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Abstract 
Dataset Search—the process of finding appropriate datasets for a 
given task—remains a critical yet under-explored challenge in data 
science workflows. Assessing dataset suitability for a task (e.g., train-
ing a classification model) is a multi-pronged affair that involves 
understanding: data characteristics (e.g. granularity, attributes, size), 
semantics (e.g., data semantics, creation goals), and relevance to the 
task at hand. Present-day dataset search interfaces are restrictive— 
users struggle to convey implicit preferences and lack visibility into 
the search space and result inclusion criteria—making query itera-
tion challenging. To bridge these gaps, we introduce DataScout 
to proactively steer users through the process of dataset discovery 
via—(i) AI-assisted query reformulations informed by the underly-
ing search space, (ii) semantic search and filtering based on dataset 
content, including attributes (columns) and granularity (rows), and 
(iii) dataset relevance indicators, generated dynamically based on 
the user-specified task. A within-subjects study with 12 participants 
comparing DataScout to keyword and semantic dataset search 
reveals that users uniquely employ DataScout’s features not only 
for structured explorations, but also to glean feedback on their 
search queries and build conceptual models of the search space. 
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1 Introduction 
Finding the right dataset, given a data analysis or machine learning 
task, is one of the most challenging problems for data scientists and 
analysts today [8]. This problem of dataset search is only growing 
more urgent—with organizations often accumulating tens of thou-
sands of tables in their data lakes [25]. Dataset search is difficult for 
a couple of reasons. First, real-world data is inherently messy: ta-
bles vary widely in quality and metadata completeness, with many 
lacking proper descriptions, having ambiguous column names, or 
containing outdated information [55]. Second, users rarely know 
exactly what they are looking for [22]. They might have a general 
task in mind, like training a machine learning model to predict some 
phenomenon, but do not know which datasets would be compatible 
with their task. 

Recent advances in Large Language Models (LLMs) have demon-
strated the potential to address some of the aforementioned chal-
lenges. Embedding models enable us to transform unstructured 
text into numerical representations (i.e., embeddings) that capture 
semantics, allowing systems to perform a semantic search to find 
relevant datasets, even when the exact terminology differs [64]. 
For example, Olio [51] can interpret a natural language (NL) ques-
tion like “how has unemployment changed since 2020” and find 
relevant datasets—even if the metadata does not have a perfect 
keyword match with the question. However, semantic search of 
this form is often opaque to users, making it difficult to understand 
why a particular dataset appears in the search results, or how it 
relates to their query—plus users are unable to adaptively explore 
the content within datasets, including the columns/attributes, and 
temporal/spatial granularity. Overall, despite these advances in in-
terpreting NL queries, present-day dataset search interfaces—be 
it semantic or keyword-based—provide limited support for search 
expressiveness—illustrating a wide gap between what technology 
can enable, and what interfaces currently facilitate. 

Moreover, users typically lack awareness of available datasets, 
and must learn about the dataset landscape through the search 
results themselves, which subsequently inform refinements of their 
queries. This makes dataset search an inherently exploratory, it-
erative, and often tedious process requiring multiple query refor-
mulations and result assessments [22]. Users have to rely on the 
assistance of colleagues for starting points, or even direct identifica-
tion of the relevant datasets—indicating just how poor present-day 
dataset search interfaces are in supporting iterative exploration. 
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Figure 1: DataScout—a proactive dataset discovery interface. (A) Users begin by specifying their dataset discovery query as 
keywords, phrases, or complete sentences. (B) DataScout provides proactive query reformulation suggestions to bridge the 
gap between the user’s query and datasets available in the search space. (C) Users may add exact matching-based or semantic 
filters, (D) search by attribute, apply (E) suggested attribute filters, or (F) suggested temporal and spatial granularity filters. 
(G) Users can explore ranked dataset search results in a consolidated view. (H) Selecting a dataset reveals its metadata, tags, 
description, preview, collection details, and (I) task-specific relevance indicators generated on-the-fly, highlighting utilities and 
limitations of the dataset. 

In this work, we explore the design of dataset search systems that 
can proactively support users’ iterative discovery process. To do so, 
we first conducted a formative study to identify aspects of users’ 
dataset search workflows that could be amenable to automated 
assistance. Our study findings reveal that: 

• Users lack efficient means to express intent, finding dataset 
search interfaces to be restrictive in filtering based on content, 
attributes (columns) and granularity (rows); 

• Users receive limited insight into characteristics of the 
dataset search space, such as the space of possible columns 
across the returned results; 

• Users struggle to reformulate their queries when encountering 
overly selective or irrelevant datasets; and 

• Users spend significant time in assessing dataset relevance in 
context of their analytical needs, especially when the dataset de-
scription focuses on what the dataset contains, not the purposes 
it can be used for. 

These limitations underscore the need for dataset search interfaces 
that proactively empower users with feedback and assistance to itera-
tively reformulate queries, interpret search results, and navigate the 
dataset search space. We present DataScout, a dataset search tool 
that proactively steers users through the process of dataset discov-
ery (Figure 1). DataScout assists users in finding target datasets by 
being cognizant of both the user-specified task as well as the under-
lying space of results. DataScout offers three key LLM-powered 
semantic assistance features: (i) proactive query reformulation 
(Figure 1B) to bridge the gap between users’ search queries and the 

underlying search space, ensuring that each reformulation is both 
diverse and grounded in actual search results by covering a subset 
of the dataset corpus, (ii) semantic search (Figure 1D) and fil-
tering based on dataset content, including attributes (Figure 1E) 
and granularity (Figure 1F) to help users appropriately narrow 
down the search space, and (iii) semantic relevance indicators 
(Figure 1I) generated on-the-fly based on the user-specified task 
to help them assess dataset relevance rapidly. 

To enable these interactions, we split DataScout’s workflow 
across offline and online components—balancing a trade-off be-
tween semantic expressiveness and latency. We precompute em-
beddings, indexes, and inferred metadata where possible (e.g., for 
semantic dataset and attribute searches), while relying on LLMs-in-
the-loop for dynamic features requiring search context (i.e., gen-
erating query reformulations, semantic filtering suggestions, and 
task-specific relevance indicators). This hybrid architecture allows 
DataScout to deliver rich, personalized assistance without pro-
hibitive latency, reflecting a broader systems-level challenge of 
designing intelligent interfaces that combine responsiveness with 
semantic assistance. 

To evaluate DataScout, we conducted a within-subjects study 
with 12 participants; comparing its semantic reformulation, filtering, 
and relevance assessment modalities with traditional keyword and 
semantic search interfaces (Section 7). We find that users leveraged 
DataScout’s features not only for more structured and intentional 
navigation of the dataset search space, but also as implicit feedback 
mechanisms—helping them reflect on their queries, make sense 
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of individual datasets, and better understand the overall search 
landscape. Overall, we make the following contributions: 

• Design considerations for semantic dataset discovery interfaces, 
derived from prior work and our formative study (𝑛 = 8); 

• Design and implementation of DataScout, a dataset discovery 
tool to proactively steer users towards desirable datasets; and 

• Empirical findings from a within-subjects user study (𝑛 = 12) 
demonstrating how users uniquely leverage DataScout’s sug-
gestions and assistance for sensemaking. 

2 Related Work 
DataScout builds on research in information seeking theories, 
dataset discovery interfaces, and web search tools. 

Information Seeking Models and Interfaces. Information seek-
ing has a long history of theories and successful interfaces [18]. 
Traditional information seeking theories describe iterative cycles of 
query specification, examination of results, and reformulation, until 
the need is satisfied [37, 52]. Other classical models conceptualized 
this as information foraging [44], where users follow “information 
scents” across content “patches.” This framework was then extended 
to encompass a subsequent stage of “sensemaking,” the process of 
synthesizing and contextualizing information [45]. Sensemaking 
helps users understand what they are finding along the way and 
contextualize it with their own objectives [2, 50]. In our context, 
these models underscore the intertwined nature of exploration and 
sensemaking—where users refine goals and progressively discover 
dataset characteristics “along the way.” Ideal dataset discovery sys-
tems must guide users to: (i) formulate their query to narrow down 
to the correct subset of the search space, and (ii) contextualize 
the surfaced search results with their analytical intents and assess 
their relevance. These information seeking models have notably 
shaped web search systems. Modern web search interfaces support 
keyword search, auto-suggestions, related query suggestions, and 
empower users to filter results based on attributes and facets like 
time and file type [32, 33, 54, 59]. 

