3. End-to-end sensitive-column classification. Each model is shown with and without
the reflection step side by side. Reflection consistently improved precision and F1, with the best
result (F1 = 0.881) from a hybrid pipeline: Qwen3 8B fine-tuned for detection combined with
GPT-4o-mini for reflection.

In the no-reflection setup, LLMs marked any detected PII-type column as sensitive, leading to high recall but
low precision; Gemma 3 12B and Qwen3 14B reached recall of 0.941 and 0.972 but precision of only 0.487
and 0.565, while GPT-4o-mini achieved higher precision (0.856) at lower recall (0.639). Introducing reflection
using full-table context substantially improved precision across models, e.g., Qwen3 14B increased to 0.732
precision with 0.941 recall (F1 0.824) and GPT-4o-mini reached 0.938 precision. A modular pipeline combining
Qwen3 8B (detection) with GPT-4o-mini (reflection) achieved F1 0.881. Overall, the detect-then-reflect strategy
corrects the naive assumption that all PII-type columns are sensitive, boosting precision while maintaining recall,
especially for ambiguous cases like GENERIC_IDENTIFIER or ORGANIZATION_NAME.

6.1.4 Reflection Only (Without Detection Input). When models were tasked with identifying sensitive columns
using only the full table context (no PII labels), performance remained strong but recall dropped compared to the
full pipeline. Qwen3 14B achieved an F1 of 0.819 (Precision=0.761, Recall=0.885), underscoring the value of
the initial detection step for focusing the model’s attention.

Model Precision Recall F1
GPT-4o-mini 0.964 0.562 0.711
Gemma 2 9B 0.878 0.750 0.809
Qwen3 8B 0.735 0.781 0.758
Qwen3 14B 0.761 0.885 0.819
Aya Expanse 8B 0.815 0.674 0.738

Table 4. Reflection-only performance (without prior detection step) for identifying contextually
sensitive columns. Evaluated across models using precision, recall, and F1 scores.
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As shown in Table 4, all evaluated LLMs could identify sensitive columns using only table context, without prior
PII-type labels. Qwen3 14B achieved the highest F1 (0.819) with a balanced precision (0.761) and recall (0.885),
followed by Gemma 2 9B (F1 0.809). GPT-4o-mini excelled in precision (0.964) but had lower recall (0.562),
while Qwen3 8B and Aya Expanse 8B offered moderate trade-offs (precision and recall ∼0.7-0.8). These results
indicate that LLMs can reason about sensitivity from context alone, but compared to the full detect-then-reflect
setup (Table 3), recall is lower, highlighting the value of an initial detection pass to guide focus on likely PII
columns.

6.2 Domain Contextualization (Retrieve-Then-Detect)

We evaluated the Retrieve-Then-Detect mechanism on a combined set of synthetic and real humanitarian tables
(Table 5). Without external domain knowledge (ISP retrieval), all models exhibited a highly conservative bias,
achieving perfect recall but low precision (<0.57). Integrating ISP retrieval into the prompt consistently improved
precision. GPT-4o-mini’s precision increased from 0.474 to 0.692 (F1=0.818), and Qwen3 14B’s from 0.562 to
0.643 (F1=0.783), both maintaining perfect recall. Qualitative analysis revealed that the retrieval mechanism
enabled models to produce interpretable justifications by citing specific clauses from the ISP documents, thereby
enhancing the transparency and auditability of the sensitivity assessments.

System / Model No Domain Knowledge With Domain Knowledge
Prec. Rec. F1 Prec. Rec. F1

All-tables-sensitive (baseline) 0.375 1.000 0.545 – – –
GPT-4o-mini 0.474 1.000 0.643 0.692 1.000 0.818
Gemma 2 9B 0.375 1.000 0.545 0.429 1.000 0.600
Gemma 3 12B 0.529 1.000 0.692 0.500 1.000 0.667
Qwen3 8B 0.562 1.000 0.720 0.778 0.778 0.778
Qwen3 14B 0.562 1.000 0.720 0.643 1.000 0.783
Aya Expanse 8B 0.450 1.000 0.621 0.500 1.000 0.667

Table 5. Table-level classification performance on HDX and synthetic sensitive data with and
without ISP-based retrieval. ISP retrieval improved precision while keeping recall near-perfect.