Recent work on web search and information retrieval continues 
to build on these foundations. Palani et al. [43] show that users’ 
objectives evolve through inspecting search results, particularly 
as they gather more information about a new problem area with 
ill-defined information seeking goals. This is relevant in dataset 
search, since users may still be learning domain-specific vocabulary 
and assessing possibilities in early stages—as opposed to knowing 
precise datasets of interest upfront. Tools like Sensecape and CoNo-
tate also provide suggestions for web search queries grounded in 
the user’s context to close information gaps [43, 57], while other 
recent work explores how to best support the sensemaking pro-
cess in a lightweight in-context manner [30, 31, 39]. Luminate uses 
an LLM to generate structured “dimensions” of design spaces for 
creative exploration [56]. While these papers show the value of 
LLM-driven reformulations, unconstrained reformulations can de-
rail the dataset search experience and erode user confidence by 
yielding queries that have no matching datasets. Instead, DataS-
cout’s reformulations are informed by search results: ensuring that 
each reformulation covers a subset of the results, and is diverse— 
thereby being grounded in actual dataset availability. 

LLM-generated relevance indicators have also shown promise. 
Liu et al. [35] find that users benefit when systems surface decision-
relevant cues aligned with criteria previously found helpful for 
decision-making. DataScout extends this idea by generating dy-
namic, query-specific dataset relevance indicators. Koesten et al. 
[27] identify key dimensions users assess during search for dataset 
suitability. These include data distributions, granularity, quality, 
possible questions the data can answer, and creation details. DataS-
cout surfaces relevance cues aligned with these dimensions to 
support dataset sensemaking. 

In recent years, conversational search has emerged as a new 
search paradigm, leveraging clarifying questions as mixed-initiative 
probes to iteratively refine user intent [38, 46, 47, 61, 63]. This 
paradigm has been adapted by dataset search tools like Olio [51] 
and MetaM [14]. However, these methods still rely on users to 
identify and formulate their dataset requirements as queries or 
questions, providing limited proactive guidance to them. 

Dataset Search: Challenges and Recommendations. Dataset 
search poses unique challenges, distinct from traditional web search. 
Users span a range of expertise and goals, where in many cases 
the goals (e.g., training a machine learning model) are far removed 
from the datasets. The datasets themselves are often hard to pe-
ruse manually. Despite advances in interpreting natural language 
intents, users still struggle with incomplete and inconsistent meta-
data [11, 55], expressing information seeking needs as structured 
search constraints [29], and assessing dataset relevance [28, 55]. 
These challenges lead users to face gulfs of execution (difficulty 
articulating intents to dataset search interfaces) and evaluation 
(difficulty interpreting if the system perceived their search intent, 
and if it is reflected by the surfaced datasets) [40]. 

A recent survey by Hulsebos et al. [22] further highlights how 
data practitioners rely on trial-and-error search refinements to 
overcome these barriers, calling for interfaces that better support 
iterative search refinement and focus on users’ analytical goals. 
Recent work also emphasizes the need for better query assistance, 
dynamic metadata filters, and clearer descriptions to aid sensemak-
ing [64]. We build on these papers by conducting a formative study 
(Section 3.1) that directly observes users’ search workflows in mod-
ern dataset search interfaces to identify pain points and inform the 
design of DataScout. 

Dataset Search: Mechanisms and Objectives. Popular dataset 
search tools employ various approaches to retrieve relevant datasets, 
in both the input dataset space and the underlying search mech-
anisms. Repositories such as Kaggle and HuggingFace support 
keyword-based search over dataset descriptions. Others use se-
mantic approaches—for example, Google Dataset Search indexes 
datasets from repositories and individual web pages, and uses se-
mantic matching [6, 55]. Databricks Search and Snowflake Universal 
Search combine keyword and semantic search [58, 62]. However, 
these systems typically offer static metadata filters, lack support 
for iterative exploration by helping users reformulate questions, 
and provide no cues for why a given dataset matches a query. 

Dataset search spans two separate stages [8]: (i) task-based 
dataset search—finding an initial dataset for a given task; and (ii) 
join/union dataset search—enriching an already-identified dataset 
via dataset joins or unions. The former is driven by keyword or 



UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Lin and Chopra et al. 

semantic queries, while the latter uses an input table targeted for 
enrichment. For task-based search, recent efforts focus on scala-
bility, privacy, and efficiency [3, 7, 13, 20]. For join/union dataset 
search, recent efforts identify semantically equivalent attributes 
for “joins”, or aligned schemas for “unions” to enrich the previ-
ously identified dataset [3, 10, 12, 14, 21, 26, 34], but do not focus 
on interface design. Overall, qualitative findings from multiple 
studies highlight that task-based dataset search remains largely 
unsupported [22, 29]. With DataScout, we aim to address this gap 
by exploring proactive interfaces for task-based search. 

Perhaps most closely related to our work is Olio [51], a semantic 
question-answering system that surfaces datasets by combining nat-
ural language queries with dynamically generated and pre-authored 
visualizations. Olio enhances exploratory search by letting users 
scan visualizations to assess dataset relevance. We build on the 
semantic dataset search approach adopted by Olio and redirect our 
focus on iterative—and proactive—query refinement: guiding users 
to progressively explore the search space as they learn about the 
underlying data. Unlike Olio, which assumes a predefined question 
for which a visualization exists in the data, we support the iterative 
process of discovering the search space and task requirements. 

3 Design Considerations for DataScout 
To identify dataset discovery workflows that could benefit from 
assistance with the challenges noted in prior work (Section 2), 
we conducted a formative study with 8 participants (F1–F8), and 
identified four design considerations (DC1–DC4) for DataScout. 

3.1 Formative Study 
Participants were recruited via: (i) contacting a mailing list of data 
science professionals maintained by our research group, (ii) mes-
saging on Slack and Discord channels with data science, ML, and AI 
graduate students, and (iii) posting to X. All participants voluntarily 
participated in the study and agreed to have their screen-sharing 
sessions recorded for transcription and analysis. Table 1 reports 
participant background and formative study tasks. 

Participants took part in a 40-minute contextual inquiry session 
via Zoom. We began with a round of introductions, and observed 
participants perform a dataset search task of their choice with any 
preferred tool(s) (Table 1), as they thought-out-loud about their 
actions. We concluded by asking clarifying questions and gathering 
open-ended feedback on their dataset search experiences. This 
study received approval from our Institutional Review Board (IRB). 

We analyzed transcripts supplemented with notes document-
ing participant actions. Two authors performed reflexive thematic 
analysis through open coding of the transcripts, notes, and screen 
recordings, followed by identifying axial codes [4, 5]. The authors 
subsequently performed a second iteration to refine themes and 
motivate design considerations for DataScout. 

3.2 Findings 
Here, we present our findings, identifying challenges in how users 
express and reformulate their dataset search intents, while attempt-
ing to assess dataset suitability and the underlying dataset land-
scape. We further highlight design considerations (DCs) stemming 
from these insights in-situ. 

Table 1: Formative study of participants’ backgrounds, tasks, 
and choice of platforms. 

ID Background Task Platform(s)
1 

F1 HCI, AI Research Collections of web-service URLs Perplexity, Google Dataset Search 
F2 ML Engineer Game actions data for emulations HuggingFace 
F3 Data Analyst Pharmaceutical drug marketing Kaggle, Google Dataset Search 
F4 Art & technology Art History and Provenance data Kaggle, Artsy Genome 
F5 ML Engineering Populating a data lake Kaggle 
F6 Bioinformatics RNA Sequences for Epilepsy GEO, Google Dataset Search 
F7 AI Code-Gen Code performance benchmarks Papers with Code 
F8 Marine Science Land use for Clean Energy Census Data 

1Platforms spanned semantic-based (Perplexity, Google Dataset Search), 
keyword-based (Kaggle, GEO, Census Data, HuggingFace, Artsy Genome), 
and hybrid (Papers with Code) dataset search mechanisms. 

Users do not express search criteria due to the fear of missing 
out on potentially-relevant datasets. Participants had several 
implicit relevance criteria which were not specified to dataset search 
platforms. For instance, when looking for datasets to train a classi-
fier on misinformation, F4 wanted their dataset to have as many 
features (columns) as possible, and while looking for a collection 
of URLs of web-services belonging to varied economic sectors, F1 
wanted the dataset to have at-least 1000 rows. On the other hand, 
when F1 switched from using Google Dataset Search to Perplexity, 
they explicitly mentioned their preference for “1000+ rows” in their 
prompt. While such criteria could be specified as filters, participants 
preferred to keep their search open-ended to avoid filtering out 
potentially useful datasets. 
(DC1) Expression of Free-Form Intent 
Enable users to express varied facets of their analytical and 
dataset search intents in as much detail as desired, without sig-
nificantly constraining the volume of dataset search results. 

Users desire dataset content-based filtering after initial 

rounds of sensemaking. Several participants wanted to filter 
datasets based on their content (F1, F4–F6, F8), that “simply cannot 
be specified to the interface” (F2). Filtering based on content such as 
attributes (columns) and data granularity (rows) is not supported 
by present-day dataset search interfaces, as also identified by 
Hulsebos et al. [22]. F5 mentioned that even if the system did 
support searching or filtering by column names, they would run 
into a “schema misalignment” problem, defining it as “datasets using 
different vocabulary to refer to the same concepts,” and elaborated 
using an example from movie datasets—“ datasets can have different 
column names for the movie title, such as ‘title’, ‘movie name’, or 
‘movie title,’ making it impossible to apply filters.” F3 and F8 wanted 
to filter datasets based on data granularity, e.g., drug-specific sales 
records, as opposed to pharmaceutical brand-level sales for F3; and 
latitude/longitude-level spatial resolution, as opposed to region 
names for F8. 

Further, participants incrementally developed an understanding 
for desirable attributes they wanted to be present in their data as 
they inspected dataset search results, echoing the findings of Palani 
et al. [42]. For instance, after looking through top search results for 
LLM-code generation benchmark datasets, F7 realized that most 
datasets do not contain the prompt provided to the LLM to generate 
code, and expressed the need have the “prompt” column in all 
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dataset results. F4 articulated this as an instance of “recognition 
over recall,” i.e., having to recognize the need for specific attributes 
or data granularity after initial sensemaking of search results—as 
opposed to consciously acknowledging them from the get-go. 
(DC2) Semantic Dataset Content-based Filtering 
Provide users the agency to identify and place fine-grained at-
tribute (column) and granularity (row) semantic filters at the 
dataset content level, rather than just the dataset description. 

Lack of query-specific dataset relevance indicators slows-

down dataset discovery. Traditional dataset search tools failed 
to offer indications of relevance to the query beyond the dataset 
title and preview, number of downloads, and column distribution 
histograms to users. Some participants vocalized challenges with 
having to read long data descriptions to identify any caveats, and 
oftentimes realized critical limitations of the data after having 
downloaded it and spent significant amounts of time to perform 
exploratory data analysis (EDA) (F1, F2, F5–F8). In contrast, we 
observed F1 using Perplexity1 to enlist dataset sources along with 
contextualized explanations for how a given dataset might fit their 
needs—helping them assess dataset suitability. Additionally, multi-
ple participants frequently questioned why the surfaced datasets in 
the search results were relevant to their search query, especially for 
semantic search engines like Google Dataset Search (F1, F3, F4, F6, 
F8). F8 brought up feedback mechanisms provided by Google’s tra-
ditional web search, such as the bold-font highlighting of matched 
terms—helping them infer how the search result is relevant to their 
query—and pointed out their absence in dataset search tools. 
(DC3) Dataset Suitability Assessment 
Facilitate sensemaking of dataset relevance and result inclusion 
criteria in context of the user-specified search query and filters. 

Irrelevant or overly selective dataset search results halt query 
iteration. As users of semantic dataset search systems lacked trans-
parency on dataset inclusion criteria, they were frequently confused 
by irrelevant search results, blocking them from iterating over or 
reformulating their query (F1, F3, F6, F7). On the other hand, users 
of keyword-search platforms expressed frustration with overly se-
lective search results (F2, F3, F4, F8). 

For instance, F4’s search query to look for “historical artworks 
with images” yielded only 4 search results, none of which were 
related to art history. In such cases, participants engaged in the 
well documented trial-and-error query reformulation workflows 
to widen their scope [37]—while still failing to identify relevant 
datasets. Prior work has also identified how gauging the dataset 
search space is overwhelming for users [22]. 
(DC4) Guide Query Reformulation 
Bridge the gap between search queries and underlying dataset 
landscape to overcome overly selective or irrelevant results. 

We shaped DataScout with the derived design considerations 
(DC1–DC4). In the following section, we present a walkthrough of 
DataScout’s key features and capabilities. 

1an AI-powered search engine and chatbot: https://www.perplexity.ai/ 

4 Walkthrough of DataScout 
Here, we provide a walkthrough of DataScout with Dana, a jour-
nalist, who has been inspecting the world happiness reports span-
ning 2015–2025.2 She wishes to observe the impact of fine-grained 
lifestyle changes on the reported aggregate happiness scores. To do 
so, Dana decides to focus on datasets overlapping with the COVID-
19 pandemic—to observe the impact of stark differences in lifestyles 
(e.g., confinement, reduced physical activity, and remote work and 
education) on happiness scores. 

Dana now turns to DataScout to search for datasets. Since this 
is a new area of exploration for her, she begins by using the Getting 
Started card (Figure 2A), where she specifies her intent as a regres-
sion analysis task, while expressing her query in natural language 
as “datasets indicating quality of life before, during, and after the 
COVID-19 pandemic” (supporting DC1). In response, DataScout 
surfaces search results and proactively inspects them to identify 
pertinent themes. For Dana’s query, DataScout learns that the 
search results spanned shifts in inflation, social media trends, and 
employment patterns. DataScout then uses these insights to pro-
pose three query reformulation suggestions (Figure 2B) centered 
around Dana’s task, in an attempt to bridge the gap between her 
query and the underlying dataset search space (supporting DC4). 
The suggestions help Dana by providing her inspiration for ana-
lytical directions she can pick. She hovers over each suggestion to 
inspect explanations for the suggested queries, and the number of 
datasets matching the theme. She selects the suggestion: “analyze 
the impact of the pandemic on remote work and work-life bal-
ance,” since it is an evident indicator of happiness owing to sudden 
transformations in work patterns during the pandemic. DataScout 
refreshes the search results. 

As Dana inspects the datasets, she realizes the need for three 
additional requirements. First, since Dana mentioned the pandemic 
in her query, DataScout’s task-specific relevance indicators 
(Figure 2E) surface the data collection time-period for each dataset 
she explores. This reminds her to look for datasets where the time-
range of data collection overlaps with the 2015–2025 year bracket. 
DataScout’s semantic relevance indicators allow her to quickly 
glean this information, helping her efficiently identify data sources 
that align with her intent (supporting DC3). 

Second, DataScout inspects all search results and identifies 
attributes most relevant to Dana’s query—surfacing them as se-
mantic column concept filters (Figure 2C). Observing sugges-
tions for ‘hours,’ ‘vacations,’ and ‘stress’ help Dana realize that she 
wants to have these attributes in her target dataset. To only focus 
on datasets with quantitative measures like logged work hours, 
Dana applies the semantic column concept filter to narrow down 
the results (supporting DC2). Third, as she continues to inspect 
datasets, she realizes that to make meaningful comparisons with 
the world happiness reports, she needs the geographical granularity 
of her data to be country-level. To do so, she uses DataScout’s 
semantic geo-granularity filter (Figure 2D), setting “country” as 
the data granularity level (supporting DC2). Dana applies these 
filters and continues to iteratively evaluate dataset suitability. 

2The World Happiness Report is an annual publication that ranks countries based 
on how happy their citizens perceive themselves to be. URL: https://worldhappiness. 
report/ 

https://www.perplexity.ai/
https://worldhappiness.report/
https://worldhappiness.report/


UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Lin and Chopra et al. 

A 

(11)B 

stress 

vacations C 

Analyze the impact of the pandemic on remote 
work and work-life balance 

D 

E 

F 

] 

Figure 2: Walkthrough of DataScout. Dana expresses her intent using the (A) getting started card. DataScout retrieves 
results. Dana reviews (B) query reformulation suggestions and hovers to view explanations. She clicks on the third suggestion— 
refreshing the results. Dana uses semantic (C) attribute and (D) granularity filter suggestions to narrow her search to datasets 
containing logged employee hours and country-level data. She inspects dataset relevance using (E) dynamic task-specific 
relevance indicators, and (F) dataset description summaries. 

5 DataScout: System Implementation 
DataScout is implemented as a web-based application using React 
and TypeScript for the frontend, with a backend powered by Python, 
Flask, and a PostgreSQL database of datasets fetched from Kaggle, 
detailed in the next section. In addition to DataScout’s features 
that proactively support and aid semantic dataset search, it also 
includes a few standard features found in Kaggle and Google Dataset 
Search, including: ranking of datasets based on semantic relevance; 
dataset pages with metadata, description, and a preview; and filters 
over size, shape, title, description, and tags/keywords. 