7 Conclusion

This paper explored how LLMs can detect sensitive information in tabular data by moving beyond fixed PII
categories toward context-aware interpretations. Sensitive data was reconceptualized as context-dependent,
operationalized through two mechanisms: detect-then-reflect for type contextualization and retrieve-then-detect
for domain contextualization.
The first mechanism separated PII detection from contextual reflection, reducing false positives while maintaining
recall. The second incorporated retrieval of country-specific Information Sharing Protocols (ISPs), enabling
LLMs to distinguish between structurally similar tables with different sensitivities. Both mechanisms were
evaluated on synthetic and real humanitarian datasets, benchmarking a range of open-source and proprietary
models.
Results showed LLMs outperform rule-based systems in PII-type detection, with fine-tuned models such as
Qwen3 8B FT achieving F1 > 0.94. Contextual cues like column names and sample values were critical for
accuracy, while reflection improved precision (e.g., GPT-4o-mini and Qwen3 14B raising precision from <0.60 to
>0.90). For domain-level classification, ISP retrieval enhanced precision without sacrificing recall, with models
referencing policy text to justify predictions.
Overall, this work demonstrates that contextualization substantially improves sensitive data detection and
positions LLMs as effective tools for data auditing. The proposed framework advances data-centric machine
learning by aligning automated detection with local context and governance requirements.
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Appendix A PII Entity Taxonomy

The following table lists all Personally Identifiable Information (PII) entity types used in this study:

Entity Name
CREDIT_CARD_NUMBER DATE_OF_BIRTH
DISABILITY_GROUP EDUCATION_LEVEL
EMAIL_ADDRESS ETHNIC_GROUP
GENDER GENERIC_IDENTIFIER
GEO_COORDINATES IBAN_CODE
IP_ADDRESS MARITAL_STATUS
MEDICAL_TERM OCCUPATION
ORGANIZATION_NAME PASSPORT
PERSON_NAME PHONE_NUMBER
PROTECTION_GROUP RELIGIOUS_GROUPS
SEXUALITY SPOKEN_LANGUAGE
STREET_ADDRESS SWIFT_CODE
URL ZIPCODE

Table 6. List of PII entity types used during PII detection.
14



PII Entity Sensitivity ratio Ratio
DATE_OF_BIRTH 17/17 1.00
EMAIL_ADDRESS 30/31 0.97
ETHNIC_GROUP 17/18 0.94
GENDER 11/14 0.79
GENERIC_IDENTIFIER 26/216 0.12
GEO_COORDINATES 7/24 0.29
IP_ADDRESS 0/3 0.00
MARITAL_STATUS 1/1 1.00
OCCUPATION 3/5 0.60
ORGANIZATION_NAME 1/27 0.04
PERSON_NAME 92/93 0.99
PHONE_NUMBER 20/21 0.95
SPOKEN_LANGUAGE 1/1 1.00
STREET_ADDRESS 35/38 0.92
URL 1/11 0.09
ZIPCODE 26/27 0.96

Table 7. Overview of sensitive occurrence ratios per PII entity type. The ratio reflects the
proportion of times an entity was labeled as sensitive out of its total occurrences across all tables.
High ratios (e.g., for DATE_OF_BIRTH and PERSON_NAME) indicate consistently sensitive entities,
while others (e.g., GENERIC_IDENTIFIER, URL) are often benign and context-dependent.
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Presidio Entity Mapped Category

AU_ABN GENERIC_ID
AU_ACN GENERIC_ID
AU_MEDICARE GENERIC_ID
AU_TFN GENERIC_ID
CREDIT_CARD CREDIT_CARD_NUMBER
CRYPTO GENERIC_ID
DATE_TIME None
EMAIL_ADDRESS EMAIL_ADDRESS
ES_NIE GENERIC_ID
ES_NIF GENERIC_ID
FI_PERSONAL_IDENTITY_CODE GENERIC_ID
IBAN_CODE GENERIC_ID
IN_AADHAAR GENERIC_ID
IN_PAN GENERIC_ID
IN_PASSPORT GENERIC_ID
IN_VEHICLE_REGISTRATION GENERIC_ID
IN_VOTER GENERIC_ID
IP_ADDRESS LOCATION
IT_DRIVER_LICENSE GENERIC_ID
IT_FISCAL_CODE GENERIC_ID
IT_IDENTITY_CARD GENERIC_ID
IT_PASSPORT GENERIC_ID
IT_VAT_CODE GENERIC_ID
LOCATION None
MEDICAL_LICENSE GENERIC_ID
NRP ETHNIC_GROUP
None None
PERSON PERSON_NAME
PHONE_NUMBER PHONE_NUMBER
PL_PESEL GENERIC_ID
SG_NRIC_FIN GENERIC_ID
SG_UEN GENERIC_ID
UK_NHS GENERIC_ID
UK_NINO GENERIC_ID
URL URL
US_BANK_NUMBER GENERIC_ID
US_DRIVER_LICENSE GENERIC_ID
US_ITIN GENERIC_ID
US_PASSPORT GENERIC_ID
US_SSN GENERIC_ID
None None

Table 8. Mapping of Presidio PII entities to the unified taxonomy used in this study.