DataScout’s design distributes the workload across offline and 
online stages of interaction. Offline, we precompute embedding 
collections (i.e., compressed semantic representations) and build in-
dexes for dataset and attribute (or column) search (Figure 3). Then, 
online, to enable contextualized assistance grounded in the user’s 
search query and surfaced dataset search results, DataScout relies 
on LLM-in-the-loop workflows (Figure 4)—generating: (i) query re-
formulation suggestions; (ii) semantic data content-based attribute 
and granularity filter suggestions; and (iii) dataset relevance in-
dicators. This hybrid architecture enables DataScout to avoid 
prohibitive latencies, while still providing in-situ and personalized 

Table 2: Offline data collection with downstream uses. 

Collected Metadata Used For 

• Title + filename + tags Dataset Cards (Fig. 1H) 
• Dataset Size Dataset Cards (Fig. 1H) 
• Number of downloads Dataset Cards (Fig. 1H) 
• Dataset Description Dataset Embeddings , Dataset Cards (Fig. 1H) 
• Dataset Sample (10 rows) Dataset Embeddings , Attribute Embeddings , 

Dataset Cards (Fig. 1H) 

Generated Metadata Used For 

• Description summaries Purpose Embeddings , Dataset Cards (Fig. 1H) 
• Attribute descriptions Attribute Embeddings , Dataset Cards (Fig. 1H) 
• Data source/collection Dataset Cards (Fig. 1H) 
• Granularity tags Granularity Filters (Fig. 1F), Dataset Cards (Fig. 1H) 
• Dataset purposes Purpose Embeddings 

Precomputed Values Used For 

• Dataset Embeddings Dataset Index for semantic dataset search (Fig. 1A) 
• Attribute Embeddings Attribute Index for search & filtering (Fig. 1D, E) 
• Purpose Embeddings Query reformulation suggestions (Fig. 1B) 
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Figure 3: Offline dataset collection, augmentation, embedding generation and indexing for DataScout. 

assistance. In the following subsections, we detail our offline data 
collection and indexing stages, and online feature-specific imple-
mentation details. 

5.1 Offline Data Collection and Indexing 
Figure 3 and Table 2 provide an overview of our data collection, 
preprocessing and indexing pipeline. We collected datasets from 
Kaggle using their API, obtaining over 6,500 unique tables (belong-
ing to over 3150 datasets—where each dataset contained one or more 
tables within). For each table, we extracted metadata, including: 
title, filename, description, tags, dataset size, number of rows and 
columns, usability score, number of downloads, and a sample of 10 
rows with headers, formatted as a markdown table. To standardize 
and enrich the available metadata, we used OpenAI’s gpt-4o-mini 
model to generate: (i) concise one-line dataset summaries using de-
scriptions from Kaggle (DC3), (ii) column descriptions and inferred 
data types (DC3), (iii) data source and collection methods (DC3), 
(iv) temporal and spatial granularity by looking at example rows 
(DC2), and (v) the set of purposes or use-cases the dataset might 
support (e.g., regression, classification, visualization, or temporal 
analysis) (DC3, DC4). The prompts to generate these additional 
dataset metadata are in Appendix B. 

Then, to support the previously identified design considerations, 
we generated three different sets of embeddings3 using OpenAI’s 
pre-trained text-embedding-3-small model. 
• Dataset Embeddings: Using the dataset title, header, and three 
example rows as embedding inputs, to support semantic dataset 
search (DC1). 

• Attribute Embeddings: Using the column name and the first 10 
non-null values as embedding inputs, to support attribute-level 
filtering (DC2). 

• Dataset Purpose Embeddings: Using the previously generated 
dataset description summary and list of purposes as embedding 
inputs, to support proactive query reformulations (DC4). 

We stored the augmented and pre-processed dataset collection with 
all generated embeddings in a PostgreSQL database. We created 
two HNSW indexes [36]: (i) a Dataset Index using the dataset 
embeddings (DC1); and (ii) an Attribute Index using the attribute 
embeddings (DC2), using the open-source library hnswlib. 4 Here, 
given a dataset schema (or an attribute name), the dataset (or at-
tribute) HNSW index returns 𝑘 most semantically similar datasets 
(or attributes). 
3Embeddings are compressed vector representations of the data; with similarity of 
two embedding vectors being a proxy for semantic similarity.
4https://github.com/nmslib/hnswlib (with m=16 and ef_construction=64) 

5.2 Semantic Dataset Search Engine 
DataScout leverages the search indexes (Section 5.1 & Figure 3) to 
support semantic dataset search (DC1). Figure 4 details the search 
framework and actions triggered by DataScout to proactively as-
sist users. The search process begins with users specifying a search 
query—which may be as brief as a set of keywords, or as detailed as 
2–3 sentences. DataScout uses this query to prompt GPT-4o-mini 
to generate three diverse hypothetical schemas for a target dataset 
that would help with the user’s query (prompt detailed in Appen-
dix C). The generated outputs include the dataset name, projected 
column names and types, and an example row. These hypothet-
ical schemas capture different ways in which the user’s intent 
might align with datasets in our collection. Each of the three gener-
ated schemas is then embedded using the text-embedding-3-small 
model, ensuring consistency with previously computed dataset em-
beddings (Section 5.1). To determine relevance, we compute the 
cosine similarity between each hypothetical dataset embedding and 
precomputed dataset embedding pair. Since each of the hypothet-
ical schemas may highlight different aspects of the user’s search 
query, we average the similarity scores obtained for each dataset 
in our collection for an aggregate similarity score. The datasets are 
then ranked based on this aggregate score to present the most se-
mantically relevant results. Increasing the number of hypothetical 
schemas would increase the chances of retrieving highly relevant 
matches by covering a broader semantic space, but also increase 
computational costs and query latency. We generate three schemas 
to balance retrieval effectiveness and response time. 

5.3 Supporting Dynamic and Contextualized 
Assistance 

DataScout aims to leverage the semantic abilities of LLMs to facil-
itate contextualized dataset discovery. Figure 4 highlights DataS-
cout’s online assistance features, and the following sections pro-
vide corresponding implementation details. 

5.3.1 Query Reformulation Suggestions. To support DC4, DataS-
cout surfaces query reformulation suggestions to bridge the gap be-
tween user specified dataset search queries and the search space of 
available datasets (Figure 2B). To do so, DataScout proactively an-
alyzes all initial dataset search results—performing k-means cluster-
ing (𝑘 = 15) over the dataset purpose embeddings (described in Sec-
tion 5.1) belonging to the surfaced results—semantically grouping 
datasets that cover similar topics or have similar intended pur-
poses. DataScout then picks three clusters that are most relevant 
to the original search query, and uses an LLM to surface three 

https://github.com/nmslib/hnswlib
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Figure 4: Online dataset search assistance. The user query is used to generate hypothetical schemas to retrieve matching 
datasets from the Dataset Index (Section 5.1). DataScout proactively generates query reformulations, semantic attribute and 
granularity filter suggestions, and dataset relevance indicators—grounded in dataset search results and the search query. Users 
may accept a reformulation, apply filters, search by attributes, or inspect relevance indicators. 

corresponding query reformulation suggestions (prompt detailed 
in Appendix C), e.g., Figure 2B shows the query reformulation sug-
gestion “analyze the impact of the pandemic on remote work and 
work-life balance.” Users may select a query reformulation sug-
gestion to narrow the search scope, or to increase alignment with 
underlying datasets. Selecting a suggestion refreshes the dataset 
search results. 

5.3.2 Semantic Attribute Search and Filter Suggestions. DataScout 
introduces two unique affordances—enabling users to search and 
filter dataset results based on attribute semantics, instead of exact 
or fuzzy string matching with attribute names (DC2). First, DataS-
cout gives users the agency to search by attributes (Figure 1D)—by 
retrieving relevant datasets based on the HNSW attribute index. 
That is, given an attribute name, 𝑘 related attributes from the index 
are retrieved, and their corresponding datasets are returned, e.g., 
searching for “movie name” will return all datasets containing at-
tributes semantically equivalent to movie titles. Second, DataScout 
proactively suggests five “column concepts” as filters—informed by 
both the dataset search results, as well as the user’s search query— 
to narrow down the search space. To do so, DataScout performs 
k-means clustering (𝑘 = 15) over the attribute embeddings (de-
scribed in Section 5.1) belonging to the datasets in surfaced results 
and grouping together semantically equivalent attributes. DataS-
cout then computes a mean vector for each embedding cluster, and 
computes its cosine similarity with the user’s search query. Finally, 
DataScout leverages LLM assistance to assign a concept name to 
the five most relevant attribute clusters, and surface these as filter 
suggestions (prompt detailed in Appendix C), e.g., [stress, hours, 
vacations, employment, remote] (shown in Figure 2C). 

With these approaches, users may effectively isolate datasets 
matching attribute-level specifications even if their search terms 
do not exactly match with column names in a given dataset (DC2). 

5.3.3 Semantic Granularity Filter Suggestions. As detailed in Sec-
tion 5.1, we augmented our collection of datasets with LLM anno-
tations on temporal (e.g. second, minute, hour, ..., year) and spatial 
(e.g. latitude/longitude, street address, zipcode, ..., country) granu-
larity (DC2). DataScout also proactively inspects search results to 
recommend the three most frequently seen temporal and spatial 
granularity tags as filters (Figure 2D). Users may select a filter to 
view datasets at the required resolution and level of detail. 

5.3.4 Dynamic Dataset Relevance Indicators. To assist users in as-
sessing dataset suitability, DataScout uses LLM assistance to pro-
vide in-situ relevance feedback by generating dynamic explanations 
for dataset utilities and limitations on-the-fly (Figure 2E). To do so, 
DataScout considers the user’s search query and applied filters, 
and leverages LLM assistance to generate utility and limitation indi-
cators for the top-5 search results (prompt detailed in Appendix C); 
while relying on lazy-evaluation for the remaining search results, 
i.e., generating the relevance feedback only if the user clicks on 
the dataset search result for further inspection. Once generated, 
all relevance indicators are persisted for future visits to a dataset, 
unless the user modifies their search query or applied filters. 

6 User Study: Methodology 
To understand how users might leverage DataScout’s proactive as-
sistance, we conducted a within-subjects repeated-measures study 
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Table 3: Participant background and study tasks. 

ID Order Background Tasks 

P1 B-C-A Data Provenance Neighborhood Migrations in the US 
P2 B-A-C (F4) Art & AI Art History and Provenance Data 
P3 A-C-B Databases Researcher Fraud Detection via ITR 
P4 C-B-A Data Scientist Question-Answering for LLM-Eval 
P5 A-C-B Data Analyst Smart-location Sensor Streams 
P6 A-B-C Data Science Graduate Entity Resolution for Categoricals 
P7 C-B-A (F8) Marine Scientist Land use for Clean Energy 
P8 C-A-B (F2) AI/ML Engineering Game Actions Data for Emulations 
P9 C-A-B Business Analyst Business News Pre-training Data 
P10 B-C-A (F5) ML Engineering Populating data lake w/ restaurants 
P11 B-A-C Software Developer Top rated movies and TV Shows 
P12 A-B-C Finance Data Analyst Financial Inclusion Indicators 

with 12 participants. Our study was guided by the following re-
search questions: 
(RQ1) How do DataScout’s features guide users to discover their 

target datasets? (Section 7.1) 
(RQ2) How do DataScout’s capabilities support users’ data dis-

covery and sensemaking workflows? (Section 7.2) 

Recruitment. We recruited 12 participants by emailing prior forma-
tive study participants, and through a mailing list of data science 
professionals maintained by our research group. Four participants 
overlapped with our formative study (F2 as P8, F4 as P2, F5 as P10, 
and F8 as P7). All participants had expertise in data science and 
analytics. They voluntarily consented to taking part in the study, 
and agreed to have the sessions recorded for transcription and 
analysis. To maintain ecological validity, participants were asked 
to bring an open-ended dataset search task of personal relevance, 
reported in Table 3. Participants used the same task across all study 
conditions to allow for consistent comparisons [18]. 

Procedure. We conducted a within-subjects repeated-measurements 
study to facilitate direct comparisons across three conditions: 

(A) Kaggle Dataset Search: Baseline supporting keyword 
search (Appendix A, Figure 5)—chosen for being representa-
tive of traditional keyword dataset search tools, as well as 
for providing a relatively direct comparison standpoint—as 
DataScout’s dataset collection is derived from Kaggle; 

(B) Semantic Baseline: A stripped-down version of DataS-
cout supporting only semantic search and static metadata 
filters (Appendix A, Figure 6), chosen for an experience repre-
sentative of semantic search tools like Google Dataset Search 
and Olio’s semantic dataset retrieval [51]; and 

(C) DataScout: Complete version with semantic search, query 
reformulations, filtering, and relevance indicators (Figure 1). 

Conditions were presented in a randomized order to mitigate learn-
ing effects. Participants were also reminded of their original task 
before each condition to help re-anchor their search, and minimize 
task drift or carryover from prior conditions and experiences. While 
participants used the same dataset search task (of their choosing) 
across conditions, there were no fixed “correct” target datasets to be 
found. Dataset search, like exploratory data analysis, is inherently 
open-ended [15, 49]. Participants pursued different exploratory tra-
jectories depending on the condition and its affordances, and a 

dataset search was considered successful if the participant identi-
fied one or more datasets to pass their initial round of inspections, 
and judged them as promising for further investigation. The study 
began with a brief round of introductions and demographic ques-
tions. Each session lasted 60 minutes, during which participants 
spent 15–18 minutes per condition. Participants were encouraged 
to think aloud. After each condition, we asked follow-up questions 
to assess the perceived ease of use of the interface and the relevance 
of the search results. Participants remotely accessed and controlled 
a MacBook equipped with an Apple M2 chip, 8GB RAM, and a 
10-core CPU. We found the average latency to retrieve datasets to 
be 1.6 seconds. Suggestions for proactive assistance streamed into 
the interface within up to 12 seconds. 

Since our system indexed 6,500 datasets from over 50,000 public 
datasets on Kaggle, we wanted to ensure that participants are not 
severely restricted by our subset of most popular datasets. To ensure 
that the semantic baseline and DataScout had access to relevant 
datasets, we augmented our initial dataset collection by indexing 
300 additional datasets, containing top 25 Kaggle dataset search 
results for each participant’s task. All participants were informed 
of this dataset scope. To avoid biasing participants, no system walk-
through or tutorial was provided—enabling us to glean their raw 
impressions and organic usage patterns. This study was approved 
by our Institutional Review Board (IRB). 

Analysis. We transcribed all sessions using Zoom’s automatic tran-
scription and supplemented them with detailed notes document-
ing participant actions throughout the sessions. Two authors per-
formed reflexive thematic analysis through open coding of the 
transcripts, notes, and screen recordings, followed axial coding to 
surface broader themes. The authors subsequently performed a 
second iteration of axial coding to further refine the themes, and 
achieve high inter-rater agreement. We identified 22 open-codes 
and 9 axial-codes. Additionally, we analyzed the logs for learning 
effects across study conditions, and highlight emergent patterns in 
our study findings. 

7 User Study: Findings 
Here, we discuss our findings from observing participants engage 
in dataset discovery workflows across study conditions. 

All participants (𝑛=12) found DataScout’s interface to be more 
“expressive” and “flexible”, giving them a “greater sense of control” over 
their search task. They appreciated the description summaries and 
consolidated single-page view—reducing context-switching and 
scrolling. Participants rated DataScout highly on the ease of 
use of the interface on a 5-point Likert scale (𝜇=4.75, 𝜎=0.45), 
and were mostly satisfied with the relevance of search results 
(𝜇=3.67, 𝜎=0.78) (Table 4). On the other hand, while using Kaggle, 
participants echoed sentiments in-line with our formative study 
findings—being unable to freely express their dataset search intents, 
finding it restrictive (P2–P4, P6, P10). DataScout also enabled 
more efficient exploration: participants explored more datasets 
(𝜇=6.02), and spent less time in assessing dataset suitability (𝜇=37s). 
They also found relevant datasets sooner (𝜇=5.1 mins). Overall task 
success was highest with DataScout (10 of 12 participants found 
a relevant dataset), compared to Kaggle (7 of 12) and semantic 
baseline (6 of 12) (Table 4). 
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Table 4: Task performance and subjective ratings (5-point Likert scale) across study conditions. 