16



Appendix B Synthetic Data Generation

Category Count Percentage

None 331 33.10
GENERIC_ID 279 27.90
DATE_OF_BIRTH 50 5.00
PERSON_NAME 44 4.40
ETHNIC_GROUP 37 3.70
STREET_ADDRESS 34 3.40
PHONE_NUMBER 34 3.40
GENDER 30 3.00
EMAIL_ADDRESS 27 2.70
GEO_COORDINATES 25 2.50
URL 24 2.40
ORGANIZATION_NAME 23 2.30
ZIPCODE 21 2.10
OCCUPATION 12 1.20
MARITAL_STATUS 11 1.10
IMEI_HARDWARE_ID 5 0.50
SPOKEN_LANGUAGE 3 0.30
IP_ADDRESS 2 0.20
SWIFT_CODE 2 0.20
MEDICAL_TERM 1 0.10
PROTECTION_GROUP 1 0.10
CREDIT_CARD_NUMBER 1 0.10
IBAN_CODE 1 0.10
ICD9_CODE 1 0.10
EDUCATION_LEVEL 1 0.10

Table 9. Distribution of categories in the output column of the synthetic dataset for PII-type
detection.

Appendix C Ablation Study Results
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System / Model Precision Recall F1
Google DLP weighted 0.713 0.324 0.298
Google DLP macro 0.409 0.322 0.296
Presidio weighted 0.198 0.245 0.208
Presidio macro 0.158 0.182 0.156
GPT-4o-mini weighted 0.578 0.366 0.422
GPT-4o-mini macro 0.735 0.503 0.555
GPT-4o-mini no records weighted 0.393 0.252 0.284
GPT-4o-mini no records macro 0.581 0.408 0.442
GPT-4o weighted 0.962 0.662 0.730
GPT-4o macro 0.702 0.664 0.668
Gemma 2 9B weighted 0.960 0.537 0.605
Gemma 2 9B macro 0.763 0.608 0.623
Gemma 2 9B FT weighted 0.947 0.775 0.833
Gemma 2 9B FT macro 0.748 0.687 0.703
Gemma 3 12B weighted 0.861 0.812 0.819
Gemma 3 12B macro 0.690 0.722 0.681
Qwen3 8B weighted 0.919 0.548 0.581
Qwen3 8B macro 0.723 0.618 0.627
Qwen3 8B FT weighted 0.968 0.932 0.941
Qwen3 8B FT macro 0.861 0.807 0.819
Qwen3 14B weighted 0.933 0.819 0.858
Qwen3 14B macro 0.720 0.735 0.724
Aya Expanse 8B weighted 0.931 0.393 0.448
Aya Expanse 8B macro 0.537 0.373 0.405

Table 10. Showing macro average as well. Performance of baseline systems and LLMs on PII
entity detection in tabular data. Each system receives a column name and five unique sample
values and predicts one of 27 PII types or “None”. Reported are the weighted averages of
precision, recall, and F1 score across all PII categories.
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System / Model Precision Recall F1
Google DLP 0.713 0.324 0.298
Presidio 0.198 0.245 0.208
GPT-4o-mini (k=5) 0.578 0.366 0.422
GPT-4o-mini (k=10) 0.577 0.400 0.448
Gemma 2 9B (k=5) 0.960 0.538 0.605
Gemma 2 9B (k=10) 0.949 0.572 0.642
Gemma 3 12B (k=5) 0.859 0.811 0.818
Gemma 3 12B (k=10) 0.882 0.812 0.830
Qwen3 8B (k=5) 0.919 0.549 0.582
Qwen3 8B (k=10) 0.909 0.563 0.582
Qwen3 14B (k=5) 0.931 0.819 0.857
Qwen3 14B (k=10) 0.911 0.819 0.841
Aya Expanse 8B (k=5) 0.931 0.394 0.448
Aya Expanse 8B (k=10) 0.920 0.413 0.456

Table 11. Ablation study of the performance of large language models (LLMs) on PII entity
detection in tabular data. Each system receives a column name and five or ten unique sample
values and predicts one of 27 PII types or “None”. Reported are the weighted averages of
precision, recall, and F1 score across all PII categories.

19


	1. Introduction
	2. Related work
	3. Revisiting the Concept of Sensitive Data
	4. Toward Contextual Sensitive Data Detection
	4.1. Type contextualization: detect-then-reflect
	4.2. Domain contextualization: retrieve-then-detect

	5. Experimental Setup
	5.1. Datasets
	5.2. Metrics
	5.3. Baselines
	5.4. Model Selection

	6. Results of contextual sensitive data detection
	6.1. Type Contextualization: Detect-Then-Reflect
	6.2. Domain Contextualization (Retrieve-Then-Detect)

	7. Conclusion
	References
	Appendix A. PII Entity Taxonomy
	Appendix B. Synthetic Data Generation
	Appendix C. Ablation Study Results