Condition 
Ease-of-use 
Ratings

1 
Relevance 
Ratings

2 # Queries # Datasets Explored 
Time to assess 
suitability (s) 

Time to first target 
(mins) 

# Successes 

(A) Kaggle 𝜇=3.08; 𝜎=0.51 𝜇=3.25; 𝜎=1.05 𝜇=3.5; 𝜎=3.6 𝜇=3.33; 𝜎=1.44 𝜇=134; 𝜎=47 𝜇=7.0; 𝜎=5.4 7 of 12 
(B) Semantic Baseline 𝜇=3.75; 𝜎=0.45 𝜇=3.25; 𝜎=0.86 𝜇=1.9; 𝜎=0.6 𝜇=4.25; 𝜎=1.5 𝜇=115; 𝜎=28 𝜇=7.5; 𝜎=5.5 6 of 12 
(C) DataScout 𝜇=4.75; 𝜎=0.45 𝜇=3.67; 𝜎=0.78 𝜇=1.8; 𝜎=3.4 𝜇=6.02; 𝜎=2.46 𝜇=37; 𝜎=12 𝜇=5.1; 𝜎=1.7 10 of 12 

1,2A Friedman test revealed significant differences in 2 ease-of-use ratings across conditions (𝜒 =23.13, 𝑝<0.00001), but no significant differences in relevance 
ratings ( 2𝜒 =4.42, 𝑝=0.11). Pairwise Wilcoxon tests showed that all ease-of-use comparisons were significant (𝑝<0.002, C > B > A). For relevance, only a 
marginal difference was observed between conditions B and C (𝑝=0.047, C > B). 

Across all study sessions, participants used DataScout’s query 
reformulation suggestions 15 times (11 of 12 participants), search 
and filter through column concepts 30 times (12 of 12 participants), 
and data-granularity filters 3 times (2 of 12 participants). We also 
observed differences in the perceived usefulness of DataScout’s 
features to be dependent on the order in which participants were 
exposed to the conditions. When exposed to DataScout before 
either of the baselines, participants missed the presence of semantic 
attribute filters the most (P3, P4, P7, P8, P10)—which is the most 
used feature across sessions (30 invocations); and when exposed to 
DataScout after the baselines, they appreciated the presence of 
task-specific relevance indicators the most (P2, P6, P11, P12)—which 
significantly expedited participants’ sensemaking and relevance 
judgments. To examine whether exposure to different conditions 
influenced user behavior, we analyzed session logs for signs of 
learning effects. We found that users did not fixate on previously 
discovered successful datasets; instead, they continued to explore 
and identify new ones. Notably, when users experienced the control 
conditions (A or B) first and then transitioned to DataScout (C), 
they discovered 12 unique, unseen target datasets (9 of 12 partici-
pants). Conversely, when users started with DataScout and moved 
to A or B, they still uncovered 7 unseen target datasets (6 of 12 
participants). 

On the other hand, we observed differences in dataset search 
workflows across conditions. First, participants wrote longer and 
more expressive queries with both DataScout and the semantic 
baseline. For example, P2 searched for “images that are artworks 
with the names of the artists” on DataScout, versus a shorter “art 
history” on Kaggle. Second, Kaggle often returned overly selective 
results (5–20 results), while the semantic baseline returned too 
many loosely relevant ones (50–100 results). In contrast, DataS-
cout helped participants start broad with 50+ dataset results, and 
narrow down to 10–12 datasets effectively using semantic filters, 
supporting both exploratory and targeted dataset search workflows. 
Lastly, participants frequently downloaded datasets in the base-
line conditions for deeper inspection. With DataScout, this need 
diminished due to in-situ feedback from relevance indicators. All 
participants noted the usefulness of such indicators, and 8 of 12 
commented on their soundness and credibility. 

In what follows, we present qualitative findings from the user 
study, organizing them around two key capabilities DataScout 
unlocked for users: first, their ability to steer and refine their search 
through interactive features (addressing RQ1); and second, their 
ability to adapt to search results and learn during exploration (ad-
dressing RQ2). 

7.1 DataScout Unlocked Users’ Ability to Steer 
and Adapt Their Dataset Search 

DataScout enabled participants to adopt more deliberate and in-
formed dataset search strategies (P1, P4, P5, P7, P8, P10, P12). Com-
pared to the baselines, users learned to steer system feedback to 
their advantage (P2, P3, P6, P8, P10), and encountered learning mo-
ments that enhanced their sensemaking and search behavior—even 
beyond DataScout’s immediate environment (P4, P6, P8, P9). We 
describe these distinctive strategies below. 

7.1.1 Users learned to “prompt-engineer” queries to control DataS-
cout’s relevance indicators. Participants learned through interac-
tion that the dimensions of feedback highlighted by the relevance 
indicators was dependent on their query and filters (P1–P3, P6, 
P8–P12). As they gained increased familiarity with DataScout, 
some participants began treating their queries as “knobs” they 
could use to manipulate the dataset relevance indicators (P2, P3, 
P6, P8–P10)—adjusting their task descriptions to elicit more tar-
geted and informative feedback from the system. For instance, P2 
needed information about image use rights for datasets containing 
links to artwork images. They hypothesized that modifying the 
query with this request would affect the relevance indicators, and 
added—“I need to know what the image rights are (e.g. if it is public 
domain, CC0, if attribution is required, etc.).” Thereafter, the rele-
vance indicators began surfacing image licensing details for each 
dataset. 

Similarly, P3 mentioned their preference for “non-synthetic” 
datasets in their query—with the objective of having relevance 
indicators pin-point dataset sources upfront. This contrasts with 
our formative study findings, where participants held unspoken 
dataset relevance criteria and felt restricted by the dataset search 
interfaces. By making relevance indicators visible and responsive, 
DataScout successfully elicited hidden preferences—promoting a 
reflective search process for other participants as well (P6, P8–P10). 

7.1.2 DataScout empowered users by enabling fine-grained queries 
over dataset attributes and granularity levels. Participants used 
DataScout’s features (query reformulations, and attribute and 
granularity filters) to systematically broaden or refine their search 
(P1, P4, P5, P7, P8, P10, P12). P7 began with the query: “land use 
in USA,” which returned mostly irrelevant results, and then used 
DataScout’s query reformulation suggestion—“land distribution 
across countries”— to consciously broaden the scope. This surfaced 
more relevant, but geographically non-localized datasets. With this 
broader scope, DataScout also suggested the country-level granu-
larity filter, enabling P7 to narrow results back down to the desired 
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resolution, albeit requiring some pre-processing to filter out all 
non-U.S. records. This tandem-use of query reformulation sugges-
tions and semantic granularity filters exemplifies how DataScout 
supports exploration followed by targeted narrowing. We observed 
similar workflows with DataScout supporting concerted refine-
ment efforts for P1, P5, P7, P10, and P12. Notably, each of these 
participants had embarked on discovering geographical data with 
varied levels of granularity. 

Through using DataScout’s semantic attribute search, partic-
ipants were able to not only narrow down the search space, but 
also stumble across previously latent datasets (P1, P2, P12). For 
instance, P2 had been deeply invested in their search for art history 
datasets prior to our evaluation study, and described extensively 
using Kaggle for this task. P2 used the semantic attribute search—a 
new dataset search modality surfaced by DataScout—to inten-
tionally look for datasets with the "artist bio" column, leading 
them to discover a previously unknown dataset (Carnegie Museum 
Collections) that was highly relevant to their work. They appreci-
ated the system’s semantic matching, noting, “it’s great that it is 
not only exact matching the column name but it gets the vibes.” We 
observe how DataScout can surface useful datasets even for other 
experienced participants working in familiar domains (P1, P12). 

7.2 DataScout Helped Users Make Sense of 
Dataset Availability 

Participants frequently repurposed DataScout’s features to gain 
feedback on their queries (P1, P3, P4, P7, P8, P10, P12), build concep-
tual models of the search space (P4, P9, P10, P12), and sanity-check 
their progress (P2, P5, P7, P8, P12). Users actively interpreted DataS-
cout’s proactive reformulation and semantic filtering suggestions— 
turning them into implicit system feedback to reason about dataset 
availability, recalibrate expectations, and steer their search strategy. 

7.2.1 Relevance indicators triggered “aha” moments that changed 
how users judged datasets. Beyond immediate task success, DataS-
cout prompted meaningful learning moments that shaped users’ 
dataset suitability assessment strategies. For some participants, 
learning moments emerged as a byproduct of expediting sensemak-
ing through dataset relevance indicators, making connections or 
limitations apparent upfront. For example, P6 initially dismissed a 
dataset surfaced by the semantic baseline as irrelevant. However, 
when the same dataset appeared in DataScout, they reviewed the 
system’s utility explanation and reconsidered its fit. The system had 
highlighted ‘joinable’ columns relevant to P6’s knowledge graph 
task, helping them realize the applicability of the dataset. P6 noted, 
“it provides reasoning and is quite responsive... it [utility indicators] 
helped me understand what to expect from the dataset.” This illus-
trates how transparent, in-context explanations can change user 
perceptions. P6 then continued looking for datasets with a renewed 
lens for dataset applicability. We observed similar patterns with 
P4 and P9. Notably, each of these participants’ tasks were geared 
towards finding datasets that would serve as inputs to algorithms 
they have authored themselves—offering some flexibility in how 
the dataset or their algorithm can be adapted to each other. 

Interestingly, for one participant (P8), the LLM generated rele-
vance indicators enabled a learning moment by filling an informa-
tion retrieval need. P8 began with a clear objective: “predicting NBA 

game outcomes based on LaMello Ball’s three-point shots.” While 
reviewing a dataset from 2008–2014, DataScout’s relevance indica-
tors surfaced a limitation: “LaMelo started playing for Charlotte 
Hornets in 2020, while the time-span of this dataset predates 
LaMelo’s NBA career.” This insight helped P8 quickly rule out the 
dataset and refine their assessment criteria for the remainder of 
the study—while carrying this learning over to Kaggle, where they 
began checking dataset upload dates more deliberately. 

7.2.2 Users adapted their queries when query reformulation sugges-
tions hinted at unavailable data. Participants learned early on that 
the query reformulation suggestions were dependent on the search 
results yielded by DataScout (P1, P3, P4, P6–P8, P10, P11). Some 
used these suggestions to verify whether their queries contained 
enough detail (P1, P7), while others used them to make bets on the 
presence of relevant datasets, probe the search space, and adapt 
their expectations (P3, P4, P8). 

For instance, P3 originally searched for non-synthetic money 
transfer datasets on Kaggle. However, DataScout and baseline 
did not have any real-world money transfer datasets as part of 
their dataset collection, leading to irrelevant results based on syn-
thetic sources. This mismatch led them to question the reliability 
of the results: “I started to lose faith in the results and their rank-
ing”. However, the reformulation suggestion “Analyze anomalies 
in real-world income tax datasets” hinted at not only the ab-
sence of money transfer datasets, but the abundance of real-world 
income tax anomaly datasets; helping P3 pivot their task to income 
tax datasets—realigning their goals to match the available search 
space. Other participants refined their geographic or demographic 
focus without changing their broader goals. For example, P12 used 
reformulation suggestions to scope financial inclusion data down 
to agricultural workers in Rwanda. 

Relevance indicators also played a role in helping participants 
evaluate the viability of their queries (P4, P9, P10, P12). When one 
or more top-ranked datasets indicated "No significant utilities" 
(highly ranked datasets showing poor task adherence)—prompted 
participants to reformulate their queries.5 On facing this conflict, 
P10 said, “No significant utilities higher up in the search results means 
that I should change my query, seems like there is not a lot in the 
search space to begin with.” 

7.2.3 Seeing the “right” semantic filter suggestions gave users confi-
dence they were on track. Participants also experientially learned 
that the suggested semantic attribute and granularity filters de-
pended on the search results (P2, P5, P7, P8, P12). Over time, these 
filter suggestions became feedback signals or sanity checks that par-
ticipants used to validate their current direction. Seeing the “right” 
filter suggestions reassured participants that they were on the right 
track, and within their intended space of dataset search results. 
For instance, P12 noted, “Seeing [agriculture, income, credit] is 

5While participants in our formative study also encountered irrelevant top-ranked 
results in using semantic dataset search engines (like Google Dataset Search), they 
typically skipped to the next entry without reflecting on the mismatch between ranking 
and task relevance. We believe that DataScout’s relevance indicators prompted users 
to re-express intent, enabling more iterative and reflective searching. We hypothesize 
that the presence of relevance indicators but facilitate meta-cognition—helping users 
reason not only about what they see, but also about their next steps, as discussed in 
the Cognitive Fit theory by Vessey [60]. 
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affirmative of my intent—it tells me I am still in the right space.” In con-
trast, when filter suggestions seemed off, participants interpreted 
that as a sign to revise their query. P5, searching for “intergen-
erational facilities,” initially saw unrelated filters like [emissions, 
source, insurance, url], prompting them to rethink their query 
phrasing. After revising the query, more aligned filters appeared, 
such as [daycare, address, age, cost], reinforcing their revised 
direction. 

Similarly, P7 said, “I see emissions, energy, land, population, and 
water, along with a year-level filter suggestion. This is giving me 
confidence that your system is understanding my prompt correctly.” 
P8 also supported our observation, mentioning how these acted 
as early cues: “even before I look at the search results, the smart 
column filters are giving me some clue about the kind of data in the 
search results.” DataScout’s semantic filters suggestions served 
as both, conceptual scaffolds, and lightweight progress markers 
during open-ended search tasks. 

8 Discussion 
We reflect on our findings in context of sensemaking and 
information-seeking literature, and discuss opportunities to extend 
DataScout. 

8.1 Impact of Relevance Indicators on 
Sensemaking 

Our findings show how DataScout supported sensemaking 
through relevance indicators, helping users assess dataset suit-
ability (see Section 7.2). We interpret these findings through Kaur 
et al. [24]’s framework on sensible AI explanations, which empha-
sizes understanding not just the content of explanations, but their 
cognitive timing and alignment with user goals as well. 

Relevance indicators support Identity Construction by affirming 
users’ intents. Relevance indicators helped users quickly identify 
datasets that aligned with their stated goals and preferences. Echo-
ing Kaur et al. [24], we found that participants gravitated towards 
cues that affirmed their own reasoning—using them to either confi-
dently shortlist datasets, or skip them without further inspection— 
speeding up their workflow (as seen in Table 4). 

Relevance indicators disrupt Retrospective Sensemaking. Kaur 
et al. [24]’s framework argues that offering explanations before 
users have had a chance to reflect on information themselves nega-
tively affects their sensemaking. In our case, DataScout immedi-
ately surfaces task-specific relevance indicators upon inspecting 
a dataset—often leading to quick decision-making. Surfacing such 
cues too early sometimes disrupted users’ independent judgment of 
dataset suitability, and short-circuited their exploratory and sense-
making processes. Complementary to this argument, P2 and P5 
voiced concerns about the subjectivity in LLM interpretations, pre-
ferring to view the “raw data” and “hard cold facts,” over “narratives 
around the data.” This skepticism echoes prior work on interac-
tive ML systems, where Groce et al. [16] observed users heavy 
reliance on visible system cues while remaining wary of subjective 
or opaque feedback. 

Yet, users also wanted more visible and persistent indicators 
(P1, P8).6 These opposing reactions reflect a fundamental tension: 
if surfaced too early, sensemaking aids can overly steer users; if 
surfaced too late, they may lose their utility altogether; as also 
discussed by Amershi et al. [1]. Future dataset search systems must 
negotiate this tradeoff carefully, perhaps by layering relevance 
signals across interaction stages and interface elements. 

8.2 Operationalizing Structured Exploration 
While DataScout supports dataset discovery through NL intent 
expression, participants expressed a need for more structured con-
trol over their query’s interpretation—specifically, the ability to 
specify binary constraints in NL, rather than loose preferences. 
This reflects a common tension in semantic search: while NL of-
fers flexible intent expression, it can blur the line between strict 
filters and preferences, limiting users’ ability to precisely steer their 
search. Participants envisioned interfaces to distinguish between 
constraints and preferences—P9 suggested separate input fields for 
the two, prompting reflection on search goals; while P2 proposed 
an adaptive mechanism that can automatically treat criteria as con-
straints when results are too broad, and as preferences when too 
narrow—mirroring the Information Diet Model, where users must 
balance preferences (easy-to-catch prey) and rigid constraints (hard-
to-catch-prey) to optimize search [45].7 Prior work in exploratory 
search has emphasized supporting both fluid and rigid filtering 
modes as well [18, 19, 37, 48]. 

A complementary direction involves expanding DataScout’s 
query reformulations beyond their current role of narrowing results. 
Reformulations could also broaden the search space by introducing 
adjacent and semantically related results, helping users consider 
alternatives they may not have explicitly articulated, thus support-
ing robust exploration through both—structured narrowing and 
expanding of the dataset search space. 

8.3 Limitations and Future Work 
Our evaluation of DataScout has several limitations. First, the 
search precision was constrained by our collection of Kaggle 
datasets, occasionally producing irrelevant results despite augment-
ing our corpus with ∼300 datasets for participant tasks. Second, our 
prototype lacked basic search functionalities such as result sorting 
and support for varied ranking criteria (e.g. upload date, downloads, 
size), which limited participants’ ability to explore results systemati-
cally. Third, we recorded only two observations per condition order, 
limiting findings on experiential effects. Finally, we compared only 
with Kaggle as a keyword-search baseline due to our shared dataset 
sources, and lacking access to other deployed systems with similar 
data. This choice allowed for direct comparisons, but narrowed our 
evaluation scope. 

We suggest several directions for extending DataScout. First, 
users desired a “birds-eye view” (P7) summarizing patterns across 
results—such as covered time periods or geographic regions—to ex-
pedite sensemaking and offer feedback on their queries (Section 7.2). 

6P8 suggested a simple, persistent thumbs-up/down mechanism; and P1 wanted always-
on relevance indicators to avoid clicking on each dataset for further inspection.
7“If a predator is too specialized, it will do very narrow searching. If the predator is too 
generalized, then it will pursue too much unprofitable prey” [45] 
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Aggregated overviews, as explored by Ouellette et al. [41], could 
support this need by presenting bottom-up hierarchical summaries 
of results. Second, users often wanted to combine data from multi-
ple sources to construct their intended dataset (F2, F5, F7, F8)—via 
union or joins. While prior work has addressed union/join-based 
dataset search, future interfaces could better support this with 
tailored sensemaking tools and visual cues for multi-dataset com-
positions. Finally, participants wanted visibility into data quality 
(P4, P10, P12). Building on existing efforts in data quality detection 
and wrangling [9, 17, 23, 53], future systems could surface these 
cues as relevance indicators to better inform user decisions. 

9 Conclusion 
We introduce DataScout—a system that rethinks dataset discov-
ery through proactive AI-assistance, offering query reformulation 
suggestions, semantic search and filtering based on attributes and 
data granularity, and task-specific dataset relevance indicators— 
supporting users in navigating and understanding opaque dataset 
landscapes. Our study with 12 participants revealed how these fea-
tures expedited sensemaking and conceptual model building; while 
eliciting latent search specifications. Our findings also underscore 
the need for dataset search systems to be designed to support both, 
exploratory wandering and targeted retrieval—meeting users where 
they are in their evolving dataset search workflows. 
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A Screenshots of User Study Conditions 
Here, we present screenshots for our baseline dataset search condi-
tions, as detailed in Section 6: (A) Kaggle (Figure 5) and (B) Semantic 
Baseline (Figure 6). 

Figure 5: (A) Kaggle: Keyword dataset search condition 

Figure 6: (B) Semantic Baseline: A stripped-down version of 
DataScout supporting only semantic dataset search. 

B Prompts for Offline Metadata Augmentation 
We designed two prompts to augment the metadata for each dataset 
in our collection, as described in Section 5.1 and illustrated in Fig-
ure 3. For every dataset, we prompted OpenAI’s GPT-4o to: (i) enrich 
the metadata with summaries of the dataset’s description, purpose, 
source and collection methods, and attribute descriptions; and (ii) 

annotate the dataset’s temporal and spatial granularity. We use the 
LLM’s tool calling functionality to generate structured responses 
that adhere to the output schema defined for each prompt. 
Dataset Metadata Augmentation 

Given following dataset details, you must extract information 
about this dataset. 
Dataset Details: 

• Title: {title} 
• Description: {description} 
• Dataset Preview: {example_rows} 

Directly answer each question, be brief and to the point: 
1. Description Summary: In 1–3 sentences, provide a brief and 
summarized description of the dataset. 
2. Purposes: Provide a list of analytical, data science, visual-
ization, or machine learning tasks that can be performed with 
this dataset. e.g., ["training a regression model", "temporal 
analysis"] 
3. Dataset Source & Collection Methods: Gather the source(s) 
of this dataset, which could include names and/or affiliations 
of persons, website URLs, web-APIs, synthetic sources, human 
annotations, and so on. If no information is available about the 
source of the data, output ‘N/A’. 
4. Column Descriptions: For each column in the dataset, pro-
vide a brief description for the column with its data type. 
Output Schema: 
{“description_summary”: string, 
“dataset_purposes”: list[string], 
“dataset_sources”: string, 
“column_descriptions”: list[{“column_name”: string, “type”: 
string, “description”: string}] } 

Temporal & Spatial Granularity Annotation 

Given a dataset with the following details, determine the most 
likely temporal and/or spatial granularity reflected in the dataset. 
Dataset Details: 

• Title: {title} 
• Description: {description} 
• Dataset Preview: {example_rows} 

Select the temporal granularity from the following options: 
Year, Quarter, Month, Week, Day, Hour, Minute, or Second. 
Select the spatial granularity from the following options: 
Continent, Country, State/Province, County/District, City, Neigh-
borhood/Region, Zip Code/Postal Code, Street Address, Residen-
tial Address, or Latitude/Longitude. 
Identify the temporal and/or spatial granularity only if reflected 
in the dataset. Leave the respective field(s) empty if the granular-
ity cannot be inferred from the table. 
Output Schema: 
{“temporal_granularity”: string, 
“spatial_granularity”: string} 

C Prompts for Online Dataset Search Assistance 
We designed four prompts to support DataScout ’s semantic search 
and online LLM-in-the-loop workflows, as detailed in Sections 5.2 
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and 5.3, and illustrated in Figure 4. These prompts take the user’s 
dataset search query, applied filters, and the resulting datasets as in-
puts, enabling proactive and contextualized assistance. DataScout 
sends these prompts to OpenAI’s GPT-4o-mini, once again leverag-
ing its tool calling functionality to generate structured responses 
that follow the output schema defined for each prompt. 
Hypothetical Schema Generation 

Given the task of {query}, generate three dataset schemas to 
implement the task. Only generate three table schemas, excluding 
any introductory phrases and focusing exclusively on the tasks 
themselves. Generate the table names and corresponding column 
names, data types, and example rows. For example: 
Example Task: Datasets to train a machine learning model to 
predict housing prices 
Example Output: (Parts omitted for brevity) 
[ { "table_name": "Properties", 
"column_names": ["id", "num_bedrooms", "num_bathrooms", 
"sqft", "year_built", "location", "price"], 
"data_types": ["INT", "INT", "INT", "FLOAT", "INT", "TEXT", 
"FLOAT"], 
"example_row": [101, 3, 2, 1450.5, 2005, "Seattle, WA", 
675000.0] }, 
{ “table_name”: “NeighborhoodStats”, 
“column_names”: [...], 
“data_types”: [...], 
“example_row”: [...] }, 
{ “table_name”: “PropertySalesHistory”, 
“column_names”: [...], 
“data_types”: [...], 
“example_row”: [...] } ] 

Output Schema: 
list[ {"table_name": string, 
"column_names": list[string], 
"data_types": list[string], 
"example_row": list[string]} ] 

Generate Query Reformulations 

Generate a dataset search query matching a collection of given 
dataset names, such that it: 
• Incorporates the common theme of these dataset names: 
{cluster} 

• Relates to the original task: {query} 
• Is specific enough to include both a topic, as well as a clear 
objective. 

Also provide a brief reason (under 10 words) why this query 
improves upon {query}. 
Example Output: 
{ "query": "Analyze voter demographics in presidential 
elections", "reason": "adds demographic focus" } 

Output Schema: 
{"query": string, "reason": string} 

Generate Column Name Concepts 

You are an assistant that returns a flat list of words. The input 
will be a list with nested elements. For each nested element, 
return 1 to 2 representative words that best represent the topic 
of the nested group. The representative word should also make 
sense in context with the {query}. The words should be lower 
case single words without special characters (like hyphens or 
underscores). The output must be a valid JSON array with no 
additional formatting, symbols, or repetitions. 

Output Schema: 
list[string] 

Generate Relevance Indicators 

You are an assistant that explains what makes the following 
dataset search result relevant or irrelevant, given my task and 
applied search filters. 
Dataset Details: 

• Description: {description} 
• Example Rows: {schema} 
• Purpose of dataset: {purpose} 
• Dataset Collection Method: {source} 

Dataset Search Specifications: 

• Dataset search query: {query} 
• Applied filters: {filters} 

Instructions: 
1. Utilities: Identify the strongest factors that make this dataset 
useful. Look for the presence of relevant attributes, high data 
quality, and matching intent. If there are no strong advantages, 
return "No significant utilities." 
2. Limitations: Identify limitations such as missing relevant at-
tributes, specific geographical locations (e.g., “dataset only con-
tains records of location X”), specific temporal ranges (e.g., “data 
belongs to X and Y time range”), poor data quality and missing or 
incomplete data. If no major issues exist, return "No significant 
limitations." 
Guidelines: 

• Stay factual: Base responses strictly on the provided dataset 
details. Do not assume information that isn’t explicitly stated. 

• Be concise: Limit each response to 1–2 sentences. 
• Avoid hallucination: If no strong reason exists for relevance 
or irrelevance, default to "No significant utilities" or "No 
significant limitations". 

Output Schema: 
{"utilities": string, "limitations": string} 
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